JP2004228065A - 電子パルス放出装置 - Google Patents
電子パルス放出装置 Download PDFInfo
- Publication number
- JP2004228065A JP2004228065A JP2003155773A JP2003155773A JP2004228065A JP 2004228065 A JP2004228065 A JP 2004228065A JP 2003155773 A JP2003155773 A JP 2003155773A JP 2003155773 A JP2003155773 A JP 2003155773A JP 2004228065 A JP2004228065 A JP 2004228065A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- emitter
- emission device
- pulse emission
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J1/00—Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
- H01J1/02—Main electrodes
- H01J1/30—Cold cathodes, e.g. field-emissive cathode
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y10/00—Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J1/00—Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
- H01J1/02—Main electrodes
- H01J1/30—Cold cathodes, e.g. field-emissive cathode
- H01J1/312—Cold cathodes, e.g. field-emissive cathode having an electric field perpendicular to the surface, e.g. tunnel-effect cathodes of metal-insulator-metal [MIM] type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J1/00—Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
- H01J1/02—Main electrodes
- H01J1/32—Secondary-electron-emitting electrodes
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Nanotechnology (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Theoretical Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Cold Cathode And The Manufacture (AREA)
- Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)
- Electrodes For Cathode-Ray Tubes (AREA)
Abstract
【解決手段】電子パルス放出装置10Aは、板状のエミッタ部14と、該エミッタ部14の表面に形成されたカソード電極16と、エミッタ部14の裏面に形成されたアノード電極20と、カソード電極16とアノード電極20間に、抵抗R1を介して駆動電圧Vaを印加するパルス発生源22とを有する。アノード電極20は接地とされている。カソード電極16の上方にコレクタ電極24が配置され、コレクタ電極24にはバイアス電圧Vcが印加される。
【選択図】図1
Description
【発明の属する技術分野】
本発明は、エミッタとなる物質に形成された第1の電極と第2の電極とを有する電子パルス放出装置に関する。
【0002】
【従来の技術】
近時、電子パルス放出装置は、基本素子として、カソード電極及びアノード電極を有する電子放出素子を具備し、フィールドエミッションディスプレイ(FED)やバックライトのような種々のアプリケーションに適用されている。FEDに適用する場合、電子パルス放出装置は、複数の電子放出素子を2次元的に配列し、これら電子放出素子に対する複数の蛍光体を、所定の間隔をもってそれぞれ配置するようにしている。
【0003】
この電子パルス放出装置の従来例としては、例えば特許文献1〜5があるが、いずれもエミッタ部に誘電体を用いていないため、対向電極間にフォーミング加工もしくは微細加工が必要となったり、電子放出のために高電圧を印加しなければならず、また、パネル製作工程が複雑で製造コストが高くなるという問題がある。
【0004】
そこで、エミッタ部を誘電体で構成することが考えられているが、誘電体からの電子放出として以下の非特許文献1〜3にて諸説が述べられている。
【0005】
【特許文献1】
特開平1−311533号公報
【特許文献2】
特開平7−147131号公報
【特許文献3】
特開2000−285801号公報
【特許文献4】
特公昭46−20944号公報
【特許文献5】
特公昭44−26125号公報
【非特許文献1】
安岡、石井著「強誘電体陰極を用いたパルス電子源」応用物理第68巻第5号、p546〜550(1999)
【非特許文献2】
V.F.Puchkarev, G.A.Mesyats, On the mechanism of emission from the ferroelectric ceramic cathode, J.Appl.Phys., vol. 78, No. 9, 1 November, 1995, p. 5633−5637
【非特許文献3】
H.Riege, Electron emission ferroelectrics − a review, Nucl. Instr. and Meth. A340, p. 80−89(1994)
【0006】
【発明が解決しようとする課題】
上述した従来の電子パルス放出装置においては、誘電体の表面、誘電体と上部電極との界面、誘電体内部の欠陥準位に拘束された電子を誘電体の分極反転あるいは分極変化によって放出するようにしている。つまり、誘電体にて分極反転あるいは分極変化さえ起きれば、印加電圧パルスの電圧レベルに依存せず、放出電子量はほぼ一定となる。
【0007】
しかしながら、電子放出が安定せず、電子放出回数はたかだか数万回程度までであり、実用性に乏しいという問題がある。このように、従来においては、誘電体にて構成されたエミッタ部を有する電子パルス放出装置の効果を見出すまでには至っていない。
【0008】
本発明はこのような課題を考慮してなされたものであり、誘電体にて構成されたエミッタとなる物質を有する電子パルス放出装置において、電子放出を安定して行うことができ、実用性に富み、しかも、放出電子量を容易に制御することができる電子パルス放出装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明に係る電子パルス放出装置は、誘電体で構成されたエミッタとなる物質と、前記エミッタとなる物質に接して形成された第1の電極及び第2の電極と、前記第1の電極と前記第2の電極間に前記エミッタとなる物質の分極を反転あるいは分極変化させるための交流パルスを印加する手段とを有し、前記エミッタとなる物質から電子を間欠的に放出することを特徴とする(請求項1)。前記エミッタとなる物質は、圧電材料、反強誘電体材料又は電歪材料で構成することができる(請求項3)。
【0010】
ここで、エミッタとなる物質に誘電体を用いた本発明に係る電子パルス放出装置の作用を説明する。まず、第1の電極と第2の電極間に交流パルスが印加されることによって、少なくともエミッタとなる物質の一部が分極反転あるいは分極変化され、前記第2の電極よりも電位が低い前記第1の電極の近傍から電子が放出されることになる(請求項10)。即ち、この分極反転あるいは分極変化によって、第1の電極とその近傍の双極子モーメントの正極側とで局所的な集中電界が発生することにより、前記第1の電極から1次電子が引き出され、前記第1の電極から引き出された1次電子が前記エミッタとなる物質に衝突して、該エミッタとなる物質から2次電子が放出される(請求項11)。
【0011】
前記第1の電極、前記エミッタとなる物質及び真空雰囲気の3重点を有する場合には、前記第1の電極のうち、3重点近傍の部分から1次電子が引き出され、前記引き出された1次電子が前記エミッタとなる物質に衝突して、該エミッタとなる物質から2次電子が放出される(請求項12)。なお、前記第1の電極の厚みが極薄(〜10nm)である場合には、該第1の電極とエミッタとなる物質との界面から電子が放出されることになる。
【0012】
ここで述べる2次電子は、1次電子のクーロン衝突でエネルギーを得て、エミッタとなる物質の外へ飛び出した固体内電子と、オージェ電子と、1次電子がエミッタとなる物質の表面近くで散乱したもの(反射電子)の全てを含む。
【0013】
このような原理によって電子が放出されることから、電子放出が安定して行われ、電子放出の回数も20億回以上を実現でき、実用性に富む。しかも、放出電子量は、第1の電極と第2の電極間に印加される電圧のレベルにほぼ比例して増加することから、放出電子量を容易に制御できるという利点もある。
【0014】
そして、この電子放出素子を例えばディスプレイの画素として利用する場合は、エミッタとなる物質の上方のうち、前記第1の電極に対向した位置に第3の電極が配置され、該第3の電極には蛍光体が塗布されることになる。この場合、放出された2次電子のほとんどは、第3の電極に導かれて蛍光体を励起し、外部に蛍光体発光として具現されることになる。
【0015】
もちろん、前記エミッタとなる物質に真空空間を介して対向して配された第3の電極と、前記第3の電極に正の直流バイアス電圧を印加する手段とを設け、前記エミッタとなる物質から前記第3の電極に向けて電子を間欠的に放出するようにしてもよい(請求項2)。
【0016】
そして、前記交流パルスを印加する手段は、第1の期間に、前記第1の電極の電位が前記第2の電極の電位よりも高い第1の電圧を前記第1の電極と前記第2の電極間に印加して、前記エミッタとなる物質を予め一方向に分極させ、第2の期間に、前記第1の電極の電位が前記第2の電極の電位よりも低い第2の電圧を前記第1の電極と前記第2の電極間に印加して、前記エミッタとなる物質を分極反転あるいは分極変化させることによって電子放出させるようにしてもよい(請求項4)。
【0017】
そして、上述の発明において、前記第1及び第2の電極を前記エミッタとなる物質の主面に接して形成し、かつ、前記第1の電極と前記第2の電極との間にスリットを形成するようにしてもよい(請求項5)。この場合、前記スリットの幅をd、前記第1の電極と前記第2の電極間の電圧をVakとしたとき、前記エミッタとなる物質に印加され、かつ、E=Vak/dで表される電界Eで分極反転あるいは分極変化が行われることとなる(請求項6)。
【0018】
また、上述の発明において、前記第1の電極を前記エミッタとなる物質の第1の面に形成し、前記第2の電極を前記エミッタとなる物質の第2の面に形成するようにしてもよい(請求項7)。この場合、前記第1の電極と前記第2の電極に挟まれた前記エミッタとなる物質の厚さをh、前記第1の電極と前記第2の電極間の電圧をVakとしたとき、前記エミッタとなる物質に印加され、かつ、E=Vak/hで表される電界Eで分極反転あるいは分極変化が行われることになる(請求項8)。
【0019】
なお、上述の第1の電極と前記第2の電極間の電圧Vakは、前記エミッタとなる物質の絶縁破壊電圧未満であることが好ましい(請求項9)。
【0020】
【発明の実施の形態】
以下、本発明に係る電子パルス放出装置の実施の形態例を図1〜図29を参照しながら説明する。
【0021】
まず、本実施の形態に係る電子パルス放出装置は、ディスプレイとしての用途のほか、電子線照射装置、光源、LEDの代替用途、電子部品製造装置に適用することができる。
【0022】
電子線照射装置における電子線は、現在普及している紫外線照射装置における紫外線に比べ、高エネルギーで吸収性能に優れる。適用例としては、半導体装置では、ウェハーを重ねる際における絶縁膜を固化する用途、印刷の乾燥では、印刷インキをむらなく硬化する用途や、医療機器をパッケージに入れたまま殺菌する用途等がある。
【0023】
光源としての用途は、高輝度、高効率仕様向けであって、例えば超高圧水銀ランプ等が使用されるプロジェクタの光源用途等がある。本実施の形態に係る電子パルス放出装置を光源に適用した場合、小型化、長寿命、高速点灯、水銀フリーによる環境負荷低減という特徴を有する。
【0024】
LEDの代替用途としては、屋内照明、自動車用ランプ、信号機等の面光源用途や、チップ光源、信号機、携帯電話向けの小型液晶ディスプレイのバックライト等がある。
【0025】
電子部品製造装置の用途としては、電子ビーム蒸着装置等の成膜装置の電子ビーム源、プラズマCVD装置におけるプラズマ生成用(ガス等の活性化用)電子源、ガス分解用途の電子源などがある。また、テラHz駆動の高速スイッチング素子、大電流出力素子といった真空マイクロデバイス用途もある。他に、プリンタ用部品、つまり、感光ドラムを感光させる発光デバイスや、誘電体を帯電させるための電子源としても好ましく用いられる。
【0026】
電子回路部品としては、大電流出力化、高増幅率化が可能であることから、スイッチ、リレー、ダイオード等のデジタル素子、オペアンプ等のアナログ素子への用途がある。
【0027】
そして、第1の実施の形態に係る電子パルス放出装置10Aは、図1に示すように、板状のエミッタ部(エミッタとなる物質)14と、該エミッタ部14の表面に形成された第1の電極(カソード電極)16と、エミッタ部14の裏面に形成された第2の電極(アノード電極)20と、カソード電極16とアノード電極20間に、抵抗R1を介して駆動電圧Vaを印加するパルス発生源22とを有する。
【0028】
図1の例では、アノード電極20を抵抗R2を介してGND(グランド)に接続することにより、該アノード電極20の電位をゼロにした場合を示しているが、もちろん、ゼロ電位以外の電位にしてもかまわない。なお、カソード電極16とアノード電極20間への駆動電圧Vaの印加は、例えば図2に示すように、カソード電極16に延びるリード電極17とアノード電極20に延びるリード電極21を通じて行われる。
【0029】
そして、この電子パルス放出装置10Aをディスプレイの画素として利用する場合は、カソード電極16の上方に、例えば透明電極にて構成されたコレクタ電極24が配置され、該コレクタ電極24には蛍光体28が塗布される。なお、コレクタ電極24にはバイアス電圧源102(バイアス電圧Vc)が抵抗R3を介して接続される。
【0030】
また、第1の実施の形態に係る電子パルス放出装置10Aは、当然のことながら、真空空間内に配置される。この電子パルス放出装置10Aは、図1に示すように、電界集中ポイントAが存在するが、ポイントAは、カソード電極16/エミッタ部14/真空が1つのポイントに存在する3重点を含むポイントとしても定義することができる。
【0031】
そして、雰囲気中の真空度は、102〜10−6Paが好ましく、より好ましくは10−3〜10−5Paである。
【0032】
このような範囲を選んだ理由は、低真空では、▲1▼:空間内に気体分子が多いため、プラズマを生成し易く、プラズマが多量に発生され過ぎると、その正イオンが多量にカソード電極に衝突して損傷を進めるおそれや、▲2▼:放出電子がコレクタ電極に到達する前に気体分子に衝突してしまい、コレクタ電位(Vc)で十分に加速した電子による蛍光体28の励起が十分に行われなくなるおそれがあるからである。
【0033】
一方、高真空では、電界集中ポイントAから電子を放出し易いものの、構造体の支持、及び真空のシール部が大きくなり、小型化に不利になるという問題があるからである。
【0034】
ここで、エミッタ部14は誘電体にて構成される。誘電体は、好適には、比誘電率が比較的高い、例えば1000以上の誘電体を採用することができる。このような誘電体としては、チタン酸バリウムの他に、ジルコン酸鉛、マクネシウムニオブ酸鉛、ニッケルニオブ酸鉛、亜鉛ニオブ酸鉛、マンガンニオブ酸鉛、マグネシウムタンタル酸鉛、ニッケルタンタル酸鉛、アンチモンスズ酸鉛、チタン酸鉛、マグネシウムタングステン酸鉛、コバルトニオブ酸鉛等、又はこれらの任意の組み合わせを含有するセラミックスや、主成分がこれらの化合物を50重量%以上含有するものや、前記セラミックスに対して更にランタン、カルシウム、ストロンチウム、モリブデン、タングステン、バリウム、ニオブ、亜鉛、ニッケル、マンガン等の酸化物、もしくはこれらのいずれかの組み合わせ、又は他の化合物を適切に添加したもの等を挙げることができる。
【0035】
例えば、マグネシウムニオブ酸鉛(PMN)とチタン酸鉛(PT)の2成分系nPMN−mPT(n,mをモル数比とする)においては、PMNのモル数比を大きくすると、キュリー点が下げられて、室温での比誘電率を大きくすることができる。
【0036】
特に、n=0.85〜1.0、m=1.0−nでは比誘電率3000以上となり好ましい。例えば、n=0.91、m=0.09では室温の比誘電率15000が得られ、n=0.95、m=0.05では室温の比誘電率20000が得られる。
【0037】
次に、マグネシウムニオブ酸鉛(PMN)、チタン酸鉛(PT)、ジルコン酸鉛(PZ)の3成分系では、PMNのモル数比を大きくする他に、正方晶と擬立方晶又は正方晶と菱面体晶のモルフォトロピック相境界(MPB:Morphotropic Phase Boundary)付近の組成とすることが比誘電率を大きくするのに好ましい。例えば、PMN:PT:PZ=0.375:0.375:0.25にて比誘電率5500、PMN:PT:PZ=0.5:0.375:0.125にて比誘電率4500となり、特に好ましい。更に、絶縁性が確保できる範囲内でこれらの誘電体に白金のような金属を混入して、誘電率を向上させるのが好ましい。この場合、例えば、誘電体に白金を重量比で20%混入させるとよい。
【0038】
また、エミッタ部14は、上述したように、圧電/電歪層や反強誘電体層等を用いることができるが、エミッタ部14として圧電/電歪層を用いる場合、該圧電/電歪層としては、例えば、ジルコン酸鉛、マグネシウムニオブ酸鉛、ニッケルニオブ酸鉛、亜鉛ニオブ酸鉛、マンガンニオブ酸鉛、マグネシウムタンタル酸鉛、ニッケルタンタル酸鉛、アンチモンスズ酸鉛、チタン酸鉛、チタン酸バリウム、マグネシウムタングステン酸鉛、コバルトニオブ酸鉛等、又はこれらのいずれかの組み合わせを含有するセラミックスが挙げられる。
【0039】
主成分がこれらの化合物を50重量%以上含有するものであってもよいことはいうまでもない。また、前記セラミックスのうち、ジルコン酸鉛を含有するセラミックスは、エミッタ部14を構成する圧電/電歪層の構成材料として最も使用頻度が高い。
【0040】
また、圧電/電歪層をセラミックスにて構成する場合、前記セラミックスに、更に、ランタン、カルシウム、ストロンチウム、モリブデン、タングステン、バリウム、ニオブ、亜鉛、ニッケル、マンガン等の酸化物、もしくはこれらのいずれかの組み合わせ、又は他の化合物を、適宜、添加したセラミックスを用いてもよい。
【0041】
例えば、マグネシウムニオブ酸鉛とジルコン酸鉛及びチタン酸鉛とからなる成分を主成分とし、更にランタンやストロンチウムを含有するセラミックスを用いることが好ましい。
【0042】
圧電/電歪層は、緻密であっても、多孔質であってもよく、多孔質の場合、その気孔率は40%以下であることが好ましい。
【0043】
エミッタ部14として反強誘電体層を用いる場合、該反強誘電体層としては、ジルコン酸鉛を主成分とするもの、ジルコン酸鉛とスズ酸鉛とからなる成分を主成分とするもの、更にはジルコン酸鉛に酸化ランタンを添加したもの、ジルコン酸鉛とスズ酸鉛とからなる成分に対してジルコン酸鉛やニオブ酸鉛を添加したものが望ましい。
【0044】
また、この反強誘電体膜は、多孔質であってもよく、多孔質の場合、その気孔率は30%以下であることが望ましい。
【0045】
更に、エミッタ部14にタンタル酸ビスマス酸ストロンチウムを用いた場合、分極反転疲労が小さく好ましい。このような分極反転疲労が小さい材料は、層状強誘電体化合物で、(BiO2)2+(Am−1BmO3m+1)2−という一般式で表される。ここで、金属Aのイオンは、Ca2+、Sr2+、Ba2+、Pb2+、Bi3+、La3+等であり、金属Bのイオンは、Ti4+、Ta5+、Nb5+等である。
【0046】
また、圧電/電歪/反強誘電体セラミックスに、例えば鉛ホウケイ酸ガラス等のガラス成分や、他の低融点化合物(例えば酸化ビスマス等)を混ぜることによって、焼成温度を下げることができる。
【0047】
また、エミッタ部14に非鉛系の材料を使用する等により、エミッタ部14を融点もしくは蒸散温度の高い材料とすることで、電子もしくはイオンの衝突に対し損傷しにくくなる。
【0048】
ここで、カソード電極16とアノード電極20間のエミッタ部14の厚さh(図1参照)の大きさについて説明すると、カソード電極16とアノード電極20間の電圧(パルス発生源22から出力される駆動電圧Vaがカソード電極16とアノード電極20間に印加されることによって、該カソード電極16とアノード電極20間に現れる電圧)をVakとしたとき、E=Vak/hで表される電界Eで分極反転あるいは分極変化が行われるように、前記厚さhを設定することが好ましい。つまり、前記厚さhが小さいほど、低電圧で分極反転あるいは分極変化が可能となり、低電圧駆動(例えば100V未満)で電子放出が可能となる。
【0049】
カソード電極16は、以下に示す材料にて構成される。即ち、スパッタ率が小さく、真空中での蒸発温度が大きい導体が好ましい。例えば、Ar+で600Vにおけるスパッタ率が2.0以下で、蒸気圧1.3×10−3Paとなる温度が1800K以上のものが好ましく、白金、モリブデン、タングステン等がこれに該当する。また、高温酸化雰囲気に対して耐性を有する導体、例えば金属単体、合金、絶縁性セラミックスと金属単体との混合物、絶縁性セラミックスと合金との混合物等によって構成され、好適には、白金、イリジウム、パラジウム、ロジウム、モリブデン等の高融点貴金属や、銀−パラジウム、銀−白金、白金−パラジウム等の合金を主成分とするものや、白金とセラミック材料とのサーメット材料によって構成される。更に好適には、白金のみ又は白金系の合金を主成分とする材料によって構成される。また、電極として、カーボン、グラファイト系の材料、例えば、ダイヤモンド薄膜、ダイヤモンドライクカーボン、カーボンナノチューブも好適に使用される。なお、電極材料中に添加されるセラミック材料の割合は、5〜30体積%程度が好適である。
【0050】
更に、焼成後に薄い膜が得られる有機金属ペースト、例えば白金レジネートペースト等の材料を用いることが好ましい。また、分極反転疲労を抑制する酸化物電極、例えば酸化ルテニウム、酸化イリジウム、ルテニウム酸ストロンチウム、La1−xSrxCoO3(例えばx=0.3や0.5)、La1−xCaxMnO3、La1−xCaxMn1−yCoyO3(例えばx=0.2、y=0.05)、もしくはこれらを例えば白金レジネートペーストに混ぜたものが好ましい。
【0051】
カソード電極16は、上記材料を用いて、スクリーン印刷、スプレー、コーティング、ディッピング、塗布、電気泳動法等の各種の厚膜形成法や、スパッタリング法、イオンビーム法、真空蒸着法、イオンプレーティング法、化学気相成長法(CVD)、めっき等の各種の薄膜形成法による通常の膜形成法に従って形成することができ、好適には、前者の厚膜形成法によって形成するとよい。
【0052】
カソード電極16の平面形状は、図2に示すように、楕円形状としてもよいし、図3に示す第1の変形例に係る電子パルス放出装置10Aaのように、リング状にしてもよい。あるいは、図4に示す第2の変形例に係る電子パルス放出装置10Abのように、くし歯状にしてもよい。
【0053】
カソード電極16の平面形状をリング状やくし歯状にすることによって、電界集中ポイントAでもあるカソード電極16/エミッタ部14/真空の3重点が増え、電子放出効率を向上させることができる。また、無駄な静電容量を削減でき、低消費電力化にも有利である。
【0054】
カソード電極16の厚みtc(図1参照)は、20μm以下であるとよく、好適には5μm以下であるとよい。従って、カソード電極16の厚みtcを100nm以下にしてもよい。特に、図5に示す第3の変形例に係る電子パルス放出装置10Acのように、カソード電極16の厚みtcを極薄(10nm以下)とした場合には、該カソード電極16とエミッタ部14との界面から電子が放出されることになり、電子放出効率を更に向上させることができる。
【0055】
一方、アノード電極20は、カソード電極16と同様の材料及び方法によって形成されるが、好適には上記厚膜形成法によって形成する。アノード電極20の厚さも、20μm以下であるとよく、好適には5μm以下であるとよい。
【0056】
エミッタ部14、カソード電極16及びアノード電極20をそれぞれ形成するたびに熱処理(焼成処理)することで、一体構造にすることができる。なお、カソード電極16及びアノード電極20の形成方法によっては、一体化のための熱処理(焼成処理)を必要としない場合もある。
【0057】
エミッタ部14、カソード電極16及びアノード電極20を一体化させるための焼成処理に係る温度としては、500〜1400℃の範囲、好適には、1000〜1400℃の範囲とするとよい。更に、膜状のエミッタ部14を熱処理する場合、高温時にエミッタ部14の組成が不安定にならないように、エミッタ部14の蒸発源と共に雰囲気制御を行いながら焼成処理を行うことが好ましい。
【0058】
また、エミッタ部14を適切な部材によって被覆し、エミッタ部14の表面が焼成雰囲気に直接露出しないようにして焼成する方法を採用してもよい。
【0059】
次に、電子パルス放出装置10Aの電子放出原理について図1、図6〜図11Bを参照しながら説明する。まず、パルス発生源22から出力される駆動電圧Vaは、図6に示すように、第1の電圧Va1が出力される期間(準備期間T1)と第2の電圧Va2が出力される期間(電子放出期間T2)を1ステップとし、該1ステップが繰り返される交流パルスの波形を有する。第1の電圧Va1は、カソード電極16の電位がアノード電極20の電位よりも高い電圧であり、第2の電圧Va2は、カソード電極16の電位がアノード電極20の電位よりも低い電圧である。駆動電圧Vaの振幅Vinは、第1の電圧Va1から第2の電圧Va2を差し引いた値(=Va1−Va2)で定義することができる。
【0060】
準備期間T1は、図7に示すように、カソード電極16とアノード電極20間に第1の電圧Va1を印加してエミッタ部14を分極する期間である。第1の電圧Va1としては、図6に示すように直流電圧でもよいが、1つのパルス電圧もしくはパルス電圧を複数回連続印加するようにしてもよい。ここで、準備期間T1は、分極処理を十分に行うために、電子放出期間T2よりも長くとることが好ましい。例えば、この準備期間T1としては100μsec以上が好ましい。これは、第1の電圧Va1の印加時の消費電力及びカソード電極16の損傷を防止する目的で、分極を行うための第1の電圧Va1の絶対値を、第2の電圧Va2の絶対値よりも小さく設定しているからである。
【0061】
また、第1の電圧Va1及び第2の電圧Va2は、各々正負の極性に分極処理を確実に行う電圧レベルであることが好ましく、例えばエミッタ部14の誘電体が抗電圧を有する場合、第1の電圧Va1及び第2の電圧Va2の絶対値は、抗電圧以上であることが好ましい。
【0062】
電子放出期間T2は、カソード電極16とアノード電極20間に第2の電圧Va2が印加される期間である。カソード電極16とアノード電極20間に第2の電圧Va2が印加されることによって、図8に示すように、少なくともエミッタ部14の一部が分極反転あるいは分極変化される。ここで、分極反転あるいは分極変化される部位は、カソード電極16の真下部分はもちろんのこと、真上にカソード電極16を有しておらず、表面が露出した部分についても、カソード電極16の近傍では、同様に分極反転あるいは分極変化が行われる。つまり、カソード電極16の近傍で、エミッタ部14の表面が露出した部分は、分極のしみ出しが起きているからである。この分極反転あるいは分極変化によって、カソード電極16とその近傍の双極子モーメントの正極側とで局所的な集中電界が発生することにより、カソード電極16から1次電子が引き出され、カソード電極16から引き出された前記1次電子がエミッタ部14に衝突して、該エミッタ部14から2次電子が放出される。
【0063】
この第1の実施の形態のように、カソード電極16、エミッタ部14及び真空の3重点Aを有する場合には、カソード電極16のうち、3重点Aの近傍部分から1次電子が引き出され、この3重点Aから引き出された1次電子がエミッタ部14に衝突して、該エミッタ部14から2次電子が放出される。なお、カソード電極16の厚みが極薄(〜10nm)である場合には、該カソード電極16とエミッタ部14との界面から電子が放出されることになる。
【0064】
ここで、負極性の電圧Va2が印加されることによる作用を更に詳細に説明する。
【0065】
まず、カソード電極16とアノード電極20間に第2の電圧Va2が印加されることによって、上述したように、エミッタ部14から2次電子が放出されることになる。即ち、分極が反転あるいは変化されたエミッタ部14のうち、カソード電極16の近傍に帯電する双極子モーメントが放出電子を引き出すこととなる。
【0066】
つまり、カソード電極16のうち、エミッタ部14との界面近傍において局所的なカソードが形成され、エミッタ部14のうち、カソード電極16の近傍の部分に帯電している双極子モーメントの+極が局所的なアノードとなってカソード電極16から電子が引き出され、その引き出された電子のうち、一部の電子がコレクタ電極24(図1参照)に導かれて蛍光体28を励起し、外部に蛍光体発光として具現されることになる。また、前記引き出された電子のうち、一部の電子がエミッタ部14に衝突して、エミッタ部14から2次電子が放出され、該2次電子がコレクタ電極24に導かれて蛍光体28を励起することになる。
【0067】
ここで、2次電子の放出分布について説明する。図10に示すように、2次電子は、ほとんどエネルギーが0に近いものが大多数であり、エミッタ部14の表面から真空中に放出されると、周囲の電界分布のみに従って運動することになる。つまり、2次電子は、初速がほとんど0(m/sec)の状態から周囲の電界分布に従って加速される。このため、図1に示すように、エミッタ部14とコレクタ電極24間に電界Eaが発生しているとすると、2次電子は、この電界Eaに沿って、その放出軌道が決定される。つまり、直進性の高い電子源を実現させることができる。このような初速の小さい2次電子は、1次電子のクーロン衝突でエネルギーを得て、エミッタ部14の外へ飛び出した固体内電子である。
【0068】
ところで、図10からもわかるように、1次電子のエネルギーE0に相当するエネルギーをもった2次電子が放出されている。この2次電子は、カソード電極16から放出された1次電子がエミッタ部14の表面近くで散乱したもの(反射電子)である。そして、本明細書内で述べている2次電子は、前記反射電子やオージェ電子も含んで定義するものとする。
【0069】
カソード電極16の厚みが極薄(〜10nm)である場合、カソード電極16から放出された1次電子は、カソード電極16とエミッタ部14の界面で反射してコレクタ電極24に向かうことになる。
【0070】
ここで、図8に示すように、電界集中ポイントAでの電界の強さEAは、局所的なアノードと局所的なカソード間の電位差をV(la,lk)、局所的なアノードと局所的なカソード間の距離をdAとしたとき、EA=V(la,lk)/dAの関係がある。この場合、局所的なアノードと局所的なカソード間の距離dAは非常に小さいことから、電子放出に必要な電界の強さEAを容易に得ることができる(電界の強さEAが大きくなっていることを図8上では実線矢印によって示している)。これは、電圧Vakの低電圧化につながる。
【0071】
そして、カソード電極16からの電子放出がそのまま進行すれば、ジュール熱によって蒸散して浮遊するエミッタ部14の構成原子が前記放出された電子によって正イオンと電子に電離され、この電離によって発生した電子が更にエミッタ部14の構成原子等を電離するため、指数関数的に電子が増え、これが進行して電子と正イオンが中性的に存在すると局所プラズマとなる。なお、2次電子も前記電離を促進させることが考えられる。前記電離によって発生した正イオンが例えばカソード電極16に衝突することによってカソード電極16が損傷することも考えられる。
【0072】
しかし、この第1の実施の形態に係る電子パルス放出装置10Aでは、図9に示すように、カソード電極16から引き出された電子が、局所アノードとして存在するエミッタ部14の双極子モーメントの+極に引かれ、カソード電極16の近傍におけるエミッタ部14の表面の負極性への帯電が進行することになる。その結果、電子の加速因子(局所的な電位差)が緩和され、2次電子放出に至るポテンシャルが存在しなくなり、エミッタ部14の表面における負極性の帯電が更に進行することになる。
【0073】
そのため、双極子モーメントにおける局所的なアノードの正極性が弱められ、局所的なアノードと局所的なカソード間の電界の強さEAが小さくなり(電界の強さEAが小さくなっていることを図9上では破線矢印によって示している)、電子放出は停止することになる。
【0074】
即ち、図11Aに示すように、カソード電極16とアノード電極20間に印加される駆動電圧Vaとして、第1の電圧Va1を例えば+50V、第2の電圧Va2を例えば−100Vとしたとき、電子放出が行われたピーク時点P1におけるカソード電極16とアノード電極20間の電圧変化ΔVakは、20V以内(図11Bの例では10V程度)であってほとんど変化がない。そのため、正イオンの発生はほとんどなく、正イオンによるカソード電極16の損傷を防止することができ、電子パルス放出装置10Aの長寿命化において有利となる。
【0075】
この電子パルス放出装置10Aでは、電子放出期間T2に続く、次サイクルの準備期間T1において、カソード電極16の電位が再びアノード電極20の電位よりも高くなる(エミッタ部14の表面に双極子モーメントの−極が再び現れる)ので、電子放出停止を引き起こしたエミッタ部14の表面における負極性帯電が消去することになる。従って、交流パルスを印加することによって、毎回の電子放出期間T2において、十分な電界強度EAを確保することができ、安定に電子放出を行うことができる。
【0076】
ここで、エミッタ部14の絶縁破壊電圧として、少なくとも10kV/mmを有していることが好ましい。この例では、エミッタ部14の厚さh(図1参照)を例えば20μmとしたとき、カソード電極16とアノード電極20間に−100Vの駆動電圧を印加しても、エミッタ部14が絶縁破壊に至ることはない。
【0077】
ところで、エミッタ部14から放出された電子が再びエミッタ部14に衝突したり、エミッタ部14の表面近傍での電離等によって、該エミッタ部14が損傷を受け、結晶欠陥が誘発し、構造的にも脆くなるおそれがある。
【0078】
そこで、エミッタ部14を、真空中での蒸発温度が大きい誘電体で構成することが好ましく、例えばPbを含まないBaTiO3等にて構成するようにしてもよい。これにより、エミッタ部14の構成原子がジュール熱によって蒸散しにくくなり、電子による電離の促進を妨げることができる。これは、エミッタ部14の表面を保護する上で有効となる。
【0079】
また、コレクタ電極24のパターン形状や電位を適宜変更したり、エミッタ部14とコレクタ電極24との間に図示しない制御電極等を配置することによって、エミッタ部14とコレクタ電極24間の電界分布を任意に設定することにより、2次電子の放出軌道を制御し易くなり、電子ビーム径の収束、拡大、変形も容易になる。
【0080】
上述した直進性の高い電子源の実現、並びに2次電子の放出軌道の制御のし易さは、第1の実施の形態に係る電子パルス放出装置10Aをディスプレイの画素として構成した場合に、画素の狭ピッチ化に有利になる。
【0081】
次に、第1の実施の形態に係る電子パルス放出装置10Aの3つの具体例について説明する。
【0082】
まず、第1の具体例に係る電子パルス放出装置10A1について説明する。この第1の具体例に係る電子パルス放出装置10A1は、エミッタ部14の構成材料を圧電材料としている。それ以外の構成は、上述した第1の実施の形態に係る電子パルス放出装置10Aと同様である。
【0083】
そして、エミッタ部14の構成材料である圧電材料の分極−電界特性は、図12に示すように、電界E=0(V/mm)を基準としたヒステリシス曲線を描く。
【0084】
このヒステリシス曲線のうち、ポイントp1〜p2〜p3までの曲線に注目すると、圧電材料は、正極性の電界が印加されるポイントp1にて、ほとんどが一方向に分極される。その後、負極性の電界を印加すると、抗電界(約−700V/mm)のポイントp2を超えたあたりから分極が反転しはじめ、ポイントp3にて全ての分極が反転することになる。
【0085】
従って、この第1の具体例では、図13に示すように、まず、準備期間T1において、カソード電極16とアノード電極20間に第1の電圧Va1を印加して、エミッタ部14に対して正極性の電界(約1000V/mm)を印加する。このとき、図12の分極−電界特性からもわかるように、エミッタ部14は一方向に分極されることになる。
【0086】
その後、図13の電子放出期間T2において、カソード電極16とアノード電極20間に第2の電圧Va2を印加して、エミッタ部14に対して高速に抗電界を超える電界(例えば約−1000V/mm)を印加すると、図12に示す前記ポイントp3に至る前のポイントp4にて電子の放出が行われる。これは、図13に示すように、電子放出期間T2の開始時点から一定時間tc1(ここでは、10μsec以内)におけるカソード電極16及びアノード電極20間の電圧Vakのピーク時点P1において、わずかな電圧降下がみられ、このピーク時点P1に電子放出が行われていることがわかる。つまり、このピーク時点P1において、コレクタ電極24に急速に電流(コレクタ電流Ic)が流れており、これは、放出電子がコレクタ電極24にて捕獲されたことを示している。
【0087】
このように、カソード電極16に第2の電圧Va2が供給されることによって、上述したように、前記エミッタ部14から、あるいはカソード電極16とエミッタ部14との界面から2次電子が放出されることになる。
【0088】
電子放出後、カソード電極16とアノード電極20間の電圧Vakは、カソード電極16に印加されている第2の電圧Va2に引かれて、再び大きくなるが、上述した電子放出時の電圧降下がわずかであったため(電圧降下レベルは20V程度)、電子放出までには至らず、最初の電子放出のみで終了となる。
【0089】
このように、第1の具体例に係る電子パルス放出装置10A1においては、一方向に分極されたエミッタ部14に対して高速に抗電界を超える電界を印加することで、効率よく電子が放出されることになり、ディスプレイや光源等への応用を容易にすることができる。
【0090】
電子放出が行われる電界(ポイントp4における電界)は、抗電界を超えて分極反転がほぼ完了する電界であって、これらの電界はほぼ一定である。つまり、デジタル的な電子放出特性となる。また、この電子放出が行われる電界は、抗電界に依存するため、抗電界が小さいほど駆動電圧系の低電圧化が可能となる。
【0091】
また、この電子パルス放出装置10A1では、カソード電極16とアノード電極20間に印加される第2の電圧Va2のレベルを制御することによって、電子放出期間T2の開始時点から一定時間tc1内、例えば10μsec以内に、エミッタ部14に抗電界を超える電界を印加することが可能となる。
【0092】
この場合、第2の電圧Va2のレベル制御は、第2の電圧Va2がパルス状であって、図14Aに示すように、矩形パルスであれば、最大振幅(=Va2)のみを制御し、図14Bに示すように、立ち下がりがランプ状のパルスであれば、例えば第2の電圧Va2の最大振幅や偏移時間ta(電子放出期間T2の開始時点から最大振幅に達するまでの時間)を制御することなどが挙げられる。
【0093】
なお、第1の具体例に係る電子パルス放出装置10A1において、連続した電子放出を実現するためには、駆動電圧Vaの波形として、正負の交番パルスを有する波形を採用することによって容易に実現させることができる。
【0094】
次に、第2の具体例に係る電子パルス放出装置10A2について説明する。この第2の具体例に係る電子パルス放出装置10A2は、エミッタ部14の構成材料を反強誘電体材料としている点以外は、上述した第1の実施の形態に係る電子パルス放出装置10Aの構成と同様である。
【0095】
まず、エミッタ部14の構成材料である反強誘電体材料の分極−電界特性は、図15に示すように、低い電界下では電圧に比例した誘起分極だけが観察されるが、ある電界を超えると強誘電体となり(電界誘起強制相転移)、電界の上下に対して分極のヒステリシスが現れる。しかし、再び電界を取り除くと元の常誘電体(分極がリセットされた状態)に戻る。
【0096】
そして、このヒステリシス曲線のうち、ポイントp11〜p12〜p13までの曲線に注目すると、反強誘電体材料は、正極性の電界が印加されるポイントp11にて、ほとんどが一方向に分極される。その後、電界の強さを低減していくと、ポイントp12を超えたあたりから分極量が急激に低減しはじめ、電界の強さが0のポイントp13では常誘電体となり、分極がリセットされた状態となっている。その後、負極性の電界を印加すると、エミッタ部14が強誘電体に相転移し、電界(約−2300V/mm)のポイントp14を超えたあたりから分極反転が行われはじめ、ポイントp15にて他方向に分極が行われることになる。
【0097】
従って、この第2の具体例では、図16に示すように、まず、準備期間T1において、カソード電極16とアノード電極20間に第1の電圧Va1を印加して、エミッタ部14に対して正極性の電界(約3000V/mm)を印加する。このとき、図15の分極−電界特性からもわかるように、エミッタ部14は一方向に分極されることになる。なお、第1の電圧Va1を基準電圧(0V)にして、準備期間T1に、エミッタ部14に対して電界をかけない状態にしてもよい。この場合、分極−電界特性からもわかるように、エミッタ部14は予め無分極状態となる。
【0098】
その後、電子放出期間T2において、カソード電極16とアノード電極20間に第2の電圧Va2を印加して、エミッタ部14に対して高速に電界(例えば約−3000V/mm)を印加することによってエミッタ部14を分極変化させると、図15のポイントp15に至る前のポイントp16にて電子の放出が行われる。
【0099】
これは、図16に示すように、電子放出期間T2の開始時点から一定時間tc2(この場合、10μsec)以内におけるカソード電極16及びアノード電極20間の電圧Vakのピーク時点P1において、電圧降下がみられ、このピーク時点P1に電子放出が行われていることがわかる。つまり、このピーク時点P1において、コレクタ電極24に急速に電流(コレクタ電流Ic)が流れており、これは、放出電子がコレクタ電極24にて捕獲されたことを示している。
【0100】
ところで、反強誘電体材料が相転移によって強誘電体になった場合においては、電子放出される電界(ポイントp16における電界)と分極がほぼリセットされる電界(ポイントp17における電界)との差が小さい。従って、一旦、電子が放出されて、カソード電極16とアノード電極20間の電圧が降下すると、エミッタ部14の分極が容易にリセットされ、疑似的に基準電圧0Vが印加された状態になる。
【0101】
しかし、この電子放出期間T2では、カソード電極16とアノード電極20間に第2の電圧Va2が印加されていることから、急速にカソード電極16とアノード電極20間の電圧Vakが電子放出に必要なレベルに達し、再び電子放出がなされることになる。
【0102】
従って、この電子放出期間T2において第2の電圧Va2を印加しつづけることによって、上述した一連の動作が連続して行われるようになり、第2の電圧Va2のレベルを制御することによって、連続回数を制御することも可能となる。
図16の例では、電子放出を4回連続して行った場合を示す。
【0103】
このように、第2の具体例に係る電子パルス放出装置10A2においては、エミッタ部14に高速で電界を印加して、エミッタ部14を強誘電体に相転移させて、エミッタ部14を分極変化させることにより、効率よく電子が放出されることになり、ディスプレイや光源等への応用を容易にすることができる。
【0104】
また、電子放出が行われる電界(ポイントp16における電界)は、分極反転がほぼ完了する電界であって、これらの電界はほぼ一定である。つまり、デジタル的な電子放出特性となる。また、この電子放出が行われる電界は、エミッタ部14が強誘電体に相転移する電界(強制相転移電界)に依存するため、該強制相転移電界が小さいほど駆動電圧系の低電圧化が可能となる。
【0105】
また、この電子パルス放出装置10A2では、印加電界を正極性にしなくても、分極をほぼリセットされた状態にすることができる。従って、電子放出期間T2においては、片側極性駆動(負極性への駆動)のみで電子放出が可能となる。これは、駆動回路系の簡略化につながり、低消費電力やコストの低廉化並びに構造の小型化において有利となる。
【0106】
また、カソード電極16とアノード電極20間に印加される第2の電圧Va2のレベルを制御する(最大振幅や偏移時間taを制御する)ことによって、電子放出期間T2の開始時点から一定時間tc2内、例えば10μsec以内に、エミッタ部14を強誘電体に相転移させて、エミッタ部14を分極させる程度の電界を印加することが可能となる。
【0107】
次に、第3の具体例に係る電子パルス放出装置10A3について説明する。この第3の具体例に係る電子パルス放出装置10A3は、エミッタ部14の構成材料を電歪材料としている点以外は、上述した第1の実施の形態に係る電子パルス放出装置10Aの構成と同様である。
【0108】
まず、エミッタ部14の構成材料である電歪材料の分極−電界特性は、図17に示すように、電界にほぼ比例した量の分極が行われ、特に、低い電界での分極の変化率が高い電界での分極の変化よりも大きくなっている。いずれにしても、エミッタ部14での分極が電界の変化に応じて散漫的に起こることがわかる。なお、電界を取り除くと分極がリセットされた状態になる。
【0109】
そして、この特性曲線のうち、ポイントp21〜p23までの曲線に注目すると、電歪材料は、正極性の電界が印加されるポイントp21にて、ほとんどが一方向に分極される。その後、電界の強さを低減していくと、正極性の電界の強さに応じて一方向の分極量が低減し、電界の強さが0のポイントp22では常誘電体となり、分極がリセットされた状態となっている。その後、負極性の電界を印加すると、分極反転が行われはじめ、負極性の電界の強さが増加するに応じて他方向への分極量が増加し、ポイントp23にてほとんどが他方向に分極されることになる。つまり、エミッタ部14は、印加電界に応じた量の分極が行われることになる。
【0110】
従って、この第3の具体例では、図18に示すように、まず、準備期間T1において、カソード電極16とアノード電極20間に第1の電圧Va1を印加して、エミッタ部14に対して正極性の電界(約2000V/mm)を印加する。このとき、図17の分極−電界特性からもわかるように、エミッタ部14は一方向に分極されることになる。なお、第1の電圧Va1を基準電圧(0V)にして、準備期間T1に、エミッタ部14に対して電界をかけない状態にしてもよい。この場合、分極−電界特性からもわかるように、エミッタ部14は予め無分極状態となる。
【0111】
その後、電子放出期間T2において、カソード電極16とアノード電極20間に第2の電圧Va2を印加して、エミッタ部14に対して電界(例えば約−2000V/mm)を印加することによってエミッタ部14を分極変化させると、ポイントp23にて電子の放出が行われる。これは、図18に示すように、電子放出期間T2の開始時点から一定時間tc3(ここでは、10μsec以内)におけるカソード電極16及びアノード電極20間の電圧Vakのピーク時点P1において、電圧降下がみられ、このピーク時点P1に電子放出が行われていることがわかる。つまり、このピーク時点P1において、コレクタ電極24に急速に電流(コレクタ電流Ic)が流れており、これは、放出電子がコレクタ電極24にて捕獲されたことを示している。
【0112】
このように、第3の具体例に係る電子パルス放出装置10A3では、エミッタ部14での分極が電界の変化に応じて散漫的に起こるため、単位時間当たりの分極量が多いほど、電子放出量が多くなる。つまり、アナログ的な電子放出特性となる。
【0113】
また、電子放出される電界(ポイントp23)における電界と分極がリセットされる電界(ポイントp22における電界)との電位差が小さい。従って、一旦、電子が放出されて、カソード電極16とアノード電極20間の電圧Vakが降下すると、エミッタ部14の分極が容易にリセットされ、疑似的に基準電圧0Vが印加された状態になる。
【0114】
しかし、この電子放出期間T2では、カソード電極16とアノード電極20間に第2の電圧Va2が印加されていることから、急速にカソード電極16とアノード電極20間の電圧Vakが大きくなり、再び分極が行われていく。このとき、分極の変化が急速に進むため、最初の電子放出の際の電圧よりも低い電圧で電子放出が行われる。
【0115】
2度目の電子放出が行われて、カソード電極16とアノード電極20間の電圧Vakが降下すると、再びエミッタ部14の分極が容易にリセットされ、その後、カソード電極16とアノード電極20間への第2の電圧Va2の持続印加によって、カソード電極16とアノード電極20間の電圧Vakが再度大きくなり、分極が行われていく。この場合も分極の変化が急速に進むため、2度目の電子放出の際の電圧とほぼ同じ電圧で電子放出が行われる。
【0116】
つまり、1回目の電子放出後においては、カソード電極16とアノード電極20間の電圧Vakが微振動することとなり、この微振動によって電子放出が持続されることになる。そして、第2の電圧Va2のレベルを制御することによって、電子放出の持続時間を制御することも可能となる。
【0117】
このように、第3の具体例に係る電子パルス放出装置10A3においては、エミッタ部14での分極量を制御することで、効率よく電子を放出することができることから、ディスプレイや光源等への応用を容易にすることができる。
【0118】
また、上述したように、単位時間当たりの分極量が大きいほど、電界の強さを低くすることができるため、駆動電圧系の低電圧化が可能となる。
【0119】
また、この電子パルス放出装置10A3では、印加電界を正極性にしなくても、分極をほぼリセットされた状態にすることができる。従って、電子放出期間T2においては、片側極性駆動(負極性への駆動)のみで電子放出が可能となる。これは、駆動回路系の簡略化につながり、低消費電力やコストの低廉化並びに構造の小型化において有利となる。
【0120】
また、カソード電極16とアノード電極20間に印加される第2の電圧Va2のレベルを制御する(最大振幅や偏移時間taを制御する)ことによって、電子放出期間T2の開始時点から一定時間tc3内、例えば10μsec以内に生じるエミッタ部14の分極量を制御し、電子放出量を制御することができる。
【0121】
次に、第2の実施の形態に係る電子パルス放出装置10Bについて図19を参照しながら説明する。
【0122】
この第2の実施の形態に係る電子パルス放出装置10Bは、図19に示すように、上述した第1の実施の形態に係る電子パルス放出装置10Aとほぼ同様の構成を有するが、1つの基板12を有する点と、アノード電極20が基板12上に形成され、エミッタ部14が基板12上に、かつ、アノード電極20を覆うように形成され、更にカソード電極16がエミッタ部14上に形成されている点で異なる。
【0123】
この場合も、上述した第1の実施の形態に係る電子パルス放出装置10Aと同様に、正イオンによるカソード電極16の損傷を防止することができ、電子パルス放出装置10Bの長寿命化において有利となる。
【0124】
なお、基板12の上にエミッタ部14を形成する方法としては、スクリーン印刷法、ディッピング法、塗布法、電気泳動法等の各種厚膜形成法や、イオンビーム法、スパッタリング法、真空蒸着法、イオンプレーティング法、化学気相成長法(CVD)、めっき等の各種薄膜形成法を用いることができる。
【0125】
この第2の実施の形態においては、前記エミッタ部14を形成するにあたっては、スクリーン印刷法やディッピング法、塗布法、電気泳動法等による厚膜形成法が好適に採用される。
【0126】
これらの方法は、平均粒径0.01〜5μm、好ましくは0.05〜3μmの圧電セラミックスの粒子を主成分とするペーストやスラリー、又はサスペンション、エマルジョン、ゾル等を用いて形成することができ、良好な圧電作動特性が得られるからである。
【0127】
特に、電気泳動法は、膜を高い密度で、かつ、高い形状精度で形成することができることをはじめ、「電気化学および工業物理化学 Vol.53,No.1(1985),p63〜68 安斎和夫著」あるいは「第1回電気泳動法によるセラミックスの高次成形法 研究討論会 予稿集(1998),p5〜6,p23〜24」等の技術文献に記載されるような特徴を有する。また、圧電/電歪/反強誘電体をシート状に成形したもの、もしくはその積層体、もしくはこれらを他の支持基板に積層又は接着したものを用いてもよい。このように、要求精度や信頼性等を考慮して、適宜、方法を選択して用いるとよい。
【0128】
基板12は、配線等を考慮して、電気的な絶縁材料で構成するのが好ましい。
従って、基板12を、ガラス、又は高耐熱性の金属、あるいはその金属表面をガラスなどのセラミック材料によって被覆したホーローのような材料により構成することができるが、セラミックスで構成するのが最適である。
【0129】
基板12を構成するセラミックスとしては、例えば、安定化された酸化ジルコニウム、酸化アルミニウム、酸化マグネシウム、酸化チタン、スピネル、ムライト、窒化アルミニウム、窒化珪素、ガラス、これらの混合物等を使用することができる。その中でも、酸化アルミニウム及び安定化された酸化ジルコニウムが、強度及び剛性の観点から好ましい。安定化された酸化ジルコニウムは、機械的強度が比較的高いこと、靭性が比較的高いこと、カソード電極16及びアノード電極20との化学反応が比較的小さいことなどの観点から特に好適である。なお、安定化された酸化ジルコニウムとは、安定化酸化ジルコニウム及び部分安定化酸化ジルコニウムを包含する。安定化された酸化ジルコニウムでは、立方晶などの結晶構造をとるため、相転移が生じない。
【0130】
一方、酸化ジルコニウムは、1000℃前後で単斜晶と正方晶との間を相転移し、このような相転移の際にクラックが発生するおそれがある。安定化された酸化ジルコニウムは、酸化カルシウム、酸化マグネシウム、酸化イットリウム、酸化スカンジウム、酸化イッテルビウム、酸化セリウム、希土類金属の酸化物等の安定剤を、1〜30モル%含有する。なお、基板12の機械的強度を向上させるために、安定化剤が酸化イットリウムを含有すると好適である。この場合、酸化イットリウムを、好適には1.5〜6モル%、更に好適には2〜4モル%含有し、更に0.1〜5モル%の酸化アルミニウムを含有することが好ましい。
【0131】
また、結晶相を、立方晶+単斜晶の混合相、正方晶+単斜晶の混合相、立方晶+正方晶+単斜晶の混合相等とすることができるが、その中でも、主たる結晶相を、正方晶又は正方晶+立方晶の混合相としたものが、強度、靭性及び耐久性の観点から最適である。
【0132】
基板12をセラミックスから構成した場合、比較的多数の結晶粒が基板12を構成するが、基板12の機械的強度を向上させるためには、結晶粒の平均粒径を、好適には0.05〜2μmとし、更に好適には0.1〜1μmとするとよい。
【0133】
エミッタ部14、カソード電極16及びアノード電極20をそれぞれ形成するたびに熱処理(焼成処理)して基板12と一体構造にすることができ、また、これらエミッタ部14、カソード電極16及びアノード電極20を形成した後、同時に焼成処理して、これらを同時に基板12に一体に結合することもできる。なお、カソード電極16及びアノード電極20の形成方法によっては、一体化のための熱処理(焼成処理)を必要としない場合もある。
【0134】
基板12と、エミッタ部14、カソード電極16及びアノード電極20とを一体化させるための焼成処理に係る温度としては、500〜1400℃の範囲、好適には、1000〜1400℃の範囲とするとよい。更に、膜状のエミッタ部14を熱処理する場合、高温時にエミッタ部14の組成が不安定にならないように、エミッタ部14の蒸発源と共に雰囲気制御を行いながら焼成処理を行うことが好ましい。
【0135】
また、エミッタ部14を適切な部材によって被覆し、エミッタ部14の表面が焼成雰囲気に直接露出しないようにして焼成する方法を採用してもよい。この場合、被覆部材としては、基板12と同様の材料を用いることが好ましい。
【0136】
次に、第3の実施の形態に係る電子パルス放出装置10Cについて図20〜図24Bを参照しながら説明する。
【0137】
そして、第3の実施の形態に係る電子パルス放出装置10Cは、図20に示すように、上述した第2の実施の形態に係る電子パルス放出装置10Bとほぼ同様の構成を有するが、カソード電極16とアノード電極20が共に、エミッタ部14の一方の面に形成され、カソード電極16とアノード電極20間にスリット18が形成されている点で異なる。
【0138】
この第3の実施の形態に係る電子パルス放出装置10Cにおいては、電界集中ポイントA及びBが存在するが、ポイントAは、カソード電極16/エミッタ部14/真空が1つのポイントに存在する3重点を含むポイントとしても定義することができ、ポイントBは、アノード電極20/エミッタ部14/真空が1つのポイントに存在する3重点を含むポイントとしても定義することができる。
【0139】
ここで、カソード電極16とアノード電極20間のスリット18の幅dの大きさについて説明すると、カソード電極16とアノード電極20間の電圧をVakとしたとき、E=Vak/dで表される電界Eで分極反転あるいは分極変化が行われるように、前記幅dを設定することが好ましい。つまり、スリット18の幅dが小さいほど、低電圧で分極反転あるいは分極変化が可能となり、低電圧駆動(例えば100V未満)で電子放出が可能となる。
【0140】
カソード電極16の寸法については、図21に示すように、幅W1を2mmとし、長さL1を5mmとした。カソード電極16の厚さは、20μm以下がよく、好適には5μm以下であるとよい。
【0141】
アノード電極20の厚さも、20μm以下がよく、好適には5μm以下であるとよい。また、アノード電極20の寸法については、図21に示すように、カソード電極16と同様に幅W2を2mmとし、長さL2を5mmとした。
【0142】
また、カソード電極16とアノード電極20間のスリット18の幅dは、第3の実施の形態では、70μmとした。
【0143】
次に、電子パルス放出装置10Cの電子放出原理について図6、図20、図22〜図23Bを参照しながら説明する。この第3の実施の形態においても、図6に示すように、上述した第1の実施の形態と同様に、第1の電圧Va1が出力される期間(準備期間T1)と第2の電圧Va2が出力される期間(電子放出期間T2)を1ステップとし、該1ステップが繰り返される。
【0144】
まず、準備期間T1において、図22に示すように、カソード電極16とアノード電極20間に第1の電圧Va1が印加されることによって、エミッタ部14が一方向に分極されることになる。この場合も、第1の電圧Va1としては、図6に示すように直流電圧でもよいが、1つのパルス電圧もしくはパルス電圧を複数回連続印加するようにしてもよい。また、準備期間T1は、分極処理を十分に行うために、電子放出期間T2よりも長くとることが好ましい。例えば、この準備期間T1としては100μsec以上が好ましい。
【0145】
その後、電子放出期間T2において、カソード電極16とアノード電極20間に第2の電圧Va2が印加されることによって、図23Aに示すように、少なくともエミッタ部14のうち、スリット18から露出する部分が分極反転あるいは分極変化される。このとき、前記スリットの幅をd(図20参照)、カソード電極16とアノード電極20間の電圧をVakとしたとき、エミッタ部14に印加され、かつ、E=Vak/dで表される電界Eで分極反転あるいは分極変化が行われる。
【0146】
この分極反転あるいは分極変化によって、カソード電極16とその近傍の双極子モーメントの正極側とで局所的な集中電界が発生することにより、カソード電極16から1次電子が引き出され、図23Bに示すように、前記カソード電極16から引き出された1次電子がエミッタ部14に衝突して、該エミッタ部14から2次電子が放出される。
【0147】
この第3の実施の形態のように、カソード電極16、エミッタ部14及び真空の3重点Aを有する場合には、カソード電極16のうち、3重点Aの近傍部分から1次電子が引き出され、この3重点Aから引き出された1次電子がエミッタ部14に衝突して、該エミッタ部14から2次電子が放出される。なお、カソード電極16の厚みが極薄(〜10nm)である場合には、該カソード電極16とエミッタ部14との界面から電子が放出されることになる。
【0148】
このような原理によって電子が放出されることから、電子放出が安定して行われ、電子放出の回数も20億回以上を実現でき、実用性に富む。しかも、放出電子量は、カソード電極16とアノード電極20間に印加される駆動電圧Vaの振幅Vinにほぼ比例して増加することから、放出電子量を容易に制御できるという利点もある。
【0149】
そして、放出された2次電子のうち、一部の2次電子はコレクタ電極24に導かれて蛍光体28を励起し、外部に蛍光体発光として具現されることになる。
【0150】
第3の実施の形態に係る電子パルス放出装置10Cは、第1の実施の形態に係る電子パルス放出装置10A(変形例を含む)、第2の実施の形態に係る電子パルス放出装置10Bと比較した場合、カソード電極16近傍のエミッタ部14の分極反転あるいは分極変化に関する形態が異なる。第1及び第2の実施の形態に係る電子パルス放出装置10A及び10Bは、カソード電極16側に現れる双極子モーメントが正・負のいずれかのみになるため、カソード電極16との間で形成される局所的な電界を大きくとることができる。一方、第3の実施の形態に係る電子パルス放出装置10Cは、エミッタ部14の一主面のみに電極を形成すればよいという利点を有する。
【0151】
また、第1及び第2の実施の形態に係る電子パルス放出装置10A及び10Bは、エミッタ部14の分極反転時あるいは分極変化時に、カソード電極16が負極性となったとき、カソード電極16の近傍に双極子モーメントの正極のみを配置することができる。そのため、カソード電極16から1次電子を引き出すのに好ましい。
【0152】
上述の第1及び第2の実施の形態に係る電子パルス放出装置10A及び10Bにおいては、1つのエミッタ部14にそれぞれ1つのカソード電極16と1つのアノード電極20を形成して1つの電子パルス放出装置10A(10B)を構成した例を示したが、その他、例えば図24に示すように、1つのエミッタ部14に複数の電子パルス放出装置10(1)、10(2)、10(3)を形成することも可能である。
【0153】
即ち、図24に示す第1の構成例100Aでは、1つのエミッタ部14の表面にそれぞれ独立に複数のカソード電極16a、16b、16cを形成し、エミッタ部の裏面にそれぞれ独立に複数のアノード電極20a、20b、20cを形成して複数の電子パルス放出装置10(1)、10(2)、10(3)を形成した場合を示す。各アノード電極20a、20b、20cは、それぞれ対応するカソード電極16a、16b、16c下にエミッタ部14を間に挟んで形成される。
【0154】
図25に示す第2の構成例100Bでは、1つのエミッタ部14の表面にそれぞれ独立に複数のカソード電極16a、16b、16cを形成し、エミッタ部14の裏面に1つのアノード電極20(共通のアノード電極)を形成して複数の電子パルス放出装置10(1)、10(2)、10(3)を形成した場合を示す。
【0155】
図26に示す第3の構成例100Cでは、1つのエミッタ部14の表面に1つの極薄(〜10nm)のカソード電極16(共通のカソード電極)を形成し、エミッタ部14の裏面にそれぞれ独立に複数のアノード電極20a、20b、20cを形成して複数の電子パルス放出装置10(1)、10(2)、10(3)を形成した場合を示す。
【0156】
図27に示す第4の構成例100Dでは、基板12上に複数のアノード電極20a、20b、20cをそれぞれ独立に形成し、これらアノード電極20a、20b、20cを覆うように1つのエミッタ部14を形成し、更に、エミッタ部14上に複数のカソード電極16a、16b、16cをそれぞれ独立して形成して複数の電子パルス放出装置10(1)、10(2)、10(3)を形成した場合を示す。各カソード電極16a、16b、16cは、それぞれ対応するアノード電極20a、20b、20c上にエミッタ部14を間に挟んで形成される。
【0157】
図28に示す第5の構成例100Eでは、基板12上に1つのアノード電極20を形成し、該アノード電極20を覆うように1つのエミッタ部14を形成し、更に、エミッタ部14上に複数のカソード電極16a、16b、16cをそれぞれ独立に形成して複数の電子パルス放出装置10(1)、10(2)、10(3)を形成した場合を示す。
【0158】
図29に示す第6の構成例100Fでは、基板12上に複数のアノード電極20a、20b、20cをそれぞれ独立に形成し、これら複数のアノード電極20a、20b、20cを覆うように1つのエミッタ部14を形成し、更に、エミッタ部14上に1つの極薄のカソード電極16を形成して複数の電子パルス放出装置10(1)、10(2)、10(3)を形成した場合を示す。
【0159】
これら第1〜第6の構成例100A〜100Fでは、1つのエミッタ部14にて複数の電子パルス放出装置10(1)、10(2)、10(3)を構成することができ、例えば後述するように、各電子パルス放出装置10(1)、10(2)、10(3)をディスプレイの画素として構成する場合に好適である。
【0160】
上述した第1〜第3の実施の形態に係る電子パルス放出装置10A〜10Cにおいては、図1に示すように、コレクタ電極24に蛍光体28を塗布してディスプレイの画素として構成した場合、以下のような効果を奏することができる。
【0161】
(1)CRTと比して超薄型(パネルの厚み=数mm)にすることができる。
【0162】
(2)蛍光体28による自然発光のため、LCD(液晶表示装置)やLED(発光ダイオード)と比してほぼ180°の広視野角を得ることができる。
【0163】
(3)面電子源を利用しているため、CRTと比して画像歪みがない。
【0164】
(4)LCDと比して高速応答が可能であり、μsecオーダーの高速応答で残像のない動画表示が可能となる。
【0165】
(5)40インチ換算で100W程度であり、CRT、PDP(プラズマディスプレイ)、LCD及びLEDと比して低消費電力である。
【0166】
(6)PDPやLCDと比して動作温度範囲が広い(−40〜+85℃)。ちなみに、LCDは低温で応答速度が低下する。
【0167】
(7)大電流出力による蛍光体の励起が可能であるため、従来のFED方式のディスプレイと比して高輝度化が可能である。
【0168】
(8)圧電体材料の分極反転特性(もしくは分極変化特性)及び膜厚により駆動電圧を制御可能であるため、従来のFED方式のディスプレイと比して低電圧駆動が可能である。
【0169】
このような種々の効果から、以下に示すように、様々なディスプレイ用途を実現させることができる。
【0170】
(1)高輝度化と低消費電力化が実現できるという面から、30〜60インチディスプレイのホームユース(テレビジョン、ホームシアター)やパブリックユース(待合室、カラオケ等)に最適である。
【0171】
(2)高輝度化、大画面、フルカラー、高精細度が実現できるという面から、顧客吸引力(この場合、視覚的な注目)に効果が大であり、横長、縦長等の異形状ディスプレイや、展示会での使用、情報案内板用のメッセージボードに最適である。
【0172】
(3)高輝度化、蛍光体励起に伴う広視野角化、真空モジュール化に伴う広い動作温度範囲が実現できるという面から、車載用ディスプレイに最適である。車載用ディスプレイとしての仕様は、15:9等の横長8インチ(画素ピッチ0.14mm)、動作温度が−30〜+85℃、斜視方向で500〜600cd/m2が必要である。
【0173】
また、上述の種々の効果から、以下に示すように、様々な光源用途を実現させることができる。
【0174】
(1)高輝度化、低消費電力化が実現できるという面から、輝度仕様として2000ルーメンが必要なプロジェクタ用の光源に最適である。
【0175】
(2)高輝度2次元アレー光源を容易に実現できることと、動作温度範囲が広く、屋外環境でも発光効率に変化がないことから、LEDの代替用途として有望である。例えば信号機等の2次元アレーLEDモジュールの代替として最適である。なお、LEDは、25℃以上で許容電流が低下し、低輝度となる。
【0176】
なお、本発明に係る電子パルス放出装置は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。
【0177】
【発明の効果】
以上説明したように、本発明に係る電子パルス放出装置によれば、誘電体にて構成されたエミッタとなる物質を有する電子パルス放出装置において、電子放出を安定して行うことができ、実用性に富み、しかも、放出電子量を容易に制御することができる。
【図面の簡単な説明】
【図1】第1の実施の形態に係る電子パルス放出装置を示す構成図である。
【図2】第1の実施の形態に係る電子パルス放出装置の電極部分を示す平面図である。
【図3】第1の実施の形態に係る電子パルス放出装置の第1の変形例における電極部分を示す平面図である。
【図4】第1の実施の形態に係る電子パルス放出装置の第2の変形例における電極部分を示す平面図である。
【図5】第1の実施の形態に係る電子パルス放出装置の第3の変形例を示す構成図である。
【図6】パルス発生源から出力される駆動電圧を示す波形図である。
【図7】第1の実施の形態において、カソード電極とアノード電極間に第1の電圧を印加した際の作用を示す説明図である。
【図8】カソード電極とアノード電極間に第2の電圧を印加した際の電子放出作用を示す説明図である。
【図9】エミッタ部の表面での負極性帯電に伴って電子放出の自己停止の作用を示す説明図である。
【図10】放出された2次電子のエネルギーと2次電子の放出量の関係を示す特性図である。
【図11】図11Aは、駆動電圧の一例を示す波形図であり、図11Bは、第1の実施の形態に係る電子パルス放出装置におけるアノード電極とカソード電極間の電圧の変化を示す波形図である。
【図12】圧電材料の分極−電界特性を示す図である。
【図13】第1の具体例に係る電子パルス放出装置において、カソード電極とアノード電極間に印加される駆動電圧と、コレクタ電極に流れるコレクタ電流と、カソード電極とアノード電極間の電圧の変化を示す波形図である。
【図14】図14Aは、駆動電圧の一例(矩形パルス)を示す波形図であり、図14Bは、駆動電圧の他の例(立ち下がりがランプ状のパルス)を示す波形図である。
【図15】反強誘電体材料の分極−電界特性を示す図である。
【図16】第2の具体例に係る電子パルス放出装置において、カソード電極とアノード電極間に印加される駆動電圧と、コレクタ電極に流れるコレクタ電流と、カソード電極とアノード電極間の電圧の変化を示す波形図である。
【図17】電歪材料の分極−電界特性を示す図である。
【図18】第3の具体例に係る電子パルス放出装置において、カソード電極とアノード電極間に印加される駆動電圧と、コレクタ電極に流れるコレクタ電流と、カソード電極とアノード電極間の電圧の変化を示す波形図である。
【図19】第2の実施の形態に係る電子パルス放出装置を示す構成図である。
【図20】第3の実施の形態に係る電子パルス放出装置を示す構成図である。
【図21】第3の実施の形態に係る電子パルス放出装置の電極部分を示す平面図である。
【図22】第3の実施の形態において、カソード電極とアノード電極間に第1の電圧を印加した際の作用を示す説明図である。
【図23】図23Aは、カソード電極とアノード電極間に第2の電圧を印加した際の作用(1次電子の放出)を示す説明図であり、図23Bは、放出された1次電子に基づいて2次電子が放出される原理を示す説明図である。
【図24】複数の電子パルス放出装置を組み合わせた第1の構成例を示す説明図である。
【図25】複数の電子パルス放出装置を組み合わせた第2の構成例を示す説明図である。
【図26】複数の電子パルス放出装置を組み合わせた第3の構成例を示す説明図である。
【図27】複数の電子パルス放出装置を組み合わせた第4の構成例を示す説明図である。
【図28】複数の電子パルス放出装置を組み合わせた第5の構成例を示す説明図である。
【図29】複数の電子パルス放出装置を組み合わせた第6の構成例を示す説明図である。
【符号の説明】
10A、10Aa〜10Ac、10A1〜10A3、10B、10C…電子パルス放出装置
12…基板 14…エミッタ部
16…カソード電極 18…スリット
20…アノード電極 22…パルス発生源
24…コレクタ電極 28…蛍光体
Claims (12)
- 誘電体で構成されたエミッタとなる物質と、
前記エミッタとなる物質に接して形成された第1の電極及び第2の電極と、
前記第1の電極と前記第2の電極間に前記エミッタとなる物質の分極を反転あるいは変化させるための交流パルスを印加する手段とを有し、
前記エミッタとなる物質から電子を間欠的に放出することを特徴とする電子パルス放出装置。 - 請求項1記載の電子パルス放出装置において、
前記エミッタとなる物質に真空空間を介して対向して配された第3の電極と、
前記第3の電極に正の直流バイアス電圧を印加する手段とを有し、
前記エミッタとなる物質から前記第3の電極に向けて電子を間欠的に放出することを特徴とする電子パルス放出装置。 - 請求項1又は2記載の電子パルス放出装置において、
前記エミッタとなる物質は、圧電材料、反強誘電体材料又は電歪材料であることを特徴とする電子パルス放出装置。 - 請求項1〜3のいずれか1項に記載の電子パルス放出装置において、
前記交流パルスを印加する手段は、第1の期間に、前記第1の電極の電位が前記第2の電極の電位よりも高い第1の電圧を前記第1の電極と前記第2の電極間に印加して、前記エミッタとなる物質を予め一方向に分極させ、
第2の期間に、前記第1の電極の電位が前記第2の電極の電位よりも低い第2の電圧を前記第1の電極と前記第2の電極間に印加して、前記エミッタとなる物質を分極反転あるいは分極変化させることによって電子放出させることを特徴とする電子パルス放出装置。 - 請求項1〜4のいずれか1項に記載の電子パルス放出装置において、
前記第1の電極及び前記第2の電極は、前記エミッタとなる物質の主面にそれぞれ接して形成され、
前記第1の電極と前記第2の電極との間に前記エミッタとなる物質が一部露出するスリットが形成されていることを特徴とする電子パルス放出装置。 - 請求項5記載の電子パルス放出装置において、
前記スリットの幅をd、前記第1の電極と前記第2の電極間の電圧をVakとしたとき、前記エミッタとなる物質に印加され、かつ、E=Vak/dで表される電界Eで分極反転あるいは分極変化が行われることを特徴とする電子パルス放出装置。 - 請求項1〜4のいずれか1項に記載の電子パルス放出装置において、
前記第1の電極は、前記エミッタとなる物質の第1の面に形成され、
前記第2の電極は、前記エミッタとなる物質の第2の面に形成されていることを特徴とする電子パルス放出装置。 - 請求項7記載の電子パルス放出装置において、
前記第1の電極と前記第2の電極に挟まれた前記エミッタとなる物質の厚さをh、前記第1の電極と前記第2の電極間の電圧をVakとしたとき、前記エミッタとなる物質に印加され、かつ、E=Vak/hで表される電界Eで分極反転あるいは分極変化が行われることを特徴とする電子パルス放出装置。 - 請求項6又は8記載の電子パルス放出装置において、
前記電圧Vakが前記エミッタとなる物質の絶縁破壊電圧未満であることを特徴とする電子パルス放出装置。 - 請求項1〜9のいずれか1項に記載の電子パルス放出装置において、
前記第1の電極と前記第2の電極間に前記交流パルスを印加することによって、少なくとも前記エミッタとなる物質の一部が分極反転あるいは分極変化され、前記第2の電極よりも電位が低い前記第1の電極の近傍から電子が放出されることを特徴とする電子パルス放出装置。 - 請求項1〜10のいずれか1項に記載の電子パルス放出装置において、
前記第1の電極と前記第2の電極間に前記交流パルスを印加することによって、少なくとも前記エミッタとなる物質の一部が分極反転あるいは分極変化され、この分極反転あるいは分極変化によって、前記第1の電極の周辺に双極子モーメントの正極側が配されることで、前記第1の電極から1次電子が引き出され、
前記第1の電極から引き出された1次電子が前記エミッタとなる物質に衝突して、該エミッタとなる物質から2次電子が放出されることを特徴とする電子パルス放出装置。 - 請求項11記載の電子パルス放出装置において、
前記第1の電極、前記エミッタとなる物質及び真空雰囲気の3重点を有し、
前記第1の電極のうち、3重点近傍の部分から1次電子が引き出され、
前記引き出された1次電子が前記エミッタとなる物質に衝突して、該エミッタとなる物質から2次電子が放出されることを特徴とする電子パルス放出装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003155773A JP2004228065A (ja) | 2002-11-29 | 2003-05-30 | 電子パルス放出装置 |
US10/719,521 US7071628B2 (en) | 2002-11-29 | 2003-11-21 | Electronic pulse generation device |
EP03257433A EP1424717A1 (en) | 2002-11-29 | 2003-11-25 | Electronic pulse generation device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002348916 | 2002-11-29 | ||
JP2002348908 | 2002-11-29 | ||
JP2002348900 | 2002-11-29 | ||
JP2003155773A JP2004228065A (ja) | 2002-11-29 | 2003-05-30 | 電子パルス放出装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004228065A true JP2004228065A (ja) | 2004-08-12 |
Family
ID=32303636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003155773A Pending JP2004228065A (ja) | 2002-11-29 | 2003-05-30 | 電子パルス放出装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US7071628B2 (ja) |
EP (1) | EP1424717A1 (ja) |
JP (1) | JP2004228065A (ja) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006098900A (ja) * | 2004-09-30 | 2006-04-13 | Ngk Insulators Ltd | 電子放出装置 |
WO2006075407A1 (ja) * | 2005-01-17 | 2006-07-20 | Ngk Insulators, Ltd. | 電子放出素子 |
WO2006075405A1 (ja) * | 2005-01-17 | 2006-07-20 | Ngk Insulators, Ltd. | 電子放出素子 |
US7336026B2 (en) | 2003-10-03 | 2008-02-26 | Ngk Insulators, Ltd. | High efficiency dielectric electron emitter |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7379037B2 (en) * | 2003-03-26 | 2008-05-27 | Ngk Insulators, Ltd. | Display apparatus, method of driving display apparatus, electron emitter, method of driving electron emitter, apparatus for driving electron emitter, electron emission apparatus, and method of driving electron emission apparatus |
US7474060B2 (en) * | 2003-08-22 | 2009-01-06 | Ngk Insulators, Ltd. | Light source |
US20050116603A1 (en) * | 2003-10-03 | 2005-06-02 | Ngk Insulators, Ltd. | Electron emitter |
US7528539B2 (en) * | 2004-06-08 | 2009-05-05 | Ngk Insulators, Ltd. | Electron emitter and method of fabricating electron emitter |
JP2006080046A (ja) * | 2004-09-13 | 2006-03-23 | Ngk Insulators Ltd | 電子放出装置 |
JPWO2007007472A1 (ja) * | 2005-07-07 | 2009-01-29 | シャープ株式会社 | 表示装置 |
KR20070011806A (ko) * | 2005-07-21 | 2007-01-25 | 삼성에스디아이 주식회사 | 전계 방출형 백라이트 유니트 및 이를 구비한 평판디스플레이 장치 |
US7402194B2 (en) * | 2005-07-27 | 2008-07-22 | International Business Machines Corporation | Carbon nanotubes as low voltage field emission sources for particle precipitators |
US7495254B2 (en) * | 2005-08-30 | 2009-02-24 | International Business Machines Corporation | Test structure and method for detecting and studying crystal lattice dislocation defects in integrated circuit devices |
Family Cites Families (63)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59208587A (ja) | 1983-05-12 | 1984-11-26 | 東芝ライテック株式会社 | 表示装置 |
JPS63150837A (ja) | 1986-12-16 | 1988-06-23 | Canon Inc | 電子放出装置 |
JP2654571B2 (ja) | 1988-06-10 | 1997-09-17 | キヤノン株式会社 | 電子放出素子及びそれを用いた電子放出装置並びに発光装置 |
FR2639151B1 (fr) | 1988-06-28 | 1994-02-18 | Riege Hans | Procedes et appareils pour engendrer rapidement de forts changements de polarisation dans des materiaux ferro-electriques |
IL87341A (en) | 1988-08-04 | 1992-11-15 | Yeda Res & Dev | Amorphous electron multiplier |
DE3833604A1 (de) | 1988-10-03 | 1990-04-05 | Riege Hans | Gepulste teilchenquelle auf der basis schnell umpolarisierbarer ferroelektrika |
DE3938752A1 (de) | 1989-11-23 | 1991-05-29 | Riege Hans | Kathode zur grossflaechigen erzeugung von intensiven, modulierten ein- oder mehrkanal-elektronenstrahlen |
JP3126158B2 (ja) | 1991-04-10 | 2001-01-22 | 日本放送協会 | 薄膜冷陰極 |
US6313815B1 (en) | 1991-06-06 | 2001-11-06 | Canon Kabushiki Kaisha | Electron source and production thereof and image-forming apparatus and production thereof |
US5448083A (en) | 1991-08-08 | 1995-09-05 | Kabushiki Kaisha Toshiba | Insulated-gate semiconductor device |
US5382867A (en) | 1991-10-02 | 1995-01-17 | Sharp Kabushiki Kaisha | Field-emission type electronic device |
JP3184296B2 (ja) | 1992-05-26 | 2001-07-09 | 松下電器産業株式会社 | 強誘電体冷陰極 |
JP3168353B2 (ja) | 1992-06-17 | 2001-05-21 | キヤノン株式会社 | 画像表示装置 |
SE500384C2 (sv) * | 1992-11-11 | 1994-06-13 | Tumba Bruk Ab | Förfarande för framställning av papper samt värdetryck framställt därav |
JPH07147131A (ja) | 1993-11-24 | 1995-06-06 | Tdk Corp | 冷陰極電子源の製造方法 |
US5453661A (en) | 1994-04-15 | 1995-09-26 | Mcnc | Thin film ferroelectric flat panel display devices, and methods for operating and fabricating same |
JP3214256B2 (ja) | 1994-10-12 | 2001-10-02 | 松下電器産業株式会社 | 電子パルス放出装置および表示装置 |
US5508590A (en) | 1994-10-28 | 1996-04-16 | The Regents Of The University Of California | Flat panel ferroelectric electron emission display system |
JP2932250B2 (ja) | 1995-01-31 | 1999-08-09 | キヤノン株式会社 | 電子放出素子、電子源、画像形成装置及びそれらの製造方法 |
US5747926A (en) | 1995-03-10 | 1998-05-05 | Kabushiki Kaisha Toshiba | Ferroelectric cold cathode |
JPH08264105A (ja) | 1995-03-27 | 1996-10-11 | Kanebo Ltd | 強誘電体電子放出冷陰極 |
US5657054A (en) | 1995-04-26 | 1997-08-12 | Texas Instruments Incorporated | Determination of pen location on display apparatus using piezoelectric point elements |
JP3174999B2 (ja) * | 1995-08-03 | 2001-06-11 | キヤノン株式会社 | 電子放出素子、電子源、それを用いた画像形成装置、及びそれらの製造方法 |
US5656887A (en) | 1995-08-10 | 1997-08-12 | Micron Display Technology, Inc. | High efficiency field emission display |
US5666019A (en) | 1995-09-06 | 1997-09-09 | Advanced Vision Technologies, Inc. | High-frequency field-emission device |
JPH0990882A (ja) | 1995-09-20 | 1997-04-04 | Komatsu Ltd | 発光表示素子 |
KR100369066B1 (ko) | 1995-12-29 | 2003-03-28 | 삼성에스디아이 주식회사 | 강유전성에미터를적용한음극구조체및이를적용한전자총과음극선관 |
US5729094A (en) | 1996-04-15 | 1998-03-17 | Massachusetts Institute Of Technology | Energetic-electron emitters |
JP2907113B2 (ja) | 1996-05-08 | 1999-06-21 | 日本電気株式会社 | 電子ビーム装置 |
US5726524A (en) | 1996-05-31 | 1998-03-10 | Minnesota Mining And Manufacturing Company | Field emission device having nanostructured emitters |
JPH1027539A (ja) | 1996-07-10 | 1998-01-27 | Sharp Corp | 強誘電体冷陰極及びその駆動方法 |
DE19651552A1 (de) | 1996-12-11 | 1998-06-18 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Kaltkathode für Entladungslampen, Entladungslampe mit dieser Kaltkathode und Betriebsweise für diese Entladungslampe |
JP2950274B2 (ja) | 1997-01-28 | 1999-09-20 | 日本電気株式会社 | 電界放出型冷陰極素子の駆動方法及び電界放出型冷陰極電子銃 |
US5990605A (en) | 1997-03-25 | 1999-11-23 | Pioneer Electronic Corporation | Electron emission device and display device using the same |
JP3570864B2 (ja) | 1997-08-08 | 2004-09-29 | パイオニア株式会社 | 電子放出素子及びこれを用いた表示装置 |
DE69818633T2 (de) | 1997-08-27 | 2004-07-29 | Matsushita Electric Industrial Co., Ltd., Kadoma | Elektronen emittierende vorrichtung, feldemissionsanzeigevorrichtung und herstellungsverfahren derselben |
US6025819A (en) * | 1997-10-03 | 2000-02-15 | Motorola, Inc. | Method for providing a gray scale in a field emission display |
JPH11185600A (ja) | 1997-12-22 | 1999-07-09 | Minolta Co Ltd | 電子放出デバイス及び画像表示装置 |
JPH11213866A (ja) | 1998-01-22 | 1999-08-06 | Sony Corp | 電子放出装置及びその製造方法並びにこれを用いた表示装置 |
US6252254B1 (en) * | 1998-02-06 | 2001-06-26 | General Electric Company | Light emitting device with phosphor composition |
JP3408147B2 (ja) | 1998-04-03 | 2003-05-19 | キヤノン株式会社 | 画像形成装置 |
JP3305283B2 (ja) | 1998-05-01 | 2002-07-22 | キヤノン株式会社 | 画像表示装置及び前記装置の制御方法 |
JP3075535B2 (ja) | 1998-05-01 | 2000-08-14 | キヤノン株式会社 | 電子放出素子、電子源及び画像形成装置の製造方法 |
EP0986084A3 (en) | 1998-09-11 | 2004-01-21 | Pioneer Corporation | Electron emission device and display apparatus using the same |
JP3293571B2 (ja) | 1998-10-28 | 2002-06-17 | 日本電気株式会社 | 電界放出型冷陰極素子及びその駆動方法並びにそれらを用いた画像表示装置 |
US6492769B1 (en) | 1998-12-25 | 2002-12-10 | Canon Kabushiki Kaisha | Electron emitting device, electron source, image forming apparatus and producing methods of them |
FR2789223B1 (fr) | 1999-01-29 | 2001-03-23 | Univ Nantes | Corps de cathode ferroelectrique pour la production d'electrons |
FR2789221B1 (fr) | 1999-01-29 | 2001-04-06 | Univ Nantes | Corps de cathode pour l'emission d'electrons |
JP3382172B2 (ja) | 1999-02-04 | 2003-03-04 | 株式会社日立製作所 | 横型絶縁ゲートバイポーラトランジスタ |
JP4114264B2 (ja) | 1999-03-16 | 2008-07-09 | 株式会社村田製作所 | 強誘電体電子放出冷陰極 |
JP2000285801A (ja) | 1999-03-31 | 2000-10-13 | Canon Inc | 電子放出素子の製造方法、該電子放出素子を用いた電子源および画像形成装置 |
US6198225B1 (en) * | 1999-06-07 | 2001-03-06 | Symetrix Corporation | Ferroelectric flat panel displays |
JP3051930B1 (ja) | 1999-07-02 | 2000-06-12 | 工業技術院長 | ガス励起装置 |
US6514891B1 (en) | 1999-07-14 | 2003-02-04 | Lg Electronics Inc. | Thick dielectric composition for solid state display |
US6420822B1 (en) | 1999-07-15 | 2002-07-16 | Northrop Grumman Corporation | Thermionic electron emitter based upon the triple-junction effect |
US6359383B1 (en) | 1999-08-19 | 2002-03-19 | Industrial Technology Research Institute | Field emission display device equipped with nanotube emitters and method for fabricating |
DE10057072A1 (de) | 1999-11-19 | 2001-05-23 | Gen Electric | Ferroelektrischer Emitter |
JP2002190622A (ja) * | 2000-12-22 | 2002-07-05 | Sanken Electric Co Ltd | 発光ダイオード用透光性蛍光カバー |
US6479924B1 (en) | 2000-08-11 | 2002-11-12 | Samsung Electronics Co., Ltd. | Ferroelectric emitter |
JP3639808B2 (ja) | 2000-09-01 | 2005-04-20 | キヤノン株式会社 | 電子放出素子及び電子源及び画像形成装置及び電子放出素子の製造方法 |
JP2002169507A (ja) | 2000-11-30 | 2002-06-14 | Fujitsu Ltd | プラズマディスプレイパネル及びその駆動方法 |
WO2002052600A1 (fr) | 2000-12-22 | 2002-07-04 | Ngk Insulators, Ltd. | Element d'emission electronique et utilisation dans un affichage a emission de champ |
JP2002280607A (ja) * | 2001-01-10 | 2002-09-27 | Toyoda Gosei Co Ltd | 発光装置 |
-
2003
- 2003-05-30 JP JP2003155773A patent/JP2004228065A/ja active Pending
- 2003-11-21 US US10/719,521 patent/US7071628B2/en not_active Expired - Fee Related
- 2003-11-25 EP EP03257433A patent/EP1424717A1/en not_active Withdrawn
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7336026B2 (en) | 2003-10-03 | 2008-02-26 | Ngk Insulators, Ltd. | High efficiency dielectric electron emitter |
JP2006098900A (ja) * | 2004-09-30 | 2006-04-13 | Ngk Insulators Ltd | 電子放出装置 |
WO2006075407A1 (ja) * | 2005-01-17 | 2006-07-20 | Ngk Insulators, Ltd. | 電子放出素子 |
WO2006075405A1 (ja) * | 2005-01-17 | 2006-07-20 | Ngk Insulators, Ltd. | 電子放出素子 |
Also Published As
Publication number | Publication date |
---|---|
EP1424717A1 (en) | 2004-06-02 |
US7071628B2 (en) | 2006-07-04 |
US20040135438A1 (en) | 2004-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20040090398A1 (en) | Display | |
JPWO2003073458A1 (ja) | 電子放出素子、電子放出素子の駆動方法、ディスプレイ及びディスプレイの駆動方法 | |
JP3867065B2 (ja) | 電子放出素子及び発光素子 | |
US7307383B2 (en) | Electron emitter and method of producing the same | |
US7187114B2 (en) | Electron emitter comprising emitter section made of dielectric material | |
JP2004228065A (ja) | 電子パルス放出装置 | |
JP4678832B2 (ja) | 光源 | |
US6975074B2 (en) | Electron emitter comprising emitter section made of dielectric material | |
JP3822551B2 (ja) | 発光素子及びそれを具えるフィールドエミッションディスプレイ | |
US7129642B2 (en) | Electron emitting method of electron emitter | |
JP2004146365A (ja) | 発光装置 | |
US20060214557A1 (en) | Light source | |
JP3869819B2 (ja) | 電子放出素子 | |
JP2005183361A (ja) | 電子放出素子、電子放出装置、ディスプレイ及び光源 | |
JP3839792B2 (ja) | 電子放出素子の電子放出方法 | |
US6897620B1 (en) | Electron emitter, drive circuit of electron emitter and method of driving electron emitter | |
JP3829127B2 (ja) | 電子放出素子 | |
JP3829128B2 (ja) | 電子放出素子 | |
US20040104669A1 (en) | Electron emitter | |
US20040104688A1 (en) | Electron emitting method of electron emitter | |
US20050062400A1 (en) | Electron emitter | |
WO2006070446A1 (ja) | 電子放出素子、電子放出装置、ディスプレイ及び光源 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050225 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060418 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060608 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A132 Effective date: 20060725 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20061219 |