[go: up one dir, main page]

JP2004219180A - Irradiation deterioration diagnostic method of nuclear reactor incore equipment and its system - Google Patents

Irradiation deterioration diagnostic method of nuclear reactor incore equipment and its system Download PDF

Info

Publication number
JP2004219180A
JP2004219180A JP2003005107A JP2003005107A JP2004219180A JP 2004219180 A JP2004219180 A JP 2004219180A JP 2003005107 A JP2003005107 A JP 2003005107A JP 2003005107 A JP2003005107 A JP 2003005107A JP 2004219180 A JP2004219180 A JP 2004219180A
Authority
JP
Japan
Prior art keywords
evaluation
measurement
sampling
test
deterioration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003005107A
Other languages
Japanese (ja)
Other versions
JP4006339B2 (en
Inventor
Shigeaki Tanaka
重彰 田中
Shohei Kawano
昌平 川野
Tatsuya Kubo
達也 久保
Hiroshi Sakamoto
博司 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003005107A priority Critical patent/JP4006339B2/en
Publication of JP2004219180A publication Critical patent/JP2004219180A/en
Application granted granted Critical
Publication of JP4006339B2 publication Critical patent/JP4006339B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To evaluate the remaining life of equipment based on actualy measured values from the viewpoint of soundness maintenance of the incore equipment in an atomic power plant or the like by sampling a material exposed to neutron irradiation of the nuclear reactor incore equipment as a test piece corresponding to evaluation object portion, operation period, test method or the like in the minimum range wherein a structural material function is not lost. <P>SOLUTION: This method has a sampling method determination process (S101) for determining a sample collection method for collecting for deterioration degree evaluation, a sampling process (S102) for collecting the test piece by the determined sampling method, a deterioration degree measuring process (S103) for performing a material test by using the collected test piece and evaluating the deterioration degree of the object portion from acquired data, and an evaluation process (S104) for evaluating the deterioration degree of the evaluation object portion by using the measured value. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、原子力プラントなどの炉内機器の余寿命を評価し、点検および対策を適切な時期に実施するために、現時点での機器の劣化の状態を正確に把握する原子炉炉内機器の照射劣化診断方法および同システムに関する。
【0002】
【従来の技術】
原子力発電プラントでは、高経年化に伴って中性子照射による材料劣化が蓄積し、炉内機器の補修や取替えが必要となる場合がある。効率やコストを考慮した場合、炉内機器の破損が起こる前に補修や取替えを行うべきであるが、補修・取替え時期を過度に安全側に設定した場合には、コストメリットが損なわれる可能性があるため、精度の高い補修・取替え時期の評価方法の開発が望まれる。
【0003】
従来、このような原子炉炉内機器の複合診断システムとして、点検を要する部位を選定する1次診断と、劣化の進行と予寿命を予測する2次診断と、非破壊的に診断を行う3次診断を行う技術が提案されている(例えば特許文献1参照)。
【0004】
ところが、この従来技術においては、1次診断を全てデータベースに基づいて行うため、対象機器を決定するために膨大なデータを必要とする。また、直接診断による第3次診断は第2次診断装置の精度向上に用いられるが、第2次診断は第3次診断の実施時期を定めるためには用いられない。また、この従来技術では、サンプル材の診断を行う際の具体的なサンプル採取部位や採取寸法については開示されていない。
【0005】
【特許文献1】
特開平11−23776号公報
【0006】
【発明が解決しようとする課題】
通常の機器においては、精度の高い補修・取替え時期の評価を行う手段の一つとして、機器の評価対象部位から試験片を採取し、この試験片について材料試験を行う方法が知られている。しかし、原子炉炉内機器の中性子照射を受けた材料は放射化しているため、被ばくの点から注意を払う必要がある。また、サンプリングする試験片は構造材の機能を失わない範囲で行う必要がある。
【0007】
したがって、精度の高い照射劣化評価を行うためには、サンプリング材による劣化診断を行うことが望ましいが、被曝低減および構造物の機能維持の観点からサンプリングする試験片は小さい方が望ましい。
【0008】
本発明はこのような事情に鑑みてなされたもので、原子力プラントなどの炉内機器の健全性を維持するうえで機器の余寿命を評価して、原子力プラントの点検および対策を適切な時期に実施するために、現時点での機器の劣化の状態を正確に把握することができる原子炉炉内機器の照射劣化診断方法および同システムを提供することを目的とする。
【0009】
【課題を解決するための手段】
前記の目的を達成するため、請求項1に係る発明では、原子炉炉内機器における評価対象部位、試験方法および運転履歴に基づいて劣化評価を行うために十分で、かつ評価対象の機能に影響しない範囲で最小の試験片を採取するための採取位置、採取寸法および採取個数を決定するサンプリング方法決定工程と、決定されたサンプリング方法に従って実機当該部より試験片を採取するサンプリング工程と、サンプリングした試験片を用いて電気化学的再活性化法(EPR法)による測定(以下、「EPR測定」という)、微小硬さ測定、放射線測定およびヘリウム含有量測定の全てもしくは一部の組合せによる材料試験を行う劣化度測定工程と、前記EPR測定によるIASCC(環境応力腐蝕割れ)感受性の評価、前記微小硬さ測定による機械的性質および破壊靭性値の評価、前記放射線測定による中性子照射量評価および前記ヘリウム量測定による溶接可能性の評価の全て、もしくは一部の組合せからなる評価対象部位の劣化度評価を行う評価工程と、を備えることを特徴とする原子炉炉内機器の照射劣化診断方法を提供する。
【0010】
請求項2に係る発明では、原子炉炉内機器における照射劣化診断の対象部位毎に、当該診断用試験としてのEPR測定、微小硬さ測定、ガンマ線計測およびヘリウム含有量分析について最低限必要とする試験片寸法に関するデータを保存する試験片寸法データベースと、原子炉運転期間および前記対象部位毎の過去の評価結果に関するデータを保存する材料データベースと、照射劣化診断の評価対象機器を特定するための入力手段と、この入力手段から入力される評価対象機器に対応する前記各データベースのデータとの照合に基づき最低限必要な前記評価対象機器のサンプル体積を求め、機器の機能上問題ないサンプル採取方法の計算を行ってサンプル寸法、サンプル個数およびサンプル採取位置情報を出力するサンプリング方法計算手段とを備え、前記入力手段への前記評価対象機器の入力に基づいて照射劣化診断の対象部位毎に適合するサンプリング方法を決定することを特徴とするサンプリング方法決定システムを提供する。
【0011】
請求項3に係る発明では、EPR値とIASCC感受性との関係データ、微小硬さと0.2%耐力、引張強さおよび破壊靭性値との関係データ、Co−60およびMn−54の放射線測定値に基づく中性子照射量の解析値データおよびヘリウム量ならびに溶接入熱と溶接割れとの関係データを保存する劣化診断用データベースと、EPR測定、微小硬さ測定、放射線測定およびヘリウム含有量の測定値を入力する測定値入力手段と、この測定値入力手段から入力される測定値と前記劣化診断用データベースのデータとを照合し、前記測定値に対応する評価演算を行う評価演算手段とを備え、請求項2記載のサンプリング方法決定システムにより決定されたサンプル個数およびサンプル採取位置に基づいて採取された試験片についての試験結果を前記入力手段に入力することにより、EPR測定によるIASCC感受性の評価、微小硬さ測定による機械的性質および破壊靭性値の評価、Co−60とMn−54の放射線測定による中性子照射量評価およびヘリウム量測定による溶接可能性の評価の全て、もしくは一部の組合せからなる劣化度の判定を行うことを特徴とする原子炉炉内機器の照射劣化診断システムを提供する。
【0012】
本発明によれば、劣化評価を行うのに十分でかつ評価対象の機能に影響しない範囲で最小のサンプルを採取する方法を決定する工程と、採取したサンプルを用いて材料試験を行い劣化度を評価する工程を備えることにより、実機炉内機器より必要最小限のサンプルを採取して材料試験を行うことができるので、被ばくを低減し、かつ精度の高い劣化診断を行うことができる。そして、採取する試験片を最小限にするため、採取位置、採取寸法、最終個数を定めた上で、サンプリングを行うことにより、測定時の被爆を低減することができる。また、サンプリング材を用いて必要な材料特性値に特化して測定を行うことにより、劣化評価を行い、この劣化評価では単に材料の劣化だけではなく、放射線測定による中性子照射量の評価や照射によるヘリウム生成量測定による補修のための溶接性評価も含めている。したがって、中性子照射量をパラメータとして溶接施工の可否をも含めた評価が可能となる。
【0013】
また、サンプルを採取する方法を決定する工程では、各試験項目で使用する試験片の寸法から採取が必要なサンプル体積を決定する工程と、評価対象機器に関する情報と必要なサンプル体積から採取するサンプル寸法とサンプル個数および採取位置を決定することにより、構造物の健全性を損なわずに試験に必要な最小限のサンプルを採取することができるので、被ばくを低減することができる。
【0014】
また、材料試験を行い劣化度を判定する工程では、EPR法によるIASCC感受性の評価、微小硬さ測定による機械的性質および破壊靭性値の評価、Co−60とMn−54の放射線測定による中性子照射量評価およびヘリウム量測定による溶接可能性の評価の全てあるいは一部の組合せを行うことにより、EPR法によるIASCC感受性の評価、微小硬さ測定による機械的性質および破壊靭性値の評価、Co−60とMn−54の放射線測定による中性子照射量評価およびヘリウム量測定による溶接可能性の評価の全てあるいは一部を組合せて劣化診断を行うことができるので、高精度かつ複合的な劣化診断を行うことができる。
【0015】
また、EPR法によりIASCC感受性を評価する工程では、請求項2記載のシステムに基づいて採取されたサンプルを用いてEPR測定を行い、その結果をEPR値とIASCC感受性の関係に関するデータベースと照合して試験片のIASCC感受性を評価することにより、実機炉内機器から採取したサンプルを用いてEPR試験を行うことができるため、精度良くIASCC感受性を評価することができる。
【0016】
また、微小硬さ測定により破壊靭性値を評価する工程では、請求項2記載のシステムに基づいて採取されたサンプルを用いて微小硬さ測定を行い、その結果を微小硬さと0.2%耐力、引張強さおよび破壊靭性値の関係に関するデータベースの全てあるいは一部の組合せと照合してサンプルの機械的性質を評価することにより、実機炉内機器から採取したサンプルを用いて微小硬さ測定を行うことができるため、精度良く機械的性質を評価することができる。
【0017】
