[go: up one dir, main page]

JP2004247108A - Accelerator system - Google Patents

Accelerator system Download PDF

Info

Publication number
JP2004247108A
JP2004247108A JP2003034296A JP2003034296A JP2004247108A JP 2004247108 A JP2004247108 A JP 2004247108A JP 2003034296 A JP2003034296 A JP 2003034296A JP 2003034296 A JP2003034296 A JP 2003034296A JP 2004247108 A JP2004247108 A JP 2004247108A
Authority
JP
Japan
Prior art keywords
charged particles
accelerator
injector
emission
timing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003034296A
Other languages
Japanese (ja)
Other versions
JP3919674B2 (en
Inventor
Takahisa Nagayama
貴久 永山
Nobuyuki Zumoto
信行 頭本
Sadahiro Ishi
禎浩 石
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003034296A priority Critical patent/JP3919674B2/en
Publication of JP2004247108A publication Critical patent/JP2004247108A/en
Application granted granted Critical
Publication of JP3919674B2 publication Critical patent/JP3919674B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Particle Accelerators (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To optimize the injection efficiency of a charged particle (simply referred to a CP) into a main accelerator by using a means of estimating a CP emission timing from an injection device and a means of controlling a timing enabling the CP to enter the main accelerator by using a signal from the estimation means. <P>SOLUTION: The accelerator system comprises the main accelerator 14 for accelerating or decelerating the CP by a high frequency electric field, and the injection device for permitting the CP to enter the main accelerator. The injection device has a hollow ring-shaped path as a means of accelerating the CP until the CP obtains a velocity necessary for the injection, a ring-shaped central conductor having an acceleration gap for inducing a CP beam acceleration voltage, an acceleration core driving circuit having a rectifying circuit and a switching circuit, and a means of changing the orbit of the accelerated CP from an orbiting path to an emission orbit, and constructed so as to complete the injection and emission of the CP within one cycle of the operation frequency of the acceleration core. The accelerator system uses a means for estimating the CP emission timing from the injection device, and a means for controlling the CP injectable timing of the main accelerator 14 by using the signal from the estimation means. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、高周波電界により荷電粒子を加減速する主加速器に、FFAG誘導加速器である入射器から荷電粒子を入射する加速器システムに関するものである。
【0002】
【従来の技術】
特許文献1に示されているように、シンクロトロン(加速器システム)は、シンクロトロン放射光(SOR)システムとして、超々LSI回路の作成,医療分野における診断,分子解析,構造解析等様々な分野への適用が期待されている。
【0003】
特許文献1に示される従来のSORシステムの概要を図12に示す。荷電粒子発生装置(例えば、電子銃等の電子発生装置)1で発生した電子ビームは線型加速装置(ライナック)2で光速近くに加速され、ビーム輸送部3の偏向電磁石4で偏向されて、インフレクタ6のセプタム電磁石15(図13)を介して蓄積リング7内に入射される。蓄積リング7に入射された電子ビームは高周波加速空洞8の高周波電界でエネルギを与えられながら、収束電磁石9(垂直方向用)、10(水平方向用)で収束され、偏向電磁石11で偏向されて蓄積リング7中を回り続ける。偏向電磁石11で偏向される時に発生するシンクロトロン放射光はビームチャンネル12を通して例えば露光装置13に送られて超々LSI回路作成用の光源として利用される。なお、インフレクタ6〜偏向電磁石11で高周波電界により荷電粒子を加減速する主加速器14が構成され、電子発生装置1〜偏向電磁石4で主加速器14に荷電粒子を入射する入射器5が構成される。
【0004】
インフレクタ6は、図13のように、蓄積リング7内を周回している電子ビーム16の設計軌道(中心軌道)17から水平方向外側にやや偏位した位置に新たな電子ビーム18を入射する。このとき、蓄積リング7の別の箇所に配設されたパータベータ(キッカー電磁石)19(図には模式的に示す)を励磁して、蓄積リング7内の蓄積電子ビーム16を蓄積リング7の中心軌道17からインフレクタ6側にキックしてバンプ軌道20を形成し、入射する電子ビーム18がバンプ軌道20の周りに形成されるアクセプタンス(入射可能領域)に入るようにする。
【0005】
【特許文献1】
特開平5−182793号公報(第2頁第1欄、図2,図3)
【非特許文献1】
Cole, Haxby, Jones, Pruett, and Terwilliger 著「The Review of Scientific Instruments 」Vol. 28, No. 6, June, 1957, P.403〜420
【0006】
【発明が解決しようとする課題】
特許文献1にも述べられているように、入射電子ビームを軌道に導く際は、パータベータ(キッカー電磁石)を励磁して、電子ビームがアクセプタンス(入射可能領域)に入るようにする。一方、キッカー電磁石の励磁にはμsオーダーの時間が必要である。さらに、入射時に必要な磁界を形成するためには、電子ビーム入射時とタイミングを合わせて励磁する必要がある。すなわち、主加速器に電子ビームが入射される前に、入射タイミングを予測して励磁を開始しないと、適切な入射を行えなえず、入射効率が落ちるという課題がある。
又、入射器として線形加速器を用いると、高価なクライストロンが必要になり、入射器価格が上昇するという課題がある。
【0007】
この発明では、上記入射器からの荷電粒子の出射タイミングを予測する手段と、その予測手段からの信号を用いて上記主加速器の荷電粒子入射可能タイミングを制御する手段を用いて、上記主加速器への荷電粒子の入射効率を上げようとするものである。
また、この発明では、安価な整流回路とスイッチング回路で駆動できるFFAG( Fixed Field Alternating Gradient )誘導加速器を入射器として用いることで、入射器価格を抑制しようとするものである。
【0008】
【課題を解決するための手段】
この発明に係わる加速器システムは、高周波電界により荷電粒子を加減速する主加速器と、この主加速器に荷電粒子を入射する入射器とを備える加速器システムにおいて、上記入射器は、入射に所要な速度まで荷電粒子を加速する手段として、荷電粒子ビームの環状通路と、荷電粒子ビームを曲げて上記環状通路に誘導し荷電粒子の入射から出射までの間は変化しない磁場発生手段と、中空の上記環状通路を有すると共に荷電粒子ビームの加速電圧を誘起する加速間隙を有する環状中心導体と、この中心導体を取り囲むように設けた加速コアと、整流回路とスイッチング回路を有する加速コア駆動回路と、加速された荷電粒子を周回軌道から出射軌道に変更する手段とを備えて、上記加速コアの運転周波数の1周期以内に粒子の入射から出射までを完了するように構成し、加速器システムは、上記入射器からの荷電粒子の出射タイミングを予測する手段と、その予測手段からの信号を用いて上記主加速器の荷電粒子入射可能タイミングを制御する手段を有するものである。
【0009】
また、高周波電界により荷電粒子を加減速する主加速器と、この主加速器に荷電粒子を入射する入射器とを備える加速器システムにおいて、上記入射器は、入射に所要な速度まで荷電粒子を加速する手段として、荷電粒子ビームの環状通路と、荷電粒子ビームを曲げて上記環状通路に誘導し荷電粒子の入射から出射までの間は変化しない磁場発生手段と、中空の上記環状通路を有すると共に荷電粒子ビームの加速電圧を誘起する加速間隙を有する環状中心導体と、この中心導体を取り囲むように設けた加速コアと、整流回路とスイッチング回路を有する加速コア駆動回路と、加速された荷電粒子を周回軌道から出射軌道に変更する手段とを備えて、上記加速コアの運転周波数の1周期以内に粒子の入射から出射までを完了するように構成したものである。
【0010】
【発明の実施の形態】
実施の形態1.
この発明で入射器として用いるFFAG誘導加速器について説明する。次の例は、FFAG型誘導加速器により加速された電子をX線変換ターゲットに当て、X線を発生させる装置である。電子加速のためのFFAG誘導加速器は米国のMURA( Midwestern Universities Research Association )での試作例しか見当たらない(非特許文献1参照)。
【0011】
図2にFFAG誘導加速器を示す模式図である。図3は図2のA―A断面図である。電子銃21により生成された電子は、静電偏向器22により、中空の環状通路30を有する環状中心導体(リング状真空容器で、銅やステンレスで形成される)23の中の周回軌道に誘導される。電子は電磁石(磁場発生手段)24により生成されたフィールド磁界により曲げられ、周回軌道に閉じこめられる。上記フィールド磁界(内側は弱く外側は強い磁界)は電子が加速される間、一定に保たれるので、電子のエネルギーが上がるにつれ軌道半径が大きくなり、電子は、エネルギーによって決まる軌道半径上を周回する。但し、上記フィールド磁界を半径が大きいほど強くなるように構成することで、半径の増大を抑制している。
【0012】
周回軌道、すなわち、環状中心導体23には加速ギャップ(加速間隙)25が設けられており、加速コア26内の磁束Φが変化するとき、電磁誘導の法則により加速ギャップ25に電界(加速電圧)が発生する。この電界により周回を重ねる毎に電子は加速され、高エネルギー電子ビーム27となり、引き出される。引き出された高エネルギー電子ビーム27はX線変換ターゲット28に照射され、X線29に変換される。
【0013】
次に加速電界の印加方法について説明する。この発明にかかる入射器は、誘導加速方式であり、加速ギャップ25にかかる交番電界の加速フェーズの間に、周回粒子が何度も通過することで高エネルギーを得る。すなわち、電子の入射から出射までは、交番電磁界の一周期以内で終了する。図4は加速ギャップ25にかかる加速電圧Vと、電子入射、出射のタイミングを示している。Tは時間を表す。図は、加速フェーズ31、加速時間32、入射時間33の関係を示している。通常、コア駆動に用いられる正弦波の加速フェーズ31は、加速電圧が正の値をとる全体の1/2である。しかし、加速フェーズ31の最初と最後は、大きく加速電圧が低下するため、粒子の加速を行うことができず、実質的に利用可能な加速時間32は全体の1/3にすぎない。
【0014】
次に電子の電子入射、出射のタイミングと、加速時間32、入射時間33の関係を説明する。電子はリング状真空容器23に、加速時間32が始まると同時に導入され始める。導入は、入射時間33の間続けられる。入射時間33の終わりは、電子が加速されるに必要な時間を加速時間32の最後から差し引いた値である。電子出射は以下のようにして行う。電子が定められた電子エネルギーに到達すると、それに対応する軌道半径に達する。対応する軌道上には出射セプタム(セプタム電磁石)15が設けられており、セプタムに入射したビームは電界、もしくは磁界により軌道が曲げられ、出射口へと向かう。
【0015】
電子のエネルギーは、初期エネルギー、及び、電子が加速中に受けた加速電圧の積分値と素電荷の積との和であるから、定められた電子エネルギーに達するのは、加速電圧の積分値がある一定の値Sに達した場合となる。すなわち、電子出射のタイミングは、加速電圧の積分値がSに達した場合である。加速コア26を励磁し、環状中心導体23の加速ギャップ25に加速電圧Vacを与えるコア駆動回路の一般例を図5に示す。サイリスタで構成されるブリッジ回路34とコンデンサC1,C2で整流・平滑回路35を形成する。IGBT( Insulated GateBipolar Transistor )とコンデンサでスイッチング回路36を構成する。Io,I1,I2,I3は電流を、Vap,Vacは電圧を表す。Vap,Vac電圧には図4に示すように、矩形波電圧が得られる。
【0016】
このコア駆動回路の構成要素には、線形加速器に用いられる高価なクライストロンが含まれておらず、安価に構成することができる。しかし、発生する電圧には、交流源(例えば、3φAC440V)の電圧変動がそのまま表れるため、商用電力をそのまま用いると、数%程度の電圧変動を生ずる。その結果、加速電圧の積分値が一定になる時間が数%変動する。そのため、この発明の入射器では、数%変動があっても、入射器からの荷電粒子の出射タイミングを予測する手段と、その予測手段からの信号を用いて主加速器の荷電粒子入射可能タイミングを制御する手段を用いて、主加速器への荷電粒子の入射効率を最適化することが望まれる。
【0017】
図1はこの発明の実施の形態1の加速器システムを示す構成図である。入射器41は、FFAG型誘導加速器で構成されており、図2でX線変換ターゲット28は取り除いている。42は偏向電磁石である。主加速器14は図12で示した主加速器と同等のものであり、その説明は省略する。従来の主加速器14への荷電粒子の入射器は、主に線形加速装置(ライナック)を用いていた。これをFFAG誘導加速器41に置き換えることで、線形加速装置の駆動に必要なクライストロンをなくすことができる。FFAG誘導加速器41の駆動には、安価で高信頼なスイッチング素子を用いることができるので、システム全体として信頼性が向上し、低コスト化が図れるという効果がある。
【0018】
次に、入射器からの荷電粒子の出射タイミングを予測する手段と、その予測手段からの信号を用いて主加速器の荷電粒子入射可能タイミングを制御する手段を用いて、主加速器への荷電粒子の入射効率を最適化することについて説明する。図6は加速電圧と電子ビーム出射時刻とキッカー電圧の関係を示す図である。図6(a)では、Voは基準となる加速電圧、V1は電圧が変化した時の加速電圧を示す。粒子が出射する時刻はVの時間積分値が所定の値Soとなった時刻である。
従って、図6(b)のようにVの時間積分値(=S)を縦軸にとると、所定の閾値Soに達したとき(ビーム出射時刻to,t1)にビームが出射される。
【0019】
一方、キッカー電磁石(パータベータ)のキッカー電圧波形は、図6(c)のようになっている。主加速器14へはキッカー電圧波形のハッチングで示すタイミング(入射可能タイミング)43で入射しないと入射効率が悪い。すなわち、主加速器14への入射は、波形の立ち上がり時刻tro(tr1)からtdo(td1)後(例えば10μs後)に行う必要がある。FFAG誘導加速器41から、主加速器14までのビームラインが長い等の理由で、出射から入射までtdo以上の時間がかかる場合は、上記所定の閾値Soをトリガとし、適当なディレイを設けることでキッカー電圧波形のハッチング部のタイミング43でビームが入射できる。しかし、出射から入射までの時間tがtdo(td1)と比較して小さい場合(図6(c)には、t<<tdo(td1)の場合を図示)には、閾値Soでトリガをかけると励磁が間に合わない。この場合は、図6(b)に示す閾値Soより低い閾値Stのタイミングtro(tr1)でキッカー電磁石(パータベータ)の励磁のトリガ(始動)をかけるように設定すればよい。
【0020】
図7は荷電粒子入射可能タイミング制御回路を示す図である。加速電圧は、加速コアに鎖交する配線の両端電圧に比例するから、この両端電圧Vを図の積分回路44を通してSに対応する積分値を求める(荷電粒子の出射タイミングを予測する手段に該当する)。積分の結果を値Stに対応する電圧Estとコンパレータ45で比較し、これに達したときにトリガ信号を発生させる(予測手段からの信号を用いて主加速器の荷電粒子入射可能タイミングを制御する手段に該当する)。図7で46は演算増幅器である。なお、同様の特性を持つ制御回路をデジタル回路で構成できることはいうまでもない。
【0021】
実施の形態2.
図8は実施の形態2の主要部を示す入射器の断面図である。図9は図8の環状中心導体23の断面概要図である。電子銃から入射された電子は、螺旋状の電子周回軌道51を描きながら、最後に出射セプタム52より出射軌道に導かれる。出射タイミングは、所定の電子周回軌道を電子が通過するタイミングであるから、電子の軌道をモニタすることで、トリガとすることができる。この実施の形態では、電子ビーム周辺にビーム検出電極53を配置することでビーム位置を検出する。なお、54はビーム軌道存在領域、55は入射軌道、56はビーム進行方向、57は出射軌道を示している。
【0022】
ビーム検出電極53は、ビーム軌道の周辺に接するように配置されるため、ビーム検出電極53にビーム電流が流れ込む。このビーム電流を電流計58でモニタすることで、所定の電子周回軌道を電子ビームが通過するタイミングを検出でき、主加速器の荷電粒子入射可能タイミングを制御するトリガ信号を取り出すことができる。
【0023】
又、上記ビーム検出電極53に代えて、荷電粒子の周回軌道周辺に放射線発生用ターゲットを設け、周辺荷電粒子ビームの上記ターゲットへの入射時に発生する放射線により誘起される信号を得て、主加速器の荷電粒子入射可能タイミングを制御するトリガ信号を取り出すこともできる。
【0024】
実施の形態3.
実施の形態2では、周辺荷電粒子ビームが当たる位置にビーム検出電極を配置したが、ビームロスを減らす観点からは、電極に電子が当たらない方が好ましい。そのため、ビーム検出電極をビームが当たらない位置に配置し、電極に電子によって誘導される電荷の流入を測定することでビーム位置をモニタすることもできる。この場合は、出射電流強度が上がるという効果がある。この目的で設けられた電極配置例を図10に示す。図10は環状中心導体23の断面概要図である。電荷誘導電極59を周辺荷電粒子ビームが当たらない状態で周辺荷電粒子ビームに面して接近させる位置に対向して設ける。電子がこの電極59の間を通過すると、それに応じた正電荷が電流計58を通じて電極59に誘起される。その電流をモニタする又は荷電粒子ビームにより静電的に誘起される電圧信号をモニタすることで、主加速器の荷電粒子入射可能タイミングを制御するトリガ信号を取り出すこともできる。
【0025】
実施の形態4.
上述では、ビーム検出電極を用いてビーム位置を検出したが、FFAG誘導加速器のビーム出射から主加速器への入射までの間にtdo以上の時間がかかる場合は、出射セプタム52に流入する電流を測定することで、出射タイミングを知ることができる。この場合は、ビーム検出電極を設けなる必要がないという効果がある。出射セプタム52には、通常でもビームの一部が当たるため、検出によりビーム効率が落ちることがない。
【0026】
図11は、実施の形態4の主要部を示す入射器の断面図で、出射セプタム52に直接電流計58を取り付けた場合の構成例を示している。出射セプタム52に流入する電流をモニタすることで、主加速器の荷電粒子入射可能タイミングを制御するトリガ信号を取り出すことができる。又、荷電粒子を周回軌道から出射軌道に変更する手段(出射セプタム52)に荷電粒子が入射する時に発生する放射線により誘起される信号を得て、主加速器の荷電粒子入射可能タイミングを制御するトリガ信号を取り出すこともできる。
【0027】
なお、上述では、荷電粒子として主に電子を想定して説明したが、陽子線、重粒子などにおいても同様にできることは言うまでもない。
【0028】
【発明の効果】
以上説明したように、この発明の加速器システムによれば、高周波電界により荷電粒子を加減速する主加速器と、この主加速器に荷電粒子を入射する入射器とを備える加速器システムにおいて、上記入射器は、入射に所要な速度まで荷電粒子を加速する手段として、荷電粒子ビームの環状通路と、荷電粒子ビームを曲げて上記環状通路に誘導し荷電粒子の入射から出射までの間は変化しない磁場発生手段と、中空の上記環状通路を有すると共に荷電粒子ビームの加速電圧を誘起する加速間隙を有する環状中心導体と、この中心導体を取り囲むように設けた加速コアと、整流回路とスイッチング回路を有する加速コア駆動回路と、加速された荷電粒子を周回軌道から出射軌道に変更する手段とを備えて、上記加速コアの運転周波数の1周期以内に粒子の入射から出射までを完了するように構成し、加速器システムは、上記入射器からの荷電粒子の出射タイミングを予測する手段と、その予測手段からの信号を用いて上記主加速器の荷電粒子入射可能タイミングを制御する手段を有するので、主加速器への荷電粒子の入射効率を上げることができる。
【0029】
また、高周波電界により荷電粒子を加減速する主加速器と、この主加速器に荷電粒子を入射する入射器とを備える加速器システムにおいて、上記入射器は、入射に所要な速度まで荷電粒子を加速する手段として、荷電粒子ビームの環状通路と、荷電粒子ビームを曲げて上記環状通路に誘導し荷電粒子の入射から出射までの間は変化しない磁場発生手段と、中空の上記環状通路を有すると共に荷電粒子ビームの加速電圧を誘起する加速間隙を有する環状中心導体と、この中心導体を取り囲むように設けた加速コアと、整流回路とスイッチング回路を有する加速コア駆動回路と、加速された荷電粒子を周回軌道から出射軌道に変更する手段とを備えて、上記加速コアの運転周波数の1周期以内に粒子の入射から出射までを完了するように構成したので、安価な整流回路とスイッチング回路で駆動できるFFAG誘導加速器を入射器として用いることで、入射器価格を抑制することができる。
【図面の簡単な説明】
【図1】この発明の実施の形態1の加速器システムを示す構成図である。
【図2】FFAG誘導加速器を示す模式図である。
【図3】図2のA―A断面図である。
【図4】加速電圧と、電子入射,出射のタイミングを示す図である。
【図5】コア駆動回路図を示す。
【図6】加速電圧と電子ビーム出射時刻とキッカー電圧の関係を示す図である。
【図7】荷電粒子入射可能タイミング制御回路を示す図である。
【図8】実施の形態2の主要部を示す入射器の断面図である。
【図9】図8の環状中心導体の断面概要図である。
【図10】実施の形態3の環状中心導体の断面概要図である。
【図11】実施の形態4の主要部を示す入射器の断面図である。
【図12】従来のSORシステムの概要を示す構成図である。
【図13】従来の主加速器の入射部の概要を示す構成図である。
【符号の説明】
1 電子発生装置 2 線型加速装置
3 ビーム輸送部 4 偏向電磁石
5 入射器 6 インフレクタ
7 蓄積リング 8 高周波加速空洞
9 収束電磁石 10 収束電磁石
11 偏向電磁石 12 ビームチャンネル
13 露光装置 14 主加速器
15 セプタム電磁石 16 蓄積電子ビーム
17 中心軌道 18 電子ビーム
19 パータベータ(キッカー電磁石)
20 バンプ軌道 21 電子銃
22 静電偏向器 23 環状中心導体
24 磁場発生手段 25 加速ギャップ
26 加速コア 27 高エネルギー電子ビーム
28 X線変換ターゲット 30 環状通路
34 ブリッジ回路 35 整流・平滑回路
36 スイッチング回路 41 FFAG型誘導加速器
44 積分回路 45 コンパレータ
52 出射セプタム 53 ビーム検出電極
58 電流計 59 電荷誘導電極。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an accelerator system for injecting charged particles from an injector that is an FFAG induction accelerator into a main accelerator that accelerates and decelerates charged particles by a high-frequency electric field.
[0002]
[Prior art]
As shown in Patent Document 1, a synchrotron (accelerator system) is a synchrotron radiation (SOR) system for various fields such as creation of an ultra-super LSI circuit, diagnosis in the medical field, molecular analysis, and structural analysis. The application of is expected.
[0003]
FIG. 12 shows an outline of a conventional SOR system disclosed in Patent Document 1. An electron beam generated by a charged particle generator (for example, an electron generator such as an electron gun) 1 is accelerated to near the speed of light by a linear accelerator (linac) 2, deflected by a bending electromagnet 4 of a beam transport unit 3, and inflated. The light enters the storage ring 7 via the septum electromagnet 15 (FIG. 13) of the stator 6. The electron beam incident on the storage ring 7 is converged by the converging electromagnets 9 (for the vertical direction) and 10 (for the horizontal direction) while being energized by the high-frequency electric field of the high-frequency accelerating cavity 8, and deflected by the bending electromagnet 11. Continue turning in the storage ring 7. Synchrotron radiation generated when the beam is deflected by the deflection electromagnet 11 is sent to, for example, an exposure device 13 through a beam channel 12, and is used as a light source for creating an ultra-super LSI circuit. A main accelerator 14 for accelerating and decelerating charged particles by a high-frequency electric field is constituted by the inflector 6 to the bending electromagnet 11, and an injector 5 for projecting charged particles to the main accelerator 14 is constituted by the electron generating devices 1 to the bending electromagnet 4. You.
[0004]
As shown in FIG. 13, the inflector 6 enters a new electron beam 18 at a position slightly deviated horizontally outward from a design trajectory (center trajectory) 17 of the electron beam 16 circulating in the storage ring 7. . At this time, a pertabeta (kicker electromagnet) 19 (schematically shown in the figure) provided at another location of the storage ring 7 is excited to cause the stored electron beam 16 in the storage ring 7 to be in the center of the storage ring 7. The bump 17 is kicked from the track 17 toward the inflector 6 to form a bump track 20 so that the incident electron beam 18 enters an acceptance (incidable area) formed around the bump track 20.
[0005]
[Patent Document 1]
JP-A-5-182793 (page 2, column 1, FIG. 2 and FIG. 3)
[Non-patent document 1]
Cole, Haxby, Jones, Pruett, and Terwilliger, "The Review of Scientific Instruments", Vol. 28, No. 6, June, 1957, p. 403-420
[0006]
[Problems to be solved by the invention]
As described in Patent Literature 1, when an incident electron beam is guided to an orbit, a perta beta (a kicker electromagnet) is excited so that the electron beam enters an acceptance (a region where light can enter). On the other hand, the excitation of the kicker electromagnet requires a time on the order of μs. Furthermore, in order to form a necessary magnetic field at the time of incidence, it is necessary to excite the electron beam at the same timing as that at the time of electron beam incidence. That is, if the excitation timing is not predicted before the electron beam is incident on the main accelerator, excitation cannot be performed properly, and the incident efficiency is reduced.
In addition, when a linear accelerator is used as an injector, an expensive klystron is required, which causes a problem that the price of the injector increases.
[0007]
In this invention, the means for predicting the emission timing of the charged particles from the injector, and the means for controlling the timing at which the charged particles can be incident on the main accelerator using a signal from the prediction means, to the main accelerator. The purpose is to increase the incident efficiency of charged particles.
Further, in the present invention, an FFAG (Fixed Field Alternating Gradient) induction accelerator, which can be driven by an inexpensive rectifier circuit and a switching circuit, is used as an injector to reduce the price of the injector.
[0008]
[Means for Solving the Problems]
An accelerator system according to the present invention is an accelerator system including a main accelerator for accelerating and decelerating charged particles by a high-frequency electric field, and an injector for injecting the charged particles into the main accelerator. As means for accelerating the charged particles, an annular path of the charged particle beam, a magnetic field generating means which bends the charged particle beam and guides it into the annular path and does not change from the entrance to the exit of the charged particle, and the hollow annular path An annular center conductor having an acceleration gap for inducing an acceleration voltage of the charged particle beam, an acceleration core provided to surround the center conductor, an acceleration core driving circuit having a rectifying circuit and a switching circuit, and Means for changing a charged particle from a circular orbit to an emission orbit, and from the incidence of the particle within one cycle of the operating frequency of the acceleration core. The accelerator system predicts the timing of emission of charged particles from the injector, and controls the timing at which the main accelerator can be charged using the signal from the predictor. Means.
[0009]
Further, in an accelerator system comprising a main accelerator for accelerating and decelerating charged particles by a high-frequency electric field, and an injector for injecting the charged particles into the main accelerator, the injector includes means for accelerating the charged particles to a speed required for the injection. An annular path of a charged particle beam, a magnetic field generating means which bends the charged particle beam and guides the charged particle beam into the annular path and does not change from the input to the emission of the charged particles, and An annular core conductor having an acceleration gap for inducing an acceleration voltage, an acceleration core provided to surround the center conductor, an acceleration core drive circuit having a rectifier circuit and a switching circuit, and the charged particles accelerated from the orbit. Means for changing to an emission trajectory, so as to complete the process from incidence to emission of particles within one cycle of the operating frequency of the acceleration core. Than it is.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
The FFAG induction accelerator used as an injector in the present invention will be described. The next example is a device that applies electrons accelerated by an FFAG-type induction accelerator to an X-ray conversion target to generate X-rays. As for the FFAG induction accelerator for electron acceleration, only a prototype example in MURA (Midwestern University Research Association) in the United States can be found (see Non-Patent Document 1).
[0011]
FIG. 2 is a schematic diagram showing the FFAG induction accelerator. FIG. 3 is a sectional view taken along line AA of FIG. The electrons generated by the electron gun 21 are guided by an electrostatic deflector 22 to a circular orbit in an annular central conductor (a ring-shaped vacuum vessel made of copper or stainless steel) 23 having a hollow annular passage 30. Is done. The electrons are bent by the field magnetic field generated by the electromagnet (magnetic field generating means) 24 and are confined in the orbit. The above-mentioned field magnetic field (a weak magnetic field on the inside and a strong magnetic field on the outside) is kept constant while the electrons are accelerated, so that the orbital radius increases as the energy of the electrons increases, and the electrons orbit on the orbital radius determined by the energy. I do. However, an increase in the radius is suppressed by configuring the field magnetic field to be stronger as the radius is larger.
[0012]
An acceleration gap (acceleration gap) 25 is provided in the orbit, that is, the annular center conductor 23. When the magnetic flux Φ in the acceleration core 26 changes, an electric field (acceleration voltage) is applied to the acceleration gap 25 by the law of electromagnetic induction. Occurs. The electron is accelerated by this electric field each time the circuit is repeated, and becomes a high energy electron beam 27 and is extracted. The extracted high-energy electron beam 27 is irradiated on an X-ray conversion target 28 and converted into X-rays 29.
[0013]
Next, a method of applying an acceleration electric field will be described. The injector according to the present invention is of the induction acceleration type, and obtains high energy by orbiting particles passing many times during the acceleration phase of the alternating electric field applied to the acceleration gap 25. In other words, the process from the entrance to the exit of electrons is completed within one cycle of the alternating electromagnetic field. FIG. 4 shows the acceleration voltage V applied to the acceleration gap 25 and the timing of electron incidence and emission. T represents time. The figure shows the relationship between the acceleration phase 31, the acceleration time 32, and the incident time 33. Normally, the acceleration phase 31 of the sine wave used for driving the core is a half of the whole in which the acceleration voltage takes a positive value. However, at the beginning and the end of the acceleration phase 31, the acceleration voltage is greatly reduced, so that the particles cannot be accelerated, and the available acceleration time 32 is practically only 1/3 of the whole.
[0014]
Next, the relationship between the timing of electron incidence and emission and the acceleration time 32 and the incidence time 33 will be described. Electrons are introduced into the ring-shaped vacuum vessel 23 at the same time as the acceleration time 32 starts. The introduction is continued during the injection time 33. The end of the incident time 33 is a value obtained by subtracting the time required for accelerating the electrons from the end of the acceleration time 32. Electron emission is performed as follows. When an electron reaches a defined electron energy, it reaches a corresponding orbital radius. An emission septum (septum electromagnet) 15 is provided on the corresponding trajectory, and the trajectory of the beam incident on the septum is bent by an electric field or a magnetic field, and heads toward the emission port.
[0015]
Since the energy of an electron is the initial energy and the sum of the product of the elementary charge and the integral value of the acceleration voltage received by the electron during acceleration, the integral value of the acceleration voltage reaches the specified electron energy. This is the case when a certain value S is reached. That is, the timing of electron emission is when the integrated value of the acceleration voltage reaches S. FIG. 5 shows a general example of a core drive circuit that excites the acceleration core 26 and applies an acceleration voltage Vac to the acceleration gap 25 of the annular center conductor 23. A rectifier / smoothing circuit 35 is formed by the bridge circuit 34 composed of a thyristor and the capacitors C1 and C2. The switching circuit 36 is composed of an IGBT (Insulated Gate Bipolar Transistor) and a capacitor. Io, I1, I2, and I3 represent current, and Vap and Vac represent voltage. As shown in FIG. 4, a rectangular wave voltage is obtained for the Vap and Vac voltages.
[0016]
The components of this core drive circuit do not include an expensive klystron used in a linear accelerator, and can be configured at low cost. However, since the generated voltage directly shows the voltage fluctuation of an AC source (for example, 3φAC440V), if commercial power is used as it is, a voltage fluctuation of about several% occurs. As a result, the time during which the integrated value of the acceleration voltage becomes constant varies by several percent. Therefore, in the injector of the present invention, even if there is a variation of several percent, the means for predicting the emission timing of the charged particles from the injector and the timing at which the charged particle can be injected into the main accelerator by using the signal from the predicting means are used. It is desired to optimize the injection efficiency of charged particles into the main accelerator by using a controlling means.
[0017]
FIG. 1 is a configuration diagram showing an accelerator system according to Embodiment 1 of the present invention. The injector 41 is constituted by an FFAG-type induction accelerator, and the X-ray conversion target 28 is removed in FIG. Reference numeral 42 denotes a bending electromagnet. The main accelerator 14 is equivalent to the main accelerator shown in FIG. 12, and a description thereof will be omitted. Conventionally, a charged particle injector to the main accelerator 14 mainly uses a linear accelerator (LINAC). By replacing this with the FFAG induction accelerator 41, the klystron required for driving the linear accelerator can be eliminated. Since an inexpensive and highly reliable switching element can be used for driving the FFAG induction accelerator 41, there is an effect that the reliability of the entire system is improved and the cost can be reduced.
[0018]
Next, a means for predicting the emission timing of the charged particles from the injector and a means for controlling the timing at which the charged particle can be injected into the main accelerator by using a signal from the prediction means are used to charge the charged particles to the main accelerator. Optimization of the incident efficiency will be described. FIG. 6 is a diagram showing the relationship between the acceleration voltage, the electron beam emission time, and the kicker voltage. In FIG. 6A, Vo indicates a reference acceleration voltage, and V1 indicates an acceleration voltage when the voltage changes. The time at which the particles are emitted is the time at which the time integral of V reaches a predetermined value So.
Therefore, when the time integral of V (= S) is taken on the vertical axis as shown in FIG. 6B, a beam is emitted when a predetermined threshold value So is reached (beam emission time to, t1).
[0019]
On the other hand, the kicker voltage waveform of the kicker electromagnet (part beta) is as shown in FIG. If it does not enter the main accelerator 14 at the timing (injectable timing) 43 indicated by hatching of the kicker voltage waveform, the incidence efficiency is poor. That is, it is necessary to make the incidence on the main accelerator 14 after tdo (td1) (for example, after 10 μs) from the rising time tro (tr1) of the waveform. When it takes time longer than tdo from emission to incidence due to a long beam line from the FFAG induction accelerator 41 to the main accelerator 14, for example, the predetermined threshold value So is used as a trigger and an appropriate delay is provided. A beam can be incident at the timing 43 of the hatched portion of the voltage waveform. However, when the time t from the emission to the incidence is shorter than tdo (td1) (in FIG. 6C, the case of t << tdo (td1) is shown), the trigger is activated by the threshold value So. And excitation are not in time. In this case, the trigger (start) of the excitation of the kicker electromagnet (parter beta) may be set at the timing tr (tr1) of the threshold St lower than the threshold So shown in FIG. 6B.
[0020]
FIG. 7 is a diagram showing a timing control circuit for enabling charged particle incidence. Since the accelerating voltage is proportional to the voltage between both ends of the wiring linked to the accelerating core, the integrated value corresponding to S is obtained from the voltage V across the integrating circuit 44 (corresponding to a means for predicting the emission timing of charged particles). Do). The result of the integration is compared with the voltage Est corresponding to the value St by the comparator 45, and when it reaches this value, a trigger signal is generated (means for controlling the timing at which the main accelerator can enter charged particles using the signal from the prediction means). Corresponds to). In FIG. 7, reference numeral 46 denotes an operational amplifier. It goes without saying that a control circuit having similar characteristics can be constituted by a digital circuit.
[0021]
Embodiment 2 FIG.
FIG. 8 is a sectional view of an injector showing a main part of the second embodiment. FIG. 9 is a schematic sectional view of the annular center conductor 23 of FIG. The electrons incident from the electron gun are guided to the emission orbit from the emission septum 52 while drawing the spiral electron orbit 51. Since the emission timing is a timing at which electrons pass through a predetermined electron orbit, monitoring the electron trajectory can be used as a trigger. In this embodiment, a beam position is detected by disposing a beam detection electrode 53 around the electron beam. Numeral 54 denotes a beam orbit existing area, 55 denotes an incident orbit, 56 denotes a beam traveling direction, and 57 denotes an outgoing orbit.
[0022]
Since the beam detection electrode 53 is arranged so as to be in contact with the periphery of the beam trajectory, a beam current flows into the beam detection electrode 53. By monitoring this beam current with the ammeter 58, the timing at which the electron beam passes through a predetermined electron orbit can be detected, and a trigger signal for controlling the timing at which the main accelerator can enter charged particles can be extracted.
[0023]
In addition, instead of the beam detection electrode 53, a radiation generating target is provided around the orbit of the charged particle, and a signal induced by radiation generated when the peripheral charged particle beam is incident on the target is obtained. It is also possible to extract a trigger signal for controlling the timing at which charged particles can be incident.
[0024]
Embodiment 3 FIG.
In the second embodiment, the beam detection electrode is arranged at a position where the peripheral charged particle beam hits. However, from the viewpoint of reducing the beam loss, it is preferable that the electrode does not hit the electrode. Therefore, the beam position can be monitored by arranging the beam detection electrode at a position where the beam does not hit and measuring the inflow of charges induced by electrons into the electrode. In this case, there is an effect that the emission current intensity increases. FIG. 10 shows an example of an electrode arrangement provided for this purpose. FIG. 10 is a schematic sectional view of the annular center conductor 23. The charge induction electrode 59 is provided opposite to a position where the charge induction electrode 59 faces and approaches the peripheral charged particle beam in a state where the charged particle beam does not hit the peripheral surface. When electrons pass between the electrodes 59, a corresponding positive charge is induced on the electrodes 59 through the ammeter 58. By monitoring the current or monitoring the voltage signal electrostatically induced by the charged particle beam, a trigger signal for controlling the timing at which the main accelerator can enter charged particles can be extracted.
[0025]
Embodiment 4 FIG.
In the above description, the beam position was detected using the beam detection electrode. However, if a time period longer than tdo is required between the beam emission of the FFAG induction accelerator and the incidence on the main accelerator, the current flowing into the emission septum 52 is measured. By doing so, the emission timing can be known. In this case, there is an effect that it is not necessary to provide a beam detection electrode. Since a part of the beam normally hits the emission septum 52, the detection does not reduce the beam efficiency.
[0026]
FIG. 11 is a sectional view of an injector showing a main part of the fourth embodiment, and shows a configuration example in which an ammeter 58 is directly attached to the emission septum 52. By monitoring the current flowing into the emission septum 52, a trigger signal for controlling the timing at which the main accelerator can enter charged particles can be extracted. In addition, a trigger that controls the timing at which the main accelerator can enter charged particles is obtained by obtaining a signal induced by radiation generated when the charged particles enter the means (emission septum 52) for changing the charged particles from the orbit to the output orbit (the output septum 52). Signals can also be extracted.
[0027]
Although the above description has been made on the assumption that electrons are mainly used as charged particles, it goes without saying that the same can be applied to proton beams, heavy particles, and the like.
[0028]
【The invention's effect】
As described above, according to the accelerator system of the present invention, in an accelerator system including a main accelerator for accelerating and decelerating charged particles by a high-frequency electric field, and an injector for injecting the charged particles into the main accelerator, the injector includes: A means for accelerating the charged particles to a speed required for the incidence, an annular path of the charged particle beam, and a magnetic field generating means which bends the charged particle beam and guides the charged particle beam to the above-mentioned annular path and does not change from the input to the output of the charged particle. An annular core conductor having the hollow annular passage and having an acceleration gap for inducing an acceleration voltage of the charged particle beam; an acceleration core provided to surround the central conductor; an acceleration core having a rectifying circuit and a switching circuit A driving circuit, and means for changing the accelerated charged particles from the orbit to the emission orbit, within one cycle of the operating frequency of the acceleration core The accelerator system is configured to complete the process from incidence to emission of particles, and the accelerator system predicts the timing of emission of charged particles from the injector, and the charged particle injection of the main accelerator is performed using a signal from the prediction unit. Since there is a means for controlling the possible timing, the efficiency of charged particle injection into the main accelerator can be increased.
[0029]
Further, in an accelerator system comprising a main accelerator for accelerating and decelerating charged particles by a high-frequency electric field, and an injector for injecting the charged particles into the main accelerator, the injector includes means for accelerating the charged particles to a speed required for the injection. An annular path of a charged particle beam, a magnetic field generating means which bends the charged particle beam and guides the charged particle beam into the annular path and does not change from the input to the emission of the charged particles, and An annular core conductor having an acceleration gap for inducing an acceleration voltage, an acceleration core provided to surround the center conductor, an acceleration core drive circuit having a rectifier circuit and a switching circuit, and the charged particles accelerated from the orbit. Means for changing to an emission trajectory, so as to complete the process from incidence to emission of particles within one cycle of the operating frequency of the acceleration core. In, by using the injector the FFAG induction accelerator which can be driven by an inexpensive rectifier circuit and the switching circuit, it is possible to suppress the injector price.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an accelerator system according to Embodiment 1 of the present invention.
FIG. 2 is a schematic diagram showing an FFAG induction accelerator.
FIG. 3 is a sectional view taken along line AA of FIG. 2;
FIG. 4 is a diagram showing an acceleration voltage and timings of electron incidence and emission.
FIG. 5 shows a core drive circuit diagram.
FIG. 6 is a diagram showing a relationship among an acceleration voltage, an electron beam emission time, and a kicker voltage.
FIG. 7 is a diagram showing a timing control circuit capable of injecting charged particles.
FIG. 8 is a sectional view of an injector showing a main part of the second embodiment.
FIG. 9 is a schematic sectional view of the annular center conductor of FIG. 8;
FIG. 10 is a schematic cross-sectional view of an annular center conductor according to a third embodiment.
FIG. 11 is a sectional view of an injector showing a main part of a fourth embodiment.
FIG. 12 is a configuration diagram showing an outline of a conventional SOR system.
FIG. 13 is a configuration diagram showing an outline of an incidence part of a conventional main accelerator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electron generator 2 Linear accelerator 3 Beam transport part 4 Bending electromagnet 5 Injector 6 Inflector 7 Storage ring 8 High-frequency accelerating cavity 9 Converging electromagnet 10 Converging electromagnet 11 Bending electromagnet 12 Beam channel 13 Exposure device 14 Main accelerator 15 Septum electromagnet 16 Stored electron beam 17 Central orbit 18 Electron beam 19 Parter beta (Kicker electromagnet)
Reference Signs List 20 bump orbit 21 electron gun 22 electrostatic deflector 23 annular center conductor 24 magnetic field generating means 25 acceleration gap 26 acceleration core 27 high energy electron beam 28 X-ray conversion target 30 annular passage 34 bridge circuit 35 rectifying / smoothing circuit 36 switching circuit 41 FFAG type induction accelerator 44 integration circuit 45 comparator 52 emission septum 53 beam detection electrode 58 ammeter 59 charge induction electrode.

Claims (9)

高周波電界により荷電粒子を加減速する主加速器と、この主加速器に荷電粒子を入射する入射器とを備える加速器システムにおいて、上記入射器は、入射に所要な速度まで荷電粒子を加速する手段として、荷電粒子ビームの環状通路と、荷電粒子ビームを曲げて上記環状通路に誘導し荷電粒子の入射から出射までの間は変化しない磁場発生手段と、中空の上記環状通路を有すると共に荷電粒子ビームの加速電圧を誘起する加速間隙を有する環状中心導体と、この中心導体を取り囲むように設けた加速コアと、整流回路とスイッチング回路を有する加速コア駆動回路と、加速された荷電粒子を周回軌道から出射軌道に変更する手段とを備えて、上記加速コアの運転周波数の1周期以内に粒子の入射から出射までを完了するように構成し、加速器システムは、上記入射器からの荷電粒子の出射タイミングを予測する手段と、その予測手段からの信号を用いて上記主加速器の荷電粒子入射可能タイミングを制御する手段を有することを特徴とする加速器システム。In the accelerator system comprising a main accelerator for accelerating and decelerating charged particles by a high-frequency electric field, and an injector for injecting the charged particles into the main accelerator, the injector is a means for accelerating the charged particles to a speed required for incidence. An annular path for a charged particle beam, a magnetic field generating means that bends the charged particle beam into the annular path and does not change between the entrance and exit of the charged particles, and an acceleration of the charged particle beam having the hollow annular path An annular center conductor having an accelerating gap for inducing a voltage, an accelerating core provided to surround the center conductor, an accelerating core driving circuit having a rectifying circuit and a switching circuit, and an orbit for emitting accelerated charged particles from a circular orbit. Means for completing the process from the entrance to the exit of the particle within one cycle of the operating frequency of the acceleration core; An accelerator system comprising: means for predicting the timing of emission of charged particles from the injector; and means for controlling the timing at which the main accelerator can enter charged particles using a signal from the prediction means. . 上記入射器からの荷電粒子の出射タイミングを予測する手段は、上記入射器の加速電圧の時間積分値信号をモニタする手段である請求項1記載の加速器システム。2. The accelerator system according to claim 1, wherein the means for predicting the timing at which the charged particles are emitted from the injector is a means for monitoring a time integral signal of the acceleration voltage of the injector. 上記入射器からの荷電粒子の出射タイミングを予測する手段は、荷電粒子の周回軌道周辺に電極を設け、周辺荷電粒子ビームの上記電極への入射電流信号を得るものである請求項1記載の加速器システム。2. The accelerator according to claim 1, wherein the means for predicting the emission timing of the charged particles from the injector is provided around an orbit of the charged particles, and an incident current signal of the peripheral charged particle beam to the electrodes is obtained. system. 上記入射器からの荷電粒子の出射タイミングを予測する手段は、荷電粒子の周回軌道周辺に放射線発生用ターゲットを設け、周辺荷電粒子ビームの上記ターゲットへの入射時に発生する放射線により誘起される信号を得るものである請求項1記載の加速器システム。The means for predicting the emission timing of charged particles from the injector is provided with a radiation generation target around the orbit of the charged particles, and a signal induced by radiation generated when the peripheral charged particle beam is incident on the target. 2. The accelerator system of claim 1, wherein the accelerator system is obtained. 上記入射器からの荷電粒子の出射タイミングを予測する手段は、上記入射器の荷電粒子ビーム軌道に面するように配置された電極に、荷電粒子ビームにより静電的に誘起される電圧信号を得るもの、もしくは上記電極に流れ込む電流信号を得るものである請求項1記載の加速器システム。The means for predicting the timing of emission of charged particles from the injector obtains a voltage signal electrostatically induced by the charged particle beam at an electrode arranged to face the charged particle beam trajectory of the injector. 2. The accelerator system according to claim 1, wherein the accelerator system obtains a current signal flowing into the electrode. 上記入射器からの荷電粒子の出射タイミングを予測する手段は、荷電粒子を周回軌道から出射軌道に変更する上記手段に入射する荷電粒子ビームの電流信号を得るものである請求項1記載の加速器システム。2. An accelerator system according to claim 1, wherein said means for predicting the timing of emission of charged particles from said injector obtains a current signal of a charged particle beam incident on said means for changing charged particles from a circular orbit to an emission orbit. . 上記入射器からの荷電粒子の出射タイミングを予測する手段は、荷電粒子を周回軌道から出射軌道に変更する上記手段に荷電粒子が入射する時に発生する放射線により誘起される信号を得るものである請求項1記載の加速器システム。The means for predicting the emission timing of the charged particles from the injector is to obtain a signal induced by radiation generated when the charged particles are incident on the means for changing the charged particles from the orbit to the emission orbit. Item 10. An accelerator system according to Item 1. 上記主加速器の荷電粒子入射可能タイミングを制御する手段は、上記主加速器のパータベータ始動タイミングを制御する手段である請求項1〜請求項7のいずれか1項に記載の加速器システム。The accelerator system according to any one of claims 1 to 7, wherein the means for controlling the timing at which charged particles of the main accelerator can be incident is means for controlling a start timing of a part beta of the main accelerator. 高周波電界により荷電粒子を加減速する主加速器と、この主加速器に荷電粒子を入射する入射器とを備える加速器システムにおいて、上記入射器は、入射に所要な速度まで荷電粒子を加速する手段として、荷電粒子ビームの環状通路と、荷電粒子ビームを曲げて上記環状通路に誘導し荷電粒子の入射から出射までの間は変化しない磁場発生手段と、中空の上記環状通路を有すると共に荷電粒子ビームの加速電圧を誘起する加速間隙を有する環状中心導体と、この中心導体を取り囲むように設けた加速コアと、整流回路とスイッチング回路を有する加速コア駆動回路と、加速された荷電粒子を周回軌道から出射軌道に変更する手段とを備えて、上記加速コアの運転周波数の1周期以内に粒子の入射から出射までを完了するように構成したことを特徴とした加速器システム。In the accelerator system comprising a main accelerator for accelerating and decelerating charged particles by a high-frequency electric field, and an injector for injecting the charged particles into the main accelerator, the injector is a means for accelerating the charged particles to a speed required for incidence. An annular path for a charged particle beam, a magnetic field generating means that bends the charged particle beam into the annular path and does not change between the entrance and exit of the charged particles, and an acceleration of the charged particle beam having the hollow annular path An annular center conductor having an accelerating gap for inducing a voltage, an accelerating core provided to surround the center conductor, an accelerating core driving circuit having a rectifying circuit and a switching circuit, and an orbit for emitting accelerated charged particles from a circular orbit. Means for changing from the incidence to the emission of particles within one cycle of the operating frequency of the acceleration core. Accelerator system and butterflies.
JP2003034296A 2003-02-12 2003-02-12 Accelerator system Expired - Lifetime JP3919674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003034296A JP3919674B2 (en) 2003-02-12 2003-02-12 Accelerator system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003034296A JP3919674B2 (en) 2003-02-12 2003-02-12 Accelerator system

Publications (2)

Publication Number Publication Date
JP2004247108A true JP2004247108A (en) 2004-09-02
JP3919674B2 JP3919674B2 (en) 2007-05-30

Family

ID=33020031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003034296A Expired - Lifetime JP3919674B2 (en) 2003-02-12 2003-02-12 Accelerator system

Country Status (1)

Country Link
JP (1) JP3919674B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013235706A (en) * 2012-05-08 2013-11-21 Toshiba Corp Device of controlling accelerator, and method of controlling accelerator
JP2019133745A (en) * 2018-01-29 2019-08-08 株式会社日立製作所 Circular accelerator, particle beam therapy system with circular accelerator, and method of operating circular accelerator

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013235706A (en) * 2012-05-08 2013-11-21 Toshiba Corp Device of controlling accelerator, and method of controlling accelerator
JP2019133745A (en) * 2018-01-29 2019-08-08 株式会社日立製作所 Circular accelerator, particle beam therapy system with circular accelerator, and method of operating circular accelerator
JP7002952B2 (en) 2018-01-29 2022-01-20 株式会社日立製作所 A circular accelerator, a particle beam therapy system equipped with a circular accelerator, and how to operate the circular accelerator

Also Published As

Publication number Publication date
JP3919674B2 (en) 2007-05-30

Similar Documents

Publication Publication Date Title
KR101173332B1 (en) Ion Beam Acceleration Method
US7466085B2 (en) Cyclotron having permanent magnets
JP4174508B2 (en) Charged particle accelerator
US10117320B2 (en) Accelerator and particle beam irradiation system
JP3919674B2 (en) Accelerator system
JPWO2017145259A1 (en) Heavy ion radiotherapy equipment
US2531028A (en) Electron accelerating apparatus
US2943265A (en) Electron cyclotron
Blewett Linear accelerator injectors for proton-synchrotrons
RU2153783C1 (en) Induction accelerator of charged particles ( versions )
US4789839A (en) Method and apparatus for injecting charged particles across a magnetic field
Abdel-Kader Simulation of hemispherical cathode-based linear plasma propulsion device upgrade
JP3984918B2 (en) FFAG betatron
Aleksandrov et al. A crab-crossing scheme for laser-ion beam applications
RU2468546C1 (en) Positron acceleration method, and device for its implementation
JP3999140B2 (en) Betatron accelerator and acceleration core device for betatron
Wilson et al. Accelerators, Colliders and Their Application
JP7523781B2 (en) Induction Synchrotron
US9655226B2 (en) Method and system of beam injection to charged particle storage ring
RU2265974C1 (en) Iron-less synchrotron
Wilson et al. Springer: Accelerators, Colliders and Their Application
Winkler et al. Development and test of iron-free quadrupole lenses with high magnetic flux densities
JP4102677B2 (en) Charged particle accelerator
Feschenko et al. INR HIGH INTENSITY PROTON LINAC. STATUS AND PROSPECTS.
JP2001052896A (en) Particle accelerating and accumulating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070213

R151 Written notification of patent or utility model registration

Ref document number: 3919674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100223

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110223

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120223

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130223

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140223

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term