【0001】
【発明の属する分野】
本発明は、面発光装置、該装置に用いる導光板に関するものである。
【0002】
【従来の技術及び発明が解決しようとする課題】
面発光装置は、導光板の端面に配備した光源の光で、導光板の面を発光させるものであり、薄型化できる特徴がある。
上記面発光装置は、薄型を特徴とする液晶テレビのバックライトとして最適と考えられるが、画面が大型化すれば、その用途としては照度が不足する問題がある。
大画面の液晶テレビのバックライトは、光拡散板の背面に多数の冷陰極蛍光ランプを平行に並べて構成されている。この場合、ランプのコスト、ランプの発熱、ランプのメンテナンス等の問題がある。
【0003】
上記面発光装置の導光板の裏面には、光を反射させるためのV字状溝が、光源側の板端面と平行に多数形成されている。
溝は、機械切削、又はレーザ照射によって成形される(特許文献1)。
導光板の発光面を可及的に均一に光らせるためには、隣合う溝の間隔は、光源から遠ざかるほど狭く、溝深さは、光源から遠ざかるほど深く、溝のV角度は、光源から遠ざかるほど小さくすればよいことが分かっている。
しかし、導光板の面発光を均一に近づけることはできても、大画面の液晶テレビのバックライトに供するほどには面発光の照度を上げることはできなかった。
【0004】
出願人は、従来の面発光装置は、導光板裏面の光反射面積が小さいため、発光面の照度が不足すると仮説をたて、光反射面積を大きくすることに鋭意努力した結果、大きな照度を得ることのできる導光板を完成したものである。
【0005】
【特許文献】
特開平7−198954
【0006】
【課題を解決する手段】
本発明の導光板は、板裏面は勿論、板の肉厚内にも光反射部(24)を形成している。
板の肉厚内の光反射部(24)は、レーザ照射によって形成することが出来る。
【0007】
本発明の面発光装置は、上記導光板(2)の端面に接近して光源(5)を配備し、導光板(5)の背面を反射層(3)で覆っている。
【0008】
【作用及び効果】
本発明の面発光装置は、板の裏面に溝群による反射部(22)を形成しただけの従来の導光板に較べて、発光面の照度が飛躍的に向上した。
これは、導光板(2)の肉厚内に形成した光反射部(24)によって、光源(5)からの光を、有効に発光面へ向かわせることができるからと考えられる。
【0009】
【発明の実施の形態】
図1は、面発光装置(1)の断面を示している。
面発光装置(1)は、矩形の導光板(2)の長手方向に沿う両端面に光源(5)(5)を配備し、該光源(5)をリフレクター(6)で覆い、リフレクター(6)を含む導光板(2)を、導光板(2)の発光面側が開口した扁平ケース(7)に収容して形成されている。
【0010】
導光板(2)は、複数枚、実施例では3枚の透明板部材(21)(21)(21)を積層して形成されている。
各透明板部材(21)(21)(21)は、夫々裏面に多数の溝(23)を開設して反射部(22)を形成している。
各溝(23)は、該透明板部材(21)の光源(5)側の端面と平行に開設されている。
図2では各透明板(21)のピッチは粗く示したが、実際は、全面が溝で埋め尽くされた様に見える状態に、密なる間隔で溝群が形成されている。但し、光源から遠ざかるほど隣合う溝の間隔は狭まり、溝深さは大きくなっている。
各溝(23)は、レーザ照射によって形成され、各溝(23)は断面略V字状である。
実施例では、光源(5)に最も近い溝(23)の幅は0.1mm、溝深さは約0.1mmである。
【0011】
導光板(2)の裏面、即ち、図1、図2において、最下段の透明板部材の裏面を、反射シート(31)を接着する等により、反射層(3)で覆っている。
導光板(2)の表側面、即ち、発光面には拡散シート(41)を貼着する等により拡散層(4)を形成している。
【0012】
前記光源(5)は、実施例では、細棒状の冷陰極蛍光ランプであり、透明板(21)の長さと同程度の長さである。
【0013】
下記の表1は、図3に示す導光板の、A乃至Iの測定位置における照度を、実施例と比較例について示している。
光源は、12.6Wの冷陰極蛍光ランプを2本使用している。
導光板の材質、大きさは同じである。但し、比較例は、実施例の導光板(2)を構成している3枚の透明板部材(21)の内、1枚だけを単独で導光板としたものである。
実施冷の導光板の厚みは15mm、従って比較例の導光板の厚みは5mmである。
【0014】
【表1】
【0015】
表1から分かる様に、導光板(2)の平均照度(単位:lx)は、本実施例では12170、比較例では5250であり、実施例の照度が圧倒的に大きい。実施例の平均照度は12170は、液晶テレビのバックライトとして充分すぎるほどである。
表1において、実施例の照度の1桁目は四捨五入している。
【0016】
図4は、導光板(2)の他の実施例を示している。
導光板(2)は、単一の透明板によって形成され、裏面に前記レーザによる溝加工、切削による溝加工或いは、蛍光塗料によるストライプ群、ドット群を施す等により、反射部(22)を形成している。
導光板(2)の内部に、レーザ加工によって線状に多数の光反射部(24)を形成している。隣合う光反射部(24)(24)の間隔は、0.1〜0.5mm程度とした。
光源(5)から遠ざかるほど、隣合う光反射部(24)(24)の間隔を狭めることが望ましい。
【0017】
該光反射部(24)は、レーザを2方向からアクリル樹脂板等の透明板に照射して、両レーザ線の交点で透明板を内部で部分的に溶かして変質させることによって得ることができる。これは、中実の透明樹脂ブロック内に、文字、図形、立体像等を表現する方法として実施されている公知の技術である。
コンピュータ制御により、2方向からのレーザ線の交点を透明板に対して相対的に連続移動させる、或いは、パルス方式で断続でにレーザを照射しつつ透明板に対してレーザ線の交点を相対的に移動させる等により、所望形状の光反射部(24)を容易に形成できる。この光反射部(24)は、半透明にでき、反射部(24)に当たった光を、一部は反射させ、一部は素通りさせて、導光板(2)の肉厚内で光を効果的に分散して、発光面の均一発光にも寄与できる。
【0018】
上記実施例の説明は、本発明を説明するためのものであって、特許請求の範囲に記載の発明を限定し、或は範囲を減縮する様に解すべきではない。又、本発明の各部構成は上記実施例に限らず、特許請求の範囲に記載の技術的範囲内で種々の変形が可能であることは勿論である。
【図面の簡単な説明】
【図1】面発光装置の断面図である。
【図2】導光板の部分断面図である。
【図3】導光板の照度の測定点を表す図である。
【図4】他の実施例の導光板の正面図である。
【図5】同上の側面図である。
【符号の説明】
(1) 面発光装置
(2) 導光板
(21) 板部材
(22) 反射部
(24) 光反射部
(5) 光源[0001]
[Field of the Invention]
The present invention relates to a surface light emitting device and a light guide plate used for the device.
[0002]
Problems to be solved by the prior art and the invention
The surface light emitting device emits light from the light guide plate on the end face of the light guide plate and emits light on the surface of the light guide plate.
The above-mentioned surface light emitting device is considered to be most suitable as a backlight of a liquid crystal television characterized by a thin shape, but if the screen is enlarged, there is a problem that the illuminance is insufficient for its use.
The backlight of a large-screen liquid crystal television is configured by arranging a large number of cold cathode fluorescent lamps in parallel on the back of a light diffusion plate. In this case, there are problems such as lamp cost, lamp heat generation, lamp maintenance, and the like.
[0003]
A large number of V-shaped grooves for reflecting light are formed on the back surface of the light guide plate of the surface light emitting device in parallel with the plate end surface on the light source side.
The groove is formed by mechanical cutting or laser irradiation (Patent Document 1).
In order to make the light emitting surface of the light guide plate emit light as uniformly as possible, the distance between adjacent grooves is narrower as the distance from the light source is increased, the depth of the groove is deeper as the distance from the light source is increased, and the V angle of the groove is increased as the distance from the light source is increased. It is known that the smaller the size, the better.
However, even though the surface light emission of the light guide plate can be made uniform, the illuminance of the surface light emission cannot be increased enough to be used for a backlight of a large-screen liquid crystal television.
[0004]
The applicant hypothesized that the conventional surface light-emitting device has a small light reflection area on the back surface of the light guide plate, so that the illuminance of the light-emitting surface is insufficient. A light guide plate that can be obtained is completed.
[0005]
[Patent Document]
JP-A-7-198954
[0006]
[Means to solve the problem]
In the light guide plate of the present invention, the light reflecting portion (24) is formed not only on the back surface of the plate but also within the thickness of the plate.
The light reflecting portion (24) within the thickness of the plate can be formed by laser irradiation.
[0007]
In the surface light emitting device of the present invention, a light source (5) is provided near the end face of the light guide plate (2), and the back surface of the light guide plate (5) is covered with a reflective layer (3).
[0008]
[Action and effect]
In the surface light emitting device of the present invention, the illuminance of the light emitting surface is remarkably improved as compared with the conventional light guide plate in which the reflecting portion (22) of the groove group is formed on the back surface of the plate.
This is presumably because the light from the light source (5) can be effectively directed to the light emitting surface by the light reflecting portion (24) formed within the thickness of the light guide plate (2).
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows a cross section of the surface light emitting device (1).
In the surface light emitting device (1), light sources (5) and (5) are provided on both end surfaces of a rectangular light guide plate (2) along the longitudinal direction, and the light source (5) is covered with a reflector (6). ) Is accommodated in a flat case (7) in which the light-emitting surface side of the light guide plate (2) is open.
[0010]
The light guide plate (2) is formed by laminating a plurality of, in this embodiment, three transparent plate members (21), (21), (21).
Each of the transparent plate members (21), (21), (21) has a large number of grooves (23) on the back surface to form a reflecting portion (22).
Each groove (23) is opened in parallel with the end face of the transparent plate member (21) on the light source (5) side.
Although the pitch of each transparent plate (21) is shown coarsely in FIG. 2, grooves are formed at close intervals so that the entire surface appears to be completely filled with grooves. However, as the distance from the light source increases, the distance between adjacent grooves decreases, and the groove depth increases.
Each groove (23) is formed by laser irradiation, and each groove (23) has a substantially V-shaped cross section.
In the embodiment, the width of the groove (23) closest to the light source (5) is 0.1 mm and the groove depth is about 0.1 mm.
[0011]
The back surface of the light guide plate (2), that is, the back surface of the lowermost transparent plate member in FIGS. 1 and 2, is covered with a reflection layer (3) by bonding a reflection sheet (31) or the like.
A diffusion layer (4) is formed on the front surface of the light guide plate (2), that is, the light emitting surface, by attaching a diffusion sheet (41) or the like.
[0012]
In the embodiment, the light source (5) is a thin-bar-shaped cold-cathode fluorescent lamp, and has a length substantially equal to the length of the transparent plate (21).
[0013]
Table 1 below shows the illuminance at the measurement positions A to I of the light guide plate shown in FIG. 3 for the example and the comparative example.
The light source uses two 12.6W cold cathode fluorescent lamps.
The material and size of the light guide plate are the same. However, in the comparative example, of the three transparent plate members (21) constituting the light guide plate (2) of the example, only one of the transparent plate members (21) was used alone as the light guide plate.
The thickness of the cold light guide plate is 15 mm, and the thickness of the light guide plate of the comparative example is 5 mm.
[0014]
[Table 1]

[0015]
As can be seen from Table 1, the average illuminance (unit: lx) of the light guide plate (2) is 12170 in the present example and 5250 in the comparative example, and the illuminance of the example is overwhelmingly large. The average illuminance of the embodiment is 12170, which is too high for a backlight of a liquid crystal television.
In Table 1, the first digit of the illuminance of the example is rounded off.
[0016]
FIG. 4 shows another embodiment of the light guide plate (2).
The light guide plate (2) is formed of a single transparent plate, and the reflecting portion (22) is formed on the back surface by groove processing by laser, groove processing by cutting, or by applying stripes and dots by fluorescent paint. are doing.
A large number of light reflecting portions (24) are linearly formed inside the light guide plate (2) by laser processing. The interval between the adjacent light reflecting portions (24) (24) was about 0.1 to 0.5 mm.
It is desirable that the distance between the adjacent light reflecting portions (24) and (24) is reduced as the distance from the light source (5) increases.
[0017]
The light reflecting portion (24) can be obtained by irradiating a laser to a transparent plate such as an acrylic resin plate from two directions and partially melting and transforming the transparent plate inside at the intersection of both laser lines. . This is a known technique implemented as a method of expressing characters, figures, three-dimensional images, and the like in a solid transparent resin block.
By computer control, the intersection of the laser line from two directions is continuously moved relative to the transparent plate, or the laser beam is intermittently irradiated in the pulse method and the intersection of the laser line is The light reflecting portion (24) having a desired shape can be easily formed by moving the light reflecting portion (24). The light reflecting portion (24) can be made translucent, and partially reflects the light that has hit the reflecting portion (24) and allows part of the light to pass through, so that the light can be transmitted within the thickness of the light guide plate (2). It is effectively dispersed and can contribute to uniform light emission on the light emitting surface.
[0018]
The description of the above embodiments is intended to explain the present invention, and should not be construed as limiting the invention described in the claims or reducing the scope thereof. Further, the configuration of each part of the present invention is not limited to the above-described embodiment, and it is needless to say that various modifications can be made within the technical scope described in the claims.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a surface light emitting device.
FIG. 2 is a partial sectional view of a light guide plate.
FIG. 3 is a diagram illustrating measurement points of illuminance of a light guide plate.
FIG. 4 is a front view of a light guide plate according to another embodiment.
FIG. 5 is a side view of the same.
[Explanation of symbols]
(1) Surface emitting device (2) Light guide plate (21) Plate member (22) Reflecting part (24) Light reflecting part (5) Light source