また、Co−60およびMn−54の放射線測定により中性子照射量評価する工程では、請求項2記載のシステムに基づいて採取されたサンプルを用いて放射線量を測定し、その結果を中性子照射量の解析値のデータベースと照合することにより試験片の中性子照射量を評価することから、実機炉内機器から採取したサンプルを用いて放射線測定を行うことができるため、精度良く中性子照射量を評価することができる。
【0018】
また、ヘリウム量測定による溶接可能性評価の工程では、請求項2記載のシステムに基づいて採取されたサンプルを用いてヘリウム含有量を測定し、その結果をヘリウム量および溶接入熱と溶接割れの関係に関するデータベースと照合することによりサンプルが採取された部位の溶接施工の可否を評価するので、実機炉内機器から採取したサンプルを用いてHe量の測定を行うことができるため、精度良く溶接の可否を評価することができる。
【0019】
【発明の実施の形態】
以下、本発明の実施形態について、図面を参照して具体的に説明する。図1は原子炉炉内機器の照射劣化診断方法を概略的に示す工程図であり、図2は同工程の処理内容を抽出して示す工程図である。
【0020】
図1および図2に示すように、本実施形態の方法は大別して、劣化度評価のために採取するサンプル採取方法を決定するサンプリング方法決定工程(S101)と、決定されたサンプリング方法により試験片を採取するサンプリング工程(S102)と、採取した試験片を用いて材料試験を行い、得られたデータから対象部位の劣化度を評価する劣化度測定工程(S103)と、測定値を用いて評価対象部位の劣化度を評価す評価工程(S104)とを備える。
【0021】
まず、サンプリング方法決定工程(S101)では、原子炉炉内機器における評価対象部位、試験方法および運転履歴に基づいて劣化評価を行うために十分で、かつ評価対象の機能に影響しない範囲で最小の試験片を採取するための採取位置、採取寸法および採取個数を決定する。すなわち、劣化評価を行うための各試験に必要な試験片の最低限の体積を求め、この体積に基づいて評価対象となる機器の情報や運転履歴、および材料データベースや過去の評価結果を適用して、具体的なサンプル採取位置と寸法および個数を決定する。このとき、採取位置の制約や作業効率からサンプルが複数個になる場合があるため、サンプル個数も決定項目に含める。
【0022】
図3は、このサンプリング方法決定工程の手順を詳細に示している。図3に示すように、原子炉炉内機器における照射劣化診断の対象部位毎に、当該診断用試験としてのEPR測定、微小硬さ測定、ガンマ線計測およびヘリウム含有量分析について、最低限必要とする試験片寸法に関するデータを保存する試験片寸法データベース1を適用する。
【0023】
そして、原子炉運転期間および評価対象部位毎の過去の評価結果に関するデータを保存する材料データベース2と、照射劣化診断の評価対象機器を特定するための入力手段3と、この入力手段3から入力される評価対象機器に対応する各データベース1,2のデータとの照合に基づき最低限必要な評価対象機器のサンプル体積を求める。
【0024】
さらに、サンプリング方法計算手段4により、機器の機能上問題がないサンプル採取方法の計算を行い、サンプル寸法および個数、ならびにサンプル採取位置等について、照射劣化診断の対象部位毎に適合するサンプリング方法を決定し、その情報を出力する。
【0025】
次に、サンプリング工程(S102)では、図1および図2に示すように、サンプリング方法決定工程(S101)により決定されたサンプル寸法、サンプル個数およびサンプル採取位置に従って、原子炉5の実機当該部から試験片6を採取する。
【0026】
劣化度測定工程(S103)では、サンプリング工程(S102)で採取した試験片6について、EPR値の測定(S103a)、微小硬さ測定(例えばナノ・ユニバーサル固さ測定)(S103b)、ヘリウム含有量分析(核変換ヘリウム量の測定)(S103c)、およびガンマ線等の放射線測定(例えばCo−60およびMn−54の放射線測定値)(S103d)等を行う。
【0027】
そして、評価工程(S104)では、劣化度測定工程(S103)で測定した各測定値と劣化診断用データベース7との照合により、評価対象部位の劣化度を評価する。
【0028】
すなわち、劣化診断用データベース7には、EPR値とIASCC感受性との関係データ、微小硬さと0.2%耐力、引張強さおよび破壊靭性値との関係データ、Co−60およびMn−54の放射線測定値に基づく中性子照射量の解析値データおよびヘリウム量ならびに溶接入熱と溶接割れとの関係データが保存されている。
【0029】
そして、この劣化診断用データベース7と、測定値入力手段8から入力されるEPR測定値、微小硬さ測定値、放射線測定値およびヘリウム含有量等の測定値が演算手段9に入力され、演算手段7では、測定値入力手段8からの入力値と劣化診断用データベース7のデータとの照合により、評価対象部位の劣化度が評価される。
【0030】
このように、本実施形態では、サンプリング方法決定工程で採取位置、採取寸法および採取個数を決定し、これに従い炉内機器よりサンプリングを行った後、続いてサンプリングした試験片を用いてEPR試験、微小硬さ測定、放射線測定およびHe量測定の全てあるいは一部が行われ、試験片の劣化度が評価される。この結果を直接用いるか、あるいは既存のデータベースと比較することにより対象となる炉内機器の劣化診断を行う。
【0031】
図4は、上述したEPR値とIASCC感受性の関係の例を示す説明図である。この図3に示すように、EPR値とIASCC感受性とは比例的な関係にあり、劣化診断用データベース7から得られる関係式あるいは関係を示す図に測定結果を適用することにより、試験片6を採取して試験片採取部のIASCC感受性が評価される。
【0032】
図5(a),(b)は、機械的性質評価の例として微小硬さ測定値と0.2%耐力との関係、および微小硬さ測定値と破壊靭性値との関係を示すグラフである。この図4(a),(b)に示すように、微小硬さ測定値と0.2%耐力とは比例的な関係にあり、また微小硬さ測定値と破壊靭性値とは2次曲線的に漸減する関係にある。このようなデータベースから得られる関係式あるいは関係を示す図に測定結果が適用され、試験片採取部の機械的性質が評価される。
【0033】
図6は、He量と溶接入熱をパラメータとした溶接可否の評価図である。この図5に示すように、He量と溶接入熱とは2次曲線的に漸減する関係にある。そこで、得られた評価対象部位のHe量と想定する溶接方法の入熱をプロットし、その点が溶接可能領域内に有れば溶接施工が可能と判定される。
【0034】
なお、本実施形態においては、サンプリング方法計算手段4としてコンピュータを適用するが、評価の一部あるいは全てを手作業で行うことも可能である。
【0035】
また、評価については、図1の劣化診断の例として示された方法の全て、あるいは一部の組合せにより行われる。そして、最後の得られた個々の結果を組合せて総合的な評価を行う。中性子照射量の増加に伴い、IASCC感受性は増加し、破壊靭性値は低下する。すなわち運転期間の増加にともないIASCCによる欠陥が拡大し、これに対し機器が許容できる欠陥寸法が低下することを示している。両者の結果から補修が必要と判定された場合は、その時点のHe量と中性子照射量から溶接補修の可否を評価する。
【0036】
以上のように、本実施形態のサンプリング方法決定システムは、サンプリング方法決定工程(S101)を実施する手段として、原子炉炉内機器における照射劣化診断の対象部位毎に、診断用試験としてのEPR測定、微小硬さ測定、ガンマ線計測およびヘリウム含有量分析について最低限必要とする試験片寸法に関するデータを保存する試験片寸法データベース1と、原子炉運転期間および対象部位毎の過去の評価結果に関するデータを保存する材料データベース2と、照射劣化診断の評価対象機器を特定するための入力手段3と、この入力手段3から入力される評価対象機器に対応する各データベースのデータとの照合に基づき最低限必要な評価対象機器のサンプル体積を求め、機器の機能上問題ないサンプル採取方法の計算を行ってサンプル寸法、サンプル個数およびサンプル採取位置情報を出力するサンプリング方法計算手段4とを備え、入力手段3への評価対象機器の入力に基づいて照射劣化診断の対象部位毎に適合するサンプリング方法を決定するものである。
【0037】
また、本実施形態の照射劣化診断システムは、EPR値とIASCC感受性との関係データ、微小硬さと0.2%耐力、引張強さおよび破壊靭性値との関係データ、Co−60およびMn−54の放射線測定値に基づく中性子照射量の解析値データおよびヘリウム量ならびに溶接入熱と溶接割れとの関係データを保存する劣化診断用データベース7と、EPR測定、微小硬さ測定、放射線測定およびヘリウム含有量の測定値を入力する測定値入力手段8と、この測定値入力手段8から入力される測定値と劣化診断用データベースの7データとを照合し、測定値に対応する評価演算を行う評価演算手段9とを備える。そして、上述したサンプリング方法決定システムにより決定されたサンプル個数およびサンプル採取位置に基づいて採取された試験片について、試験結果を測定値入力手段8に入力することにより、EPR測定によるIASCC感受性の評価、微小硬さ測定による機械的性質および破壊靭性値の評価、Co−60とMn−54の放射線測定による中性子照射量評価およびヘリウム量測定による溶接可能性の評価の全て、もしくは一部の組合せからなる劣化度の判定を行うものである。
【0038】
以上の実施形態によれば、実機炉内機器より必要最小限の試験片6を採取して材料試験を行うことができるので、被ばくの低減と高精度を兼ね備えた照射劣化診断システムを得ることができる。また、構造物の健全性を損なわずに試験に必要な最小限の試験片6を採取することができるので、被ばくを低減した照射劣化診断システムを得ることができる。
【0039】
また、実機炉内機器から採取した試験片を用いて、EPR試験、微小硬さ測定、放射線測定、He量測定等を行うため、IASCC感受性、機械的性質、中性子照射量および溶接可否の判定という複数の項目の劣化度を評価することができ、高精度で、かつ複合的な照射劣化診断システムを得ることができる。
【0040】
【発明の効果】
以上のように、本発明によれば、原子炉炉内機器の中性子照射を受けた材料を評価対象部位、運転期間、試験方法等に対応して、かつ構造材の機能を失わない最小限度の範囲で試験片としてサンプリングし、原子力プラントなどの炉内機器の健全性維持の面から機器の余寿命を実測値に基づいて評価することができ、原子力プラントの点検および対策を適切な時期に実施するために、現時点での機器の劣化の状態を正確に把握することができるという効果が奏される。
【図面の簡単な説明】
【図1】本発明の一実施形態による劣化診断方法を説明するための全体説明図。
【図2】本発明の一実施形態による劣化診断手順を示す工程図。
【図3】本発明の一実施形態によるサンプル採取方法の決定手順を示す工程図。
【図4】EPR値とIASCC感受性の関係を示すグラフ。
【図5】(a),(b)は微小硬さと機械的性質の関係を示すグラフ。
【図6】He量による溶接可否の評価例を示すグラフ。
【符号の説明】
1 試験片寸法データベース
2 材料データベース
3 入力手段
4 サンプリング方法計算手段
5 原子炉
6 試験片
7 劣化診断用データベース
8 測定値入力手段
9 演算手段
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention evaluates the remaining life of in-core equipment such as a nuclear power plant, and implements inspections and countermeasures at an appropriate time. The present invention relates to an irradiation deterioration diagnosis method and the same system.
[0002]
[Prior art]
In a nuclear power plant, material deterioration due to neutron irradiation accumulates with aging, and repair or replacement of in-furnace equipment may be required. In consideration of efficiency and cost, repairs and replacements should be performed before the furnace equipment is damaged, but if the repair / replacement time is set too safe, the cost merit may be impaired. Therefore, it is desired to develop a highly accurate evaluation method for repair / replacement time.
[0003]
Conventionally, a non-destructive diagnosis, such as a primary diagnosis for selecting a part to be inspected, a secondary diagnosis for predicting the progress of deterioration and a pre-service life, has been made as a complex diagnostic system for such reactor internal equipment 3 A technique for performing the following diagnosis has been proposed (for example, see Patent Document 1).
[0004]
However, in this conventional technique, since all the primary diagnoses are performed based on the database, a large amount of data is required to determine the target device. Further, the tertiary diagnosis based on the direct diagnosis is used for improving the accuracy of the secondary diagnostic device, but the secondary diagnosis is not used for determining the timing of performing the tertiary diagnosis. Further, this prior art does not disclose a specific sample collection site or a sample size when diagnosing a sample material.
[0005]
[Patent Document 1]
JP-A-11-23776
[Problems to be solved by the invention]
As a means for highly accurate evaluation of repair / replacement time in ordinary equipment, a method is known in which a test piece is collected from a site to be evaluated of the equipment and a material test is performed on the test piece. However, neutron-irradiated materials in nuclear reactor equipment are activated, so care must be taken in terms of exposure. Further, it is necessary to perform a test specimen to be sampled within a range that does not lose the function of the structural material.
[0007]
Therefore, in order to perform irradiation deterioration evaluation with high accuracy, it is desirable to perform deterioration diagnosis using a sampling material. However, from the viewpoint of reducing exposure and maintaining the function of a structure, it is desirable that a test piece to be sampled is small.
[0008]
The present invention has been made in view of such circumstances, and in order to maintain the integrity of in-core equipment such as a nuclear power plant, the remaining life of the equipment is evaluated, and inspection and countermeasures of the nuclear power plant are performed at an appropriate time. An object of the present invention is to provide a method and a system for diagnosing irradiation deterioration of equipment in a nuclear reactor, which can accurately grasp the state of deterioration of equipment at the present time.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 is sufficient for performing a deterioration evaluation based on an evaluation target site, a test method, and an operation history in equipment in a nuclear reactor, and has an effect on a function of an evaluation target. A sampling method determining step of determining a sampling position, a sampling size, and a sampling number for sampling a minimum test piece in a range not to be performed, a sampling step of sampling a test piece from the relevant part of the actual machine according to the determined sampling method, and Material testing by all or some combination of electrochemical reactivation (EPR) measurement (hereinafter referred to as "EPR measurement"), microhardness measurement, radiation measurement and helium content measurement using test specimens Deterioration degree measuring step of performing, evaluation of IASCC (environmental stress corrosion cracking) susceptibility by the EPR measurement, and measurement of the microhardness An evaluation step of evaluating all of the mechanical properties and fracture toughness values, the neutron irradiation amount evaluation by the radiation measurement, and the weldability evaluation by the helium amount measurement, or the deterioration degree evaluation of the evaluation target site composed of a combination of some of them And a method for diagnosing irradiation degradation of equipment in a nuclear reactor.
[0010]
In the invention according to claim 2, for each target part of the irradiation deterioration diagnosis in the reactor internal equipment, at least the EPR measurement, the microhardness measurement, the gamma ray measurement, and the helium content analysis as the diagnostic test are required. A test piece size database for storing data related to test piece dimensions, a material database for storing data relating to the reactor operation period and past evaluation results for each of the target parts, and an input for specifying a device to be evaluated for irradiation deterioration diagnosis Means, the minimum required sample volume of the device to be evaluated based on the comparison with the data of each database corresponding to the device to be evaluated input from the input means, to obtain a sample collection method that does not cause any problem in the function of the device. Sampling method calculation means for calculating and outputting sample size, number of samples, and sampling position information The equipped, to provide a sampling method determination system, characterized by determining compatible sampling method for each target site of irradiation degradation diagnosis based on the input of the evaluation device to the input means.
[0011]
According to the third aspect of the present invention, the relation data between the EPR value and the IASCC sensitivity, the relation data between the microhardness and the 0.2% proof stress, the tensile strength and the fracture toughness value, the radiation measurement values of Co-60 and Mn-54 A database for deterioration diagnosis that stores analytic data of neutron irradiation dose and helium content and data on the relationship between welding heat input and welding cracks based on the EPR measurement, microhardness measurement, radiation measurement and helium content measurement data A measurement value input means for inputting, and an evaluation calculation means for comparing a measurement value input from the measurement value input means with data of the deterioration diagnosis database and performing an evaluation calculation corresponding to the measurement value, Test results for test pieces taken based on the number of samples and the sampling position determined by the sampling method determination system according to Item 2. By inputting to the input means, evaluation of IASCC sensitivity by EPR measurement, evaluation of mechanical properties and fracture toughness value by microhardness measurement, evaluation of neutron irradiation dose by radiation measurement of Co-60 and Mn-54, and helium content Provided is a system for diagnosing irradiation deterioration of equipment in a nuclear reactor, characterized in that the degree of deterioration composed of all or a part of the evaluation of weldability by measurement is determined.
[0012]
According to the present invention, a step of determining a method of collecting a minimum sample in a range that is sufficient for performing deterioration evaluation and does not affect the function of the evaluation target, and performing a material test using the collected sample to determine the degree of deterioration. By providing the step of evaluating, a minimum necessary sample can be collected from the actual in-furnace equipment to perform a material test, so that exposure can be reduced and a highly accurate deterioration diagnosis can be performed. Then, in order to minimize the number of test pieces to be collected, the sampling position, the sampling size, and the final number are determined, and then sampling is performed. In addition, the deterioration is evaluated by performing the measurement specialized for the necessary material characteristic values using the sampling material.In this deterioration evaluation, not only the deterioration of the material but also the evaluation of the neutron irradiation amount by radiation measurement and the irradiation It also includes evaluation of weldability for repair by measuring helium generation. Therefore, it is possible to perform an evaluation including the possibility of performing welding by using the neutron irradiation amount as a parameter.
[0013]
In the step of determining the method of collecting the sample, the step of determining the sample volume that needs to be collected from the dimensions of the test piece used for each test item, and the step of determining the sample to be collected from the information on the device to be evaluated and the required sample volume By determining the dimensions, the number of samples, and the sampling position, it is possible to collect the minimum number of samples necessary for the test without deteriorating the soundness of the structure, so that exposure can be reduced.
[0014]
In the step of performing a material test to determine the degree of deterioration, evaluation of IASCC sensitivity by the EPR method, evaluation of mechanical properties and fracture toughness by microhardness measurement, neutron irradiation by radiation measurement of Co-60 and Mn-54 By performing all or part of the combination of the evaluation of the weldability and the evaluation of the weldability by measuring the amount of helium, the evaluation of the IASCC susceptibility by the EPR method, the evaluation of the mechanical properties and the fracture toughness value by the measurement of the microhardness, Co-60 Deterioration diagnosis can be performed by combining all or a part of neutron irradiation dose evaluation by radiation measurement of Mn-54 and helium content measurement, or all or part of welding possibility evaluation. Can be.
[0015]
In the step of evaluating IASCC sensitivity by the EPR method, EPR measurement is performed using a sample collected based on the system according to claim 2, and the result is compared with a database on the relationship between the EPR value and IASCC sensitivity. By evaluating the IASCC susceptibility of the test piece, the EPR test can be performed using a sample collected from the equipment in the actual furnace, so that the IASCC susceptibility can be accurately evaluated.
[0016]
In the step of evaluating the fracture toughness value by measuring the microhardness, the microhardness is measured using a sample collected based on the system according to claim 2, and the result is compared with the microhardness and 0.2% proof stress. By evaluating the mechanical properties of the sample against all or part of the database on the relationship between tensile strength and fracture toughness, the microhardness measurement can be performed using the sample taken from the actual furnace equipment. Therefore, the mechanical properties can be accurately evaluated.
[0017]
Further, in the step of evaluating the neutron irradiation dose by measuring the radiation of Co-60 and Mn-54, the radiation dose is measured using a sample collected based on the system according to claim 2, and the result is used as the neutron irradiation dose. Since the neutron irradiation dose of the test specimen is evaluated by collating it with the analysis value database, it is possible to perform radiation measurement using samples taken from the actual furnace equipment. Can be.
[0018]
Further, in the step of welding possibility evaluation by measuring the helium content, the helium content is measured using a sample collected based on the system according to claim 2, and the result is compared with the helium content and welding heat input and welding crack. Since the possibility of welding work at the site where the sample was sampled is evaluated by collating with the database regarding the relationship, the He amount can be measured using the sample collected from the equipment in the actual furnace, so that welding of the sample can be accurately performed. Applicability can be evaluated.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings. FIG. 1 is a process diagram schematically showing a method of diagnosing irradiation deterioration of equipment in a nuclear reactor, and FIG. 2 is a process diagram extracting and showing the processing contents of the same process.
[0020]
As shown in FIGS. 1 and 2, the method according to the present embodiment is roughly divided into a sampling method determining step (S101) for determining a sampling method to be sampled for evaluating the degree of deterioration, and a test piece based on the determined sampling method. Sampling step (S102), a material test is performed using the collected test pieces, and a deterioration measuring step (S103) for evaluating the degree of deterioration of the target portion from the obtained data is performed. Evaluation step (S104) of evaluating the degree of deterioration of the target portion.
[0021]
First, in the sampling method determination step (S101), a minimum value within a range that does not affect the function of the evaluation target is sufficient to perform the deterioration evaluation based on the evaluation target site, the test method, and the operation history in the equipment inside the reactor. Determine the sampling position, sampling size and number of samples to be sampled. That is, the minimum volume of the test piece required for each test for performing the deterioration evaluation is determined, and based on this volume, the information and operation history of the equipment to be evaluated, the material database and past evaluation results are applied. Then, a specific sampling position, size and number are determined. At this time, the number of samples may be included in the determination item because there may be a plurality of samples due to restrictions on the sampling position and work efficiency.
[0022]
FIG. 3 shows the procedure of this sampling method determination step in detail. As shown in FIG. 3, for each target part of the irradiation deterioration diagnosis in the reactor internal equipment, at least the EPR measurement, microhardness measurement, gamma ray measurement and helium content analysis as the diagnostic test are required. A test piece size database 1 for storing data on test piece size is applied.
[0023]
Then, a material database 2 for storing data relating to the reactor operation period and past evaluation results for each evaluation target portion, input means 3 for specifying an evaluation target device for irradiation deterioration diagnosis, and input from the input means 3 The minimum required sample volume of the device to be evaluated is determined based on the comparison with the data of the databases 1 and 2 corresponding to the device to be evaluated.
[0024]
Further, the sampling method calculating means 4 calculates a sampling method having no problem in the function of the device, and determines a sampling method suitable for each target part of the irradiation deterioration diagnosis with respect to the sample size and number, the sampling position, and the like. And output that information.
[0025]
Next, in the sampling step (S102), as shown in FIG. 1 and FIG. 2, according to the sample size, the number of samples, and the sampling position determined in the sampling method determination step (S101), the actual part of the reactor 5 is used. A test piece 6 is collected.
[0026]
In the deterioration degree measuring step (S103), the EPR value measurement (S103a), microhardness measurement (for example, nano-universal hardness measurement) (S103b), and the helium content of the test piece 6 collected in the sampling step (S102) Analysis (measurement of transmuted helium amount) (S103c), radiation measurement of gamma rays (for example, radiation measurement values of Co-60 and Mn-54) (S103d), and the like are performed.
[0027]
Then, in the evaluation step (S104), the degree of deterioration of the evaluation target portion is evaluated by collating the measured values measured in the degree of deterioration measurement step (S103) with the deterioration diagnosis database 7.
[0028]
That is, the deterioration diagnosis database 7 includes data on the relationship between the EPR value and the IASCC sensitivity, data on the relationship between microhardness and 0.2% proof stress, tensile strength and fracture toughness, and radiation of Co-60 and Mn-54. Analytical data of the neutron irradiation dose based on the measured values, helium content, and data on the relationship between welding heat input and welding cracks are stored.
[0029]
Then, the deterioration diagnosis database 7 and the measured values such as the EPR measurement value, the microhardness measurement value, the radiation measurement value, and the helium content input from the measurement value input means 8 are input to the calculation means 9, and the calculation means In 7, the degree of deterioration of the evaluation target portion is evaluated by comparing the input value from the measured value input means 8 with the data in the deterioration diagnosis database 7.
[0030]
As described above, in the present embodiment, the sampling position, the sampling size, and the number of samples are determined in the sampling method determination step, sampling is performed from the in-furnace equipment in accordance with the determination, and then the EPR test is performed using the sampled sample, All or part of the microhardness measurement, the radiation measurement, and the He amount measurement are performed, and the degree of deterioration of the test piece is evaluated. This result is used directly, or the deterioration diagnosis of the target in-furnace equipment is performed by comparing with the existing database.
[0031]
FIG. 4 is an explanatory diagram showing an example of the relationship between the EPR value and the IASCC sensitivity described above. As shown in FIG. 3, the EPR value and the IASCC sensitivity have a proportional relationship, and the test result 6 is applied to the diagram showing the relational expression or relation obtained from the deterioration diagnosis database 7 by using the measurement result. The specimens are collected and the IASCC sensitivity of the specimen collection section is evaluated.
[0032]
FIGS. 5A and 5B are graphs showing a relationship between a measured value of microhardness and a 0.2% proof stress and a relationship between a measured value of microhardness and a fracture toughness value as examples of mechanical property evaluation. is there. As shown in FIGS. 4A and 4B, the measured value of microhardness is proportional to the 0.2% proof stress, and the measured value of microhardness and the fracture toughness are quadratic curves. In a gradually decreasing relationship. The measurement result is applied to a relational expression or a diagram showing the relation obtained from such a database, and the mechanical properties of the test piece sampling unit are evaluated.
[0033]
FIG. 6 is an evaluation diagram of welding feasibility using He amount and welding heat input as parameters. As shown in FIG. 5, the relationship between the He amount and the welding heat input gradually decreases in a quadratic curve. Therefore, the obtained He amount of the evaluation target portion and the heat input of the assumed welding method are plotted, and if that point is within the weldable region, it is determined that welding can be performed.
[0034]
In the present embodiment, a computer is applied as the sampling method calculation means 4, but a part or all of the evaluation can be performed manually.
[0035]
The evaluation is performed by all or some of the methods shown as examples of the deterioration diagnosis in FIG. Then, an overall evaluation is performed by combining the individual results obtained at the end. As the neutron dose increases, the IASCC sensitivity increases and the fracture toughness decreases. That is, it indicates that the defects caused by the IASCC increase with an increase in the operation period, and the defect size that can be tolerated by the equipment decreases. If repair is determined to be necessary based on both results, the possibility of welding repair is evaluated based on the He amount and neutron irradiation amount at that time.
[0036]
As described above, the sampling method determination system according to the present embodiment includes, as means for performing the sampling method determination step (S101), EPR measurement as a diagnostic test for each irradiation degradation diagnosis target in the reactor internal equipment. Specimen size database 1 that stores the minimum required specimen size data for microhardness measurement, gamma ray measurement, and helium content analysis, and data on past evaluation results for each reactor operation period and target site. Material database 2 to be stored, input means 3 for specifying a device to be evaluated for irradiation deterioration diagnosis, and minimum required based on collation with data of each database corresponding to the device to be evaluated input from input device 3 Calculate the sample volume of the device to be evaluated, calculate the sample A sampling method calculating means for outputting pull dimensions, the number of samples, and sampling position information; and determining a sampling method suitable for each target part of the irradiation deterioration diagnosis based on the input of the evaluation target equipment to the input means. Things.
[0037]
In addition, the irradiation deterioration diagnosis system of the present embodiment includes relation data between EPR value and IASCC sensitivity, relation data between microhardness and 0.2% proof stress, tensile strength and fracture toughness, Co-60 and Mn-54. A deterioration diagnosis database 7 for storing analysis value data of neutron irradiation dose and helium content based on the measured values of radiation and relation data between welding heat input and welding cracking; EPR measurement, microhardness measurement, radiation measurement and helium content A measurement value input unit 8 for inputting a measured value of the amount, an evaluation operation for collating the measured value input from the measured value input unit 8 with seven data of the deterioration diagnosis database, and performing an evaluation operation corresponding to the measured value Means 9. Then, by inputting the test result to the measurement value input means 8 for the test piece taken based on the number of samples and the sample taking position determined by the above-described sampling method determination system, the evaluation of IASCC sensitivity by EPR measurement, Evaluation of mechanical properties and fracture toughness by microhardness measurement, evaluation of neutron irradiation dose by radiation measurement of Co-60 and Mn-54, and evaluation of weldability by helium content measurement This is to determine the degree of deterioration.
[0038]
According to the above-described embodiment, since a material test can be performed by sampling a minimum necessary number of test pieces 6 from the actual furnace equipment, it is possible to obtain an irradiation deterioration diagnosis system having both reduced exposure and high accuracy. it can. In addition, since a minimum number of test pieces 6 necessary for the test can be collected without deteriorating the soundness of the structure, an irradiation deterioration diagnosis system with reduced exposure can be obtained.
[0039]
In addition, EPR test, microhardness measurement, radiation measurement, He amount measurement, etc. are performed using test specimens collected from actual furnace equipment. The deterioration degree of a plurality of items can be evaluated, and a highly accurate and complex irradiation deterioration diagnosis system can be obtained.
[0040]
【The invention's effect】
As described above, according to the present invention, the neutron-irradiated material in the reactor equipment is evaluated in accordance with the site to be evaluated, the operation period, the test method, etc. Samples can be sampled within the range, and the remaining life of the equipment can be evaluated based on the measured values in order to maintain the soundness of in-core equipment such as a nuclear power plant. Therefore, there is an effect that the state of deterioration of the device at the present time can be accurately grasped.
[Brief description of the drawings]
FIG. 1 is an overall explanatory diagram for explaining a deterioration diagnosis method according to an embodiment of the present invention.
FIG. 2 is a process chart showing a deterioration diagnosis procedure according to an embodiment of the present invention.
FIG. 3 is a process chart showing a procedure for determining a sample collection method according to an embodiment of the present invention.
FIG. 4 is a graph showing the relationship between EPR values and IASCC sensitivity.
FIGS. 5A and 5B are graphs showing the relationship between microhardness and mechanical properties.
FIG. 6 is a graph showing an example of evaluation of welding possibility based on He amount.
[Explanation of symbols]
1 Specimen size database 2 Material database 3 Input means 4 Sampling method calculation means 5 Reactor 6 Specimen 7 Deterioration diagnosis database 8 Measured value input means 9 Calculation means

Claims (3)

原子炉炉内機器における評価対象部位、試験方法および運転履歴に基づいて劣化評価を行うために十分で、かつ評価対象の機能に影響しない範囲で最小の試験片を採取するための採取位置、採取寸法および採取個数を決定するサンプリング方法決定工程と、決定されたサンプリング方法に従って実機当該部より試験片を採取するサンプリング工程と、サンプリングした試験片を用いてEPR測定、微小硬さ測定、放射線測定およびヘリウム含有量測定の全てもしくは一部の組合せによる材料試験を行う劣化度測定工程と、前記EPR測定によるIASCC感受性の評価、前記微小硬さ測定による機械的性質および破壊靭性値の評価、前記放射線測定による中性子照射量評価および前記ヘリウム量測定による溶接可能性の評価の全て、もしくは一部の組合せからなる評価対象部位の劣化度評価を行う評価工程と、を備えることを特徴とする原子炉炉内機器の照射劣化診断方法。Sampling position and sampling location for sampling the smallest test specimen that is sufficient to perform deterioration evaluation based on the evaluation target site, test method, and operation history in the reactor internal equipment and that does not affect the function of the evaluation target A sampling method determining step of determining dimensions and the number of samples, a sampling step of collecting a test piece from the relevant part according to the determined sampling method, and EPR measurement, microhardness measurement, radiation measurement and Deterioration degree measurement step of performing material test by all or part of combination of helium content measurement, evaluation of IASCC susceptibility by EPR measurement, evaluation of mechanical properties and fracture toughness value by microhardness measurement, radiation measurement All of the neutron irradiation dose evaluation by and the evaluation of the weldability by the helium content measurement, or Irradiation degradation diagnosis method of the reactor furnace device, characterized in that it comprises an evaluation step for Quality Evaluation of the evaluation target part consisting of a combination of parts, the. 原子炉炉内機器における照射劣化診断の対象部位毎に、当該診断用試験としてのEPR測定、微小硬さ測定、ガンマ線計測およびヘリウム含有量分析について最低限必要とする試験片寸法に関するデータを保存する試験片寸法データベースと、原子炉運転期間および前記対象部位毎の過去の評価結果に関するデータを保存する材料データベースと、照射劣化診断の評価対象機器を特定するための入力手段と、この入力手段から入力される評価対象機器に対応する前記各データベースのデータとの照合に基づき最低限必要な前記評価対象機器のサンプル体積を求め、機器の機能上問題ないサンプル採取方法の計算を行ってサンプル寸法、サンプル個数およびサンプル採取位置情報を出力するサンプリング方法計算手段とを備え、前記入力手段への前記評価対象機器の入力に基づいて照射劣化診断の対象部位毎に適合するサンプリング方法を決定することを特徴とするサンプリング方法決定システム。For each target part of the irradiation deterioration diagnosis in the equipment inside the reactor, data on the minimum required test specimen dimensions for EPR measurement, microhardness measurement, gamma ray measurement and helium content analysis as the diagnostic test are stored. A test piece size database, a material database for storing data relating to the reactor operation period and past evaluation results for each of the target parts, input means for specifying an evaluation target device for irradiation deterioration diagnosis, and input from the input means The minimum required sample volume of the device to be evaluated is determined based on the comparison with the data of each database corresponding to the device to be evaluated, and the sample size and the sample are calculated by calculating the sample collection method that does not cause any problem in the function of the device. And a sampling method calculating means for outputting the number and sampling position information. Sampling method determination system, characterized by determining compatible sampling method for each target site of irradiation degradation diagnosis based on the input of the evaluation device. EPR値とIASCC感受性との関係データ、微小硬さと0.2%耐力、引張強さおよび破壊靭性値との関係データ、Co−60およびMn−54の放射線測定値に基づく中性子照射量の解析値データおよびヘリウム量ならびに溶接入熱と溶接割れとの関係データを保存する劣化診断用データベースと、EPR測定、微小硬さ測定、放射線測定およびヘリウム含有量の測定値を入力する測定値入力手段と、この測定値入力手段から入力される測定値と前記劣化診断用データベースのデータとを照合し、前記測定値に対応する評価演算を行う評価演算手段とを備え、請求項2記載のサンプリング方法決定システムにより決定されたサンプル個数およびサンプル採取位置に基づいて採取された試験片についての試験結果を前記入力手段に入力することにより、EPR測定によるIASCC感受性の評価、微小硬さ測定による機械的性質および破壊靭性値の評価、Co−60とMn−54の放射線測定による中性子照射量評価およびヘリウム量測定による溶接可能性の評価の全て、もしくは一部の組合せからなる劣化度の判定を行うことを特徴とする原子炉炉内機器の照射劣化診断システム。Relationship data between EPR value and IASCC sensitivity, relationship data between microhardness and 0.2% proof stress, tensile strength and fracture toughness value, analysis value of neutron dose based on radiation measurement values of Co-60 and Mn-54 A database for deterioration diagnosis that stores data and data relating to the amount of helium and welding heat input and welding cracks, and a measurement value input unit that inputs measurement values of EPR measurement, microhardness measurement, radiation measurement and helium content, 3. The sampling method determination system according to claim 2, further comprising: evaluation operation means for comparing a measured value input from the measured value input means with data of the deterioration diagnosis database and performing an evaluation operation corresponding to the measured value. The test result of the test piece sampled based on the sample number and the sample sampling position determined by the above is input to the input means. Evaluation of IASCC sensitivity by EPR measurement, evaluation of mechanical properties and fracture toughness value by microhardness measurement, evaluation of neutron irradiation dose by radiation measurement of Co-60 and Mn-54, and weldability by helium content measurement An irradiation deterioration diagnosis system for equipment in a nuclear reactor, wherein the deterioration degree is determined by a combination of all or some of the evaluations.
JP2003005107A 2003-01-10 2003-01-10 Reactor equipment sampling method determination system and irradiation deterioration diagnosis system Expired - Fee Related JP4006339B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003005107A JP4006339B2 (en) 2003-01-10 2003-01-10 Reactor equipment sampling method determination system and irradiation deterioration diagnosis system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003005107A JP4006339B2 (en) 2003-01-10 2003-01-10 Reactor equipment sampling method determination system and irradiation deterioration diagnosis system

Publications (2)

Publication Number Publication Date
JP2004219180A true JP2004219180A (en) 2004-08-05
JP4006339B2 JP4006339B2 (en) 2007-11-14

Family

ID=32895857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003005107A Expired - Fee Related JP4006339B2 (en) 2003-01-10 2003-01-10 Reactor equipment sampling method determination system and irradiation deterioration diagnosis system

Country Status (1)

Country Link
JP (1) JP4006339B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118904A (en) * 2004-10-20 2006-05-11 Hitachi Ltd Radiation damage measuring device
JP2007178157A (en) * 2005-12-27 2007-07-12 Toshiba Corp Method for preventive maintenance of structure in nuclear power plant
WO2015198708A1 (en) * 2014-06-24 2015-12-30 日立Geニュークリア・エナジー株式会社 Comprehensive information management system
CN111398710A (en) * 2020-03-20 2020-07-10 中核核电运行管理有限公司 Method for evaluating residual appraisal life of electrical instrument equipment of nuclear power station
JP7512073B2 (en) 2020-04-28 2024-07-08 株式会社東芝 System and method for evaluating and analyzing soundness

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103850483B (en) * 2013-04-02 2016-07-13 中国核电工程有限公司 A kind of nuclear power plant main building group's method for arranging

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006118904A (en) * 2004-10-20 2006-05-11 Hitachi Ltd Radiation damage measuring device
JP2007178157A (en) * 2005-12-27 2007-07-12 Toshiba Corp Method for preventive maintenance of structure in nuclear power plant
WO2015198708A1 (en) * 2014-06-24 2015-12-30 日立Geニュークリア・エナジー株式会社 Comprehensive information management system
CN111398710A (en) * 2020-03-20 2020-07-10 中核核电运行管理有限公司 Method for evaluating residual appraisal life of electrical instrument equipment of nuclear power station
CN111398710B (en) * 2020-03-20 2022-06-28 中核核电运行管理有限公司 Evaluation method for residual appraisal life of electrical instrument equipment of nuclear power station
JP7512073B2 (en) 2020-04-28 2024-07-08 株式会社東芝 System and method for evaluating and analyzing soundness

Also Published As

Publication number Publication date
JP4006339B2 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
JP4006339B2 (en) Reactor equipment sampling method determination system and irradiation deterioration diagnosis system
Foucher et al. New tools in CIVA for model assisted probability of detection (MAPOD) to support NDE reliability studies
JPH1123776A (en) Combined diagnostic system for reactor equipment
Jenson et al. A Bayesian approach for the determination of POD curves from empirical data merged with simulation results
KR101131996B1 (en) An Eddy Current Examination Method for the Outside Diameter Axial Cracks in Steam Generator Tubes Using Motorized Rotating Pancake Coil
Müller et al. Progress in Evaluating the Reliability of NDE. Systems–Paradigm Shift
JP2003065921A (en) Method for evaluating integrity in structure material, and program
Lardner et al. An expert-systems approach to automatically determining flaw depth within Candu pressure tubes
KR101708793B1 (en) Program for psi/isi monitoring
PI et al. Integrated Research Program Overview on the “Innovative Approaches to Marine Atmospheric Stress Corrosion Cracking Inspection, Evaluation And Modeling in Used-Fuel Dry Storage Canisters”
JP2002148383A (en) Diagnosis apparatus and system for deterioration by irradiation
Montgomery et al. Post-irradiation examinations of high burnup PWR rods
Billone et al. Used fuel disposition campaign phase I ring compression testing of high-burnup cladding
Thorpe Investigating and Characterizing Electrical Resistivity Variations Caused by Heat Treatment in Zr2. 5% Nb Pressure Tubes
Parker et al. NASA NDE Fracture Critical Detectable Flaw Sizes History and Methodology
Mohanty et al. Tensile behavior of 82/182 filler, butter and heat-affected-zones in a 508 LAS-316 SS dissimilar weld: tensile test, material model and finite element model validation
Hovey et al. The Test Plan for the Next Air Force NDI Capability and Reliability Assessment Program
JP2003028978A (en) Method and program for determining inspection timing for in-vessel structure
Ellingwood et al. Reliability-based condition assessment of steel containment and liners
Bato et al. Implementation of a robust methodology to obtain the probability of detection (POD) curves in NDT: Integration of human and ergonomic factors
JP2005345421A (en) Defect tolerance evaluation method for structure within reactor
Kobayoshi et al. Automated thickness measurement system for nuclear fuel plates: A metrological study
Niederleithinger et al. Digital tools for cemented waste package and facility monitoring and prediction
Zhang 1. General and reviews
Kim YeongSic et al. Development of statistical software for the Korean Laboratory Accreditation Program using R language: LaboStats.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070515

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070717

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070827

R151 Written notification of patent or utility model registration

Ref document number: 4006339

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees