[go: up one dir, main page]

JP2004244717A - Method of producing steel for carburizing, and steel for carburizing obtained by the method - Google Patents

Method of producing steel for carburizing, and steel for carburizing obtained by the method Download PDF

Info

Publication number
JP2004244717A
JP2004244717A JP2003291243A JP2003291243A JP2004244717A JP 2004244717 A JP2004244717 A JP 2004244717A JP 2003291243 A JP2003291243 A JP 2003291243A JP 2003291243 A JP2003291243 A JP 2003291243A JP 2004244717 A JP2004244717 A JP 2004244717A
Authority
JP
Japan
Prior art keywords
carburizing
concentration
rem
steel
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003291243A
Other languages
Japanese (ja)
Inventor
Yasuhiko Saeki
泰彦 佐伯
Shinji Asano
晋司 浅野
Yoichi Watanabe
陽一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003291243A priority Critical patent/JP2004244717A/en
Publication of JP2004244717A publication Critical patent/JP2004244717A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing steel for carburizing where a carburizing rate can efficiently be improved. <P>SOLUTION: REM (rare earth metal)is added to steel for carburizing in which, by weight, the concentration of C is 0.1 to 0.3%. The REM concentration is controlled to 0.01 to 0.25%, and carburizing is performed at a carburizing temperature of 930 to 1,050°C. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、浸炭用鋼の製造方法および当該方法により得られる浸炭用鋼材に関する。   The present invention relates to a method for producing carburizing steel and a steel material for carburizing obtained by the method.

従来の浸炭用鋼は、高熱浸炭時におけるオーステナイト結晶粒度の粗大化を抑制するために、Ndを添加している(例えば、特許文献1参照。)。   Conventional carburizing steel contains Nd in order to suppress the austenite grain size from being coarsened during high-temperature carburizing (for example, see Patent Document 1).

また、結晶粒度の粗大化を防止するために、REM(希土類金属)を添加しているものもある(例えば、特許文献2参照。)。   In some cases, REM (rare earth metal) is added to prevent coarsening of the crystal grain size (for example, see Patent Document 2).

さらに、REMの存在下において、浸炭を施すものもある(例えば、特許文献3参照。)。
特開平10−152752号公報 特開2000−63943号公報 特開2002−256411号公報
Further, there is a method in which carburization is performed in the presence of REM (for example, see Patent Document 3).
JP 10-152752 A JP-A-2000-63943 JP-A-2002-256411

しかし、特許文献1および特許文献2に記載の方法においては、浸炭速度の向上は、浸炭温度の上昇に因るものである。したがって、浸炭処理炉の耐久性、例えば、高熱による損傷などの問題を生じる虞がある。   However, in the methods described in Patent Literature 1 and Patent Literature 2, the improvement in carburizing speed is due to an increase in carburizing temperature. Therefore, there is a possibility that a problem such as durability of the carburizing furnace, for example, damage due to high heat, may occur.

一方、特許文献3に記載の方法においては、REMは、浸炭に対する触媒として機能しており、浸炭ガス中に添加される。したがって、REMの所要量が大きくなる問題を有している。   On the other hand, in the method described in Patent Document 3, REM functions as a catalyst for carburizing and is added to carburizing gas. Therefore, there is a problem that the required amount of REM becomes large.

本発明は、上記従来技術に伴う課題を解決するためになされたものであり、浸炭速度を効率的に向上させることができる浸炭用鋼の製造方法および当該方法により得られる浸炭用鋼材を提供することを目的とする。   The present invention has been made in order to solve the problems associated with the above prior art, and provides a method for producing a carburizing steel capable of efficiently improving the carburizing speed, and a carburizing steel obtained by the method. The purpose is to:

上記目的を達成するための請求項1に記載の発明は、
重量%(以下同じ)でのC濃度が0.1〜0.3%である浸炭用鋼に、REMを添加し、REM濃度を0.01〜0.25%に調整し、930〜1050℃の浸炭温度で、浸炭を施すことを特徴とする浸炭用鋼の製造方法である。
The invention according to claim 1 for achieving the above object,
REM is added to carburizing steel having a C concentration of 0.1 to 0.3% by weight (the same applies hereinafter), the REM concentration is adjusted to 0.01 to 0.25%, and 930 to 1050 ° C. A method for producing carburizing steel, characterized in that carburizing is performed at a carburizing temperature of.

上記目的を達成するための請求項9に記載の発明は、
請求項1〜8のいずれか1項に記載の浸炭用鋼の製造方法によって製造されたことを特徴とする浸炭用鋼材である。
The invention according to claim 9 for achieving the above object is as follows.
A carburizing steel material produced by the method for producing carburizing steel according to any one of claims 1 to 8.

上記のように構成した本発明は以下の効果を奏する。   The present invention configured as described above has the following effects.

請求項1に記載の発明によれば、鋼中のREM濃度が0.01〜0.25%であるため、鋼の表面反応および内部拡散反応を促進させて浸炭速度を向上させるREM効果が効率的に発揮される。また、浸炭温度が930〜1050℃であるため、REM効果が顕著となる。したがって、浸炭速度を効率的に向上させることができる浸炭用鋼の製造方法を提供することができる。   According to the first aspect of the present invention, since the REM concentration in the steel is 0.01 to 0.25%, the REM effect of promoting the surface reaction and the internal diffusion reaction of the steel to improve the carburizing rate is efficient. It is effectively exhibited. Further, since the carburizing temperature is 930 to 1050 ° C., the REM effect is remarkable. Therefore, it is possible to provide a method for producing carburizing steel capable of efficiently improving the carburizing speed.

請求項9に記載の発明によれば、浸炭速度を効率的に向上させることができる浸炭用鋼の製造方法よって得られる浸炭用鋼材を提供することができる。   According to the ninth aspect of the present invention, it is possible to provide a carburizing steel material obtained by a method for producing a carburizing steel capable of efficiently improving a carburizing speed.

以下、本発明の実施の形態を、図面を参照しつつ説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1および図2は、本発明の実施の形態に係る浸炭用鋼の一例を説明するための化学組成を示している図表、図3は、比較例に係る浸炭用鋼の一例を説明するための化学組成を示している図表である。   1 and 2 are tables showing chemical compositions for explaining an example of a carburizing steel according to an embodiment of the present invention, and FIG. 3 is a diagram for explaining an example of a carburizing steel according to a comparative example. 3 is a table showing the chemical composition of the present invention.

本発明の実施の形態に係る浸炭用鋼A01〜A25は、重量%(以下同じ)でのC濃度が0.1〜0.3%である肌焼き鋼、例えば、低炭素合金鋼(鋼種名:SCr420)をベースとしている。なお、鋼中のREM濃度は0.04〜0.24%、N濃度は0.010〜0.012%、Al濃度は0.009〜0.070%、Nb濃度は0.009〜0.071%、Ti濃度は0.004〜0.070%となるように、各元素を添加して調整している。また、各元素の濃度は、最初から鋼自体に含有させる形態を適用することも可能である。   The carburizing steels A01 to A25 according to the embodiment of the present invention are case hardened steels having a C concentration of 0.1 to 0.3% by weight (the same applies hereinafter), for example, a low carbon alloy steel (steel type name). : SCr420). The REM concentration in the steel is 0.04-0.24%, the N concentration is 0.010-0.012%, the Al concentration is 0.009-0.070%, and the Nb concentration is 0.009-0. Each element is added and adjusted so that 071% and the Ti concentration become 0.004 to 0.070%. Further, the concentration of each element can be applied to a form in which the element is contained in the steel itself from the beginning.

比較例に係る浸炭用鋼B01〜B04も、低炭素合金鋼(鋼種名:SCr420)をベースとしている。なお、浸炭用鋼B01は、REMの無添加鋼である。また、浸炭用鋼B02〜B04は、REM濃度が0.26〜0.30%であり、実施の形態に係る浸炭用鋼A01〜A25より多くのREMを添加している。   The carburizing steels B01 to B04 according to the comparative examples are also based on a low carbon alloy steel (steel type name: SCr420). The carburizing steel B01 is a REM-free steel. The carburizing steels B02 to B04 have a REM concentration of 0.26 to 0.30%, and contain more REM than the carburizing steels A01 to A25 according to the embodiment.

次に、浸炭速度に対する浸炭温度およびREM濃度の影響を説明する。   Next, the influence of the carburizing temperature and the REM concentration on the carburizing speed will be described.

使用した試料は、実施の形態および比較例に係る浸炭用鋼を溶製し、加熱し、圧延することで得られるφ20mmの線材である。当該線材は、浸炭温度を適宜変更し、3〜6時間の浸炭を施し、油冷した。   The sample used is a φ20 mm wire obtained by melting, heating, and rolling the carburizing steel according to the embodiment and the comparative example. The wire rod was appropriately carburized at appropriate temperatures, carburized for 3 to 6 hours, and oil-cooled.

実施の形態および比較例に係る浸炭用鋼は、ベースの鋼材が共通であり、REM以外の鋼材成分に大幅な差がないため、焼入性は同等であり、浸炭速度と浸炭深さとは対応していると見なせる。したがって、浸炭速度を浸炭深さによって評価している。なお、浸炭深さは、ビッカース硬さHVが512である鋼材の内部位置と、鋼材の表面との間の距離で定義される有効硬化深さである。   The carburizing steels according to the embodiment and the comparative example have the same base steel material, and there is no significant difference in steel material components other than REM, so that the hardenability is equivalent, and the carburizing speed and the carburizing depth correspond. Can be regarded as doing. Therefore, the carburizing speed is evaluated by the carburizing depth. The carburizing depth is an effective hardening depth defined by a distance between an inner position of a steel material having a Vickers hardness HV of 512 and a surface of the steel material.

図4は、浸炭温度を変更した場合におけるREM濃度と浸炭深さとの関係を示しているグラフである。浸炭温度は、930℃、990℃、1050℃の3種類であり、REM濃度を、0.02%の増分値で、0%から0.3%まで変更している。   FIG. 4 is a graph showing the relationship between the REM concentration and the carburizing depth when the carburizing temperature is changed. The carburizing temperatures are 930 ° C., 990 ° C., and 1050 ° C., and the REM concentration is changed from 0% to 0.3% in increments of 0.02%.

図に示されるように、REM濃度が0.02%である場合においても、REM無添加の場合に比べて、浸炭深さ(浸炭速度)が顕著に向上している。また、REM濃度が0.02〜0.3%においては、REM濃度の増加による影響は、顕著でなく、浸炭深さの増加効果が飽和する傾向が見られる。   As shown in the figure, even when the REM concentration is 0.02%, the carburizing depth (carburizing speed) is remarkably improved as compared with the case where no REM is added. Further, when the REM concentration is 0.02 to 0.3%, the effect of the increase in the REM concentration is not remarkable, and the effect of increasing the carburizing depth tends to be saturated.

したがって、REM濃度を0.01〜0.25%とする場合、鋼の表面反応および内部拡散反応を促進させて浸炭速度を向上させるREM効果を、効率的に発揮させることが可能である。   Therefore, when the REM concentration is set to 0.01 to 0.25%, it is possible to efficiently exert the REM effect of promoting the surface reaction and the internal diffusion reaction of the steel to improve the carburizing rate.

図5は、REM濃度を変更した場合における浸炭温度と浸炭深さとの関係を示しているグラフである。REM濃度は、0%つまりREM無添加、0.02%、0.1%、0.2%の4種類であり、浸炭温度を、30℃の増分値で、870℃から1080℃まで変更している。   FIG. 5 is a graph showing the relationship between carburizing temperature and carburizing depth when the REM concentration is changed. The REM concentrations are 0%, that is, no REM added, 0.02%, 0.1%, and 0.2%, and the carburizing temperature is changed from 870 ° C. to 1080 ° C. in increments of 30 ° C. ing.

図に示されるように、浸炭温度が930℃未満である場合、浸炭深さ(浸炭速度)に対する顕著な影響が見られない。一方、浸炭温度が930〜1050℃の範囲にある場合、REM濃度の増加に伴って、浸炭深さが増加している。   As shown in the figure, when the carburizing temperature is lower than 930 ° C., no remarkable influence on the carburizing depth (carburizing speed) is observed. On the other hand, when the carburizing temperature is in the range of 930 to 1050 ° C., the carburizing depth increases as the REM concentration increases.

しかし、浸炭温度が1050℃を越える場合、浸炭深さに対するREM濃度の影響は飽和する傾向が見られ、REM無添加の場合との差が縮小している。また、REM濃度が0.02〜0.2%においては、REM濃度の増加による影響は、顕著でない。   However, when the carburizing temperature exceeds 1050 ° C., the effect of the REM concentration on the carburizing depth tends to be saturated, and the difference from the case where no REM is added is reduced. Further, when the REM concentration is 0.02 to 0.2%, the influence of the increase in the REM concentration is not significant.

そのため、浸炭温度を930〜1050℃とする場合、浸炭速度を向上させるREM効果を顕著に発揮させることが可能である。なお、浸炭温度が1050℃を越えないことは、浸炭処理炉における高熱による損傷などの耐久性に関する問題を生じ難い点で好ましい。   Therefore, when the carburizing temperature is 930 to 1050 ° C., the REM effect for improving the carburizing speed can be remarkably exhibited. In addition, it is preferable that the carburizing temperature does not exceed 1050 ° C. since a problem relating to durability such as damage due to high heat in the carburizing furnace hardly occurs.

以上のように、C濃度が0.1〜0.3%である浸炭用鋼に、REMを添加し、REM濃度を0.01〜0.25%に調整し、930〜1050℃の浸炭温度で、浸炭を施すことによって、浸炭速度を効率的に向上させることができる。   As described above, REM is added to the carburizing steel having a C concentration of 0.1 to 0.3%, the REM concentration is adjusted to 0.01 to 0.25%, and the carburizing temperature of 930 to 1050 ° C. Thus, by carburizing, the carburizing speed can be efficiently improved.

したがって、浸炭速度を効率的に向上させることができる浸炭用鋼の製造方法を提供することができる。また、浸炭速度を効率的に向上させることができる浸炭用鋼の製造方法よって得られる浸炭用鋼材を提供することができる。   Therefore, it is possible to provide a method for producing carburizing steel capable of efficiently improving the carburizing speed. Further, it is possible to provide a carburizing steel material obtained by a method for producing a carburizing steel capable of efficiently improving a carburizing speed.

次に、Al濃度、REM濃度および浸炭温度の関係を説明する。   Next, the relationship among Al concentration, REM concentration and carburizing temperature will be described.

図6は、浸炭温度を変更した場合におけるREMおよびAl濃度とオーステナイト結晶粒度との関係を示している図表である。   FIG. 6 is a chart showing the relationship between REM and Al concentration and austenite grain size when the carburizing temperature is changed.

浸炭温度は、960℃、990℃、1020℃、1050℃の4種類である。REM濃度は、0%、0.1%、0.2%の3種類である。Al濃度は、0.01%、0.03%、0.05%、0.07%の4種類である。なお、結晶粒度が6.0以上である場合を、良好(符号○で表示)であると評価し、6.0未満である場合を、不良(符号×で表示)であると評価した。   There are four types of carburizing temperatures: 960 ° C, 990 ° C, 1020 ° C, and 1050 ° C. There are three types of REM concentrations: 0%, 0.1%, and 0.2%. There are four types of Al concentrations: 0.01%, 0.03%, 0.05%, and 0.07%. In addition, when the crystal grain size was 6.0 or more, it was evaluated as good (indicated by the symbol ○), and when it was less than 6.0, it was evaluated as poor (indicated by the symbol x).

図に示されるように、浸炭温度の上昇に伴って、結晶粒度の粗大化が引き起こされる傾向が見られる。一方、Al濃度の増加によって、結晶粒度の粗大化が抑制されている。   As shown in the figure, there is a tendency that as the carburizing temperature rises, the crystal grain size becomes coarse. On the other hand, the increase in the Al concentration suppresses the coarsening of the crystal grain size.

また、評価が良好と不良との境界に位置するAl濃度[Al]は、960〜1050℃の温度域においては、浸炭温度T(℃)とREM濃度[REM]とを含んでいる関係式([Al]=(T−940)/1000−0.035×[REM])で表すことが可能である。   In addition, the Al concentration [Al] located at the boundary between good and poor evaluations is a relational expression including the carburizing temperature T (° C) and the REM concentration [REM] in a temperature range of 960 to 1050 ° C. [Al] = (T-940) /1000-0.035× [REM].

なお、N濃度は、0.01%未満である場合、析出物生成の効果が顕著ではなく、0.03%を越える場合、鍛造や熱間加工時において割れが発生しやすくなる。Al濃度は、0.01%未満である場合、析出物生成の効果が顕著でなく、0.05%を越える場合、析出するAlNの粗大化により、結晶粒の微細化に対する寄与が低減、つまり結晶粒の粗大化防止効果が低下する。   When the N concentration is less than 0.01%, the effect of forming precipitates is not remarkable, and when it exceeds 0.03%, cracks are likely to occur during forging or hot working. If the Al concentration is less than 0.01%, the effect of the formation of precipitates is not remarkable, and if it exceeds 0.05%, the contribution to the refinement of the crystal grains is reduced due to the coarsening of the precipitated AlN. The effect of preventing crystal grains from being coarsened is reduced.

したがって、浸炭温度が960℃以上である上記温度域にある場合、結晶粒度の粗大化を確実に抑制するためには、N濃度は、0.01〜0.03%であり、Al濃度は、0.01〜0.05%であることが好ましく、また、関係式([Al]≧(T−940)/1000−0.035×[REM])を満足することがさらに好ましい。   Therefore, when the carburizing temperature is in the above temperature range of 960 ° C. or higher, the N concentration is 0.01 to 0.03% and the Al concentration is It is preferably 0.01 to 0.05%, and more preferably the relational expression ([Al] ≧ (T-940) /1000-0.035× [REM]) is satisfied.

次に、Nb濃度、REM濃度および浸炭温度の関係を説明する。   Next, the relationship among the Nb concentration, the REM concentration, and the carburizing temperature will be described.

図7は、浸炭温度を変更した場合におけるREMおよびNb濃度とオーステナイト結晶粒度との関係を示している図表である。なお、Al濃度代わりとして、Nb濃度が適用されている点を除けば、図6の場合と同様の条件である。   FIG. 7 is a table showing the relationship between REM and Nb concentrations and austenite grain size when the carburizing temperature is changed. The conditions are the same as those in FIG. 6 except that the Nb concentration is applied instead of the Al concentration.

図に示されるように、浸炭温度の上昇に伴って、結晶粒度の粗大化が引き起こされる傾向が見られる。一方、Nb濃度の増加によって、結晶粒度の粗大化が抑制されている。   As shown in the figure, there is a tendency that as the carburizing temperature rises, the crystal grain size becomes coarse. On the other hand, the increase in the Nb concentration suppresses the coarsening of the crystal grain size.

また、評価が良好と不良との境界に位置するNb濃度[Nb]は、960〜1050℃の温度域においては、浸炭温度T(℃)とREM濃度[REM]とを含んでいる関係式([Nb]=(T−940)/3000−0.025×[REM])で表すことが可能である。   In addition, the Nb concentration [Nb] located at the boundary between good and bad evaluations is a relational expression including the carburizing temperature T (° C.) and the REM concentration [REM] in a temperature range of 960 to 1050 ° C. [Nb] = (T-940) /3000−0.025× [REM].

さらに、Nb濃度は、0.01%未満である場合、析出物生成の効果が顕著でなく、0.05%を越える場合、析出物が凝集するため、結晶粒の微細化に対する寄与が低下するとともに、冷間鍛造性の悪化を引き起こす。なお、N濃度は、上述のように、0.01%未満である場合、析出物生成の効果が顕著ではなく、0.03%を越える場合、鍛造や熱間加工時において割れが発生しやすくなる。   Further, when the Nb concentration is less than 0.01%, the effect of forming precipitates is not remarkable, and when it exceeds 0.05%, the precipitates are aggregated, so that the contribution to the refinement of crystal grains is reduced. At the same time, cold forgeability is deteriorated. As described above, when the N concentration is less than 0.01%, the effect of forming precipitates is not remarkable, and when it exceeds 0.03%, cracks are likely to occur during forging or hot working. Become.

したがって、浸炭温度が960℃以上である上記温度域にある場合、結晶粒度の粗大化を確実に抑制するためには、N濃度は、0.01〜0.03%であり、Nb濃度は、0.01〜0.05%であることが好ましく、また、関係式([Nb]≧(T−940)/3000−0.025×[REM])を満足することがさらに好ましい。   Therefore, when the carburizing temperature is in the above temperature range of 960 ° C. or higher, the N concentration is 0.01 to 0.03% and the Nb concentration is in order to surely suppress the coarsening of the crystal grain size. It is preferably 0.01 to 0.05%, and more preferably the relational expression ([Nb] ≧ (T−940) /3000−0.025× [REM]) is satisfied.

次に、Ti濃度、REM濃度および浸炭温度の関係を説明する。   Next, the relationship between the Ti concentration, the REM concentration, and the carburizing temperature will be described.

図8は、浸炭温度を変更した場合におけるREMおよびTi濃度とオーステナイト結晶粒度との関係を示している図表である。なお、Al濃度代わりとして、Ti濃度が適用されている点を除けば、図6の場合と同様の条件である。   FIG. 8 is a chart showing the relationship between REM and Ti concentration and austenite grain size when the carburizing temperature is changed. The conditions are the same as those in FIG. 6 except that the Ti concentration is applied instead of the Al concentration.

図に示されるように、浸炭温度の上昇に伴って、結晶粒度の粗大化が引き起こされる傾向が見られる。一方、Ti濃度の増加によって、結晶粒度の粗大化が抑制されている。   As shown in the figure, there is a tendency that as the carburizing temperature rises, the crystal grain size becomes coarse. On the other hand, the increase in the Ti concentration suppresses the coarsening of the crystal grain size.

また、評価が良好と不良との境界に位置するTi濃度[Ti]は、960〜1050℃の温度域においては、浸炭温度T(℃)とREM濃度[REM]とを含んでいる関係式([Ti]=[(T−940)/3600−0.020×[REM])で表すことが可能である。   In addition, the Ti concentration [Ti] located at the boundary between good and bad evaluations includes a carburizing temperature T (° C.) and a REM concentration [REM] in a temperature range of 960 to 1050 ° C. [Ti] = [(T−940) /3600−0.020× [REM]).

さらに、Ti濃度は、0.01%未満である場合、析出物生成の効果が顕著でなく、0.05%を越える場合、析出物が凝集するため、結晶粒の微細化に対する寄与が低下するとともに、冷間鍛造性の悪化を引き起こす。なお、N濃度は、上述のように、0.01%未満である場合、析出物生成の効果が顕著ではなく、0.03%を越える場合、鍛造や熱間加工時において割れが発生しやすくなる。   Further, when the Ti concentration is less than 0.01%, the effect of forming precipitates is not remarkable, and when the Ti concentration is more than 0.05%, the precipitates are aggregated, so that the contribution to the refinement of crystal grains is reduced. At the same time, cold forgeability is deteriorated. As described above, when the N concentration is less than 0.01%, the effect of forming precipitates is not remarkable, and when it exceeds 0.03%, cracks are likely to occur during forging or hot working. Become.

したがって、浸炭温度が960℃以上である上記温度域にある場合、結晶粒度の粗大化を確実に抑制するためには、N濃度は、0.01〜0.03%であり、Ti濃度は、0.01〜0.05%であることが好ましく、また、関係式([Ti]≧(T−940)/3600−0.020×[REM])を満足することがさらに好ましい。   Therefore, when the carburizing temperature is in the above temperature range of 960 ° C. or higher, the N concentration is 0.01 to 0.03% and the Ti concentration is It is preferably 0.01 to 0.05%, and more preferably the relational expression ([Ti] ≧ (T−940) /3600−0.020× [REM]) is satisfied.

本発明の実施の形態に係る浸炭用鋼の一例を説明するための化学組成を示している図表である。It is a table | surface which shows the chemical composition for demonstrating an example of the carburizing steel which concerns on embodiment of this invention. 図1に続く浸炭用鋼の一例を説明するための化学組成を示している図表である。FIG. 2 is a chart showing a chemical composition for describing an example of a carburizing steel subsequent to FIG. 1. 比較例に係る浸炭用鋼の一例を説明するための化学組成を示している図表である。4 is a chart showing a chemical composition for describing an example of a carburizing steel according to a comparative example. 浸炭速度に対するREM濃度の影響を説明するためのグラフであり、浸炭温度を変更した場合におけるREM濃度と浸炭深さとの関係を示している。It is a graph for explaining the influence of REM concentration on carburizing speed, and shows the relationship between REM concentration and carburizing depth when the carburizing temperature is changed. 浸炭速度に対する浸炭温度の影響を説明するためのグラフであり、REM濃度を変更した場合における浸炭温度と浸炭深さとの関係を示している。It is a graph for explaining the influence of carburizing temperature on carburizing speed, and shows the relationship between carburizing temperature and carburizing depth when the REM concentration is changed. Al濃度、REM濃度および浸炭温度の関係を説明するための図表であり、浸炭温度を変更した場合におけるREMおよびAl濃度とオーステナイト結晶粒度との関係を示している。4 is a chart for explaining the relationship among Al concentration, REM concentration and carburizing temperature, and shows the relationship between REM and Al concentration and austenite grain size when carburizing temperature is changed. Nb濃度、REM濃度および浸炭温度の関係を説明するための図表であり、浸炭温度を変更した場合におけるREMおよびNb濃度とオーステナイト結晶粒度との関係を示している。5 is a chart for explaining the relationship between Nb concentration, REM concentration and carburizing temperature, and shows the relationship between REM and Nb concentration and austenite grain size when carburizing temperature is changed. Ti濃度、REM濃度および浸炭温度の関係を説明するための図表であり、浸炭温度を変更した場合におけるREMおよびTi濃度とオーステナイト結晶粒度との関係を示している。4 is a chart for explaining the relationship among Ti concentration, REM concentration and carburizing temperature, and shows the relationship between REM and Ti concentration and austenite grain size when carburizing temperature is changed.

Claims (9)

重量%(以下同じ)でのC濃度が0.1〜0.3%である浸炭用鋼に、REMを添加し、REM濃度を0.01〜0.25%に調整し、930〜1050℃の浸炭温度で、浸炭を施すことを特徴とする浸炭用鋼の製造方法。   REM is added to a carburizing steel having a C concentration of 0.1 to 0.3% by weight (hereinafter the same), and the REM concentration is adjusted to 0.01 to 0.25%. A method for producing carburizing steel, comprising carburizing at a carburizing temperature. 前記浸炭温度は、960℃以上であり、鋼中のN濃度は、0.01〜0.03%であり、鋼中のAl濃度は、0.01〜0.05%であることを特徴とする請求項1に記載の浸炭用鋼の製造方法。   The carburizing temperature is 960 ° C. or higher, the N concentration in steel is 0.01 to 0.03%, and the Al concentration in steel is 0.01 to 0.05%. The method for producing carburizing steel according to claim 1. 重量%である鋼中のAl濃度[Al]とREM濃度[REM]と、浸炭温度T(℃)とは、
[Al]≧(T−940)/1000−0.035×[REM]
の関係を満足することを特徴とする請求項2に記載の浸炭用鋼の製造方法。
The Al concentration [Al] and the REM concentration [REM] in the steel, which is weight%, and the carburizing temperature T (° C.)
[Al] ≧ (T-940) /1000-0.035× [REM]
The method for producing carburizing steel according to claim 2, wherein the following relationship is satisfied.
前記浸炭温度は、960℃以上であり、鋼中のN濃度は、0.01〜0.03%であり、鋼中のNb濃度は、0.01〜0.05%であることを特徴とする請求項1に記載の浸炭用鋼の製造方法。   The carburizing temperature is 960 ° C. or higher, the N concentration in steel is 0.01 to 0.03%, and the Nb concentration in steel is 0.01 to 0.05%. The method for producing carburizing steel according to claim 1. 重量%である鋼中のNb濃度[Nb]とREM濃度[REM]と、浸炭温度T(℃)とは、
[Nb]≧(T−940)/3000−0.025×[REM]
の関係を満足することを特徴とする請求項4に記載の浸炭用鋼の製造方法。
The Nb concentration [Nb] and the REM concentration [REM] in the steel, which are weight%, and the carburizing temperature T (° C.)
[Nb] ≧ (T-940) /3000−0.025× [REM]
The method for producing carburizing steel according to claim 4, wherein the following relationship is satisfied.
前記浸炭温度は、960℃以上であり、鋼中のN濃度は、0.01〜0.03%であり、鋼中のTi濃度は、0.01〜0.05%であることを特徴とする請求項1に記載の浸炭用鋼の製造方法。   The carburizing temperature is 960 ° C. or higher, the N concentration in steel is 0.01 to 0.03%, and the Ti concentration in steel is 0.01 to 0.05%. The method for producing carburizing steel according to claim 1. 重量%である鋼中のTi濃度[Ti]とREM濃度[REM]と、浸炭温度T(℃)は、
[Ti]≧(T−940)/3600−0.020×[REM]
の関係を満足することを特徴とする請求項6に記載の浸炭用鋼の製造方法。
The Ti concentration [Ti] and the REM concentration [REM] in the steel, which are weight%, and the carburizing temperature T (° C.)
[Ti] ≧ (T-940) /3600-0.020× [REM]
7. The method for producing carburizing steel according to claim 6, wherein the following relationship is satisfied.
前記REMは、鋼自体に含有させることによって添加されることを特徴とする請求項1〜7のいずれか1項に記載の浸炭用鋼の製造方法。   The method for producing carburizing steel according to any one of claims 1 to 7, wherein the REM is added by being contained in the steel itself. 請求項1〜8のいずれか1項に記載の浸炭用鋼の製造方法によって製造されたことを特徴とする浸炭用鋼材。   A carburizing steel material produced by the method for producing carburizing steel according to any one of claims 1 to 8.
JP2003291243A 2003-01-23 2003-08-11 Method of producing steel for carburizing, and steel for carburizing obtained by the method Pending JP2004244717A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003291243A JP2004244717A (en) 2003-01-23 2003-08-11 Method of producing steel for carburizing, and steel for carburizing obtained by the method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003014932 2003-01-23
JP2003291243A JP2004244717A (en) 2003-01-23 2003-08-11 Method of producing steel for carburizing, and steel for carburizing obtained by the method

Publications (1)

Publication Number Publication Date
JP2004244717A true JP2004244717A (en) 2004-09-02

Family

ID=33032027

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003291243A Pending JP2004244717A (en) 2003-01-23 2003-08-11 Method of producing steel for carburizing, and steel for carburizing obtained by the method

Country Status (1)

Country Link
JP (1) JP2004244717A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113071A (en) * 2005-10-20 2007-05-10 Kobe Steel Ltd Case hardening steel having excellent rolling fatigue property and crystal grain coarsening prevention property
CN102154613A (en) * 2011-03-11 2011-08-17 蚌埠市钰诚五金工贸有限公司 Rare earth carburizing process using rolling furnace to treat screws

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113071A (en) * 2005-10-20 2007-05-10 Kobe Steel Ltd Case hardening steel having excellent rolling fatigue property and crystal grain coarsening prevention property
CN102154613A (en) * 2011-03-11 2011-08-17 蚌埠市钰诚五金工贸有限公司 Rare earth carburizing process using rolling furnace to treat screws

Similar Documents

Publication Publication Date Title
JP6631860B2 (en) Method for producing martensitic stainless steel member, and martensitic stainless steel component and method for producing same
JP2005090680A (en) Rolling bearing part and method of manufacturing the same
JP5213393B2 (en) Hardened steel with excellent surface fatigue strength, impact strength and bending fatigue strength
JP5463662B2 (en) Bearing steel excellent in rolling fatigue characteristics and manufacturing method thereof
JP5338370B2 (en) Carburizing steel
JP2013227598A (en) Iron casting and method for manufacturing the same
JP5178104B2 (en) Hardened steel with excellent surface fatigue strength, impact strength and bending fatigue strength
JP5630978B2 (en) Mechanical structural steel with excellent toughness
JP6364219B2 (en) Cast iron castings and manufacturing method thereof
JP6365963B2 (en) Martensitic stainless steel for fuel injection member and fuel injection member using the same
CN1726295A (en) Bearing steel excellent in manufacturability and corrosion resistance, manufacturing method thereof, bearing component, and manufacturing method thereof
JP2003201513A (en) High strength case hardening steel
JP2004244717A (en) Method of producing steel for carburizing, and steel for carburizing obtained by the method
JP6191357B2 (en) Steel heat treatment method
JP2003321711A (en) Method of producing gear obtained by using steel for carburization having excellent grain size property as stock
JPH06158266A (en) Production of high surface pressure parts
JP2011026688A (en) STEEL FOR CARBURIZING HAVING EXCELLENT STRENGTH WITHOUT ADDING Mo AND CARBURIZED COMPONENT USING THE SAME
JPH0254403B2 (en)
JP4307329B2 (en) Piston ring wire and piston ring
JP6752624B2 (en) Manufacturing method of carburized steel
JP3494270B2 (en) Case hardened steel with excellent machinability and coarse-graining resistance
JP2003105502A (en) Stainless steel for metal gasket having excellent high temperature setting resistance, and metal gasket
JPH1068050A (en) Stainless steel for spring excellent in thermal settling resistance
JP2006219718A (en) Steel for high strength bolt with excellent delayed fracture resistance, and high strength bolt
JP2714962B2 (en) Metal base for diamond saw

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060628

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070613

A131 Notification of reasons for refusal

Effective date: 20070925

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20071122

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071218