[go: up one dir, main page]

JP2004228506A - Metal oxide film forming method and semiconductor light emitting device manufactured by the film forming method - Google Patents

Metal oxide film forming method and semiconductor light emitting device manufactured by the film forming method Download PDF

Info

Publication number
JP2004228506A
JP2004228506A JP2003017636A JP2003017636A JP2004228506A JP 2004228506 A JP2004228506 A JP 2004228506A JP 2003017636 A JP2003017636 A JP 2003017636A JP 2003017636 A JP2003017636 A JP 2003017636A JP 2004228506 A JP2004228506 A JP 2004228506A
Authority
JP
Japan
Prior art keywords
metal oxide
forming
emitting device
semiconductor light
epitaxial layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003017636A
Other languages
Japanese (ja)
Other versions
JP4142958B2 (en
Inventor
Taiichiro Konno
泰一郎 今野
Hiromi Usui
浩美 薄井
Masahiro Arai
優洋 新井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003017636A priority Critical patent/JP4142958B2/en
Publication of JP2004228506A publication Critical patent/JP2004228506A/en
Application granted granted Critical
Publication of JP4142958B2 publication Critical patent/JP4142958B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Led Devices (AREA)

Abstract

【課題】最表面エピタキシャル層としてAlGa1−XAs(X≦0.5)を用いると、その上に低抵抗な金属酸化物膜を形成することが困難であった。
【解決手段】酸素を含む雰囲気において450℃以上の温度で金属酸化物を成膜する工程を含む金属酸化物の成膜方法、または、酸素を含む雰囲気において450℃以上の温度で基板または最表面エピタキシャル層を熱処理する工程と、該熱処理工程の後、基板または最表面エピタキシャル層上に金属酸化物を成膜する工程を含む金属酸化物の成膜方法により、GaAs半導体基板またはAlGa1−XAs(但し、0≦X≦0.5)からなる最表面エピタキシャル層上に金属酸化物を成膜する。
【選択図】図1
A With Al X Ga 1-X As ( X ≦ 0.5) as the outermost epitaxial layer, it is difficult to form a low-resistance metal oxide film thereon.
A metal oxide film forming method includes a step of forming a metal oxide film at a temperature of 450 ° C. or more in an atmosphere containing oxygen, or a substrate or the outermost surface at a temperature of 450 ° C. or more in an oxygen containing atmosphere. A GaAs semiconductor substrate or Al x Ga 1− by a metal oxide film forming method including a step of heat-treating the epitaxial layer and a step of forming a metal oxide on the substrate or the uppermost surface epitaxial layer after the heat treatment step. A metal oxide is formed on the outermost surface epitaxial layer made of XAs (where 0 ≦ X ≦ 0.5).
[Selection diagram] Fig. 1

Description

【0001】
【発明の属する技術分野】
本発明は、半導体基板または半導体エピタキシャル層上、特にGaAs系基板またはAlGaAs系エピタキシャル層上に低抵抗な金属酸化物を成膜する方法に関する。また、本発明は、上記方法により形成される低抵抗な金属酸化物からなる薄膜を、GaAs半導体基板またはAlGa1−XAs(但し、0≦X≦0.5)からなる最表面エピタキシャル層上に有した半導体発光素子及び半導体発光素子用エピタキシャルウエハに関する。
【0002】
【従来の技術】
従来、ITO(錫添加インジウム酸化物)等の金属酸化物はガラス基板に使用されることが殆どであったが、近年、例えばITOは、3eV程度の禁止帯幅を有するため、発光した光を良好に透過したり、非常に低抵抗な膜が形成できる等の理由から、半導体発光素子である発光ダイオード等の窓層または電流分散層として用いる研究が行われている。特に、MOVPE法により窓層または電流分散層を厚く形成するpn接合型ダブルへテロ構造の高輝度AlGaInP系LEDにおいて、ITO膜を用いる研究が盛んに行われている。
【0003】
例えば、下記特許文献1には、p型オーミックコンタクト層上にITOからなる窓層を形成したAlGaInP系LEDが開示されている。
【特許文献1】米国特許第5,481,122号公報
また、下記特許文献2には、p型オーミックコンタクト層上にITOからなる電流分散層を形成したAlGaInP系LEDが開示されている。
【特許文献2】特開平11−4020号公報
【0004】
【発明が解決しようとする課題】
一般的に、AlGaInP系LEDの最表面エピタキシャル層(窓層、コンタクト層、電流分散層)はp−GaP、p−AlGaInP、p−AlGa1−XAs(X≦0.7)から成り、該最表面エピタキシャル層上に形成するITO膜はn型である。このため、これらの層に電流を流すために、最表面エピタキシャル層として、キャリア濃度が高く、移動度が大きい材料を用いることが有効である。特に、p−AlGa1−XAs(X≦0.5)は比較的キャリア濃度が高く、移動度が大きい材料として好適である。
しかしながら、最表面エピタキシャル層としてAlGa1−XAs(X≦0.5)を用いると、その上に低抵抗な金属酸化物膜を形成することが困難であった。
【0005】
【課題を解決するための手段】
本発明は、上記の課題に鑑みてなされたものであり、AlGa1−XAs系半導体層(0≦X≦0.5)上に低抵抗な金属酸化物膜を形成するため、GaAs半導体基板またはAlGa1−XAs(但し、0≦X≦0.5)からなる最表面エピタキシャル層上に金属酸化物を成膜する方法において、酸素を含む雰囲気において450℃以上の温度で金属酸化物を成膜する工程を含む金属酸化物の成膜方法を提供するものである。
【0006】
また、本発明は、GaAs半導体基板またはAlGa1−XAs(但し、0≦X≦0.5)からなる最表面エピタキシャル層上に金属酸化物を成膜する方法において、酸素を含む雰囲気において450℃以上の温度で基板または最表面エピタキシャル層を熱処理する工程と、該熱処理工程の後、基板または最表面エピタキシャル層上に金属酸化物を成膜する工程を含む金属酸化物の成膜方法を提供するものである。
【0007】
また、本発明は、上記方法により形成される低抵抗な金属酸化物からなる薄膜を、GaAs半導体基板またはAlGa1−XAs(但し、0≦X≦0.5)からなる最表面エピタキシャル層上に有した半導体発光素子及び半導体発光素子用エピタキシャルウエハを提供するものである。
【0008】
【発明の実施の形態】
本発明は、酸素を含む雰囲気において450℃以上の温度(基板温度)で上記基板または最表面エピタキシャル層を成膜するか、あるいは、成膜に先立って上記基板または最表面エピタキシャル層を熱処理することに特徴を有している。
本発明による金属酸化物の成膜温度または成膜前熱処理温度においては、AlGa1−XAs層の表面に酸化物が形成されていることが確認されており(SIMS分析に基づく)、該酸化物の存在により、該AlGa1−XAs層上に、良質(低抵抗)の金属酸化物膜が形成されると考えられる。従って、本発明の本質は、少なくとも、AlGa1−XAs層の表面に酸化物が形成されることにある。因みに、450℃以上の熱処理を行ったAlGa1−XAs層上に、直ちに金属酸化物膜(ITO)を形成した場合と、数十日放置してから金属酸化物膜を形成した場合を較べても、金属酸化物膜の比抵抗特性は変化しないことが確認されている。
【0009】
本発明において、適用可能な金属酸化物は、SnO系、ZnO系、In系である。特に、ITOが好ましい。
本発明において、金属酸化物の成膜方法として、スプレー法の他、蒸着法、スパッタ法、塗布法等を適用することができる。
【0010】
一方、本発明により、GaAs半導体基板またはAlGa1−XAs(但し、0≦X≦0.5)からなる最表面エピタキシャル層上に金属酸化物からなる薄膜を有した半導体発光素子において、前記金属酸化物が、上記方法により形成され、3×10−4Ω・cm以下の比抵抗を有する半導体発光素子を作製することができる。
また、本発明により、GaAs半導体基板またはAlGa1−XAs(但し、0≦X≦0.5)からなる最表面エピタキシャル層上に金属酸化物からなる薄膜を有した半導体発光素子用エピタキシャルウエハにおいて、前記金属酸化物が、上記方法により形成され、3×10−4Ω・cm以下の比抵抗を有する半導体発光素子用エピタキシャルウエハを作製することができる。
【0011】
【実施例】
以下、本発明に従う実施例1、2を図面を参照しつつ説明する。比較例1、2は、ITO膜の成長温度およびITO成膜前熱処理温度による比抵抗の低下傾向を、実施例1、2とそれぞれ比較するために行なわれた。
実施例1
n型GaAs基板上に、膜厚が300nm、キャリア濃度が2×1018cm−3以上のp型GaAs、p型Al0.1Ga0.9As、p型Al0.2Ga0.8As、p型Al0.3Ga0.7As、p型Al0.4Ga0.6As、p型Al0.5Ga0.5As(p型化は何れもZnドープによる)の各層をMOVPE法で成長させ、6種類のエピタキシャルウェハを作製した。
次いで、上記6種類のエピタキシャルウェハおよび(別途作製した)p型GaAs基板上に、スプレー法によりITO膜を300nm成膜し、合計7種類のサンプルを作製した。ここで、ITO膜の成膜温度は、各サンプルについて、450℃、500℃、600℃、800℃(4点)とした。
表1に示されるように、上記7種類のサンプルのITO膜の比抵抗を4探針法にて評価した所、(ITO成膜温度450℃以上の)全サンプルで3×10−4Ω・cm以下の値が得られた。
【表1】

Figure 2004228506
【0012】
比較例1
実施例1と同様の方法で、7種類のサンプルを作製した。ただし、ITO膜の成膜温度は、各サンプルについて、350℃、400℃(2点)とした。
表1に示されるように、上記7種類のサンプルのITO膜の比抵抗を4探針法にて評価した所、(ITO成膜温度400℃以下の)全サンプルで4.5×10−2Ω・cm以上の値が得られた。
従って、ITO膜を成膜する場合、成膜温度を450℃以上とすれば(実施例1)、成膜温度400℃以下の場合(比較例1)と較べて、約2桁以上低い比抵抗が得られる。つまり、図1に示されるように、ITO膜の成膜温度による比抵抗の低下傾向は、成膜温度450℃以上で著しいことが判明した。
【0013】
実施例2
n型GaAs基板上に、膜厚が300nm、キャリア濃度が2×1018cm−3以上のp型GaAs、p型Al0.1Ga0.9As、p型Al0.2Ga0.8As、p型Al0.3Ga0.7As、p型Al0.4Ga0.6As、p型Al0.5Ga0.5As(p型化は何れもZnドープによる)の各層をMOVPE法で成長させ、6種類のエピタキシャルウェハを作製した。
次いで、上記6種類のエピタキシャルウェハおよび(別途作製した)p型GaAs基板を、450℃、500℃、600℃、800℃の各温度(4点)で熱処理を施した(ITO成膜前熱処理)。その後、上記6種類のエピタキシャルウェハおよびp型GaAs基板上に、スプレー法によりITO膜を300nm成膜し、合計7種類のサンプルを作製した。ここで、ITO膜の成膜温度は、全サンプルについて、350℃とした。
表2に示されるように、上記7種類のサンプルのITO膜の比抵抗を4探針法にて評価した所、(ITO成膜前熱処理温度450℃以上の)全サンプルで3×10−4Ω・cm以下の値が得られた。
【表2】
Figure 2004228506
【0014】
比較例2
実施例2と同様の方法で、7種類のサンプルを作製した。ただし、ITO成膜前熱処理温度は、各サンプルについて、350℃、400℃(2点)とした。
表2に示されるように、上記7種類のサンプルのITO膜の比抵抗を4探針法にて評価した所、(ITO成膜温度400℃以下の)全サンプルで4.5×10−2Ω・cm以上の値が得られた。
従って、ITO成膜前に熱処理する場合、熱処理温度を450℃以上とすれば(実施例2)、熱処理温度400℃以下の場合(比較例2)と較べて、約2桁以上低い比抵抗が得られる。つまり、図2に示されるように、ITO成膜前熱処理温度による比抵抗の低下傾向は、熱処理温度450℃以上で著しいことが判明した。
【0015】
上記実施例1、2ではスプレー法でITO膜を形成したが、蒸着法、スパッタ法、塗布法等の方法でITO膜を形成した場合でも、本発明のITO成膜温度、ITO成膜前熱処理温度においては、実施例1、2と同様に低抵抗なITO膜を成膜することができる。何故なら、本発明によるITO成膜温度またはITO成膜前熱処理温度においては、(製法を問わず)AlGa1−XAs層の表面に酸化物が形成され、それにより、該AlGa1−XAs層上に良質のITO膜が形成されるからである。
【0016】
【発明の効果】
本発明の金属酸化物の成膜方法によれば、GaAs半導体基板またはAlGa1−XAs(但し、0≦X≦0.5)からなる最表面エピタキシャル層上に金属酸化物を成膜する方法において、酸素を含む雰囲気において450℃以上の温度で金属酸化物を成膜する工程を含むことにより、AlGa1−XAs系半導体層(0≦X≦0.5)上に低抵抗な金属酸化物膜を形成することができる。
【0017】
また、本発明の金属酸化物の成膜方法によれば、GaAs半導体基板またはAlGa1−XAs(但し、0≦X≦0.5)からなる最表面エピタキシャル層上に金属酸化物を成膜する方法において、酸素を含む雰囲気において450℃以上の温度で基板または最表面エピタキシャル層を熱処理する工程と、該熱処理工程の後、基板または最表面エピタキシャル層上に金属酸化物を成膜する工程を含むことにより、AlGa1−XAs系半導体層(0≦X≦0.5)上に低抵抗な金属酸化物膜を形成することができる。
【0018】
さらに、本発明の半導体発光素子によれば、GaAs半導体基板またはAlGa1−XAs(但し、0≦X≦0.5)からなる最表面エピタキシャル層上に金属酸化物からなる薄膜を有した半導体発光素子において、前記金属酸化物が、上記方法により形成され、3×10−4Ω・cm以下の比抵抗を有する半導体発光素子を作製することができる。
また、本発明の半導体発光素子用エピタキシャルウエハによれば、GaAs半導体基板またはAlGa1−XAs(但し、0≦X≦0.5)からなる最表面エピタキシャル層上に金属酸化物からなる薄膜を有した半導体発光素子用エピタキシャルウエハにおいて、前記金属酸化物が、上記方法により形成され、3×10−4Ω・cm以下の比抵抗を有する半導体発光素子用エピタキシャルウエハを作製することができる。
【図面の簡単な説明】
【図1】本発明の金属酸化物の成膜方法の第一の実施例、及びその比較例において、スプレー法によるITO膜の成膜温度とITO膜の比抵抗との関係を示すグラフである。
【図2】本発明の金属酸化物の成膜方法の第二の実施例、及びその比較例において、ITO成膜前の熱処理温度とITO膜の比抵抗との関係を示すグラフである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for forming a low-resistance metal oxide on a semiconductor substrate or a semiconductor epitaxial layer, particularly on a GaAs-based substrate or an AlGaAs-based epitaxial layer. Further, the present invention provides a method of forming a thin film of a low-resistance metal oxide formed by the above method on a GaAs semiconductor substrate or an outermost surface epitaxial layer of Al X Ga 1-X As (0 ≦ X ≦ 0.5). The present invention relates to a semiconductor light emitting device provided on a layer and an epitaxial wafer for a semiconductor light emitting device.
[0002]
[Prior art]
Conventionally, metal oxides such as ITO (tin-added indium oxide) have been mostly used for glass substrates. However, recently, for example, ITO has a band gap of about 3 eV. Studies have been made on the use as a window layer or a current spreading layer of a light emitting diode or the like, which is a semiconductor light emitting element, because it can transmit light well and can form a film having a very low resistance. In particular, studies on the use of an ITO film in a high-luminance AlGaInP-based LED having a pn junction type double hetero structure in which a window layer or a current dispersion layer is formed thick by the MOVPE method have been actively conducted.
[0003]
For example, Patent Literature 1 below discloses an AlGaInP-based LED in which a window layer made of ITO is formed on a p-type ohmic contact layer.
[Patent Document 1] US Patent No. 5,481,122 Also, Patent Document 2 below discloses an AlGaInP-based LED in which a current distribution layer made of ITO is formed on a p-type ohmic contact layer.
[Patent Document 2] Japanese Patent Application Laid-Open No. 11-4020
[Problems to be solved by the invention]
Generally, the outermost epitaxial layer (window layer, contact layer, current distribution layer) of an AlGaInP-based LED is composed of p-GaP, p-AlGaInP, p-Al X Ga 1-X As (X ≦ 0.7). The ITO film formed on the outermost surface epitaxial layer is n-type. Therefore, it is effective to use a material having a high carrier concentration and a high mobility as the outermost surface epitaxial layer in order to allow a current to flow through these layers. In particular, p-Al X Ga 1-X As (X ≦ 0.5) is suitable as a material having a relatively high carrier concentration and a high mobility.
However, when Al X Ga 1-X As (X ≦ 0.5) is used as the outermost epitaxial layer, it has been difficult to form a low-resistance metal oxide film thereon.
[0005]
[Means for Solving the Problems]
The present invention has been made in view of the above problems, and has been made in order to form a low-resistance metal oxide film on an Al X Ga 1-X As-based semiconductor layer (0 ≦ X ≦ 0.5). In a method of forming a metal oxide on a semiconductor substrate or an outermost surface epitaxial layer composed of Al X Ga 1-X As (where 0 ≦ X ≦ 0.5), the method is performed at a temperature of 450 ° C. or more in an atmosphere containing oxygen. An object of the present invention is to provide a metal oxide film forming method including a step of forming a metal oxide film.
[0006]
The present invention also provides a method for forming a metal oxide on a GaAs semiconductor substrate or a top surface epitaxial layer made of Al X Ga 1-X As (where 0 ≦ X ≦ 0.5), wherein an oxygen-containing atmosphere is used. Heat-treating the substrate or the outermost surface epitaxial layer at a temperature of 450 ° C. or more, and, after the heat-treating step, forming a metal oxide on the substrate or the uppermost surface epitaxial layer. Is provided.
[0007]
Further, the present invention provides a method of forming a thin film of a low-resistance metal oxide formed by the above method on a GaAs semiconductor substrate or an outermost surface epitaxial layer of Al X Ga 1-X As (0 ≦ X ≦ 0.5). An object of the present invention is to provide a semiconductor light emitting device and an epitaxial wafer for a semiconductor light emitting device provided on a layer.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the present invention, the substrate or the outermost surface epitaxial layer is formed at a temperature of 450 ° C. or more (substrate temperature) in an atmosphere containing oxygen, or the substrate or the uppermost surface epitaxial layer is subjected to a heat treatment prior to the film formation. It has features.
It has been confirmed that an oxide is formed on the surface of the Al X Ga 1-X As layer at the film forming temperature or the heat treatment temperature before film forming of the metal oxide according to the present invention (based on SIMS analysis), the presence of the oxide, in the Al X Ga 1-X as layer, considered metal oxide film of high quality (low resistance) are formed. Thus, the essence of the present invention, at least, in the oxide on the surface of the Al X Ga 1-X As layer is formed. Incidentally, a case where a metal oxide film (ITO) is immediately formed on an Al X Ga 1-X As layer which has been subjected to a heat treatment at 450 ° C. or more, and a case where a metal oxide film is formed after leaving it for several tens of days. By comparison, it was confirmed that the specific resistance characteristics of the metal oxide film did not change.
[0009]
In the present invention, applicable metal oxides are SnO 2 -based, ZnO-based, and In 2 O 3 -based. In particular, ITO is preferable.
In the present invention, a vapor deposition method, a sputtering method, a coating method, or the like can be applied as a metal oxide film formation method in addition to a spray method.
[0010]
On the other hand, according to the present invention, in a semiconductor light emitting device having a thin film made of a metal oxide on a GaAs semiconductor substrate or an outermost surface epitaxial layer made of Al X Ga 1-X As (where 0 ≦ X ≦ 0.5), The metal oxide is formed by the above method, and a semiconductor light emitting device having a specific resistance of 3 × 10 −4 Ω · cm or less can be manufactured.
Further, according to the present invention, an epitaxial layer for a semiconductor light emitting device having a thin film made of a metal oxide on a GaAs semiconductor substrate or an outermost surface epitaxial layer made of Al X Ga 1-X As (where 0 ≦ X ≦ 0.5) In the wafer, the metal oxide is formed by the above method, and an epitaxial wafer for a semiconductor light emitting device having a specific resistance of 3 × 10 −4 Ω · cm or less can be manufactured.
[0011]
【Example】
Hereinafter, embodiments 1 and 2 according to the present invention will be described with reference to the drawings. Comparative Examples 1 and 2 were performed to compare the tendency of the specific resistance to decrease with the growth temperature of the ITO film and the heat treatment temperature before the ITO film formation, with Examples 1 and 2, respectively.
Example 1
On an n-type GaAs substrate, p-type GaAs having a thickness of 300 nm and a carrier concentration of 2 × 10 18 cm −3 or more, p-type Al 0.1 Ga 0.9 As, and p-type Al 0.2 Ga 0.8 Each layer of As, p-type Al 0.3 Ga 0.7 As, p-type Al 0.4 Ga 0.6 As, p-type Al 0.5 Ga 0.5 As (p-type is formed by Zn doping) Was grown by MOVPE to produce six types of epitaxial wafers.
Next, an ITO film was formed to a thickness of 300 nm on the above-mentioned six types of epitaxial wafers and a p-type GaAs substrate (prepared separately) by a spray method, thereby preparing a total of seven types of samples. Here, the deposition temperature of the ITO film was 450 ° C., 500 ° C., 600 ° C., and 800 ° C. (4 points) for each sample.
As shown in Table 1, when the specific resistances of the ITO films of the above seven types of samples were evaluated by a four-point probe method, all the samples (with an ITO film formation temperature of 450 ° C. or higher) had 3 × 10 −4 Ω · cm or less.
[Table 1]
Figure 2004228506
[0012]
Comparative Example 1
Seven types of samples were produced in the same manner as in Example 1. However, the film formation temperature of the ITO film was 350 ° C. and 400 ° C. (two points) for each sample.
As shown in Table 1, when the specific resistances of the ITO films of the above seven types of samples were evaluated by a four-probe method, it was 4.5 × 10 −2 for all the samples (with an ITO film formation temperature of 400 ° C. or lower). A value of Ω · cm or more was obtained.
Therefore, when the ITO film is formed at a temperature of 450 ° C. or higher (Example 1), the specific resistance is about two orders of magnitude lower than that at a temperature of 400 ° C. or lower (Comparative Example 1). Is obtained. That is, as shown in FIG. 1, it was found that the tendency of the specific resistance to decrease with the film formation temperature of the ITO film was remarkable at the film formation temperature of 450 ° C. or higher.
[0013]
Example 2
On an n-type GaAs substrate, p-type GaAs having a thickness of 300 nm and a carrier concentration of 2 × 10 18 cm −3 or more, p-type Al 0.1 Ga 0.9 As, and p-type Al 0.2 Ga 0.8 Each layer of As, p-type Al 0.3 Ga 0.7 As, p-type Al 0.4 Ga 0.6 As, p-type Al 0.5 Ga 0.5 As (p-type is formed by Zn doping) Was grown by MOVPE to produce six types of epitaxial wafers.
Next, the six types of epitaxial wafers and the p-type GaAs substrate (prepared separately) were subjected to heat treatment at 450 ° C., 500 ° C., 600 ° C., and 800 ° C. (four points) (heat treatment before ITO film formation). . Thereafter, an ITO film having a thickness of 300 nm was formed on the above-described six types of epitaxial wafers and p-type GaAs substrates by a spray method, thereby preparing a total of seven types of samples. Here, the deposition temperature of the ITO film was set to 350 ° C. for all the samples.
As shown in Table 2, when the specific resistances of the ITO films of the above seven types of samples were evaluated by a four-probe method, 3 × 10 −4 was obtained for all the samples (the heat treatment temperature before the ITO film formation was 450 ° C. or higher). A value of Ω · cm or less was obtained.
[Table 2]
Figure 2004228506
[0014]
Comparative Example 2
Seven types of samples were produced in the same manner as in Example 2. However, the heat treatment temperature before the ITO film formation was 350 ° C. and 400 ° C. (two points) for each sample.
As shown in Table 2, when the specific resistances of the ITO films of the above seven types of samples were evaluated by a four-point probe method, all the samples (with an ITO film formation temperature of 400 ° C. or lower) were 4.5 × 10 −2. A value of Ω · cm or more was obtained.
Therefore, when the heat treatment is performed before the ITO film formation, if the heat treatment temperature is set to 450 ° C. or higher (Example 2), the specific resistance is lower by about two orders of magnitude as compared with the case where the heat treatment temperature is set to 400 ° C. or lower (Comparative Example 2). can get. That is, as shown in FIG. 2, it was found that the tendency of the specific resistance to decrease due to the heat treatment temperature before the ITO film formation was significant at a heat treatment temperature of 450 ° C. or higher.
[0015]
In the first and second embodiments, the ITO film is formed by the spray method. However, even when the ITO film is formed by a vapor deposition method, a sputtering method, a coating method, or the like, the ITO film forming temperature of the present invention and the heat treatment before the ITO film formation are performed. At a temperature, a low-resistance ITO film can be formed as in the first and second embodiments. Because, in the ITO film-forming temperature or ITO deposition before the heat treatment temperature according to the present invention, oxide is formed (whether process) Al X Ga 1-X As layer surface, whereby the Al X Ga This is because a high-quality ITO film is formed on the 1-X As layer.
[0016]
【The invention's effect】
According to the method for forming a metal oxide of the present invention, a metal oxide is formed on a GaAs semiconductor substrate or an outermost surface epitaxial layer made of Al x Ga 1-x As (where 0 ≦ X ≦ 0.5). The method includes a step of forming a metal oxide film at a temperature of 450 ° C. or more in an atmosphere containing oxygen, so that the metal oxide film is formed on the Al X Ga 1-X As-based semiconductor layer (0 ≦ X ≦ 0.5). A resistive metal oxide film can be formed.
[0017]
Further, according to the metal oxide film forming method of the present invention, the metal oxide is deposited on the GaAs semiconductor substrate or the outermost surface epitaxial layer composed of Al x Ga 1-x As (where 0 ≦ X ≦ 0.5). In the method for forming a film, a step of heat-treating the substrate or the uppermost surface epitaxial layer at a temperature of 450 ° C. or more in an atmosphere containing oxygen, and forming a metal oxide on the substrate or the uppermost surface epitaxial layer after the heat treatment step By including the step, a low-resistance metal oxide film can be formed over the Al X Ga 1-X As-based semiconductor layer (0 ≦ X ≦ 0.5).
[0018]
Further, according to the semiconductor light emitting device of the present invention, a thin film made of a metal oxide is provided on a GaAs semiconductor substrate or an outermost surface epitaxial layer made of Al x Ga 1-x As (where 0 ≦ X ≦ 0.5). In the semiconductor light emitting device, the metal oxide is formed by the above method, and a semiconductor light emitting device having a specific resistance of 3 × 10 −4 Ω · cm or less can be manufactured.
Further, according to the epitaxial wafer for a semiconductor light emitting device of the present invention, a metal oxide is formed on the GaAs semiconductor substrate or the outermost surface epitaxial layer made of Al x Ga 1-x As (where 0 ≦ X ≦ 0.5). In a semiconductor light emitting device epitaxial wafer having a thin film, the metal oxide is formed by the above method, and a semiconductor light emitting device epitaxial wafer having a specific resistance of 3 × 10 −4 Ω · cm or less can be manufactured. .
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship between a film forming temperature of an ITO film by a spray method and a specific resistance of the ITO film in a first embodiment of a metal oxide film forming method of the present invention and a comparative example thereof. .
FIG. 2 is a graph showing the relationship between the heat treatment temperature before ITO film formation and the specific resistance of the ITO film in the second example of the metal oxide film forming method of the present invention and the comparative example.

Claims (11)

GaAs半導体基板またはAlGa1−XAs(但し、0≦X≦0.5)からなる最表面エピタキシャル層上に金属酸化物を成膜する方法において、
酸素を含む雰囲気において450℃以上の温度で前記金属酸化物を成膜する工程を含む金属酸化物の成膜方法。
In a method of forming a metal oxide on a GaAs semiconductor substrate or an outermost surface epitaxial layer made of Al X Ga 1-X As (where 0 ≦ X ≦ 0.5),
A method for forming a metal oxide, comprising the step of forming the metal oxide at a temperature of 450 ° C. or higher in an atmosphere containing oxygen.
GaAs半導体基板またはAlGa1−XAs(但し、0≦X≦0.5)からなる最表面エピタキシャル層上に金属酸化物を成膜する方法において、
酸素を含む雰囲気において450℃以上の温度で前記基板または最表面エピタキシャル層を熱処理する工程と、
該熱処理工程の後、前記基板または最表面エピタキシャル層上に前記金属酸化物を成膜する工程を含む金属酸化物の成膜方法。
In a method of forming a metal oxide on a GaAs semiconductor substrate or an outermost surface epitaxial layer made of Al X Ga 1-X As (where 0 ≦ X ≦ 0.5),
Heat-treating the substrate or the topmost epitaxial layer at a temperature of 450 ° C. or more in an atmosphere containing oxygen;
A method for forming a metal oxide, comprising the step of forming the metal oxide on the substrate or the outermost surface epitaxial layer after the heat treatment step.
前記金属酸化物が、SnO系、ZnO系、In系である請求項1または2に記載の金属酸化物の成膜方法。The method for forming a metal oxide film according to claim 1, wherein the metal oxide is a SnO 2 system, a ZnO system, or an In 2 O 3 system. 前記金属酸化物が、ITOである請求項1または2に記載の金属酸化物の成膜方法。3. The method for forming a metal oxide film according to claim 1, wherein the metal oxide is ITO. 前記成膜工程において、前記金属酸化物がスプレー法、蒸着法、スパッタ法または塗布法を用いて成膜される請求項1〜4に記載の金属酸化物の成膜方法。The method for forming a metal oxide film according to claim 1, wherein in the film forming step, the metal oxide is formed using a spray method, a vapor deposition method, a sputtering method, or a coating method. GaAs半導体基板またはAlGa1−XAs(但し、0≦X≦0.5)からなる最表面エピタキシャル層上に金属酸化物からなる薄膜を有した半導体発光素子において、前記金属酸化物が、請求項1または請求項2の方法により形成され、3×10−4Ω・cm以下の比抵抗を有する半導体発光素子。In a semiconductor light emitting device having a thin film made of a metal oxide on a GaAs semiconductor substrate or an outermost surface epitaxial layer made of Al X Ga 1-X As (where 0 ≦ X ≦ 0.5), the metal oxide is: 3. A semiconductor light emitting device formed by the method of claim 1 or 2 and having a specific resistance of 3 × 10 −4 Ω · cm or less. 前記金属酸化物が、SnO系、ZnO系、In系である請求項6に記載の半導体発光素子。The metal oxide is, SnO 2 type, ZnO-based semiconductor light-emitting device according to claim 6, wherein the In 2 O 3 system. 前記金属酸化物が、ITOである請求項6に記載の半導体発光素子。The semiconductor light emitting device according to claim 6, wherein the metal oxide is ITO. GaAs半導体基板またはAlGa1−XAs(但し、0≦X≦0.5)からなる最表面エピタキシャル層上に金属酸化物からなる薄膜を有した半導体発光素子用エピタキシャルウエハにおいて、前記金属酸化物が、請求項1または請求項2の方法により形成され、3×10−4Ω・cm以下の比抵抗を有する半導体発光素子用エピタキシャルウエハ。In a semiconductor light emitting device epitaxial wafer having a GaAs semiconductor substrate or a thin film made of a metal oxide on an outermost surface epitaxial layer made of Al x Ga 1-x As (where 0 ≦ X ≦ 0.5), An epitaxial wafer for a semiconductor light emitting device, wherein the object is formed by the method according to claim 1 or 2 and has a specific resistance of 3 × 10 −4 Ω · cm or less. 前記金属酸化物が、SnO系、ZnO系、In系である請求項9に記載の半導体発光素子用エピタキシャルウエハ。The metal oxide is, SnO 2 type, ZnO-based semiconductor light-emitting device epitaxial wafer according to claim 9 is a In 2 O 3 system. 前記金属酸化物が、ITOである請求項9に記載の半導体発光素子用エピタキシャルウエハ。The epitaxial wafer for a semiconductor light emitting device according to claim 9, wherein the metal oxide is ITO.
JP2003017636A 2003-01-27 2003-01-27 Metal oxide film forming method Expired - Fee Related JP4142958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003017636A JP4142958B2 (en) 2003-01-27 2003-01-27 Metal oxide film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003017636A JP4142958B2 (en) 2003-01-27 2003-01-27 Metal oxide film forming method

Publications (2)

Publication Number Publication Date
JP2004228506A true JP2004228506A (en) 2004-08-12
JP4142958B2 JP4142958B2 (en) 2008-09-03

Family

ID=32904745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003017636A Expired - Fee Related JP4142958B2 (en) 2003-01-27 2003-01-27 Metal oxide film forming method

Country Status (1)

Country Link
JP (1) JP4142958B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356221A (en) * 2003-05-27 2004-12-16 Hitachi Cable Ltd Semiconductor light emitting device and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004356221A (en) * 2003-05-27 2004-12-16 Hitachi Cable Ltd Semiconductor light emitting device and method of manufacturing the same

Also Published As

Publication number Publication date
JP4142958B2 (en) 2008-09-03

Similar Documents

Publication Publication Date Title
EP0892443B1 (en) Electrode of n-type nitride semiconductor, semiconductor device having the electrode, and method of fabricating the same
JP3705016B2 (en) Translucent electrode film and group III nitride compound semiconductor device
US20060154455A1 (en) Gallium nitride-based devices and manufacturing process
US6100174A (en) GaN group compound semiconductor device and method for producing the same
US10205061B2 (en) Light emitting diode and fabrication method thereof
US7344967B2 (en) Method for forming an electrode
JP3697609B2 (en) Semiconductor light emitting device
KR101257572B1 (en) Semiconductor light emission element
JP2005277374A (en) Group III nitride compound semiconductor light emitting device and method of manufacturing the same
JP3603713B2 (en) Method of growing group III nitride compound semiconductor film and group III nitride compound semiconductor device
JPH1093137A (en) III-V nitride semiconductor device
US7683379B2 (en) Light emitting element and manufacturing method thereof
JP4770580B2 (en) Method of manufacturing nitride semiconductor device
JP3557791B2 (en) Group III nitride semiconductor electrode and device having the electrode
US20080248639A1 (en) Method for forming electrode for group III nitride based compound semiconductor and method for manufacturing p-type group III nitride based compound semiconductor
JP3812366B2 (en) Method for producing group III nitride compound semiconductor device
JP5749888B2 (en) Semiconductor device and method for manufacturing the semiconductor device
JP4439400B2 (en) Boron phosphide-based semiconductor light emitting device, manufacturing method thereof, and light emitting diode
JP4142958B2 (en) Metal oxide film forming method
KR20130068448A (en) Light emitting diode
JP3599592B2 (en) Method for forming electrode on group III-V nitride compound semiconductor
JP3495544B2 (en) GaN-based semiconductor device and manufacturing method thereof
US20110175201A1 (en) Group iii nitride semiconductor device
US20050179046A1 (en) P-type electrodes in gallium nitride-based light-emitting devices
CN107706277B (en) Manufacturing method of transparent conducting layer and light emitting diode thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080613

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110620

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120620

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130620

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees