[go: up one dir, main page]

JP2004233023A - Air conditioner and air conditioning method - Google Patents

Air conditioner and air conditioning method Download PDF

Info

Publication number
JP2004233023A
JP2004233023A JP2003025617A JP2003025617A JP2004233023A JP 2004233023 A JP2004233023 A JP 2004233023A JP 2003025617 A JP2003025617 A JP 2003025617A JP 2003025617 A JP2003025617 A JP 2003025617A JP 2004233023 A JP2004233023 A JP 2004233023A
Authority
JP
Japan
Prior art keywords
cold water
air conditioner
temperature
water tank
refrigerator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003025617A
Other languages
Japanese (ja)
Inventor
Michiaki Suzuki
道明 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2003025617A priority Critical patent/JP2004233023A/en
Publication of JP2004233023A publication Critical patent/JP2004233023A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To stabilize temperature of cold water to be supplied to an air conditioner, maintaining a constant room temperature. <P>SOLUTION: A temperature detector 52 monitors the temperature of water circulating among a cold water bath 18, and refrigerators 36, 38, 40. A flow meter 48 monitors the flow of the cold water heat-exchanged by the air conditioner 12. A controller 46 controls the refrigerator 36 to stop/start according to the temperature monitored by the temperature detector 52 and controls the refrigerators 38, 40 to stop/start according to the flow monitored by the flow meter 48. Not only the temperature of the cold water, but also the flow rate of the cold water heat-exchanged by the air conditioner 12 are employed as a condition for the refrigerators to stop/start, allowing minimized temperature variation of the cold water to be supplied to the air conditioner 12 with respect to a predetermined temperature, thus stabilizing conditions for air conditioning. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、冷水と室内空気を熱交換して室内を空調する空調装置及び空調方法に関する。
【0002】
【従来の技術】
感光性平版印刷版(以下「PS版」という)は、一般にコイル状のアルミニウム版(以下「ウエブ」という)に、例えば、砂目立て、陽極酸化、化成処理等の表面処理を単独又は適宜組み合わせて行い、次いで、塗布液が塗布される塗布工程を経て、乾燥工程へ回される。
【0003】
このようなPS版製造設備において、PS版の品質を保持するためには、空調条件を安定させる必要がある。
【0004】
図3に示すように、従来のPS版製造設備で使用されていた空調装置62では、冷水槽18と冷凍機36、38、40との間を循環する冷水の温度を温度検出器52で測定し、この測定結果に基づき、制御装置64が、何れかの冷凍機36、38、40を停止又は稼働させる方式か、冷水槽18と空調機12との間を循環する冷水の温度を温度検出器16で測定し、この測定結果に基づき制御装置64が何れかの冷凍機36、38、40を停止又は稼働させる方式かであった(特許文献1参照)。
【0005】
しかし、空調空間66の諸条件により空調機12の使用熱量が変化し、冷水の温度に基づいて制御するだけでは、空調機へ送る冷水の温度を安定させることができず、空調の対象である室内の温度を一定に保持することができなかった。
【0006】
【特許文献1】
特開2002−39600号公報
【0007】
【発明が解決しようとする課題】
本発明は上記事実を考慮し、空調機へ送る冷水の温度を安定させ、室内温度を一定に保持することを目的とする。
【0008】
【課題を解決するための手段】
請求項1に記載の発明は、冷水と室内空気とを熱交換する空調機と、前記空調機で熱交換された冷水を一旦貯留する冷水槽と、水を冷却する複数の冷凍機と、前記冷水槽の冷水を前記冷凍機へ送り、再び該冷水槽へ循環させる第1循環ポンプと、前記冷水槽と前記冷凍機との間を循環する冷水の温度を測定する第1温度センサと、前記冷水槽の冷水を前記空調機へ送り、再び該冷水槽へ循環させる第2循環ポンプと、前記空調機で熱交換された冷水の流量を測定する流量計と、前記第1温度センサで測定した温度、及び前記流量計で測定した流量に基づき、複数の前記冷凍機の何れかを停止又は稼働させる第1制御手段と、を有することを特徴としている。
【0009】
請求項1に記載の発明には、冷水と室内空気とを熱交換して室内を空調する空調機が設けられている。この空調機で熱交換された冷水は一旦冷水槽へ貯留される。この冷水槽に貯留された冷水を第1循環ポンプが冷凍機と冷水槽との間を循環させ、冷凍機が所定温度に冷却する。このようにして、冷却された冷水は冷水槽から第2循環ポンプにより空調機へ送られ、空調機で熱交換された後、再び冷水槽へ戻される。
【0010】
そして、第1温度センサが冷水槽と冷凍機との間を循環する冷水の温度を測定し、また、流量計が空調機で熱交換された冷水の流量を測定する。第1制御手段は、第1温度センサで測定した温度に基づいて何れかの冷凍機を停止又は稼働させると共に、流量計で測定した流量に基づき、何れかの冷凍機を停止又は稼働させる。
【0011】
このため、従来のように、冷凍機と冷水槽の間を循環する冷水の温度だけでなく、空調機で熱交換された冷水の流量も冷凍機を停止又は稼働する条件とすることで、空調機へ送られる冷水の温度が、設定温度に対して変動が小さくなり、空調条件が安定する。
【0012】
請求項2に記載の発明は、冷水と室内空気とを熱交換する空調機と、前記空調機で熱交換された冷水を一旦貯留する冷水槽と、水を冷却する複数の冷凍機と、前記冷水槽の冷水を前記冷凍機へ送り、再び該冷水槽へ循環させる第1循環ポンプと、前記冷水槽の冷水を前記空調機へ送り、再び該冷水槽へ循環させる第2循環ポンプと、前記冷水槽から前記空調機へ送られる冷水の温度を測定する第2温度センサと、前記空調機で熱交換された冷水の流量を測定する流量計と、前記空調機で熱交換され前記冷水槽へ送られる冷水の温度を測定する第3温度センサと、前記第2温度センサで測定された温度、及び前記流量計で測定した流量と前記第2センサ及び前記第3センサで測定された温度の温度差から算出される空調機使用熱量に基づき、複数の前記冷凍機の何れかを停止又は稼働させる第2制御手段と、を有することを特徴としている。
【0013】
請求項2に記載の発明では、第2温度センサが冷水槽から空調機へ送られる冷水の温度を測定し、第3温度センサが空調機で熱交換され冷水槽へ送られる冷水の温度を測定する。さらに、流量計が空調機で熱交換された冷水の流量を測定する。
【0014】
第2制御手段は、第2温度センサで測定した温度に基づいて何れかの冷凍機を停止又は稼働させると共に、流量計で測定した流量と第2センサ及び第3センサで測定された温度の温度差から算出される空調機使用熱量に基づき、何れかの冷凍機を停止又は稼働させる。
【0015】
このため、従来のように、空調機と冷水槽の間を循環する冷水の温度だけでなく、空調機の空調機使用熱量も冷凍機を停止又は稼働する条件とすることで、空調機へ送られる冷水の温度が、設定温度に対して変動が小さくなり、空調条件が安定する。
【0016】
請求項3に記載の発明は、前記冷水槽と前記冷凍機との間を循環する冷水の温度を測定する第1温度センサを備え、前記第1温度センサで測定された温度に基づき1台の冷凍機を停止又は稼働させ、前記流量計で測定した流量、又は前記空調機使用熱量のうち、どちらか一方が先に設定値に至ると、残りの前記冷凍機を停止又は稼働させる第3制御手段と、を有することを特徴としている。
【0017】
請求項3に記載の発明では、第3制御手段が、複数の冷凍機のうち1台を主に稼働させ、流量計で測定した流量、又は空調機使用熱量のうち、どちらか一方が先に設定値に至ると残りの冷凍機を停止又は稼働させる。これにより、空調機で熱交換される室内空気の空調条件を安定させている。
【0018】
請求項4に記載の発明は、冷水と室内空気とを熱交換する空調機へ、複数の冷凍機で水を冷却して循環して空調する空調方法において、前記空調機へ送られる冷水の温度、前記冷凍機へ送られる冷水の温度、前記空調機で熱交換された冷水の流量、又は前記空調機の使用熱量から、停止又は稼働させる前記冷凍機を決めることを特徴としている。
【0019】
【発明の実施の形態】
以下、図面を参照して本発明の実施の形態を説明する。
【0020】
図1に示すように、本形態に係る空調装置10では、PS版製造工場60の内に空調機群として3台の空調機12が配置されている。この空調機12へ冷水を送る送水管14は3本に分岐しており、循環ポンプ16によって、冷水槽18から冷水が送水される。
【0021】
空調機12は、PS版製造工場内の室内空気と冷水を熱交換し、PS版製造工場60内を設定温度に保つ。なお、本形態で使用される空調機12は、PS版製造工場60内の熱負荷(使用熱量)に応じて空調機12へ流れる冷水を変動させる自動弁制御方式である。従って、使用熱量が大きくなると、空調機へ流れる冷水の流量が増加する。
【0022】
この空調機12で熱交換された冷水は、戻り管20によって冷水槽18へ戻される。冷水槽18には、送水管22が接続されている。この送水管22は3本の分岐管24、26、28に分岐し、それぞれ分岐管24、26、28に配置された循環ポンプ30、32、34によって、冷凍機36、38、40に冷水槽18の冷水が送水される。
【0023】
また、冷凍機36、38、40で冷却された冷水は戻り管42に集められ、冷水槽18へ戻される。この冷水槽18は、冷水の温度変動を小さくするバファーの役割を果たしているが、空調機12へ送られる冷水の温度と、冷凍機36、38、40へ送られる冷水の温度は相違しており、冷水槽18の中には温度勾配が生じているが、
さらに、送水管14には、空調機12へ送水される冷水の温度を検出する温度検出器44が配置されている。この温度検出器44で測定された温度は温度情報として制御装置46へ送信される。
【0024】
また、戻り管20には、空調機12を循環して冷水槽18へ戻る冷水の流量を検出する流量計48と、空調機12を循環して冷水槽18へ戻る冷水の温度を検出する温度検出器50が設けられている。そして、流量計48と温度検出器50で検出された結果は制御装置46へ送信される。
【0025】
さらに、送水管22には、冷凍機36、38、40へ送水される冷水の温度を検出する温度検出器52が設けられており、この温度検出器52で測定された温度は温度情報として制御装置46へ送信される。
【0026】
次に、図2に示すフローチャートを参照して、3台の冷凍機で空調機への送水する冷水の温度を7℃±1℃に制御し、空調条件を安定させる空調装置の制御方法について説明する。なお、各冷凍機は、出口の冷水温度を7℃とする能力を持っている。
【0027】
ステップ100で1台目の冷凍機36が稼働する。ステップ102では、温度検出器52で冷凍機36,38,40へ送水される冷水の温度T0を検出する。T0≦7.5℃の場合、ステップ104で冷凍機36を停止する。7.5℃<T0<8℃の場合、ステップ100へ戻り、冷凍機36が稼働を続ける。
【0028】
T0≧8℃の場合、ステップ106では、流量計48が空調機12を循環して冷水槽18へ戻る冷水の流量Lを検出する。L<L1(空調機を流れる最大流量の30%)の場合、ステップ100へ戻る。L≧L1の場合、ステップ108で2台目の冷凍機38を稼働する。
【0029】
次に、ステップ110では、流量計48が空調機12を循環して冷水槽18へ戻る冷水の流量Lを検出する。L2(空調機を流れる最大流量の23%)<L<L3(空調機を流れる最大流量の63%)の場合、ステップ108へ戻り、冷凍機38の稼働を続ける。
【0030】
また、ステップ110で、L≦L2(空調機を流れる最大流量の23%)の場合、ステップ112で2台目の冷凍機38を停止する。L≧L3(空調機を流れる最大流量の63%)の場合、ステップ114で3台目の冷凍機40を稼働する。
【0031】
次に、ステップ116では、流量計48が空調機12を循環して冷水槽18へ戻る冷水の流量Lを検出する。L4(空調機を流れる最大流量の57%)<L<L3(空調機を流れる最大流量の63%)の場合、ステップ114へ戻り、冷凍機40の稼働を続ける。
【0032】
ステップ116でL≦L4(空調機を流れる最大流量の57%)の場合、ステップ118で3台目の冷凍機40を停止する。
【0033】
以上のように、冷水槽18から冷凍機36,38,40へ向かう冷水の温度だけでなく、空調機18で熱交換された冷水の流量に応じて冷凍機38、40を停止又は稼働させることで、空調機12へ送られる冷水の温度の、設定温度に対して変動が小さくなり、空調条件が安定する。
【0034】
なお、本実施例では、2台目の冷凍機38の稼働条件として、空調機を流れる最大流量の30%としたが、20%〜40%の間であればよく、また、2台目の冷凍機38の停止条件として、空調機を流れる最大流量の23%としたが、15%〜40%の間であればよい。
【0035】
さらに、3台目の冷凍機40の稼働条件として、空調機を流れる最大流量の63%としたが、40%〜70%の間であればよく、また、3台目の冷凍機40の停止条件として、空調機を流れる最大流量の57%としたが、40%〜70%の間であればよい。
【0036】
また、稼働・停止の条件として、冷水流量でなく、空調機の使用熱量を条件としてもよい。
【0037】
すなわち、温度検出器44と温度検出器50で測定された温度の差と、流量計48で測定された冷水流量により空調機使用熱量を算出して、この空調機使用熱量の変化により冷凍機を稼働・停止させることもできる。
【0038】
この場合、空調機の使用最大熱量は、冷凍機最大能力の70%〜100%に設定することが望ましい。
【0039】
また、2台目の冷凍機38の稼働条件として、空調機使用熱量が使用最大熱量の20%〜40%の間に設定でき、2台目の冷凍機38の停止条件として、空調機使用熱量が使用最大熱量の15%〜40%に設定できる。
【0040】
さらに、3台目の冷凍機40の稼働条件として、空調機使用熱量が使用最大熱量の40%〜70%の間に設定でき、3台目の冷凍機40の停止条件として、空調機使用熱量が使用最大熱量の40%〜70%の間に設定できる。
【0041】
また、以上の説明では、冷水流量と空調機使用熱量のどちらかで冷凍機を制御するようしたが、冷水流量と空調機使用熱量のどちらか一方が設定値に達することを条件として、冷凍機の稼働・停止を行うようにすることもできる。さらに、1台目の冷凍機を稼働・停止させる条件として、温度検出器44で検出した空調機へ送水される冷水の温度でもよい。
【0042】
さらに、このような空調装置をPS版の製造設備だけでなく、PS版の加工設備に用れば、CTP等の加工条件を安定させることができる。
【0043】
ここで、PS版の製造工程を説明しておく。
【0044】
PS版は、99.5重量%アルミニウムに、銅を0.01重量%、チタンを0.03重量%、鉄を0.3重量%、ケイ素を0.1重量%含有するJIS―A1050アルミニウム材の厚み0.30mm圧延板を、400メッシュのパミストン(共立窯業製)の20重量%水性懸濁液と、回転ナイロンブラシ(6,10−ナイロン)とを用いてその表面を砂目立てした後、よく水で洗浄した。
【0045】
これを15重量%水酸化ナトリウム水溶液(アルミニウム4.5重量%含有)に浸漬してアルミニウムの溶解量が5g/m になるようにエッチングした後、流水で水洗した。さらに、1重量%硝酸で中和し、次に0.7重量%硝酸水溶液(アルミニウム0.5重量%含有)中で、陽極時電圧10.5ボルト、陰極時電圧9.3ボルトの矩形波交番波形電圧(電流比r=0.90、特公昭58−5796号公報実施例に記載されている電流波形)を用いて160クーロン/dmの陽極時電気量で電解粗面化処理を行った。水洗後、35℃の10重量%水酸化ナトリウム水溶液中に浸漬して、アルミニウム溶解量が1g/m になるようにエッチングした後、水洗した。次に、50℃30重量%の硫酸水溶液中に浸漬し、デスマットした後、水洗した。
【0046】
さらに、35℃の硫酸20重量%水溶液(アルミニウム0.8重量%含有)中で直流電流を用いて、多孔性陽極酸化皮膜形成処理を行った。すなわち電流密度13A/dm で電解を行い、電解時間の調節により陽極酸化皮膜重量2.7g/m とした。ジアゾ樹脂と結合剤を用いたネガ型感光性平版印刷版を作成する為に、この支持体を水洗後、70℃のケイ酸ナトリウムの3重量%水溶液に30秒間浸漬処理し、水洗乾燥した。
【0047】
以上のようにして得られたアルミニウム支持体は、マクベスRD920反射濃度計で測定した反射濃度は0.30で、JIS B00601に規定する中心線平均粗さRは0.58μmであった。
【0048】
次に上記支持体にメチルメタクリレート/エチルアクリレート/2−アクリルアミド−2−メチルプロパンスルホン酸ナトリウム共重合体(平均分子量約6万)(モル比50/30/20)の1.0重量%水溶液をロールコーターにより乾燥後の塗布量が0.05g/m になるように塗布した。
【0049】
さらに、下記感光液−1をバーコーターで塗布し、110℃で45秒間乾燥させた。乾燥塗布量は2.0g/m であった。
感光液−1
ジアゾ樹脂−1 0.50g
結合剤−1 5.00g
スチライトHS−2(大同工業(株)製) 0.10g
ビクトリアピュアブルーBOH 0.15g
トリクレジルホスフェート 0.50g
ジピコリン酸 0.20g
FC−430(3M社製界面活性剤) 0.05g
溶剤
1−メトキシ−2−プロパノール 25.00g
乳酸メチル 12.00g
メタノール 30.00g
メチルエチルケトン 30.00g
水 3.00g
上記のジアゾ樹脂―1は、次ぎのようにして得たものである。まず、4−ジアゾジフェニルアミン硫酸塩(純度99.5%)29.4gを25℃にて、96%硫酸70mlに徐々に添加し、かつ20分間攪拌した。これに、パラホルムアルデヒド(純度92%)3.26gを約10分かけて徐々に添加し、該混合物を30℃にて、4時間攪拌し、縮合反応を進行させた。なお、上記ジアゾ化合物とホルムアルデヒドとの縮合モル比は1:1である。この反応生成物を攪拌しつつ氷水2リットル中に注ぎ込み、塩化ナトリウム130gを溶解した冷濃厚水溶液で処理した。この沈澱物を吸引濾過により回収し、部分的に乾燥した固体を1リットルの水に溶解し、濾過し、氷で冷却し、かつ、ヘキサフルオロリン酸カリ23gを溶解した水溶液で処理した。最後に、この沈澱物を濾過して回収し、かつ風乾して、ジアゾ樹脂−1gを得た。
【0050】
結合剤−1は、2−ヒドロキシエチルメタクリレート/アクリロニトリル/メチルメタクリレート/メタクリル酸共重合体(重量比50/20/26/4、平均分子量75,000、酸含量0.4meq/g)の水不溶性、アルカリ水可溶性の皮膜形成性高分子である。
【0051】
スチライトHS−2(大同工業(株)製)は、結合剤よりも感脂性の高い高分子化合物であって、スチレン/マレイン酸モノ−4−メチル−2−ペンチルエステル=50/50(モル比)の共重合体であり、平均分子量は約100,000であった。このようにして作成した感光層の表面に下記の様にしてマット層形成用樹脂液を吹き付けてマット層を設けた。
【0052】
【発明の効果】
本発明は上記構成としたので、空調機へ送る冷水の温度を安定させ、室内温度を一定に保持することを目的とする。
【図面の簡単な説明】
【図1】本形態に係る空調装置のブロック図である。
【図2】本形態に係る空調装置のフローチャートである。
【図3】従来の空調装置のブロック図である。
【符号の説明】
12 空調機
16 循環ポンプ(第2循環ポンプ)
18 冷水槽
30 循環ポンプ(第1循環ポンプ)
32 循環ポンプ(第1循環ポンプ)
34 循環ポンプ(第1循環ポンプ)
36 冷凍機
38 冷凍機
40 冷凍機
44 温度検出器(第2温度センサ)
46 制御装置(第1制御手段、第2制御手段、第3制御手段)
48 流量計
50 温度検出器(第3温度センサ)
52 温度検出器(第1温度センサ)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air conditioning apparatus and an air conditioning method for air-conditioning a room by exchanging heat between cold water and room air.
[0002]
[Prior art]
A photosensitive lithographic printing plate (hereinafter referred to as “PS plate”) is generally obtained by combining a coiled aluminum plate (hereinafter referred to as “web”) with a surface treatment such as graining, anodizing, or chemical conversion treatment alone or in combination as appropriate. Then, after passing through the coating process in which the coating liquid is applied, the drying process is performed.
[0003]
In such a PS plate manufacturing facility, it is necessary to stabilize the air conditioning conditions in order to maintain the quality of the PS plate.
[0004]
As shown in FIG. 3, in the air conditioner 62 used in the conventional PS plate manufacturing facility, the temperature detector 52 measures the temperature of the cold water circulating between the cold water tank 18 and the refrigerators 36, 38, 40. Based on the measurement result, the control device 64 detects the temperature of the cold water circulating between the cold water tank 18 and the air conditioner 12 or a method for stopping or operating any of the refrigerators 36, 38, 40. The control device 64 stopped or operated one of the refrigerators 36, 38, 40 based on the measurement result (see Patent Document 1).
[0005]
However, the amount of heat used by the air conditioner 12 varies depending on various conditions of the air-conditioned space 66, and the temperature of the cold water sent to the air conditioner cannot be stabilized only by controlling based on the temperature of the cold water, and is subject to air conditioning. The room temperature could not be kept constant.
[0006]
[Patent Document 1]
JP 2002-39600 A
[Problems to be solved by the invention]
In view of the above facts, the present invention aims to stabilize the temperature of the cold water sent to the air conditioner and keep the room temperature constant.
[0008]
[Means for Solving the Problems]
The invention according to claim 1 is an air conditioner for exchanging heat between cold water and room air, a cold water tank for temporarily storing cold water heat-exchanged by the air conditioner, a plurality of refrigerators for cooling water, A first circulation pump for sending the cold water in the cold water tank to the refrigerator and circulating it again to the cold water tank; a first temperature sensor for measuring the temperature of the cold water circulating between the cold water tank and the refrigerator; Measured by a second circulation pump that sends cold water from the cold water tank to the air conditioner and circulates it again to the cold water tank, a flow meter that measures the flow rate of the cold water heat-exchanged by the air conditioner, and the first temperature sensor. And a first control unit that stops or operates any of the plurality of refrigerators based on the temperature and the flow rate measured by the flow meter.
[0009]
The invention described in claim 1 is provided with an air conditioner for air-conditioning the room by exchanging heat between cold water and room air. The cold water heat-exchanged by this air conditioner is temporarily stored in the cold water tank. The first circulation pump circulates the cold water stored in the cold water tank between the refrigerator and the cold water tank, and the refrigerator cools to a predetermined temperature. In this way, the cooled cold water is sent from the cold water tank to the air conditioner by the second circulation pump, and is heat-exchanged by the air conditioner and then returned to the cold water tank again.
[0010]
And a 1st temperature sensor measures the temperature of the cold water which circulates between a cold water tank and a refrigerator, and a flowmeter measures the flow volume of the cold water heat-exchanged with the air conditioner. The first control means stops or operates any of the refrigerators based on the temperature measured by the first temperature sensor, and stops or operates any of the refrigerators based on the flow rate measured by the flow meter.
[0011]
For this reason, as in the prior art, not only the temperature of the chilled water circulating between the refrigerator and the chilled water tank, but also the flow rate of the chilled water heat-exchanged by the air conditioner is set as a condition for stopping or operating the refrigerator. The temperature of the chilled water sent to the machine varies less with respect to the set temperature, and the air conditioning conditions are stabilized.
[0012]
The invention according to claim 2 is an air conditioner for exchanging heat between cold water and room air, a cold water tank for temporarily storing cold water heat-exchanged by the air conditioner, a plurality of refrigerators for cooling water, A first circulation pump that sends cold water from the cold water tank to the refrigerator and circulates again to the cold water tank; a second circulation pump that sends cold water from the cold water tank to the air conditioner and circulates again to the cold water tank; A second temperature sensor that measures the temperature of the cold water sent from the cold water tank to the air conditioner, a flow meter that measures the flow rate of the cold water heat-exchanged by the air conditioner, and the heat exchanger that is heat-exchanged by the air conditioner to the cold water tank A third temperature sensor for measuring the temperature of the chilled water to be sent; a temperature measured by the second temperature sensor; a flow rate measured by the flow meter; and a temperature measured by the second sensor and the third sensor. Based on the heat consumed by the air conditioner calculated from the difference, Is characterized by a having a second control means for stopping or running any of the refrigerator.
[0013]
In the invention according to claim 2, the second temperature sensor measures the temperature of the cold water sent from the cold water tank to the air conditioner, and the third temperature sensor measures the temperature of the cold water exchanged by the air conditioner and sent to the cold water tank. To do. Further, the flow meter measures the flow rate of the cold water heat-exchanged by the air conditioner.
[0014]
The second control means stops or operates one of the refrigerators based on the temperature measured by the second temperature sensor, and also measures the flow rate measured by the flow meter and the temperature measured by the second sensor and the third sensor. One of the refrigerators is stopped or operated based on the amount of heat used by the air conditioner calculated from the difference.
[0015]
For this reason, as in the past, not only the temperature of the cold water circulating between the air conditioner and the cold water tank, but also the amount of heat used by the air conditioner of the air conditioner is set as the condition for stopping or operating the refrigerator, so that it can be sent to the air conditioner. The temperature of the chilled water is less varied with respect to the set temperature, and the air conditioning conditions are stabilized.
[0016]
Invention of Claim 3 is equipped with the 1st temperature sensor which measures the temperature of the cold water which circulates between the said cold water tank and the said refrigerator, and based on the temperature measured by the said 1st temperature sensor, Third control for stopping or operating the remaining refrigerators when either one of the flow rate measured by the flow meter or the heat consumption of the air conditioner reaches a set value first. And means.
[0017]
In the invention according to claim 3, the third control means mainly operates one of the plurality of refrigerators, and either one of the flow rate measured by the flow meter or the amount of heat used by the air conditioner is first. When the set value is reached, the remaining refrigerators are stopped or operated. Thereby, the air-conditioning conditions of the indoor air heat-exchanged with an air conditioner are stabilized.
[0018]
Invention of Claim 4 is the temperature of the cold water sent to the said air conditioner in the air-conditioning method which cools and circulates air by cooling with several refrigerators to the air conditioner which heat-exchanges cold water and room air. The refrigerator to be stopped or operated is determined from the temperature of the cold water sent to the refrigerator, the flow rate of the cold water exchanged by the air conditioner, or the amount of heat used by the air conditioner.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
[0020]
As shown in FIG. 1, in the air conditioner 10 according to the present embodiment, three air conditioners 12 are arranged as an air conditioner group in a PS plate manufacturing factory 60. The water supply pipe 14 for supplying cold water to the air conditioner 12 is branched into three, and cold water is supplied from the cold water tank 18 by the circulation pump 16.
[0021]
The air conditioner 12 exchanges heat between indoor air and cold water in the PS plate manufacturing factory, and keeps the PS plate manufacturing factory 60 at a set temperature. The air conditioner 12 used in this embodiment is an automatic valve control system that varies the cold water flowing to the air conditioner 12 in accordance with the heat load (heat consumption) in the PS plate manufacturing factory 60. Therefore, when the amount of heat used increases, the flow rate of cold water flowing to the air conditioner increases.
[0022]
The cold water heat-exchanged by the air conditioner 12 is returned to the cold water tank 18 by the return pipe 20. A water supply pipe 22 is connected to the cold water tank 18. The water supply pipe 22 is branched into three branch pipes 24, 26, and 28. The circulation pumps 30, 32, and 34 arranged in the branch pipes 24, 26, and 28 are respectively connected to the refrigerators 36, 38, and 40 in the cold water tank. Eighteen cold water is fed.
[0023]
The cold water cooled by the refrigerators 36, 38, 40 is collected in the return pipe 42 and returned to the cold water tank 18. The cold water tank 18 serves as a buffer for reducing the temperature fluctuation of the cold water, but the temperature of the cold water sent to the air conditioner 12 is different from the temperature of the cold water sent to the refrigerators 36, 38, and 40. There is a temperature gradient in the cold water tank 18,
Furthermore, a temperature detector 44 that detects the temperature of the cold water supplied to the air conditioner 12 is disposed in the water supply pipe 14. The temperature measured by the temperature detector 44 is transmitted to the control device 46 as temperature information.
[0024]
The return pipe 20 has a flow meter 48 that detects the flow rate of the cold water that circulates through the air conditioner 12 and returns to the cold water tank 18, and a temperature that detects the temperature of the cold water that circulates through the air conditioner 12 and returns to the cold water tank 18. A detector 50 is provided. The results detected by the flow meter 48 and the temperature detector 50 are transmitted to the control device 46.
[0025]
Further, the water supply pipe 22 is provided with a temperature detector 52 for detecting the temperature of the cold water supplied to the refrigerators 36, 38, 40, and the temperature measured by the temperature detector 52 is controlled as temperature information. Sent to device 46.
[0026]
Next, with reference to the flowchart shown in FIG. 2, the control method of the air-conditioning apparatus which stabilizes the air-conditioning condition by controlling the temperature of the cold water sent to the air-conditioner to 7 ° C. ± 1 ° C. with three refrigerators will be described. To do. In addition, each refrigerator has the capability to make the cold water temperature of an exit into 7 degreeC.
[0027]
In step 100, the first refrigerator 36 is operated. In step 102, the temperature detector 52 detects the temperature T0 of the cold water fed to the refrigerators 36, 38, 40. If T0 ≦ 7.5 ° C., the refrigerator 36 is stopped at step 104. If 7.5 ° C <T0 <8 ° C, the process returns to step 100 and the refrigerator 36 continues to operate.
[0028]
If T0 ≧ 8 ° C., in step 106, the flow meter 48 detects the flow rate L of cold water that circulates through the air conditioner 12 and returns to the cold water tank 18. If L <L1 (30% of the maximum flow rate flowing through the air conditioner), the process returns to step 100. If L ≧ L1, the second refrigerator 38 is operated in step 108.
[0029]
Next, in step 110, the flow meter 48 detects the flow rate L of cold water that circulates through the air conditioner 12 and returns to the cold water tank 18. When L2 (23% of the maximum flow rate flowing through the air conditioner) <L <L3 (63% of the maximum flow rate flowing through the air conditioner), the process returns to step 108 and the operation of the refrigerator 38 is continued.
[0030]
In step 110, if L ≦ L2 (23% of the maximum flow rate flowing through the air conditioner), the second refrigerator 38 is stopped in step 112. In the case of L ≧ L3 (63% of the maximum flow rate flowing through the air conditioner), the third refrigerator 40 is operated in step 114.
[0031]
Next, in step 116, the flow meter 48 detects the flow rate L of cold water that circulates through the air conditioner 12 and returns to the cold water tank 18. When L4 (57% of the maximum flow rate flowing through the air conditioner) <L <L3 (63% of the maximum flow rate flowing through the air conditioner), the process returns to step 114 and the operation of the refrigerator 40 is continued.
[0032]
If L ≦ L4 (57% of the maximum flow rate flowing through the air conditioner) at step 116, the third refrigerator 40 is stopped at step 118.
[0033]
As described above, the refrigerators 38 and 40 are stopped or operated in accordance with not only the temperature of the cold water flowing from the cold water tank 18 to the refrigerators 36, 38, and 40 but also the flow rate of the cold water exchanged by the air conditioner 18. Thus, the fluctuation of the temperature of the cold water sent to the air conditioner 12 becomes small with respect to the set temperature, and the air conditioning conditions are stabilized.
[0034]
In the present embodiment, the operating condition of the second refrigerator 38 is 30% of the maximum flow rate flowing through the air conditioner, but it may be between 20% and 40%. Although the stop condition of the refrigerator 38 is 23% of the maximum flow rate flowing through the air conditioner, it may be between 15% and 40%.
[0035]
Furthermore, although the operating condition of the third refrigerator 40 is 63% of the maximum flow rate flowing through the air conditioner, it may be between 40% and 70%, and the third refrigerator 40 is stopped. The condition is 57% of the maximum flow rate flowing through the air conditioner, but may be between 40% and 70%.
[0036]
In addition, the operating / stopping condition may be the amount of heat used by the air conditioner instead of the cold water flow rate.
[0037]
That is, the amount of heat used by the air conditioner is calculated from the difference between the temperatures measured by the temperature detector 44 and the temperature detector 50 and the flow rate of the chilled water measured by the flow meter 48. It can also be operated and stopped.
[0038]
In this case, it is desirable to set the maximum amount of heat used by the air conditioner to 70% to 100% of the maximum capacity of the refrigerator.
[0039]
In addition, the operating condition of the second refrigerator 38 can be set between 20% and 40% of the maximum operating heat quantity, and the operating condition of the second refrigerator 38 can be set as the stopping condition of the second refrigerator 38. Can be set to 15% to 40% of the maximum amount of heat used.
[0040]
Further, the operating condition of the third refrigerator 40 can be set between 40% and 70% of the maximum heat consumption, and the operating condition of the third refrigerator 40 can be set as the stop condition of the third refrigerator 40. Can be set between 40% and 70% of the maximum amount of heat used.
[0041]
In the above description, the refrigerator is controlled by either the chilled water flow rate or the air conditioner heat consumption. However, the chiller is operated on the condition that either the chilled water flow rate or the air conditioner heat consumption reaches the set value. It is also possible to operate / stop the system. Further, as a condition for operating / stopping the first refrigerator, the temperature of the cold water supplied to the air conditioner detected by the temperature detector 44 may be used.
[0042]
Furthermore, if such an air conditioner is used not only for PS plate manufacturing equipment but also for PS plate processing equipment, processing conditions such as CTP can be stabilized.
[0043]
Here, the manufacturing process of the PS plate will be described.
[0044]
The PS plate is a JIS-A1050 aluminum material containing 99.5% by weight aluminum, 0.01% by weight copper, 0.03% by weight titanium, 0.3% by weight iron and 0.1% by weight silicon. After the surface of the 0.30 mm thick rolled plate was grained using a 20 mesh% aqueous suspension of 400 mesh Pamiston (manufactured by Kyoritsu Ceramics) and a rotating nylon brush (6,10-nylon), Washed well with water.
[0045]
This was immersed in a 15% by weight aqueous sodium hydroxide solution (containing 4.5% by weight of aluminum) and etched so that the amount of aluminum dissolved was 5 g / m 2 , and then washed with running water. Further, neutralized with 1% by weight nitric acid, and then in a 0.7% by weight nitric acid aqueous solution (containing 0.5% by weight of aluminum), a rectangular wave with an anode voltage of 10.5 volts and a cathode voltage of 9.3 volts Using an alternating waveform voltage (current ratio r = 0.90, current waveform described in the example of Japanese Patent Publication No. 58-5796), an electrolytic surface roughening treatment was performed at an anode time electric quantity of 160 coulomb / dm 2. It was. After washing with water, it was immersed in a 10% by weight sodium hydroxide aqueous solution at 35 ° C., etched so that the amount of dissolved aluminum was 1 g / m 2 , and then washed with water. Next, it was immersed in an aqueous sulfuric acid solution at 50 ° C. and 30% by weight, desmutted, and washed with water.
[0046]
Further, a porous anodic oxide film forming treatment was performed using a direct current in a 20 wt% sulfuric acid aqueous solution (containing 0.8 wt% aluminum) at 35 ° C. That is, electrolysis was performed at a current density of 13 A / dm 2 and the weight of the anodic oxide film was adjusted to 2.7 g / m 2 by adjusting the electrolysis time. In order to prepare a negative photosensitive lithographic printing plate using a diazo resin and a binder, this support was washed with water, immersed in a 3% by weight aqueous solution of sodium silicate at 70 ° C. for 30 seconds, and washed and dried.
[0047]
The thus-obtained aluminum support, Macbeth RD920 reflection density was measured with a reflection densitometer 0.30, the center line average roughness R a as defined in JIS B00601 was 0.58 .mu.m.
[0048]
Next, a 1.0% by weight aqueous solution of methyl methacrylate / ethyl acrylate / 2-acrylamido-2-methylpropanesulfonic acid sodium copolymer (average molecular weight of about 60,000) (molar ratio 50/30/20) was applied to the support. It apply | coated so that the application quantity after drying might be set to 0.05 g / m < 2 > with a roll coater.
[0049]
Further, the following photosensitive solution-1 was applied with a bar coater and dried at 110 ° C. for 45 seconds. The dry coating amount was 2.0 g / m 2 .
Photosensitive solution-1
Diazo resin-1 0.50g
Binder-1 5.00g
Stilite HS-2 (Daido Kogyo Co., Ltd.) 0.10g
Victoria Pure Blue BOH 0.15g
Tricresyl phosphate 0.50 g
Dipicolinic acid 0.20g
FC-430 (3M surfactant) 0.05 g
Solvent 1-methoxy-2-propanol 25.00g
Methyl lactate 12.00g
Methanol 30.00g
Methyl ethyl ketone 30.00g
3.00 g of water
The above diazo resin-1 was obtained as follows. First, 29.4 g of 4-diazodiphenylamine sulfate (purity 99.5%) was gradually added to 70 ml of 96% sulfuric acid at 25 ° C. and stirred for 20 minutes. To this, 3.26 g of paraformaldehyde (purity 92%) was gradually added over about 10 minutes, and the mixture was stirred at 30 ° C. for 4 hours to allow the condensation reaction to proceed. The condensation molar ratio between the diazo compound and formaldehyde is 1: 1. The reaction product was poured into 2 liters of ice water with stirring and treated with a cold concentrated aqueous solution in which 130 g of sodium chloride was dissolved. The precipitate was collected by suction filtration, and the partially dried solid was dissolved in 1 liter of water, filtered, cooled with ice, and treated with an aqueous solution in which 23 g of potassium hexafluorophosphate was dissolved. Finally, the precipitate was collected by filtration and air-dried to obtain 1 g of diazo resin.
[0050]
Binder-1 is a 2-hydroxyethyl methacrylate / acrylonitrile / methyl methacrylate / methacrylic acid copolymer (weight ratio 50/20/26/4, average molecular weight 75,000, acid content 0.4 meq / g). It is an alkali water-soluble film-forming polymer.
[0051]
Stylite HS-2 (manufactured by Daido Kogyo Co., Ltd.) is a polymer compound having higher oil sensitivity than the binder, and is styrene / maleic acid mono-4-methyl-2-pentyl ester = 50/50 (molar ratio). The average molecular weight was about 100,000. The mat layer was formed by spraying the mat layer forming resin solution onto the surface of the photosensitive layer thus prepared as follows.
[0052]
【The invention's effect】
Since the present invention is configured as described above, an object of the present invention is to stabilize the temperature of the cold water sent to the air conditioner and keep the room temperature constant.
[Brief description of the drawings]
FIG. 1 is a block diagram of an air conditioner according to the present embodiment.
FIG. 2 is a flowchart of an air conditioner according to the present embodiment.
FIG. 3 is a block diagram of a conventional air conditioner.
[Explanation of symbols]
12 Air conditioner 16 Circulation pump (second circulation pump)
18 Cold water tank 30 Circulation pump (first circulation pump)
32 Circulation pump (first circulation pump)
34 Circulation pump (first circulation pump)
36 Refrigerator 38 Refrigerator 40 Refrigerator 44 Temperature detector (second temperature sensor)
46 Control device (first control means, second control means, third control means)
48 Flow meter 50 Temperature detector (third temperature sensor)
52 Temperature detector (first temperature sensor)

Claims (4)

冷水と室内空気とを熱交換する空調機と、
前記空調機で熱交換された冷水を一旦貯留する冷水槽と、
水を冷却する複数の冷凍機と、
前記冷水槽の冷水を前記冷凍機へ送り、再び該冷水槽へ循環させる第1循環ポンプと、
前記冷水槽と前記冷凍機との間を循環する冷水の温度を測定する第1温度センサと、
前記冷水槽の冷水を前記空調機へ送り、再び該冷水槽へ循環させる第2循環ポンプと、
前記空調機で熱交換された冷水の流量を測定する流量計と、
前記第1温度センサで測定した温度、及び前記流量計で測定した流量に基づき、複数の前記冷凍機の何れかを停止又は稼働させる第1制御手段と、を有することを特徴とする空調装置。
An air conditioner for exchanging heat between cold water and room air;
A cold water tank for temporarily storing cold water heat-exchanged by the air conditioner;
A plurality of refrigerators for cooling water;
A first circulation pump for sending the cold water in the cold water tank to the refrigerator and circulating it again to the cold water tank;
A first temperature sensor for measuring a temperature of cold water circulating between the cold water tank and the refrigerator;
A second circulation pump for sending the cold water in the cold water tank to the air conditioner and circulating it again to the cold water tank;
A flow meter for measuring the flow rate of cold water heat-exchanged by the air conditioner;
An air conditioner comprising: first control means for stopping or operating any of the plurality of refrigerators based on the temperature measured by the first temperature sensor and the flow rate measured by the flow meter.
冷水と室内空気とを熱交換する空調機と、
前記空調機で熱交換された冷水を一旦貯留する冷水槽と、
水を冷却する複数の冷凍機と、
前記冷水槽の冷水を前記冷凍機へ送り、再び該冷水槽へ循環させる第1循環ポンプと、
前記冷水槽の冷水を前記空調機へ送り、再び該冷水槽へ循環させる第2循環ポンプと、
前記冷水槽から前記空調機へ送られる冷水の温度を測定する第2温度センサと、
前記空調機で熱交換された冷水の流量を測定する流量計と、
前記空調機で熱交換され前記冷水槽へ送られる冷水の温度を測定する第3温度センサと、
前記第2温度センサで測定された温度、及び前記流量計で測定した流量と前記第2センサ及び前記第3センサで測定された温度の温度差から算出される空調機使用熱量に基づき、複数の前記冷凍機の何れかを停止又は稼働させる第2制御手段と、を有することを特徴とする空調装置。
An air conditioner for exchanging heat between cold water and room air;
A cold water tank for temporarily storing cold water heat-exchanged by the air conditioner;
A plurality of refrigerators for cooling water;
A first circulation pump for sending the cold water in the cold water tank to the refrigerator and circulating it again to the cold water tank;
A second circulation pump for sending the cold water in the cold water tank to the air conditioner and circulating it again to the cold water tank;
A second temperature sensor for measuring a temperature of cold water sent from the cold water tank to the air conditioner;
A flow meter for measuring the flow rate of cold water heat-exchanged by the air conditioner;
A third temperature sensor for measuring a temperature of the cold water exchanged by the air conditioner and sent to the cold water tank;
Based on the temperature measured by the second temperature sensor, the flow rate measured by the flowmeter and the temperature difference between the temperature measured by the second sensor and the third sensor, a plurality of air conditioner use heat quantities are calculated. And a second control means for stopping or operating one of the refrigerators.
前記冷水槽と前記冷凍機との間を循環する冷水の温度を測定する第1温度センサを備え、
前記第1温度センサで測定された温度に基づき1台の冷凍機を停止又は稼働させ、
前記流量計で測定した流量、又は前記空調機使用熱量のうち、どちらか一方が先に設定値に至ると、残りの前記冷凍機を停止又は稼働させる第3制御手段と、を有することを特徴とする請求項2に記載の空調装置。
A first temperature sensor for measuring a temperature of the cold water circulating between the cold water tank and the refrigerator;
One refrigerator is stopped or operated based on the temperature measured by the first temperature sensor,
A third control means for stopping or operating the remaining refrigerator when either one of the flow rate measured by the flow meter or the heat consumption of the air conditioner reaches a set value first. The air conditioner according to claim 2.
冷水と室内空気とを熱交換する空調機へ、複数の冷凍機で水を冷却して循環して空調する空調方法において、
前記空調機へ送られる冷水の温度、前記冷凍機へ送られる冷水の温度、前記空調機で熱交換された冷水の流量、又は前記空調機の使用熱量から、停止又は稼働させる前記冷凍機を決めることを特徴とする空調方法。
In the air conditioning method of cooling and circulating water with a plurality of refrigerators to air conditioner that exchanges heat between cold water and room air,
The refrigerator to be stopped or operated is determined from the temperature of the cold water sent to the air conditioner, the temperature of the cold water sent to the refrigerator, the flow rate of the cold water exchanged by the air conditioner, or the amount of heat used by the air conditioner. An air conditioning method characterized by that.
JP2003025617A 2003-02-03 2003-02-03 Air conditioner and air conditioning method Pending JP2004233023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003025617A JP2004233023A (en) 2003-02-03 2003-02-03 Air conditioner and air conditioning method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003025617A JP2004233023A (en) 2003-02-03 2003-02-03 Air conditioner and air conditioning method

Publications (1)

Publication Number Publication Date
JP2004233023A true JP2004233023A (en) 2004-08-19

Family

ID=32953847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003025617A Pending JP2004233023A (en) 2003-02-03 2003-02-03 Air conditioner and air conditioning method

Country Status (1)

Country Link
JP (1) JP2004233023A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101006A (en) * 2005-09-30 2007-04-19 Smc Corp Constant-temperature liquid circulating device and temperature control method for the same
JP2007101007A (en) * 2005-09-30 2007-04-19 Smc Corp Water-cooled constant temperature liquid circulating apparatus and circulating liquid temperature control method in the apparatus
CN101893296A (en) * 2009-05-22 2010-11-24 富士电机系统株式会社 Precise temperature adjustment system and its control device
JPWO2010050001A1 (en) * 2008-10-29 2012-03-29 三菱電機株式会社 Air conditioner
CN102661758A (en) * 2012-05-07 2012-09-12 深圳市捷华深环保节能科技有限公司 Movable and portable energy consumption detector

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007101006A (en) * 2005-09-30 2007-04-19 Smc Corp Constant-temperature liquid circulating device and temperature control method for the same
JP2007101007A (en) * 2005-09-30 2007-04-19 Smc Corp Water-cooled constant temperature liquid circulating apparatus and circulating liquid temperature control method in the apparatus
JP4534227B2 (en) * 2005-09-30 2010-09-01 Smc株式会社 Water-cooled constant temperature liquid circulating apparatus and circulating liquid temperature control method in the apparatus
JPWO2010050001A1 (en) * 2008-10-29 2012-03-29 三菱電機株式会社 Air conditioner
JP5274572B2 (en) * 2008-10-29 2013-08-28 三菱電機株式会社 Air conditioner
CN101893296A (en) * 2009-05-22 2010-11-24 富士电机系统株式会社 Precise temperature adjustment system and its control device
CN101893296B (en) * 2009-05-22 2013-07-03 富士电机株式会社 Accurate temperature adjusting system and control device thereof
CN102661758A (en) * 2012-05-07 2012-09-12 深圳市捷华深环保节能科技有限公司 Movable and portable energy consumption detector

Similar Documents

Publication Publication Date Title
US5156723A (en) Process for electrochemical roughening of aluminum for printing plate supports
US4840713A (en) Process for the electrochemical roughening of aluminum for use in printing plate supports
EP1232878B1 (en) Method for producing support for planographic printing plate, support for planographic printing plate, and planographic printing plate precursor
US4229266A (en) Process for anodically oxidizing aluminum and use of the material so prepared as a printing plate support
JP2008111142A (en) Aluminum alloy sheet for planographic printing plate and support for planographic printing plate
US7144442B2 (en) Liquid degassing system and liquid degassing method
JP2004233023A (en) Air conditioner and air conditioning method
EP1046514A2 (en) Method for producing aluminium support for lithographic printing plate
TW200301935A (en) Etching apparatus
US4666576A (en) Process for the electrochemical roughening of aluminum for use in printing plate supports
JPH11151870A (en) Aluminum alloy sheet for lithographic printing block
JP2002363799A (en) Aluminum plate, method for producing supporting body for planographic printing plate, supporting body for planographic printing plate and planographic printing original plate
JP2005344182A (en) Method for controlling concentration of sealing treatment liquid
JP2001213066A (en) Manufacturing method for lithographic printing plate support, lithographic printing plate support, and lithographic printing plate
US20020119394A1 (en) Printing plate having a radiation-sensitive recording layer on a rolled and embossed aluminium support, and process for the production thereof
JP5480565B2 (en) Aluminum alloy plate for lithographic printing plate and support for lithographic printing plate
US4678551A (en) Process for producing an aluminum support for a lithographic printing plate
JPH1111034A (en) Electrolytic surface roughening method, and light-sensitive planographic printing plate
JP2001302044A (en) Method and device for winding photosensitive lithography block
JP4213352B2 (en) Method for producing photosensitive lithographic printing plate
JP2001302045A (en) Method for winding photosensitive lithography block
JP2001163496A (en) Tension control method and tension control device for web
JP2002067521A (en) Aluminum support for lithographic printing plate and its manufacturing method
CN115893685A (en) Pipeline descaling device, circulating pipeline system, air conditioning equipment and descaling method
JP2002253917A (en) Gas-liquid contacting device