[go: up one dir, main page]

JP2004245178A - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
JP2004245178A
JP2004245178A JP2003038083A JP2003038083A JP2004245178A JP 2004245178 A JP2004245178 A JP 2004245178A JP 2003038083 A JP2003038083 A JP 2003038083A JP 2003038083 A JP2003038083 A JP 2003038083A JP 2004245178 A JP2004245178 A JP 2004245178A
Authority
JP
Japan
Prior art keywords
cover
cylinder
closed container
compression element
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003038083A
Other languages
Japanese (ja)
Inventor
Toshiyuki Ebara
俊行 江原
Hiroyuki Matsumori
裕之 松森
Takashi Sato
孝 佐藤
Masaru Matsuura
大 松浦
Takayasu Saito
隆泰 斎藤
Shigeo Takakusaki
茂夫 高草木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003038083A priority Critical patent/JP2004245178A/en
Publication of JP2004245178A publication Critical patent/JP2004245178A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/007General arrangements of parts; Frames and supporting elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotary compressor capable of preventing, at low cost, degradation of performance such as generation of distortion at a mounting portion due to heat caused by welding, in welding a rotating compressive element to a sealed container. <P>SOLUTION: The second rotating compressive element 34 of this rotary compressor 10 comprises a cylinder 38; an upper supporting member which blocks an opening surface of the cylinder 38 and has bearings for a rotating shaft 16; a discharging noise reduction chamber 62 recessed in the upper supporting member 54; and an upper cover 66 for blocking an opening for the discharging noise reduction chamber 62. The cylinder 38, a cylinder 40 of the first rotating compressive element 32, the upper supporting 54, a lower supporting member 56, and a lower cover are fixed on the upper cover 66 and the upper cover 66 is welded to the sealed container 12. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、密閉容器内に電動要素とこの電動要素の回転軸にて駆動される回転圧縮要素とを備えて成るロータリコンプレッサに関するものである。
【0002】
【従来の技術】
従来この種のロータリコンプレッサ、例えば、縦型ロータリコンプレッサでは、密閉容器内に設けられた電動要素と、この電動要素にて駆動される回転圧縮要素とにより構成されている。そして、電動要素は密閉容器の上部空間の内周面に沿って取り付けられた環状のステータと、このステータの内側に若干の間隔を設けて挿入設置されたロータとからなり、このロータは中心を通り鉛直方向に延びる回転軸に焼嵌め固定されている。また、回転圧縮要素はシリンダと、回転軸に形成された偏心部に嵌合されてシリンダ内で偏心回転するローラと、シリンダの開口面を閉塞すると共に、前記回転軸の軸受けを兼用する支持部材とを備えている(例えば、特許文献1参照)。
【0003】
そして、冷媒ガスが回転圧縮要素の吸込ポートからシリンダの低圧室側に吸入され、ローラとベーンの動作により圧縮されてシリンダの高圧室側より吐出ポート、吐出消音室を経て外部の放熱器などに流入する構成とされている。
【0004】
ここで、前記回転圧縮要素を密閉容器内に取り付ける際には、密閉容器の内面にシリンダ、又は支持部材の外径部を当接させて、その状態で外径部を密閉容器の内面に焼嵌めした後、タック溶接したり、取付専用の溶接ホルダーを設けて密閉容器と回転圧縮要素を固定し、その状態で外径部を密閉容器の内面に焼嵌めした後、タック溶接するものであった。
【0005】
【特許文献1】
特開昭62−195484号公報
【0006】
【発明が解決しようとする課題】
このような方法で回転圧縮要素を密閉容器に取り付けた場合には、溶接時の熱によって溶接部分が歪む恐れがあった。これにより、シリンダと当該シリンダの上下開口面を閉塞している支持部材との間のシール性が低下してシリンダ内の冷媒ガスがリークしてしまったり、シリンダ内を偏心回転するローラが回転により騒音を発生させるという不都合が生じていた。また、取付専用のホルダを用いた場合には、当該ホルダ等のコストがかかると云う問題があった。
【0007】
本発明は、係る従来の技術的課題を解決するために成されたものであり、密閉容器に回転圧縮要素を溶接固定する際に、溶接時の熱により取付部位に歪みが生じるなどの性能の低下を低コストにて未然に防止できるロータリコンプレッサを提供することを目的とする。
【0008】
【課題を解決するための手段】
即ち、本発明のロータリコンプレッサの回転圧縮要素は、シリンダと、このシリンダの開口面を閉塞すると共に、回転軸の軸受けを有する支持部材と、この支持部材内に凹陥形成された吐出消音室と、この吐出消音室の開口を閉塞するカバーとを備え、シリンダ及び支持部材をカバーに固定し、このカバーを密閉容器に固定したので、例えば、当該カバーを密閉容器に溶接にて固定した場合には、密閉容器とシリンダ又は支持部材とを直接溶接することなく取り付けることができるようになる。
【0009】
請求項2の発明では上記発明に加えて、回転圧縮要素は、第1の回転圧縮要素と第2の回転圧縮要素から構成され、第1の回転圧縮要素で圧縮された冷媒を密閉容器内に吐出し、この中間圧の冷媒を第2の回転圧縮要素に吸い込んで圧縮すると共に、カバーは第2の回転圧縮要素の吐出消音室の開口を閉塞するので、密閉容器内が中間圧となるコンプレッサにおいて通常より肉厚に形成されているカバーを利用して、密閉容器への固定ができるようになる。
【0010】
請求項3に発明では上記各発明に加えて、カバーの周縁部を回転軸の軸方向に拡張させたので、カバーを密閉容器に溶接にて固定した場合、カバーが溶接の熱によって歪む不都合を効果的に回避することができるようになる。
【0011】
請求項4の発明では上記各発明に加えて、密閉容器とカバーとをアルミニウム系材にて構成したので、コンプレッサの総重量を著しく低減することができるようになる。
【0012】
【発明の実施の形態】
次に、図面に基づき本発明の実施形態を詳述する。図1は本発明の多段圧縮式コンプレッサの実施例として、第1及び第2の回転圧縮要素32、34を備えた内部中間圧型多段(2段)圧縮式のロータリコンプレッサ10の縦断面図、図2はロータリコンプレッサ10の平断面図を示している。
【0013】
各図において、10は例えば電気自動車(HEVやPEV)などの車両のエンジンルームに搭載される内部中間圧型多段(2段)圧縮式のロータリコンプレッサである。このコンプレッサ10は円筒状の密閉容器12と、この密閉容器12の内部空間の上側に配置収納された電動要素14及びこの電動要素14の下側に配置され、電動要素14の回転軸16により駆動される回転圧縮要素としてのとしての第1の回転圧縮要素32(1段目)及び第2の回転圧縮要素34(2段目)からなる回転圧縮機構部18にて構成されている。
【0014】
実施例の密閉容器12はアルミニウム材により形成され、電動要素14と回転圧縮機構部18を収納する容器本体12Aと、この容器本体12Aの上部開口を閉塞する略椀状のエンドキャップ(蓋体)12Bとで構成されている。このエンドキャップ12Bの上面中心には円形の取付孔12Dが形成されており、この取付孔12Dには電動要素14に電力を供給するためのターミナル(配線を省略)20が取り付けられている。尚、21はこのターミナル20に接続される外部配線である。また、容器本体12Aの上端は外側に拡張されていると共に、他の部分より肉厚に形成されており、この拡張部13Aの内壁にエンドキャップ12Bの下端が挿入され、拡張部13Aの内壁にエンドキャップ12Bを挿入した状態で外側からアーク溶接して固定することで密閉容器12が形成されている。
【0015】
また、前記ターミナル20は当該ターミナル20を保護するためのカバーとしての金属製(アルミニウムなど)ターミナルカバー100により全周を覆われている。このターミナルカバー100の周辺部には複数のボルト孔が形成されている。また、このターミナルカバー100のボルト孔に対応するエンドキャップ12Bにはボルト溝が形成されており、ターミナルカバー100のボルト孔とエンドキャップ12Bのボルト溝が一致するように配置して、ターミナルカバー100の上側からボルト溝にボルト102をねじ込んで固定することにより、ターミナルカバー100はエンドキャップ12B上端中央部に取り付けられている。
【0016】
電動要素14は所謂磁極集中巻き式のDCモータであり、密閉容器12の上部空間の内周面に沿って環状に取り付けられたステータ22と、このステータ22の内側に若干の間隔を設けて挿入設置されたロータ24とからなる。このロータ24は中心を通り鉛直方向に延びる回転軸16に固定されている。ステータ22は、ドーナッツ状の電磁鋼板を積層して構成され、密閉容器12の内面に焼嵌めされた積層体26と、この積層体26の歯部に直巻き(集中巻き)方式により巻装されたステータコイル28を有している。また、ロータ24はステータ22と同様に電磁鋼板の積層体30で形成され、この積層体30内に永久磁石MGを挿入して形成されている。
【0017】
また、回転軸16の下端部には給油手段としてのオイルポンプ99が形成されている。このオイルポンプ99により、密閉容器12内の底部に構成されたオイル溜めから潤滑用のオイルが吸い上げられて、回転軸16内の軸中心に鉛直方向に形成された図示しないオイル孔を経て、このオイル孔に連通する横方向の給油孔82、84(上下偏心部42、44にも形成されている)から上下偏心部42、44や第1及び第2の回転圧縮要素32、34の摺動部等にオイルが供給される。これにより、第1及び第2の回転圧縮要素32、34の摩耗の防止やシールが行われる。
【0018】
前記第1の回転圧縮要素32と第2の回転圧縮要素34との間には中間仕切板36が挟持されている。即ち、第1の回転圧縮要素32と第2の回転圧縮要素34は、中間仕切板36と、この中間仕切板36の上下に配置された上シリンダ38、下シリンダ40と、この上下シリンダ38、40内を、180度の位相差を有して回転軸16に設けられた前記上下偏心部42、44により偏心回転される上下ローラ46、48と、この上下ローラ46、48に当接して上下シリンダ38、40内をそれぞれ低圧室側と高圧室側に区画する図示しないベーンと、上シリンダ38の上側の開口面及び下シリンダ40の下側の開口面を閉塞して回転軸16の軸受けを兼用する支持部材としての上部支持部材54及び下部支持部材56にて構成されている。
【0019】
上部支持部材54および下部支持部材56には、吸込ポート161(下側の吸込ポートは図示せず)にて上下シリンダ38、40の内部とそれぞれ連通する吸込通路60(上側の吸込通路は図示せず)と、一部を凹陥させ、この凹陥部を上部カバー66、下部カバー68にて閉塞することにより形成される吐出消音室62、64とが設けられている。
【0020】
ここで、上部カバー66はアルミニウム材により構成されており、中心部に回転軸16及び上部支持部材54の軸受け54Aが貫通するための孔が形成された略ドーナッツ状を呈している。また、この上部カバー66は密閉容器12内が中間圧となるため、吐出消音室62に吐出された高温高圧冷媒が密閉容器12内漏れ出て、密閉容器12内の冷媒の圧力を上昇させてしまうという不都合を防ぐために肉厚に形成して、上部カバー66の強度を上げている。本実施例のように内部中間圧の多段圧縮式コンプレッサでは、密閉容器12内の圧力と吐出消音室62の圧力差が大きくなる。特に、二酸化炭素のように高低圧差の大きい冷媒を使用した場合には、前記密閉容器12内と吐出消音室62の圧力差はより大きくなるので、上部カバー66にある程度の剛性(厚み)が必要となる。また、上部カバー66をアルミニウム材とすることで、吐出消音室62に吐出された冷媒の高熱を早期に密閉容器12に伝達でき、電動要素14の信頼性の向上にも有用である。これらにより、コンプレッサ10の信頼性の向上を図っている。そして、上部カバー66の周縁部にあたる外周面66Aは密閉容器12内壁に当接するように形成されている。上部カバー66の外周面66Aは図示する如く縦方向(回転軸16の軸方向。実施例では上方向。)に拡張されている。そして、この拡張された外周面66Aと密閉容器12とをタック溶接することで、密閉容器12に取り付けられている。
【0021】
また、上部カバー66は周辺部が4本の主ボルト78・・・により、上から上部支持部材54に固定されている。この主ボルト78・・・は上部支持部材54を貫通し、それらの先端は下部支持部材56に螺合して、上部カバー66、上部支持部材54、上シリンダ38、中間仕切板36、下シリンダ40及び下部支持部材56を一体化する。尚、下部カバー68は下部支持部材56にボルト固定されている。
【0022】
このように、上部カバー66の外周面66Aを軸方向に拡張して、外周面66Aと密閉容器12とをタック溶接すると共に、主ボルト78・・・にて上部カバー66の上面から上部支持部材54、上シリンダ38、中間仕切板36、下シリンダ40及び下部支持部材56を一体化しているので、冷媒を圧縮する部位にあたる上シリンダ38や上シリンダ38に隣接した上部支持部材54を直接密閉容器と溶接すること無く取り付けることができる。
【0023】
これにより、溶接時の熱によって、上シリンダ38や上部支持部材54が歪むという不都合を避けることができるようになる。また、上部カバー66は外周面66Aを軸方向に拡張しているので、タック溶接時の熱により上部カバー66が歪み難くなる。
【0024】
更に、前述する如く密閉容器12内が中間圧となるコンプレッサ10では、密閉容器12内に中間圧のガスが吐出されるので、第2の回転圧縮要素34で圧縮され、吐出消音室62に吐出される冷媒が密閉容器12内に漏れ出て、密閉容器12内の冷媒の圧力を上昇させないように、上部カバー66は肉厚に形成されているので、この肉厚に形成された上部カバー66と密閉容器12の容器本体12Aとを溶接することで、溶接時の熱による歪みを著しく防ぐことができるようになる。更に、上部カバー66の外周面66Aを回転軸16の方向に拡張しているため、熱による影響をより受け難くなる。また、外周面66Aは外周面66Aのみを上方向に拡張しているため、コンプレッサ10の高さ寸法が大きくなってしまうことも無い。
【0025】
更にまた、密閉容器12と上部カバー66をアルミニウム材にて構成しているが、アルミニウム材は鉄系材に比べて強度が弱く、熱を加えると非常に歪み易いという性質を有するが、前述する如く上部カバー66は肉厚に形成されていると共に、外周面66Aも上方向に拡張しているため、歪みの発生を極力回避することができ、コンプレッサ10の信頼性の向上を図ることができるようになる。更に、従来の鋼板を使用した場合に比べコンプレッサ10の重量をより一層低減することができる。特に、コンプレッサ10を車両に搭載した場合には、車両重量の低減に繋がるため燃費の向上を図ることができる。
【0026】
また、密閉容器12と上部カバー66とを同系の金属(実施例ではアルミニウム材)にて形成することで、溶接性の向上を図ることができる。
【0027】
そして、上部カバー66の上側には、当該上部カバー66と所定間隔を存して電動要素14が設けられる。
【0028】
前記上シリンダ38の上下面、即ち、上シリンダ38と上部支持部材54との間、及び、上シリンダ38と中間仕切板36との間には断熱プレート140及び141が設けられている。これら断熱プレート140、141は熱伝導率の低い断熱性の金属、例えばステンレスの板材を圧延して0.3mmから0.5mmの板状に成形したものである。係る断熱プレート140の存在により、上シリンダ38の上側に設けられた上部支持部材54の吐出消音室62に吐出された高温高圧の冷媒ガスの熱が上シリンダ38に伝達され難くなる。
【0029】
また、断熱プレート141の存在により、第1の回転圧縮要素32からの熱侵入が殆ど無くなる。これらにより、吐出消音室62に吐出された高温高圧の冷媒及び第1の回転圧縮要素32からの熱により、上シリンダ38が加熱されて、上シリンダ38に吸い込まれる冷媒を加熱されてしまう不都合を抑制、若しくは、回避できるので、第2の回転圧縮要素34における圧縮効率の改善を図ることができるようになる。
【0030】
一方、前記中間仕切板36は、略ドーナッツ形状を呈しており、この中間仕切板36には給油孔131が形成されている。この給油孔131は中間仕切板36上面(上シリンダ38側の面)に、内周面から外側に所定範囲で半径方向に向かって形成された溝を前記断熱プレート141で覆うことにより形成されている。この給油孔131の外側部分は上シリンダ38内の低圧室側に連通している。
【0031】
また、断熱プレート141には、給油孔131の密閉容器12側の端部に対応する位置に連通孔(縦孔)133が穿設されている。そして、上シリンダ38には断熱プレート141の連通孔133と吸込ポート161(第2の回転圧縮要素34の吸込側)とを連通するインジェクション用の連通孔134が穿設されている。ここで、中間仕切板36の給油孔131の回転軸16側の開口は、回転軸16に形成された給油孔82、84を介して図示しないオイル孔に連通している。
【0032】
この場合、後述する如く密閉容器12内は中間圧となるため、2段目で高圧となる上シリンダ38内にはオイルの供給が困難となるが、中間仕切板36を係る構成としたことにより、密閉容器12内底部のオイル溜めから汲み上げられて図示しないオイル孔を上昇し、給油孔82、84から出たオイルは、中間仕切板36の給油孔131に入り、連通孔133、134を経て上シリンダ38の吸込側(吸込ポート161)に供給されるようになる。
【0033】
そして、潤滑油としてのオイルは、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油、PAG(ポリアルキルグリコール)など既存のオイルが使用される。
【0034】
密閉容器12の容器本体12Aには、上部支持部材54の図示されない吸込通路と電動要素14の直下側との間、及び、下部支持部材56の吸込通路60と吐出消音室62とに対応する位置に、冷媒導入部92、及び、冷媒導入部94と冷媒吐出部96がそれぞれ形成されている。
【0035】
ここで、冷媒導入部92は密閉容器12の容器本体12Aに一体成形された肉厚部13Bと、この肉厚部13Bの外面に取り付けられてこの肉厚部13Bとの間に、密閉容器12内に吐出された冷媒を第2の回転圧縮要素34に吸い込ませるための冷媒導入通路92Aを構成する蓋部材112(リリーフ手段)により構成されている。即ち、容器本体12Aに形成された肉厚部13Bと蓋部材112の対向する面に断面半円弧状の溝がそれぞれ形成されており、これらの溝が相対向することで肉厚部13Bと蓋部材112との間に図2に示すような通路としての冷媒導入通路92Aが構成されている。
【0036】
また、容器本体12Aの肉厚部13Bには密閉容器12内と前記冷媒導入通路92Aとを連通するための連通管93Aと、第2の回転圧縮要素34の図示しない吸込通路と冷媒導入通路92Aとを連通する連通管93Bが取り付けられている。そして、肉厚部13Bと蓋部材112間(冷媒導入通路92Aの周辺全体)にはパッキン(シール材)114が介設されており、蓋部材112は肉厚部13Bに係るパッキン114を介してボルト120・・・により固定されている。
【0037】
この蓋部材112は前記容器本体12Aと同様にアルミニウム材にて構成されている。そして、常には肉厚部13Bと蓋部材112は密着して冷媒導入通路92Aを外部から封止しているが、この蓋部材112自体の弾性やボルト120・・・の径(締め付け強度)を設定することにより、密閉容器12内の冷媒の圧力が所定値に上昇した場合、冷媒導入通路92Aに流入する冷媒の係る圧力により、蓋部材112が外側に離れるように蓋部材112自体若しくはボルト120・・・が変形し、肉厚部13Bと蓋部材112の間に隙間が形成されるように構成されている。この隙間により冷媒導入通路92Aの内外は連通され、当該通路内の中間圧の冷媒が密閉容器12外に逃げることになる。
【0038】
このような構成としたことにより、密閉容器12内の中間圧の冷媒の圧力が異常に上昇してしまった場合に、蓋部材112と肉厚部13Bとの間に隙間が形成され、冷媒導入通路92Aから密閉容器12内の冷媒ガスを外部に逃がすことができるようになるので、コンプレッサ10の耐久性が向上し、信頼性の向上を図ることができるようになる。
【0039】
一方、密閉容器12の容器本体12Aの下面には、支持脚150が取り付けられている。この支持脚150は、厚いアルミ板により形成されており、容器本体12A下面から外方に向けて突出して形成されている。そして、この支持脚150の下面には後述する支持装置200の弾性マウンティング204が取り付けられている。
【0040】
そして、ロータリコンプレッサ10の密閉容器12周囲には当該ロータリコンプレッサ10を支持するための支持装置200が構成されている。この支持装置200は、密閉容器12の外側に所定間隔を存して設けられ、密閉容器12を囲繞する防音壁202と、密閉容器12の容器本体12Aの下面の支持脚150に取り付けられた前述した弾性マウンティング204と、防音壁202の上面に形成された孔206内に設けられた上部弾性支持部材207にて構成されている。
【0041】
防音壁202は、電動要素14の運転中に発生する騒音が外部に漏れる不都合を回避するために設けられており、密閉容器12の外側を覆うような略円筒状を呈して車両のエンジンルーム内に固定されている。防音壁202の上端には略円形の孔206が形成されており、この内側に上部弾性支持部材207が取り付けられている。
【0042】
また、容器本体12A下面の支持脚150に取り付けられた弾性マウンティング204は、密閉容器12の下部を支持するために形成されたものであり、硬質ゴムなどの弾性材から構成され、図示しないボルトにて支持脚150に取り付けられている。また、弾性マウンティング204の下面は防音壁202に固定されている。
【0043】
他方、防音壁202の孔206内に取り付けられた上部弾性支持部材207は、硬質ゴムなどの弾性材にて構成されており、全周に渡って波打つように湾曲した湾曲部208を有している。そして、この湾曲部208により、ターミナルカバー100から伝達される振動を吸収して、防音壁202に当該振動が伝わらないような構成とされている。上部弾性支持部材207の中心部には前記ターミナルカバー100を挿通するための挿通孔209が形成されている。この挿通孔209にターミナルカバー100が挿通され、全周において当該上部弾性支持部材207に固定される。これにより、ターミナルカバー100は上部弾性支持部材207を介して防音壁202の孔206の内周面に取り付けられる。即ち、ターミナルカバー100は上部弾性支持部材207を介して防音壁202に支持されている。
【0044】
このように、ロータリコンプレッサ10の密閉容器12の下部に設けられた弾性マウンティング204によりロータリコンプレッサ10の下部を支持すると共に、上部弾性支持部材207により密閉容器12の上端を支持することにより、縦型のロータリコンプレッサ10において上部が不安定になる不都合を解消することができるようになる。更に、これらを弾性部材にて構成することで防音壁202にロータリコンプレッサ10から発生する振動を伝達し難くすることができるようになる。
【0045】
以上の構成で次に本発明のロータリコンプレッサ10の動作を説明する。配線21及びターミナル20を介してロータリコンプレッサ10の電動要素14のステータコイル28に通電されると、電動要素14が起動してロータ24が回転する。この回転により回転軸16と一体に設けた上下偏心部42、44に嵌合された上下ローラ46、48が上下シリンダ38、40内を偏心回転する。
【0046】
これにより、冷媒導入部94及び下部支持部材56に形成された吸込通路60を経由して図示しない吸込ポートからシリンダ40の低圧室側に吸入された低圧の冷媒ガスは、ローラ48と図示しないベーンの動作により圧縮されて中間圧となり下シリンダ40の高圧室側より図示しない連通路を経て中間吐出管121から密閉容器12内に吐出される。これによって、密閉容器12内は中間圧となる。
【0047】
そして、密閉容器12内の中間圧の冷媒ガスは冷媒導入部92の連通管93Aに流入する。この場合、連通管93A内に流入した中間圧の冷媒ガスの圧力が設定値より低い場合には、この連通管93Aから冷媒導入通路92A及び連通管93Bを経て上部支持部材54に形成された図示しない吸込通路を経由し、吸込ポート161から第2の回転圧縮要素34の上シリンダ38の低圧室側に吸入され、ローラ46と図示しないベーンの動作により2段目の圧縮が行われて高圧高温の冷媒ガスとなり、高圧室側から図示しない吐出ポートを通り上部支持部材54に形成された吐出消音室62を経て冷媒吐出部96より外部に吐出される。
【0048】
一方、第1の回転圧縮要素32で圧縮され、密閉容器12内に吐出された中間圧の冷媒ガスの圧力が設定値まで上昇した場合、冷媒導入部92の連通管93Aから冷媒導入通路92Aに流入した冷媒の係る圧力により前述の如く(蓋部材112が外側に押されて変形、或いは、ボルト120・・の締め付け力に抗して蓋部材112が外側に移動)肉厚部13Bと蓋部材112との間に隙間が形成される。そして、この隙間から密閉容器12内の冷媒ガスの一部が外部に逃げる。
【0049】
これにより、前述した如く異常上昇した密閉容器12内の冷媒ガスを外部に逃がして係る異常圧力上昇による損傷の発生を回避できるようになる。また、係る流出により密閉容器12内の圧力が設定値より低く規制されるので、冷媒導入通路92A及び連通管93Bを経て第2の回転圧縮要素34に吸い込まれ、第2の回転圧縮要素34で圧縮される冷媒の圧力が上がりすぎてしまう不都合を回避することができるようになる。
【0050】
尚、係るリリーフ機能によって密閉容器12内の圧力が設定値未満に低下すると、肉厚部13Bと蓋部材112の間に形成された隙間は閉塞される。
【0051】
このように、上部支持部材54、上シリンダ38、中間仕切板36、下シリンダ40及び下部支持部材56を上部カバー66に固定し、この上部カバー66を密閉容器12に溶接したので、摺動部である上シリンダ38や上シリンダ38に隣接した上部支持部材54を直接密閉容器12と溶接すること無く取り付けることができる。これにより、溶接時の熱によって、上シリンダ38や上部支持部材54が歪むという不都合を避けることができるようになる。また、上部カバー66は外周面66Aを軸方向に拡張しているので、タック溶接時の熱により上部カバー66が歪み難くなる。
【0052】
更に、密閉容器12と上部カバー66とをアルミニウム材にて構成したので、従来の鋼板を使用した場合に比べコンプレッサ10の重量をより一層減少することができる。
【0053】
更にまた、従来のように取付専用のホルダを用いる必要が無いので、生産コストの低減を図ることができるようになる。
【0054】
尚、本実施例では密閉容器12と上部カバー66とをアルミニウム材にて構成したているが、本発明は、アルミニウム系の金属や、これらに限らず、密閉容器12と上部カバー66とを同一金属を使用して溶接固定するものであれば構わない。
【0055】
また、上記各実施例では縦型の内部中間圧型の多段(2段)圧縮式ロータリコンプレッサを採りあげたが、それに限らず、横型のロータリコンプレッサや単シリンダ型のロータリコンプレッサや回転圧縮要素を3段、4段或いはそれ以上の回転圧縮要素を備えた多段圧縮式ロータリコンプレッサに適応しても差し支えない。
【0056】
【発明の効果】
以上詳述した如く本発明によれば、ロータリコンプレッサの回転圧縮要素は、シリンダと、このシリンダの開口面を閉塞すると共に、回転軸の軸受けを有する支持部材と、この支持部材内に凹陥形成された吐出消音室と、この吐出消音室の開口を閉塞するカバーとを備え、シリンダ及び支持部材をカバーに固定し、このカバーを密閉容器に固定したので、例えば、当該カバーを密閉容器に溶接固定した場合には、密閉容器とシリンダ又は支持部材とを直接溶接することなく取り付けることができるようになる。
【0057】
これにより、シリンダや支持部材が直接溶接時の熱にさらされること無く密閉容器に取り付けられるので、シリンダ又は支持部材が歪む不都合を避けることができるようになる。また、従来のように取付専用のホルダを用いる必要が無いので、生産コストの低減を図ることができるようになる。
【0058】
請求項2の発明によれば上記発明に加えて、回転圧縮要素は、第1の回転圧縮要素と第2の回転圧縮要素から構成され、第1の回転圧縮要素で圧縮された冷媒を密閉容器内に吐出し、この中間圧の冷媒を第2の回転圧縮要素に吸い込んで圧縮すると共に、カバーは第2の回転圧縮要素の吐出消音室の開口を閉塞するので、密閉容器内が中間圧となるコンプレッサにおいて通常より肉厚に形成されているカバーを利用して、密閉容器への固定ができるようになる。
【0059】
これにより、カバーを密閉容器に溶接固定した場合、溶接時の熱による歪みを著しく防ぐことができるようになる。
【0060】
請求項3の発明によれば上記各発明に加えて、カバーの周縁部を回転軸の軸方向に拡張させたので、カバーを密閉容器に溶接固定した場合、カバーが溶接の熱によって歪む不都合をより効果的に回避することができるようになる。
【0061】
請求項4の発明によれば上記各発明に加えて、密閉容器とカバーとをアルミニウム系材にて構成したので、コンプレッサの総重量を著しく低減することができる。
【図面の簡単な説明】
【図1】本発明を適用した実施例の内部中間圧型多段圧縮式ロータリコンプレッサの縦断面図である。
【図2】図1のロータリコンプレッサの平断面図である。
【符号の説明】
10 ロータリコンプレッサ
12 密閉容器
12A 容器本体
12B エンドキャップ
13B 肉厚部
32 第1の回転圧縮要素
34 第2の回転圧縮要素
36 中間仕切板
38 上シリンダ
40 下シリンダ
54 上部支持部材
56 下部支持部材
66 上部カバー
66A 外周面
68 下部カバー
92 冷媒導入部
92A 冷媒導入通路
93A、93B 連通管
94 冷媒導入部
96 冷媒吐出部
100 ターミナルカバー
102 ボルト
112 蓋部材
114 パッキン
120 ボルト
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a rotary compressor including an electric element and a rotary compression element driven by a rotation shaft of the electric element in a closed container.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, a rotary compressor of this type, for example, a vertical rotary compressor, includes an electric element provided in a closed container and a rotary compression element driven by the electric element. The electric element is composed of an annular stator attached along the inner peripheral surface of the upper space of the closed container, and a rotor inserted and installed at a slight interval inside the stator, and this rotor is centered. The shaft is shrink-fitted and fixed to a rotating shaft extending in the vertical direction. In addition, the rotary compression element is a cylinder, a roller fitted to an eccentric portion formed on the rotary shaft and eccentrically rotating within the cylinder, and a support member that closes an opening surface of the cylinder and also serves as a bearing for the rotary shaft. (For example, see Patent Document 1).
[0003]
Refrigerant gas is sucked into the low-pressure chamber side of the cylinder from the suction port of the rotary compression element, compressed by the operation of the rollers and vanes, and discharged from the high-pressure chamber side of the cylinder through the discharge port, the discharge muffler, and the external radiator. It is configured to flow in.
[0004]
Here, when mounting the rotary compression element in the closed container, the outer diameter of the cylinder or the support member is brought into contact with the inner surface of the closed container, and in this state, the outer diameter is burned on the inner surface of the closed container. After the fitting, tack welding is performed, or the sealed container and the rotary compression element are fixed by providing a dedicated welding holder, and then the outer diameter portion is shrink-fitted to the inner surface of the sealed container and then tack-welded. Was.
[0005]
[Patent Document 1]
JP-A-62-195484 [0006]
[Problems to be solved by the invention]
When the rotary compression element is attached to the closed container by such a method, there is a possibility that the welded portion may be distorted by heat during welding. As a result, the sealing performance between the cylinder and the support member closing the upper and lower opening surfaces of the cylinder is reduced, and the refrigerant gas in the cylinder leaks, or the roller eccentrically rotating in the cylinder rotates. There has been a problem of generating noise. Further, when a holder dedicated to mounting is used, there is a problem that the cost of the holder and the like is increased.
[0007]
The present invention has been made to solve such a conventional technical problem, and when welding and fixing a rotary compression element to a closed container, performance such as distortion of an attachment portion due to heat at the time of welding is generated. It is an object of the present invention to provide a rotary compressor that can prevent the deterioration at low cost.
[0008]
[Means for Solving the Problems]
That is, the rotary compression element of the rotary compressor according to the present invention includes a cylinder, a closing member that closes an opening surface of the cylinder, and a support member having a bearing of a rotating shaft, and a discharge muffling chamber formed in the support member. A cover for closing the opening of the discharge muffling chamber is provided, and the cylinder and the support member are fixed to the cover, and the cover is fixed to the closed container.For example, when the cover is fixed to the closed container by welding, Thus, the sealed container and the cylinder or the support member can be attached without directly welding.
[0009]
According to the second aspect of the present invention, in addition to the above aspect, the rotary compression element includes a first rotary compression element and a second rotary compression element, and stores the refrigerant compressed by the first rotary compression element in the closed container. The intermediate pressure refrigerant is discharged into the second rotary compression element and compressed, and the cover closes the opening of the discharge muffling chamber of the second rotary compression element. In this case, the cover can be fixed to a closed container by using a cover formed to be thicker than usual.
[0010]
According to the third aspect of the present invention, in addition to the above inventions, since the peripheral portion of the cover is extended in the axial direction of the rotating shaft, when the cover is fixed to the closed container by welding, the disadvantage that the cover is distorted due to the heat of welding. It can be avoided effectively.
[0011]
According to the fourth aspect of the present invention, in addition to the above-mentioned inventions, the sealed container and the cover are made of an aluminum-based material, so that the total weight of the compressor can be significantly reduced.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 is a longitudinal sectional view of an internal intermediate pressure type multi-stage (two-stage) compression type rotary compressor 10 having first and second rotary compression elements 32 and 34 as an embodiment of a multi-stage compression type compressor of the present invention. 2 is a plan sectional view of the rotary compressor 10.
[0013]
In each figure, reference numeral 10 denotes an internal intermediate pressure type multi-stage (two-stage) compression type rotary compressor mounted in an engine room of a vehicle such as an electric vehicle (HEV or PEV). The compressor 10 has a cylindrical hermetic container 12, an electric element 14 disposed above and housed in an inner space of the hermetic container 12, and is disposed below the electric element 14, and is driven by a rotating shaft 16 of the electric element 14. The rotary compression mechanism 18 includes a first rotary compression element 32 (first stage) and a second rotary compression element 34 (second stage) as the rotary compression elements to be used.
[0014]
The closed container 12 of the embodiment is formed of an aluminum material, and has a container main body 12A for housing the electric element 14 and the rotary compression mechanism 18, and a substantially bowl-shaped end cap (lid) for closing an upper opening of the container main body 12A. 12B. A circular mounting hole 12D is formed at the center of the upper surface of the end cap 12B, and a terminal (wiring omitted) 20 for supplying electric power to the electric element 14 is mounted in the mounting hole 12D. Reference numeral 21 denotes an external wiring connected to the terminal 20. In addition, the upper end of the container body 12A is expanded outward and is formed thicker than the other parts. The lower end of the end cap 12B is inserted into the inner wall of the expanded portion 13A, and the inner wall of the expanded portion 13A is inserted. The sealed container 12 is formed by fixing the end cap 12B by arc welding from the outside in the inserted state.
[0015]
The terminal 20 is entirely covered with a metal (aluminum or the like) terminal cover 100 as a cover for protecting the terminal 20. A plurality of bolt holes are formed around the terminal cover 100. Further, a bolt groove is formed in the end cap 12B corresponding to the bolt hole of the terminal cover 100, and the terminal cover 100 is arranged so that the bolt hole of the terminal cover 100 and the bolt groove of the end cap 12B coincide with each other. The terminal cover 100 is attached to the center of the upper end of the end cap 12B by screwing and fixing the bolt 102 into the bolt groove from above.
[0016]
The electric element 14 is a so-called magnetic pole concentrated winding type DC motor, and is inserted into the stator 22 annularly attached along the inner peripheral surface of the upper space of the closed casing 12 with a slight interval provided inside the stator 22. And an installed rotor 24. The rotor 24 is fixed to the rotating shaft 16 that extends vertically through the center. The stator 22 is formed by laminating donut-shaped electromagnetic steel sheets, and is wound around the inner surface of the closed container 12 by shrink-fitting, and is wound around the teeth of the laminated body 26 by a direct winding (concentrated winding) method. Stator coil 28. The rotor 24 is formed of a laminated body 30 of electromagnetic steel sheets similarly to the stator 22, and is formed by inserting a permanent magnet MG into the laminated body 30.
[0017]
An oil pump 99 is formed at the lower end of the rotary shaft 16 as oil supply means. The oil pump 99 sucks up lubricating oil from an oil reservoir formed at the bottom of the sealed container 12, and passes through an oil hole (not shown) formed in the center of the rotating shaft 16 in a vertical direction. Sliding of the upper and lower eccentric portions 42 and 44 and the first and second rotary compression elements 32 and 34 from lateral oil supply holes 82 and 84 (also formed on the upper and lower eccentric portions 42 and 44) communicating with the oil holes. Oil is supplied to the parts and the like. As a result, the first and second rotary compression elements 32 and 34 are prevented from being worn and sealed.
[0018]
An intermediate partition plate 36 is held between the first rotary compression element 32 and the second rotary compression element 34. That is, the first rotary compression element 32 and the second rotary compression element 34 include an intermediate partition plate 36, an upper cylinder 38, a lower cylinder 40 disposed above and below the intermediate partition plate 36, The upper and lower rollers 46 and 48 eccentrically rotated by the upper and lower eccentric portions 42 and 44 provided on the rotating shaft 16 with a phase difference of 180 degrees in the inside 40, and contact the upper and lower rollers 46 and 48 to move up and down. A vane (not shown) that partitions the insides of the cylinders 38 and 40 into a low-pressure chamber side and a high-pressure chamber side, and an upper opening surface of the upper cylinder 38 and a lower opening surface of the lower cylinder 40 are closed to form a bearing for the rotary shaft 16. An upper supporting member 54 and a lower supporting member 56 are also used as supporting members.
[0019]
In the upper support member 54 and the lower support member 56, a suction passage 60 (the upper suction passage is shown in the drawing) communicating with the insides of the upper and lower cylinders 38 and 40 at a suction port 161 (the lower suction port is not shown). ), And discharge muffling chambers 62 and 64 formed by partially recessing and closing the recess with the upper cover 66 and the lower cover 68.
[0020]
Here, the upper cover 66 is made of an aluminum material, and has a substantially donut shape in which a hole is formed at a central portion for the rotation shaft 16 and the bearing 54A of the upper support member 54 to penetrate. In addition, since the upper cover 66 has an intermediate pressure in the closed container 12, the high-temperature and high-pressure refrigerant discharged into the discharge muffling chamber 62 leaks into the closed container 12 and increases the pressure of the refrigerant in the closed container 12. In order to prevent the inconvenience, the thickness of the upper cover 66 is increased to increase the strength. In the multi-stage compression type compressor having the internal intermediate pressure as in the present embodiment, the pressure difference between the pressure in the closed vessel 12 and the pressure in the discharge muffling chamber 62 increases. In particular, when a refrigerant having a large difference between high and low pressures, such as carbon dioxide, is used, the pressure difference between the inside of the sealed container 12 and the discharge muffling chamber 62 becomes larger, so that the upper cover 66 needs some rigidity (thickness). It becomes. Further, since the upper cover 66 is made of an aluminum material, the high heat of the refrigerant discharged into the discharge muffling chamber 62 can be transmitted to the closed casing 12 at an early stage, which is useful for improving the reliability of the electric element 14. Thus, the reliability of the compressor 10 is improved. An outer peripheral surface 66 </ b> A corresponding to a peripheral portion of the upper cover 66 is formed so as to contact the inner wall of the closed container 12. The outer peripheral surface 66A of the upper cover 66 is extended in the vertical direction (the axial direction of the rotating shaft 16; in this embodiment, upward) as shown in the figure. The expanded outer peripheral surface 66 </ b> A and the closed container 12 are attached to the closed container 12 by tack welding.
[0021]
The upper cover 66 is fixed to the upper support member 54 from above by four main bolts 78 at the periphery. The main bolts 78 penetrate through the upper support member 54, and their ends are screwed into the lower support member 56 to form the upper cover 66, the upper support member 54, the upper cylinder 38, the intermediate partition plate 36, and the lower cylinder. 40 and the lower support member 56 are integrated. The lower cover 68 is fixed to the lower support member 56 with bolts.
[0022]
As described above, the outer peripheral surface 66A of the upper cover 66 is extended in the axial direction, the outer peripheral surface 66A and the closed container 12 are tack-welded, and the upper support member is separated from the upper surface of the upper cover 66 by the main bolts 78. Since the upper cylinder 38, the intermediate partition plate 36, the lower cylinder 40, and the lower support member 56 are integrated, the upper cylinder 38 and the upper support member 54 adjacent to the upper cylinder 38 corresponding to the portion for compressing the refrigerant are directly sealed in a closed container. Can be attached without welding.
[0023]
Thereby, it is possible to avoid the disadvantage that the upper cylinder 38 and the upper support member 54 are distorted due to heat during welding. Further, since the upper cover 66 extends the outer peripheral surface 66A in the axial direction, the upper cover 66 is less likely to be distorted due to heat generated during tack welding.
[0024]
Further, as described above, in the compressor 10 in which the inside of the sealed container 12 has an intermediate pressure, the gas of the intermediate pressure is discharged into the sealed container 12, so that the gas is compressed by the second rotary compression element 34 and discharged into the discharge muffling chamber 62. The upper cover 66 is formed to have a large thickness so that the refrigerant to be discharged does not leak into the closed container 12 and increase the pressure of the refrigerant in the closed container 12. By welding the container body 12A of the closed container 12, distortion due to heat at the time of welding can be significantly prevented. Furthermore, since the outer peripheral surface 66A of the upper cover 66 is extended in the direction of the rotating shaft 16, the upper cover 66 is less affected by heat. Further, since the outer peripheral surface 66A extends only the outer peripheral surface 66A in the upward direction, the height of the compressor 10 does not increase.
[0025]
Furthermore, the closed container 12 and the upper cover 66 are made of an aluminum material. The aluminum material has a lower strength than an iron-based material, and has a property of being easily distorted when heat is applied. As described above, the upper cover 66 is formed thick, and the outer peripheral surface 66A is also expanded upward, so that generation of distortion can be avoided as much as possible, and the reliability of the compressor 10 can be improved. Become like Further, the weight of the compressor 10 can be further reduced as compared with the case where a conventional steel plate is used. In particular, when the compressor 10 is mounted on a vehicle, the weight of the vehicle is reduced, so that fuel efficiency can be improved.
[0026]
Further, by forming the closed container 12 and the upper cover 66 from the same metal (aluminum material in the embodiment), the weldability can be improved.
[0027]
The electric element 14 is provided above the upper cover 66 at a predetermined interval from the upper cover 66.
[0028]
Heat insulation plates 140 and 141 are provided between the upper and lower surfaces of the upper cylinder 38, that is, between the upper cylinder 38 and the upper support member 54 and between the upper cylinder 38 and the intermediate partition plate 36. These heat insulating plates 140 and 141 are formed by rolling a heat-insulating metal having a low thermal conductivity, for example, a stainless steel plate into a plate shape of 0.3 mm to 0.5 mm. Due to the presence of the heat insulating plate 140, the heat of the high-temperature and high-pressure refrigerant gas discharged into the discharge muffling chamber 62 of the upper support member 54 provided above the upper cylinder 38 is less likely to be transmitted to the upper cylinder 38.
[0029]
In addition, the presence of the heat insulating plate 141 substantially eliminates heat intrusion from the first rotary compression element 32. Thus, the upper cylinder 38 is heated by the high-temperature and high-pressure refrigerant discharged into the discharge muffling chamber 62 and the heat from the first rotary compression element 32, and the refrigerant sucked into the upper cylinder 38 is heated. Since it can be suppressed or avoided, the compression efficiency of the second rotary compression element 34 can be improved.
[0030]
On the other hand, the intermediate partition plate 36 has a substantially donut shape, and an oil supply hole 131 is formed in the intermediate partition plate 36. The oil supply hole 131 is formed by covering the groove formed in the upper surface of the intermediate partition plate 36 (the surface on the upper cylinder 38 side) from the inner peripheral surface to the outside in a predetermined range in the radial direction with the heat insulating plate 141. I have. The outside portion of the oil supply hole 131 communicates with the low pressure chamber side in the upper cylinder 38.
[0031]
A communication hole (vertical hole) 133 is formed in the heat insulating plate 141 at a position corresponding to the end of the oil supply hole 131 on the closed container 12 side. The upper cylinder 38 is provided with an injection communication hole 134 for communicating the communication hole 133 of the heat insulating plate 141 with the suction port 161 (the suction side of the second rotary compression element 34). Here, the opening of the oil supply hole 131 of the intermediate partition plate 36 on the rotation shaft 16 side communicates with an oil hole (not shown) through oil supply holes 82 and 84 formed in the rotation shaft 16.
[0032]
In this case, as will be described later, the inside of the sealed container 12 has an intermediate pressure, so that it becomes difficult to supply oil into the upper cylinder 38, which becomes high in the second stage. The oil that has been pumped up from the oil reservoir at the bottom of the closed container 12 and rises through an oil hole (not shown) and has come out of the oil supply holes 82 and 84 enters the oil supply hole 131 of the intermediate partition plate 36 and passes through the communication holes 133 and 134. The air is supplied to the suction side (suction port 161) of the upper cylinder 38.
[0033]
As the oil as the lubricating oil, for example, existing oils such as mineral oil (mineral oil), alkylbenzene oil, ether oil, ester oil, and PAG (polyalkyl glycol) are used.
[0034]
In the container main body 12A of the closed container 12, a position corresponding to the suction passage (not shown) of the upper support member 54 and immediately below the electric element 14, and the position corresponding to the suction passage 60 of the lower support member 56 and the discharge muffling chamber 62. In addition, a refrigerant introduction part 92 and a refrigerant introduction part 94 and a refrigerant discharge part 96 are respectively formed.
[0035]
Here, the refrigerant introduction portion 92 is provided between the thick portion 13B integrally formed with the container body 12A of the closed container 12 and the thick portion 13B attached to the outer surface of the thick portion 13B. It is constituted by a lid member 112 (relief means) that forms a refrigerant introduction passage 92A for sucking the refrigerant discharged into the second rotary compression element 34. That is, grooves having a semicircular cross section are formed on the opposing surfaces of the thick portion 13B formed on the container body 12A and the lid member 112, and the thick portions 13B and the lid are formed by opposing these grooves. A coolant introduction passage 92A as a passage shown in FIG.
[0036]
In addition, a communication pipe 93A for communicating the inside of the closed container 12 and the refrigerant introduction passage 92A to the thick portion 13B of the container body 12A, a suction passage (not shown) of the second rotary compression element 34 and a refrigerant introduction passage 92A. A communication pipe 93B that communicates with is provided. A packing (seal material) 114 is provided between the thick portion 13B and the lid member 112 (the entire periphery of the coolant introduction passage 92A), and the lid member 112 is provided via the packing 114 related to the thick portion 13B. It is fixed by bolts 120.
[0037]
The lid member 112 is made of an aluminum material similarly to the container body 12A. The thick portion 13B and the lid member 112 are always in close contact with each other to seal the refrigerant introduction passage 92A from the outside. However, the elasticity of the lid member 112 itself and the diameter (tightening strength) of the bolts 120. By setting, when the pressure of the refrigerant in the closed container 12 rises to a predetermined value, the pressure of the refrigerant flowing into the refrigerant introduction passage 92A causes the lid member 112 itself or the bolt 120 so that the lid member 112 is separated outward. Are deformed, and a gap is formed between the thick portion 13B and the lid member 112. The gap connects the inside and the outside of the refrigerant introduction passage 92 </ b> A, and the medium-pressure refrigerant in the passage escapes to the outside of the closed container 12.
[0038]
With such a configuration, a gap is formed between the lid member 112 and the thick portion 13B when the pressure of the intermediate-pressure refrigerant in the closed container 12 is abnormally increased, and the refrigerant is introduced. Since the refrigerant gas in the sealed container 12 can be released to the outside from the passage 92A, the durability of the compressor 10 is improved, and the reliability can be improved.
[0039]
On the other hand, a support leg 150 is attached to the lower surface of the container body 12A of the closed container 12. The support legs 150 are formed of a thick aluminum plate, and protrude outward from the lower surface of the container body 12A. An elastic mounting 204 of the support device 200 described below is attached to a lower surface of the support leg 150.
[0040]
A support device 200 for supporting the rotary compressor 10 is provided around the closed container 12 of the rotary compressor 10. The support device 200 is provided at a predetermined interval outside the closed container 12 and is attached to the soundproof wall 202 surrounding the closed container 12 and the support legs 150 on the lower surface of the container body 12A of the closed container 12. And an upper elastic support member 207 provided in a hole 206 formed on the upper surface of the soundproof wall 202.
[0041]
The soundproof wall 202 is provided in order to avoid the inconvenience that noise generated during operation of the electric element 14 leaks to the outside, and has a substantially cylindrical shape that covers the outside of the closed casing 12 and is provided inside the engine room of the vehicle. Fixed to. A substantially circular hole 206 is formed at the upper end of the soundproof wall 202, and an upper elastic support member 207 is attached inside the hole 206.
[0042]
The elastic mounting 204 attached to the support legs 150 on the lower surface of the container body 12A is formed to support the lower part of the closed container 12, is made of an elastic material such as hard rubber, and is attached to a bolt (not shown). Attached to the support leg 150. The lower surface of the elastic mounting 204 is fixed to the soundproof wall 202.
[0043]
On the other hand, the upper elastic support member 207 mounted in the hole 206 of the soundproof wall 202 is made of an elastic material such as hard rubber, and has a curved portion 208 which is curved so as to undulate over the entire circumference. I have. The curved portion 208 absorbs the vibration transmitted from the terminal cover 100, and does not transmit the vibration to the soundproof wall 202. An insertion hole 209 for inserting the terminal cover 100 is formed in the center of the upper elastic support member 207. The terminal cover 100 is inserted through the insertion hole 209, and is fixed to the upper elastic support member 207 all around. Thereby, the terminal cover 100 is attached to the inner peripheral surface of the hole 206 of the soundproof wall 202 via the upper elastic support member 207. That is, the terminal cover 100 is supported by the soundproof wall 202 via the upper elastic support member 207.
[0044]
As described above, the lower portion of the rotary compressor 10 is supported by the elastic mounting 204 provided at the lower portion of the sealed container 12 of the rotary compressor 10, and the upper end of the sealed container 12 is supported by the upper elastic support member 207. The disadvantage that the upper portion becomes unstable in the rotary compressor 10 can be eliminated. Further, by forming these with elastic members, it becomes possible to make it difficult to transmit the vibration generated from the rotary compressor 10 to the soundproof wall 202.
[0045]
Next, the operation of the rotary compressor 10 of the present invention having the above configuration will be described. When the stator coil 28 of the electric element 14 of the rotary compressor 10 is energized through the wiring 21 and the terminal 20, the electric element 14 is activated and the rotor 24 rotates. By this rotation, the upper and lower rollers 46 and 48 fitted to the upper and lower eccentric portions 42 and 44 provided integrally with the rotating shaft 16 eccentrically rotate inside the upper and lower cylinders 38 and 40.
[0046]
As a result, the low-pressure refrigerant gas sucked into the low-pressure chamber side of the cylinder 40 from the suction port (not shown) through the refrigerant introduction portion 94 and the suction passage 60 formed in the lower support member 56 is transferred to the roller 48 and the vane (not shown). Is compressed to an intermediate pressure, and is discharged from the intermediate discharge pipe 121 into the closed container 12 through a communication passage (not shown) from the high pressure chamber side of the lower cylinder 40. Thereby, the inside of the sealed container 12 has an intermediate pressure.
[0047]
Then, the intermediate-pressure refrigerant gas in the closed container 12 flows into the communication pipe 93 </ b> A of the refrigerant introduction part 92. In this case, when the pressure of the intermediate-pressure refrigerant gas flowing into the communication pipe 93A is lower than a set value, the illustration formed in the upper support member 54 from the communication pipe 93A through the refrigerant introduction passage 92A and the communication pipe 93B. Through the suction passage, which is not drawn in, from the suction port 161 to the low pressure chamber side of the upper cylinder 38 of the second rotary compression element 34, and the second stage compression is performed by the operation of the roller 46 and the vane (not shown), so that the high pressure and high temperature The refrigerant gas is discharged from the high-pressure chamber through a discharge port (not shown), through a discharge muffling chamber 62 formed in the upper support member 54, and from the refrigerant discharge section 96 to the outside.
[0048]
On the other hand, when the pressure of the intermediate-pressure refrigerant gas compressed by the first rotary compression element 32 and discharged into the closed container 12 rises to a set value, the refrigerant is introduced from the communication pipe 93A of the refrigerant introduction part 92 to the refrigerant introduction passage 92A. As described above, the thick portion 13B and the cover member are deformed by the pressure of the inflowing refrigerant (the cover member 112 is pushed outward and deformed, or the cover member 112 moves outward against the tightening force of the bolts 120...). A gap is formed between the gap and the gap 112. Then, a part of the refrigerant gas in the closed container 12 escapes from the gap to the outside.
[0049]
As a result, as described above, the refrigerant gas in the closed container 12 that has abnormally risen can be escaped to the outside to avoid the occurrence of damage due to the abnormally high pressure. Further, since the pressure in the closed container 12 is regulated to be lower than the set value due to the outflow, the pressure is sucked into the second rotary compression element 34 through the refrigerant introduction passage 92A and the communication pipe 93B, and the second rotary compression element 34 It is possible to avoid a disadvantage that the pressure of the compressed refrigerant is excessively increased.
[0050]
When the pressure in the closed container 12 falls below the set value by the relief function, the gap formed between the thick portion 13B and the lid member 112 is closed.
[0051]
As described above, the upper support member 54, the upper cylinder 38, the intermediate partition plate 36, the lower cylinder 40, and the lower support member 56 are fixed to the upper cover 66, and the upper cover 66 is welded to the sealed container 12, so that the sliding portion The upper cylinder 38 and the upper support member 54 adjacent to the upper cylinder 38 can be attached without directly welding to the closed container 12. Thereby, it is possible to avoid the disadvantage that the upper cylinder 38 and the upper support member 54 are distorted due to heat during welding. Further, since the upper cover 66 extends the outer peripheral surface 66A in the axial direction, the upper cover 66 is less likely to be distorted due to heat generated during tack welding.
[0052]
Further, since the closed container 12 and the upper cover 66 are made of an aluminum material, the weight of the compressor 10 can be further reduced as compared with the case where a conventional steel plate is used.
[0053]
Furthermore, since it is not necessary to use a dedicated holder for mounting as in the related art, the production cost can be reduced.
[0054]
In the present embodiment, the closed container 12 and the upper cover 66 are made of an aluminum material. However, the present invention is not limited to aluminum-based metals and the same. Any material can be used as long as it is welded and fixed using metal.
[0055]
Further, in each of the above embodiments, the vertical internal intermediate pressure type multi-stage (two-stage) compression type rotary compressor is adopted. However, the present invention is not limited thereto, and the horizontal type rotary compressor, the single cylinder type rotary compressor and the rotary compression It may be applied to a multi-stage compression type rotary compressor having one stage, four stages or more rotary compression elements.
[0056]
【The invention's effect】
As described above in detail, according to the present invention, the rotary compression element of the rotary compressor closes the opening surface of the cylinder, and has a support member having a bearing for the rotating shaft, and a recess formed in the support member. And a cover for closing the opening of the discharge muffle chamber, the cylinder and the support member are fixed to the cover, and the cover is fixed to the closed container.For example, the cover is fixed to the closed container by welding. In this case, the closed container and the cylinder or the support member can be attached without directly welding.
[0057]
Thus, the cylinder or the support member is attached to the closed container without being directly exposed to the heat at the time of welding, so that the inconvenience that the cylinder or the support member is distorted can be avoided. In addition, since it is not necessary to use a holder dedicated to mounting unlike the related art, production costs can be reduced.
[0058]
According to the second aspect of the present invention, in addition to the above-mentioned invention, the rotary compression element includes a first rotary compression element and a second rotary compression element, and the refrigerant compressed by the first rotary compression element is sealed in a closed container. The intermediate pressure refrigerant is sucked into the second rotary compression element and compressed, and the cover closes the opening of the discharge muffling chamber of the second rotary compression element. By using a cover formed to be thicker than usual in such a compressor, the compressor can be fixed to a closed container.
[0059]
Thereby, when the cover is fixed to the closed container by welding, distortion due to heat at the time of welding can be significantly prevented.
[0060]
According to the third aspect of the present invention, in addition to the above-mentioned inventions, the peripheral portion of the cover is extended in the axial direction of the rotating shaft. It can be avoided more effectively.
[0061]
According to the invention of claim 4, in addition to the above inventions, the sealed container and the cover are made of an aluminum-based material, so that the total weight of the compressor can be significantly reduced.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an internal intermediate pressure type multistage compression type rotary compressor according to an embodiment to which the present invention is applied.
FIG. 2 is a plan sectional view of the rotary compressor of FIG.
[Explanation of symbols]
Reference Signs List 10 rotary compressor 12 closed container 12A container body 12B end cap 13B thick portion 32 first rotary compression element 34 second rotary compression element 36 intermediate partition plate 38 upper cylinder 40 lower cylinder 54 upper support member 56 lower support member 66 upper Cover 66A Outer peripheral surface 68 Lower cover 92 Refrigerant introduction part 92A Refrigerant introduction passages 93A, 93B Communication pipe 94 Refrigerant introduction part 96 Refrigerant discharge part 100 Terminal cover 102 Bolt 112 Cover member 114 Packing 120 Bolt

Claims (4)

密閉容器内に電動要素と、該電動要素の回転軸にて駆動される回転圧縮要素とを備えて成るロータリコンプレッサにおいて、
前記回転圧縮要素は、シリンダと、該シリンダの開口面を閉塞すると共に、前記回転軸の軸受けを有する支持部材と、
該支持部材内に凹陥形成された吐出消音室と、
該吐出消音室の開口を閉塞するカバーとを備え、
前記シリンダ及び支持部材を前記カバーに固定し、該カバーを前記密閉容器に固定したことを特徴とするロータリコンプレッサ。
In a rotary compressor including an electric element in a closed container and a rotary compression element driven by a rotation shaft of the electric element,
The rotary compression element, a cylinder, and a closing member that closes an opening surface of the cylinder, and a support member having a bearing for the rotary shaft,
A discharge muffling chamber formed in the support member,
A cover for closing an opening of the discharge muffling chamber,
A rotary compressor, wherein the cylinder and the support member are fixed to the cover, and the cover is fixed to the closed container.
前記回転圧縮要素は、第1の回転圧縮要素と第2の回転圧縮要素から構成され、前記第1の回転圧縮要素で圧縮された冷媒を前記密閉容器内に吐出し、この中間圧の冷媒を前記第2の回転圧縮要素に吸い込んで圧縮すると共に、
前記カバーは前記第2の回転圧縮要素の吐出消音室の開口を閉塞することを特徴とする請求項1のロータリコンプレッサ。
The rotary compression element is composed of a first rotary compression element and a second rotary compression element, discharges the refrigerant compressed by the first rotary compression element into the closed container, and discharges the intermediate-pressure refrigerant. While sucking and compressing the second rotary compression element,
The rotary compressor according to claim 1, wherein the cover closes an opening of a discharge muffling chamber of the second rotary compression element.
前記カバーの周縁部を前記回転軸の軸方向に拡張させたことを特徴とする請求項1又は請求項2のロータリコンプレッサ。The rotary compressor according to claim 1, wherein a peripheral portion of the cover is extended in an axial direction of the rotation shaft. 前記密閉容器と前記カバーとをアルミニウム系材にて構成したことを特徴とする請求項1、請求項2又は請求項3のロータリコンプレッサ。4. The rotary compressor according to claim 1, wherein the closed container and the cover are made of an aluminum-based material.
JP2003038083A 2003-02-17 2003-02-17 Rotary compressor Pending JP2004245178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003038083A JP2004245178A (en) 2003-02-17 2003-02-17 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003038083A JP2004245178A (en) 2003-02-17 2003-02-17 Rotary compressor

Publications (1)

Publication Number Publication Date
JP2004245178A true JP2004245178A (en) 2004-09-02

Family

ID=33022699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003038083A Pending JP2004245178A (en) 2003-02-17 2003-02-17 Rotary compressor

Country Status (1)

Country Link
JP (1) JP2004245178A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102619757A (en) * 2011-01-27 2012-08-01 三洋电机株式会社 Rotary compressor and manufacturing method thereof
JP2013217210A (en) * 2012-04-05 2013-10-24 Panasonic Corp Hermetic compressor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102619757A (en) * 2011-01-27 2012-08-01 三洋电机株式会社 Rotary compressor and manufacturing method thereof
CN102619757B (en) * 2011-01-27 2015-01-14 三洋电机株式会社 Rotary compressor and manufacturing method thereof
JP2013217210A (en) * 2012-04-05 2013-10-24 Panasonic Corp Hermetic compressor

Similar Documents

Publication Publication Date Title
KR20070049969A (en) Rotary compressor
JP3291484B2 (en) 2-stage compression type rotary compressor
JP2003097468A (en) Rotary compressor
JP2004251150A (en) Multistage compression type rotary compressor
JP2007064045A (en) Hermetic electric compressor
JP4004278B2 (en) Rotary compressor
JP2004245178A (en) Rotary compressor
JP4171321B2 (en) Multistage compression compressor
JP2003201982A (en) Rotary compressor
JP2005220752A (en) Compressor
JP2004245177A (en) Compressor
JP2007085254A (en) Compressor
JP2004237906A (en) Support device for compressor
JP2003286985A (en) Rotary compressor
JP2002266760A (en) Hermetic electric compressor
JP4371758B2 (en) Compressor
JP4093801B2 (en) Horizontal rotary compressor
JP2009144602A (en) Rotary compressor and manufacturing method thereof
JP3963691B2 (en) Hermetic electric compressor
JP3762690B2 (en) Rotary compressor
JP2008038810A (en) Compressor
JP2005113878A (en) Rotary compressor
JP2003286980A (en) Internal intermediate pressure type multi-stage compression rotary compressor
JP2006200374A (en) Rotary compressor
JP2005220793A (en) Compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050701

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080418

A131 Notification of reasons for refusal

Effective date: 20080422

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080819