[go: up one dir, main page]

JP2004239576A - Igniter - Google Patents

Igniter Download PDF

Info

Publication number
JP2004239576A
JP2004239576A JP2003032009A JP2003032009A JP2004239576A JP 2004239576 A JP2004239576 A JP 2004239576A JP 2003032009 A JP2003032009 A JP 2003032009A JP 2003032009 A JP2003032009 A JP 2003032009A JP 2004239576 A JP2004239576 A JP 2004239576A
Authority
JP
Japan
Prior art keywords
capacitor
circuit
power supply
resistor
igniter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003032009A
Other languages
Japanese (ja)
Inventor
Atsushi Otsuki
敦 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diamond Electric Manufacturing Co Ltd
Original Assignee
Diamond Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diamond Electric Manufacturing Co Ltd filed Critical Diamond Electric Manufacturing Co Ltd
Priority to JP2003032009A priority Critical patent/JP2004239576A/en
Publication of JP2004239576A publication Critical patent/JP2004239576A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To propose an ignitor structure, especially for a power source synchronous type ignitor used to ignite fuel for a gas or a petroleum combustor or a heater, and to provide such power source cycle synchronous type ignitor, which is compact in size and capable of obtaining high power. <P>SOLUTION: The ignitor performing oscillation in response to a commercial source cycle of a frequency f is provided with a triggering circuit, a voltage doubler circuit, and a switching circuit on the primary side of a transformer and a discharge electrode on the secondary side. The triggering circuit is provided with a condenser C3 and resistance R1. The condenser C3 and the resistance R1 are set at C3×R1<(1/4f). <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ガスや石油燃焼機器や暖房機器等の燃料着火用イグナイタに関し、特に電源同期型のイグナイタ構造に関する。
【0002】
【従来の技術】
従来より燃料着火用のイグナイタでは、商用電源を使用し、この周波数50Hz若しくは60Hzに同期して発振を行う発振回路を備え、トランスにより昇圧することで、当該トランスの2次側に数キロボルト程度の高電圧を発生する電源同期型のイグナイタが知られている。また、前記商用電源より低い周波数を作りだし、例えば12.5Hzで放電する周期ダウン型のイグナイタが知られている。当該周期ダウン型には倍電圧回路を付加し、点火エネルギの増大を図ったものがある。一般に電源同期型は放電(点火)回数が多いので難燃性の燃料への着火性を考慮し、逆に周期ダウン型は、点火回数が少なくてすむので点火時の騒音を抑えることを考慮し設計される。
【0003】
すなわち、電源同期型は、商用電源の周波数と同じ周波数で放電し、例えば、電源の周波数が、50Hzであれば、50Hz=1/20mS、すなわち20mSに1回放電するイグナイタであり、自ら発振回路を持たず電源の発振を利用して動作している。
【0004】
また周期ダウン型は、商用電源の周波数より低い周波数で放電し、例えば、電源の周波数が50Hzのとき12.5Hzで放電するとすると、電源の4サイクルに1回放電する。その時の放電周期は80mSとなり、80mSに1回放電する。すなわち、タイマー回路、或いは、商用電源の周波数より低い周波数の発振回路を持っているイグナイターであり、周期ダウンタイプには、倍電圧整流回路を用いて、放電エネルギーの増大を図っているものがある。
【0005】
【発明が解決しようとする課題】
上述の通り、イグナイタ本体のサイズを大型化することなく放電エネルギの増大を望むときには倍電圧整流回路を用いてトランスへの入力電圧を増加させることが用いられる。しかしながら点火回数が多い電源同期型のイグナイタの場合では、発振を行うスイッチング素子のトリガタイミングの決定が難しく、点火タイミングのズレにより点火エネルギが得られない場合には高電圧が発生しないものとなっている。本発明は上記課題に鑑み、小型で高出力が得られる電源周期同期型イグナイタを提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するために本発明では、周波数fの商用電源周期に応じて発振を行うイグナイタにおいて、トランスの1次側にトリガ回路と倍電圧回路とスイッチング回路を備え、トランスの2次側には放電電極を備え、前記トリガ回路にコンデンサC3と抵抗R1とを備え、当該コンデンサC3と抵抗R1とがC3×R1<(1/4f)に設定されていることを特徴とするイグナイタとする。
【0007】
【実施例】
本発明の実施例とするイグナイタの回路図を図1に示す。図1において、商用電源10の一端はトリガ回路20から倍電圧整流回路30を介してトランス50の一端に、また商用電源10の他端は倍電圧整流回路からスイッチング回路40を介してトランス50の他端にそれぞれ接続され、当該トランス50の2次側両端間には放電電極60が設けられている。
【0008】
前記トリガ回路20は商用電源10の一端に接続されるコンデンサC3と、当該コンデンサC3に接続されるダイオードD4とD3、当該ダイオードD4のカソードに接続される抵抗R4と、ダイオードD3のアノードに接続される抵抗R1、当該抵抗R4とR1の他端間に接続される抵抗R2と、前記抵抗R1の他端にベースを接続するトランジスタQ1とを備え、当該トランジスタQ1のエミッタは前記抵抗R4の他端に、コレクタは後述のスイッチング回路40に接続されている。また、当該エミッタは商用電源10の他端に接続されている。
【0009】
前記倍電圧整流回路30は商用電源10の一端に接続される抵抗R6と、この他端に接続されるコンデンサC1と、当該コンデンサC1の他端と前記抵抗R6の他端との間に接続されるダイオードD2と、前記抵抗R6と直列接続されカソードをトランス50の1次側一端に接続するダイオードD1と、当該トランス50の1次側他端に接続されるコンデンサC2とから構成され、前記ダイオードD2はカソードをダイオードD1のアノードに接続する向きで設けられている。
【0010】
前記スイッチング回路40は前記トランス50の一端にアノードを、前記コンデンサC2の他端にカソードを接続する如く設けられるスイッチング素子Q2を備え、当該スイッチング素子Q2のゲートは抵抗R3を通って前記トリガ回路20に接続されている。ここで当該スイッチング素子Q2はサイリスタで構成され、このカソード−ゲート間には抵抗R5が配置されている。
【0011】
次に上記図1の動作について説明する。倍電圧整流回路30は、コンデンサC2に倍電圧を充電する回路である。商用電源10の他端側が正の時に、トランジスタQ1のエミッタからベース、抵抗R1ダイオードD3、コンデンサC3、商用電源10の一端側の経路でトランジスタQ1にベース電流が流れ、トランジスタQ1がオンする。これによりコンデンサC1の電荷が、トランジスタQ1のエミッタからコレクタ、抵抗R3、スイッチング素子Q2のゲートからカソード、コンデンサC1という経路で流れる。この電流により、スイッチング素子Q2にゲート電流が流れ、スイッチング素子Q2がオンする。これによりコンデンサC2の電荷が、トランス50の1次側に急激に流れ、この2二次側に高電圧を発生させ、放電電極60において放電(点火)が発生する。
【0012】
次にコンデンサC3の役割に付いて説明する。本発明のコンデンサC2の電圧と、商用電源10から得られる電圧波形を図2に示す。当該図2では、商用電源10の一端側が正の時をプラスとしたときの波形となっている。ここで、コンデンサC3がない場合、図2の波形において、位相角180−360度の間トランジスタQ1がオンし、スイッチング素子Q2にもトリガかかる。しかし、270度からすでにコンデンサC1からコンデンサC2に充電が始まっているため、スイッチング素子Q2がオンしたままとなり、スイッチング素子Q2でコンデンサC2が短絡されコンデンサC2が充電されなくなり高圧放電が停止する。すなわち、トランジスタQ1のオンを180−270度の範囲に限定する必要があり、これを行なっているのがコンデンサC3である。コンデンサC3×抵抗R1によって決定される時定数が商用電源10周期の4分の1より十分に小さければ、コンデンサC3の充電電圧と電源の電圧が等しくなった時点で電流は抵抗R1に流れなくなり、トランジスタQ1はオフし、スイッチング素子Q2のゲート電流はなくなる。このとき、スイッチング素子Q2のアノード電流はなくなっているので、当該スイッチング素子Q2はオフし、270度以降コンデンサC2は、充電を再開し、以降発振動作を繰り返し、電源同期により高圧放電する。以上の条件を考慮すると、抵抗R1とコンデンサC3の定数は、商用電源の周波数をfとした場合に、C3×R1<(1/4f)を満たすことで実現可能である。なお前記ダイオードD4と抵抗R4とは、コンデンサC3に充電された電荷を放電する回路を形成している。
【0013】
【発明の効果】
以上説明したように、電源周期同期型のイグナイタにおいて、コンデンサC3と抵抗R1の最適定数を設定することで倍電圧整流回路を付加することが可能になり、小型で高出力のイグナイタを提供可能とした。
【図面の簡単な説明】
【図1】本発明の第1の実施例とするイグナイタの回路図を示す
【図2】本発明のコンデンサC2への充電波形を示す
【符号の説明】
図において同一符号は同一、または相当部分を示す。
10 商用電源
20 トリガ回路
30 倍電圧整流回路
40 スイッチング回路
50 トランス
60 放電電極
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an igniter for igniting a fuel such as a gas or oil combustion device or a heating device, and more particularly to a power supply synchronous type igniter structure.
[0002]
[Prior art]
Conventionally, an igniter for fuel ignition uses a commercial power supply, has an oscillation circuit that oscillates in synchronization with the frequency of 50 Hz or 60 Hz, and boosts the voltage by a transformer, so that a voltage of about several kilovolts is applied to the secondary side of the transformer. A power supply synchronous igniter that generates a high voltage is known. There is also known a cycle-down type igniter that produces a frequency lower than that of the commercial power supply and discharges at, for example, 12.5 Hz. There is a cycle down type in which a voltage doubler circuit is added to increase the ignition energy. In general, the power-synchronous type has a large number of discharges (ignitions), so it takes into account the ignitability of flame-retardant fuel. Conversely, the periodic down type requires only a small number of ignitions, so it takes into account the suppression of ignition noise. Designed.
[0003]
That is, the power supply synchronous type is an igniter that discharges at the same frequency as that of the commercial power supply. For example, if the frequency of the power supply is 50 Hz, the igniter discharges once at 50 Hz = 1/20 mS, that is, once at 20 mS. It operates by using the oscillation of the power supply without having.
[0004]
The periodic down type discharges at a frequency lower than the frequency of the commercial power supply. For example, if the discharge is performed at 12.5 Hz when the frequency of the power supply is 50 Hz, the discharge is performed once every four cycles of the power supply. The discharge cycle at that time is 80 mS, and discharge is performed once every 80 mS. That is, an igniter having a timer circuit or an oscillating circuit having a frequency lower than the frequency of the commercial power supply. Some periodic down types use a voltage doubler rectifier circuit to increase discharge energy. .
[0005]
[Problems to be solved by the invention]
As described above, when it is desired to increase the discharge energy without increasing the size of the igniter body, it is used to increase the input voltage to the transformer using a voltage doubler rectifier circuit. However, in the case of a power supply synchronous type igniter having a large number of ignitions, it is difficult to determine the trigger timing of the switching element that oscillates, and if ignition energy is not obtained due to a shift in ignition timing, a high voltage does not occur. I have. The present invention has been made in view of the above problems, and has as its object to provide a power supply cycle synchronization type igniter which is small and can obtain high output.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention provides an igniter that oscillates in accordance with the frequency of a commercial power supply having a frequency f, including a trigger circuit, a voltage doubler circuit, and a switching circuit on a primary side of a transformer, and a secondary side of the transformer. Comprises a discharge electrode, the trigger circuit includes a capacitor C3 and a resistor R1, and the capacitor C3 and the resistor R1 are set to satisfy C3 × R1 <(1 / f).
[0007]
【Example】
FIG. 1 is a circuit diagram of an igniter according to an embodiment of the present invention. In FIG. 1, one end of a commercial power supply 10 is connected to one end of a transformer 50 from a trigger circuit 20 via a voltage doubler rectifier circuit 30, and the other end of the commercial power supply 10 is connected to a transformer 50 via a switching circuit 40 from a voltage doubler rectifier circuit. Discharge electrodes 60 are provided between the two ends of the secondary side of the transformer 50, which are connected to the other ends, respectively.
[0008]
The trigger circuit 20 is connected to a capacitor C3 connected to one end of the commercial power supply 10, diodes D4 and D3 connected to the capacitor C3, a resistor R4 connected to the cathode of the diode D4, and an anode of the diode D3. Resistor R1, a resistor R2 connected between the other ends of the resistors R4 and R1, and a transistor Q1 having a base connected to the other end of the resistor R1. The emitter of the transistor Q1 is connected to the other end of the resistor R4. The collector is connected to a switching circuit 40 described later. The emitter is connected to the other end of the commercial power supply 10.
[0009]
The voltage doubler rectifier circuit 30 is connected to a resistor R6 connected to one end of the commercial power supply 10, a capacitor C1 connected to the other end, and connected between the other end of the capacitor C1 and the other end of the resistor R6. A diode D2 connected in series with the resistor R6, a cathode connected to one end of the primary side of the transformer 50, and a capacitor C2 connected to the other end of the primary side of the transformer 50. D2 is provided so as to connect the cathode to the anode of the diode D1.
[0010]
The switching circuit 40 includes a switching element Q2 provided to connect an anode to one end of the transformer 50 and a cathode to the other end of the capacitor C2, and a gate of the switching element Q2 passes through a resistor R3 to connect the trigger circuit 20 to the trigger circuit 20. It is connected to the. Here, the switching element Q2 is constituted by a thyristor, and a resistor R5 is arranged between the cathode and the gate.
[0011]
Next, the operation of FIG. 1 will be described. The voltage doubler rectifier circuit 30 is a circuit that charges the capacitor C2 with a voltage doubler. When the other end of the commercial power supply 10 is positive, a base current flows through the transistor Q1 from the emitter of the transistor Q1 to the base, the resistor R1, the diode D3, the capacitor C3, and the one end of the commercial power supply 10, and the transistor Q1 turns on. As a result, the electric charge of the capacitor C1 flows through a path from the emitter to the collector of the transistor Q1, the resistor R3, the gate to the cathode of the switching element Q2, and the capacitor C1. This current causes a gate current to flow through the switching element Q2, turning on the switching element Q2. As a result, the electric charge of the capacitor C2 rapidly flows to the primary side of the transformer 50, and generates a high voltage on the secondary side thereof, so that discharge (ignition) occurs at the discharge electrode 60.
[0012]
Next, the role of the capacitor C3 will be described. FIG. 2 shows the voltage of the capacitor C2 of the present invention and the voltage waveform obtained from the commercial power supply 10. In FIG. 2, the waveform when the one end of the commercial power supply 10 is positive is defined as a plus. Here, when the capacitor C3 is not provided, in the waveform of FIG. 2, the transistor Q1 is turned on during the phase angle of 180 to 360 degrees, and the switching element Q2 is also triggered. However, since the charging of the capacitor C2 from the capacitor C1 has already started from 270 degrees, the switching element Q2 remains ON, the capacitor C2 is short-circuited by the switching element Q2, the capacitor C2 is not charged, and the high-voltage discharge stops. That is, it is necessary to limit the on state of the transistor Q1 to a range of 180 to 270 degrees, and this is performed by the capacitor C3. If the time constant determined by the capacitor C3 × the resistor R1 is sufficiently smaller than one-fourth of the 10 cycles of the commercial power supply, the current stops flowing through the resistor R1 when the charged voltage of the capacitor C3 becomes equal to the voltage of the power supply, The transistor Q1 turns off, and the gate current of the switching element Q2 disappears. At this time, since the anode current of the switching element Q2 has disappeared, the switching element Q2 is turned off, the capacitor C2 resumes charging after 270 degrees, repeats the oscillating operation thereafter, and performs high-voltage discharge by power supply synchronization. In consideration of the above conditions, the constant of the resistor R1 and the capacitor C3 can be realized by satisfying C3 × R1 <(< f), where f is the frequency of the commercial power supply. The diode D4 and the resistor R4 form a circuit for discharging the electric charge charged in the capacitor C3.
[0013]
【The invention's effect】
As described above, in the igniter of the power supply cycle synchronization type, it is possible to add a voltage doubler rectifier circuit by setting the optimum constants of the capacitor C3 and the resistor R1, and to provide a small-sized igniter with high output. did.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of an igniter according to a first embodiment of the present invention. FIG. 2 is a diagram showing a waveform of charging a capacitor C2 of the present invention.
In the drawings, the same reference numerals indicate the same or corresponding parts.
DESCRIPTION OF SYMBOLS 10 Commercial power supply 20 Trigger circuit 30 Voltage doubler rectifier circuit 40 Switching circuit 50 Transformer 60 Discharge electrode

Claims (1)

周波数fの商用電源周期に応じて発振を行うイグナイタにおいて、トランスの1次側にトリガ回路と倍電圧回路とスイッチング回路を備え、トランスの2次側には放電電極を備え、前記トリガ回路にコンデンサC3と抵抗R1とを備え、当該コンデンサC3と抵抗R1とがC3×R1<(1/4f)に設定されていることを特徴とするイグナイタ。An igniter that oscillates according to a cycle of a commercial power supply having a frequency f includes a trigger circuit, a voltage doubler circuit, and a switching circuit on a primary side of a transformer, a discharge electrode on a secondary side of the transformer, and a capacitor in the trigger circuit. An igniter comprising C3 and a resistor R1, wherein the capacitor C3 and the resistor R1 are set to C3 × R1 <((f).
JP2003032009A 2003-02-10 2003-02-10 Igniter Pending JP2004239576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003032009A JP2004239576A (en) 2003-02-10 2003-02-10 Igniter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003032009A JP2004239576A (en) 2003-02-10 2003-02-10 Igniter

Publications (1)

Publication Number Publication Date
JP2004239576A true JP2004239576A (en) 2004-08-26

Family

ID=32958395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003032009A Pending JP2004239576A (en) 2003-02-10 2003-02-10 Igniter

Country Status (1)

Country Link
JP (1) JP2004239576A (en)

Similar Documents

Publication Publication Date Title
JPH0135177B2 (en)
JPS5859376A (en) Plasma igniter
US3877864A (en) Spark igniter system for gas appliance pilot ignition
EP0195248A2 (en) High intensity discharge lamp starting and operating apparatus
US6373199B1 (en) Reducing stress on ignitor circuitry for gaseous discharge lamps
US6188180B1 (en) Ignition circuit for automotive high intensity discharge lamps
KR950013545B1 (en) Ignition apparatus for an internal combustion engine
JP2004239576A (en) Igniter
JPS5883120A (en) Combustion control device
CN212304829U (en) Silicon controlled rectifier control discharge high-energy ignition system
EP2417836A1 (en) Hid lamp ignitor
JP2010101212A (en) Ignition device for internal combustion engine
KR0143586B1 (en) Ignition device for internal combustion engine
SU464133A3 (en) A device for igniting a flammable substance to the lighters
JPS58144666A (en) Multiple-spark ignition apparatus for internal- combustion engine
JPS6137979Y2 (en)
GB2117193A (en) Electric discharge lamp operating circuit
JPS5941401Y2 (en) Ignition device with timer
JPS60113067A (en) Ignition device in internal-combustion engine
JPS6226696Y2 (en)
SU600749A1 (en) Pulsed gas-discharge lamp ignition and power supply device
KR900005210B1 (en) Automatic ignition device and automatic ignition method
JP2003287228A (en) Igniter
KR200263731Y1 (en) Super impose ignitor circuit in stabilizer for high intensity discharge lamp ballast
JPH0578672B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060209

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080305

A131 Notification of reasons for refusal

Effective date: 20080318

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080715