[go: up one dir, main page]

JP2004214415A - Pattern plotting method and device - Google Patents

Pattern plotting method and device Download PDF

Info

Publication number
JP2004214415A
JP2004214415A JP2002382390A JP2002382390A JP2004214415A JP 2004214415 A JP2004214415 A JP 2004214415A JP 2002382390 A JP2002382390 A JP 2002382390A JP 2002382390 A JP2002382390 A JP 2002382390A JP 2004214415 A JP2004214415 A JP 2004214415A
Authority
JP
Japan
Prior art keywords
substrate
pattern
back surface
distribution
held
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002382390A
Other languages
Japanese (ja)
Other versions
JP4005910B2 (en
Inventor
Ryoichi Hirano
亮一 平野
Yuichi Tachikawa
雄一 立川
Soichiro Mitsui
壮一郎 三井
Munehiro Ogasawara
宗博 小笠原
Toru Tojo
徹 東條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002382390A priority Critical patent/JP4005910B2/en
Publication of JP2004214415A publication Critical patent/JP2004214415A/en
Application granted granted Critical
Publication of JP4005910B2 publication Critical patent/JP4005910B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Electron Beam Exposure (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve pattern transferring precision using a stepper by performing plotting added with the position deviation of a pattern formation face when the back face of a substrate is adhered to a predetermined standard face. <P>SOLUTION: This pattern plotting method for plotting a desired pattern on a substrate to be plotted held by a substrate holding part by an energy beam is provided to measure the distribution of the height position of a back face opposite to the face where the pattern of a substrate 11 is formed in a status that the substrate 11 is held by a substrate holding part 12, to calculate the position deviation value of the face where the pattern is formed generated in a status that the back face of the substrate 11 is corrected to a flat face based on the measured distribution of the height position, and to correct the pattern plotting position at the time of plotting the pattern based on the calculated position deviation value. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、半導体集積回路やその他の微細な素子パターンを半導体ウェハやマスク等の基板上に形成するためのパターン描画方法及び描画装置に関する。
【0002】
【従来の技術】
近年、半導体ウェハ上にLSIのパターンを形成するために、ガラス基板上にCrのパターンを形成した露光用マスクを用い、このマスクのパターンをウェハ上に順次転写する、いわゆるステッパ(転写装置)が広く用いられている。ステッパの縮小率は5分の1程度であり、光の波長限界から1μm以下のパターンは解像できないと言われてきたが、光学系・照明系の改良や位相シフトマスク等の出現により、サブミクロンのパターンを解像するに至っている。更に、50ナノメートル線幅レベルのパターン形成のために、光源として更に短波長の光を用いるEUV(Extreme Ultra Violet)露光技術の開発が進められている。
【0003】
ステッパにおいては、マスク表面とウェハ表面において結像関係を保つ必要がある。パターンの微細化に伴いレンズの焦点深度は1μm程度と極めて浅くなり、マスクを構成するガラス基板の平面度を良好に保つ必要がある。EUV露光においては、露光光が基板面に対し7度傾斜入射する構成であるため、1μmの平坦度でも水平方向のずれが1μm×2×tan7°=250nmとなり、非常に大きな誤差が生じることになる。従って、基板の平面度を更に向上させる必要がある。
【0004】
基板の平坦度は研磨により仕上げられているが、現状では2〜0.5μm程度の凹凸が存在する。そこで、パターン転写時には基板を真空チャック等により平坦面に吸着させることにより、基板平坦度を向上させる方法が採用されている。
【0005】
一方、ステッパに用いるマスクは、集束した電子或いはレーザ等を光源としたパターン描画装置により、ガラス基板上に被着したCrにパターンを描画することにより形成される。電子ビームなどを用いたパターン描画装置においては、高精度のパターン位置精度を実現するために、
(1) 装置にマスクを搭載する際の保持力に起因するマスクの変形を、3点で支持することにより排除し、自重による変位は材料力学的に予め求めておき補正する方法(特許文献1参照)。
【0006】
(2) マスクが支持点上に載置された状態でマスク表面の基準面に対する高さ分布のデータを取得し、マスクが弾性変形を受けた際の変形量を求めておき補正する方法(特許文献2参照)。
【0007】
等が提案されている。
【0008】
しかしながら、上記の方法においては次のような問題があった。マスク上のパターンをウェハ上に転写する際、マスクはステッパ内に保持されるが、先に述べたように、パターンが形成されている面を高い平坦度に保つため、静電力や真空力などを利用して、高精度の平坦度に仕上げられたチャックに裏面を吸着させる方法が採られる。
【0009】
このとき、(1) の方法によりパターンを描画した場合には、マスクに矯正力が働かない状態において良好なパターン位置精度が得られるので、マスクの裏面をチャックした際にはマスクの裏面形状に起因してパターンのシフトが生じてしまう。また、(2) の方法によりパターンを描画した場合には、パターンを形成する面が平坦になるように矯正された状態においては良好なパターン位置精度が得られる。しかし、マスクの面形状は表と裏では各々独立に決まるため、マスクの裏面をチャックすることにより裏面が平坦に矯正された状態でパターンを形成する面も平坦になるわけではなく、従って表面と裏面の形状差によりパターン位置誤差が生じてしまう。
【0010】
【特許文献1】
特開平8−250394号公報
【0011】
【特許文献2】
特公平3−52210号公報
【0012】
【発明が解決しようとする課題】
このように従来、パターン描画装置でパターンが形成されたマスクをステッパに搭載してウェハ上にパターンを転写する際、マスクのパターン形成面の位置ずれにより転写精度が低下する問題があった。
【0013】
本発明は、上記事情を考慮して成されたもので、その目的とするところは、被描画基板の裏面が所定の基準面に密着されたときのパターン形成面の位置ずれを加味したパターン描画を行うことができ、ステッパ等を用いたパターン転写精度の向上に寄与し得るパターン描画方法及び描画装置を提供することにある。
【0014】
【課題を解決するための手段】
(構成)
上記課題を解決するために本発明は、次のような構成を採用している。
【0015】
即ち本発明は、基板保持部に保持された被描画基板に対して、エネルギービームにより所望パターンを描画するパターン描画方法であって、前記基板を前記基板保持部に保持した状態で、前記基板のパターンを形成する面と対向する裏面の高さ位置の分布を測定し、測定された高さ位置の分布を基に、前記基板の裏面が任意の曲面又は平面に矯正された状態で生じる、前記パターンを形成する面の位置ずれ量を計算し、計算された位置ずれ量に基づき前記パターンを描画する際のパターン描画位置を補正することを特徴とする。
【0016】
また本発明は、基板保持部に保持された被描画基板に対して、エネルギービームにより所望パターンを描画するパターン描画方法であって、前記基板を前記基板保持部に保持する前に、前記基板を該基板のパターンを形成する面と対向する裏面が重力の働く方向軸を含むように保持した状態で、裏面の凹凸分布を測定しておき、この測定結果に基づき、前記基板が前記基板保持部に保持された状態における裏面の高さ位置の分布を計算し、計算された高さ位置の分布を基に、前記基板の裏面が任意の曲面又は平面に矯正された状態で生じる、前記パターンを形成する面の位置ずれ量を計算し、計算された位置ずれ量に基づき前記パターンを描画する際のパターン描画位置を補正することを特徴とする。
【0017】
また本発明は、上記方法を実施するためのパターン描画装置において、被描画基板にエネルギービームの照射により半導体装置の回路パターンを描画する手段と、前記基板を保持する手段と、前記基板のパターンを形成する面と対向する裏面の高さ位置の分布を測定する手段と、前記測定された高さ位置の分布を基に、前記基板の裏面が任意の曲面又は平面に矯正された状態で生じる、前記パターンを形成する面の位置ずれ量を計算する手段と、前記計算された位置ずれ量に基づきパターン描画位置を補正する手段とを具備してなることを特徴とする。
【0018】
ここで、本発明の望ましい実施態様としては次のものが挙げられる。
【0019】
(1) エネルギービームは、電子ビーム又はレーザビームであること。
【0020】
(2) 被描画基板の裏面の高さ位置を測定するために、基板裏面に対し斜め方向から光を照射し、基板裏面からの反射光を2分割検出器等の位置センサで検出すること。
【0021】
(3) 基板保持部は、被描画基板を3点支持により保持するものであること。
【0022】
(4) 基板裏面の高さ位置の分布を計算するために、基板裏面の凹凸分布の測定結果と基板の自重による撓みを算出した結果とを加えること。
【0023】
(作用)
基板を平坦な面に密着させた前後の基板表面の位置変動を考える。図5(a)に示すように、基板が上側に凸に湾曲していると、基板裏面を平坦な面に密着させることにより、基板表面には圧縮歪みが発生する。これがパターン位置ずれとなる。また、基板に湾曲がない場合であっても、基板の厚さが均一でなく基板裏面に凹凸を有する場合、図5(b)に示すように、基板裏面を平坦な面に密着させると、基板表面には基板裏面の形状及び基板の厚さ分布を反映した凹凸が生じ、基板表面に位置ずれが発生する。また、基板裏面が下側に凸に湾曲している場合、基板裏面を平坦な面に密着させると、基板の表面には引っ張り歪みが発生する。これがパターン位置ずれとなる。
【0024】
このように、基板の裏面を全面に渡って平坦に形成することは極めて困難であり、基板裏面には少なからず高さ位置の分布が生じる。このため、基板の裏面を平坦な面に密着させると、基板表面には基板裏面の形状を反映した凹凸や歪みが発生し、これがパターン位置ずれの要因となる。本発明は、これを予め考慮してパターン描画の際に上記位置ずれに伴う補正を加えるものである。
【0025】
即ち、被描画基板を基板保持部に保持した状態における基板裏面の高さ位置の分布を予め求めておけば、基板裏面を平坦な面に密着した状態において基板表面に如何なる歪みが加わるか判断することができ、基板表面の水平方向の位置ずれを算出することができる。そして、この位置ずれの分だけパターン描画の際に補正しておけば、基板裏面が平坦な面に密着された状態において基板表面に本来のパターンが形成されていることになる。
【0026】
従って、被描画基板としてマスクを用いた場合、マスクにパターンを描画する際に、マスクをステッパに搭載して用いる際に位置ずれのないパターンとなるように補正することができる。これにより、ステッパによるパターン転写精度の向上に寄与し得るマスクを実現することが可能となる。
【0027】
【発明の実施の形態】
以下、本発明の詳細を図示の実施形態によって説明する。
【0028】
(第1の実施形態)
図1は、本発明の第1の実施形態に係わる電子ビーム描画装置を示す概略構成図である。
【0029】
真空保持される描画室10上に、電子銃,各種偏向系及び各種レンズ等を備えた電子光学鏡筒20が設置されている。電子光学鏡筒20は描画制御回路21により制御され、後述する被描画基板11の表面に電子ビームを照射して所望のパターンを描画するものである。描画室10内には、露光用マスクとなる被描画基板11を保持するためのステージ12が収容されている。ステージ12による基板11の保持は、基板11を下側から支えるバネ機構13と、基板11の表面に当接して基板表面の高さ位置を規定するガイド14によって行われる。この基板11の保持は、図2に示すように例えば3点支持となっている。
【0030】
ステージ12は、前記描画制御回路21の制御の下にモータ15により水平方向(X,Y方向)に移動可能となっている。また、基板11の裏面の高さ位置(凹凸)を測定するための高さ測定器が設けられている。この測定器は、基板11の裏面に対して斜め方向から光を照射する照射系17と、基板11の裏面からの反射光を2分割検出器等で検出する検出系18から構成され、検出出力を信号処理することにより基板裏面の高さ位置を測定できるようになっている。そして、モータ15によりステージ12をX方向及びY方向に逐次移動することにより、基板11の裏面全体の高さ分布を測定することができる。
【0031】
測定器で得られた高さ分布h(x,y)(x,yは測定座標)は演算回路22に供給される。そして、演算回路22の演算結果が描画制御回路21に供給され、電子光学鏡筒20によるパターン描画位置が補正されるものとなっている。
【0032】
次に、上記の装置を用いたパターン描画方法を説明する。
【0033】
まず、被描画基板11をステージ12上に保持する。この保持は、先に説明したようにバネ機構13及びガイド14を用いた3点支持である。なお、この基板11は最終的に露光用マスクとなるものであり、例えばガラス基板上の全面にCr膜が形成され、その上にレジストが塗布されたものである。また、基板11の厚さ分布は、基板データとして与えられており、予め分かっているものとする。基板11の厚さ分布が分かっていない場合は、描画の前工程として、マイクロメータなどの接触型計測器或いは光学原理等に基づく非接触型変位計を用いて表面と裏面の間隔を測定することにより、基板11の厚さ分布を測定する。
【0034】
次いで、測定器により基板11の裏面の高さ位置を測定すると共に、ステージ12をX,Y方向に移動することにより裏面の高さ分布を測定する。測定された高さ分布と基板11の厚さ分布を基に演算回路22により補正量を算出する。即ち、基板11の高さ分布と厚さ分布を基に、基板11がパターン描画装置のステージ12上に保持された状態から、基板11の裏面が平坦にチャックされた場合に、基板11のパターン描画面が水平方向にどれだけ変位するかを計算し、この変位量によってパターン描画位置の補正量を算出する。そして、描画制御回路21によりパターン描画位置を補正してパターン描画を行う。
【0035】
このパターン描画により、前記レジストにLSIパターンが描画された後に、レジストを現像してレジストパターンを形成し、このレジストパターンをマスクにCr膜を選択エッチングすることによりCr膜にLSIパターンが形成されることになる。そして、このように形成された露光用マスクをステッパに搭載し、裏面を真空チャック等により平坦な面に吸着された状態でマスクパターンの転写を行うことになる。なお、ステッパにおけるマスクパターンの転写方式は、反射型であっても良いし透過型であっても良い。マスクの裏面側にチャック部材等が存在し、これらが影になるおそれがある場合は、反射型の方が望ましい。
【0036】
このように本実施形態によれば、ステージ12上に保持された基板11に対して基板裏面の高さ分布を測定し、この基板11がステッパに搭載されて裏面が平坦に保持された場合における基板表面の位置ずれを算出し、この算出結果を基に基板11がステッパに搭載された状態で最適パターンとなるように描画が行われる。従って、ステッパに基板11の裏面が平坦に保持された際に高精度のパターン位置精度を実現することが可能となり、パターン転写精度の向上をはかることができる。
【0037】
(第2の実施形態)
図3は、本発明の第2の実施形態に係わる電子ビーム描画装置を示す概略構成図である。なお、図1と同一部分には同一符号を付して、その詳しい説明は省略する。
【0038】
この装置は、図1の装置から高さ測定器を省略し、基板裏面の高さ分布を測定する代わりに、計算によって高さ分布を求めるものである。本実施形態においては、露光用マスクとなる被描画基板11をステージ12上に搭載する前に、予め描画時の補正量を計算により求める。
【0039】
まず、図4に示すように、基板11をパターン描画面及びそれに対向する裏面が重力軸方向を含むように(垂直に)設置する。基板11の裏面は、オプティカルフラット(高精度に平坦度・平行度を仕上げたガラスプレート:プレーンパラレル)41と近接して配置され、波面が制御された照明光源42によりハーフミラー43を介して照明される。基板11とプレーンパラレル41が近接して設置されているため、観察光学系44により基板11の平坦度に応じて干渉縞が観測される。縞の形状を信号処理回路45にて画像処理することにより、マスク裏面の凹凸(平坦度)を精密に測定することができる。そして、この測定結果から、マスク裏面を平坦面にチャックした場合におけるマスク表面(パターン描画面)の変位量を計算することができる。
【0040】
次に、同じ基板11を描画室10内に収容されたステージ12上に載置する。このとき、基板11は3点で支持されるため、基板11はその自重により変形する。しかし、この変形量は材料力学に基づき基板材質,支持点位置,基板寸法等により一意的に決まるので、予め自重撓みによる変形量を求めることができる。そして、この変形量を基にマスクの自重撓みによるパターン描画面の変位量を計算することができる。
【0041】
従って、描画に際して演算回路22に自重撓みによる変位量と、マスク裏面の測定結果に基づく変位量を入力しておくことにより、パターン描画位置の補正量を算出することができる。そして、この補正量を基に電子光学鏡筒20によりパターン描画位置を補正してパターン描画を行うことにより、パターン転写装置に基板11の裏面が平坦に保持された際に高精度のパターン位置精度を実現することができる。
【0042】
パターン描画位置の補正量の算出は、次のようにして行うことも可能である。基板11の自重による撓みは予め計算できることから、基板自重による基板裏面の変形量も計算することができる。従って、先に測定した基板裏面の凹凸と自重撓みによる基板裏面の変形量とを加えることにより、基板11をステージ12上に搭載した状態における基板11の裏面の高さ分布を計算することができる。基板裏面の高さ分布が解れば、第1の実施形態と同様に、基板11の裏面が平坦にチャックされた場合に、基板11のパターン描画面が水平方向にどれだけ変位するかを計算することができ、この変位量によってパターン描画位置の補正量を算出することができる。
【0043】
このように本実施形態においても、先の第1の実施形態と同様に、基板11の裏面が平坦に保持された際に高精度のパターン位置精度となるようにLSIパターンを描画することが可能となり、ステッパによるパターン転写精度の向上をはかることができる。そしてこの場合、補正計算のための演算回路22を設けるのみで実現することができ、描画装置に高さ測定器を設ける必要がないことから、描画装置として従来装置をそのまま使用できる利点がある。
【0044】
(変形例)
なお、本発明は上述した各実施形態に限定されるものではない。実施形態では、パターンを描画するために電子ビームを用いたが、電子ビームの代わりにイオンビームやレーザビーム等を用いることもできる。
【0045】
また、被描画基板は必ずしも露光用マスクに限るものではなく、半導体ウェハであっても良い。半導体ウェハには複数のパターンが転写されるが、精度とスループットの両方を達成するために、微細パターンを電子ビームで描画し、その他のパターンをステッパで転写する方法がある。このように、半導体ウェハ上に、電子ビーム描画装置によるパターンの描画とステッパによるパターン転写とを組み合わせてLSIパターンを形成する場合に、本発明を有効に適用することが可能である。
【0046】
また、実施形態においては、被描画基板をステッパに搭載する際に基板裏面を平坦面に密着させることを前提に説明したが、基板搭載面は必ずしも平坦面に限るものではなく、曲面であっても本発明を同様に適用可能である。また、基板の裏面の高さを測定する手段としては、斜入射照明によるものに限らず、基板裏面に垂直方向からレーザ光を照射して基板裏面までの距離を測長するレーザ干渉計を用いることができる。更には、基板裏面と非接触で測定可能な測定器であれば用いることが可能である。
【0047】
その他、本発明の要旨を逸脱しない範囲で、種々変形して実施することができる。
【0048】
【発明の効果】
以上詳述したように本発明によれば、被描画基板の裏面が所定の基準面に密着されたときのパターン形成面の位置ずれを加味したパターン描画を行うことができ、ステッパ等を用いたパターン転写精度の向上に寄与することができる。
【図面の簡単な説明】
【図1】第1の実施形態に係わる電子ビーム描画装置を示す概略構成図。
【図2】第1の実施形態において、マスクをステージ上に3点支持する様子を示す図。
【図3】第2の実施形態に係わる電子ビーム描画装置を示す概略構成図。
【図4】第2の実施形態において、マスクの裏面の平坦度を測定する様子を示す図。
【図5】マスクの裏面を平坦な面に密着した際に生じるマスク表面の位置ずれの様子を示す図。
【符号の説明】
10…描画室
11…被描画基板
12…ステージ
13…バネ機構
14…ガイド
15…モータ
17…照射系
18…検出系
20…電子光学鏡筒
21…描画制御回路
22…演算回路
41…オプティカルフラット
42…照明光源
43…ハーフミラー
44…観察光学系
45…信号処理回路
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a pattern drawing method and a drawing apparatus for forming a semiconductor integrated circuit and other fine element patterns on a substrate such as a semiconductor wafer or a mask.
[0002]
[Prior art]
In recent years, in order to form an LSI pattern on a semiconductor wafer, a so-called stepper (transfer device) that uses an exposure mask in which a Cr pattern is formed on a glass substrate and sequentially transfers the pattern of the mask onto the wafer. Widely used. The reduction ratio of the stepper is about 1/5, and it has been said that the pattern of 1 μm or less cannot be resolved due to the limit of the wavelength of light. Micron patterns have been resolved. Furthermore, in order to form a pattern with a line width of 50 nanometers, development of an EUV (Extreme Ultra Violet) exposure technology using light having a shorter wavelength as a light source has been advanced.
[0003]
In a stepper, it is necessary to maintain an imaging relationship between the mask surface and the wafer surface. As the pattern becomes finer, the depth of focus of the lens becomes extremely shallow, about 1 μm, and it is necessary to maintain good flatness of the glass substrate constituting the mask. In EUV exposure, the exposure light is inclined at 7 degrees with respect to the substrate surface. Therefore, even with a flatness of 1 μm, the horizontal shift is 1 μm × 2 × tan7 ° = 250 nm, which causes a very large error. Become. Therefore, it is necessary to further improve the flatness of the substrate.
[0004]
The flatness of the substrate is finished by polishing, but at present there are irregularities of about 2 to 0.5 μm. Therefore, a method of improving the flatness of the substrate by adsorbing the substrate on a flat surface with a vacuum chuck or the like during pattern transfer has been adopted.
[0005]
On the other hand, a mask used for a stepper is formed by drawing a pattern on Cr deposited on a glass substrate by a pattern drawing apparatus using a focused electron or laser as a light source. In a pattern drawing apparatus using an electron beam or the like, in order to achieve high-precision pattern position accuracy,
(1) A method of eliminating deformation of a mask caused by holding force when the mask is mounted on an apparatus by supporting the mask at three points, and correcting a displacement due to its own weight in advance in terms of material dynamics (Patent Document 1) reference).
[0006]
(2) A method of acquiring height distribution data of a mask surface with respect to a reference surface in a state where the mask is mounted on a support point, obtaining a deformation amount when the mask is elastically deformed, and correcting the data (Patent Reference 2).
[0007]
Etc. have been proposed.
[0008]
However, the above method has the following problems. When transferring the pattern on the mask onto the wafer, the mask is held in a stepper, but as mentioned earlier, electrostatic forces and vacuum forces are used to keep the surface on which the pattern is formed at a high flatness. Utilizing the method, a method is employed in which the back surface is attracted to a chuck finished to high precision flatness.
[0009]
At this time, when the pattern is drawn by the method (1), a good pattern position accuracy can be obtained in a state where the correcting force does not act on the mask. This causes a pattern shift. Further, when the pattern is drawn by the method (2), good pattern position accuracy can be obtained in a state where the surface on which the pattern is formed is corrected to be flat. However, since the surface shape of the mask is determined independently for the front and the back, chucking the back surface of the mask does not make the surface on which the pattern is formed in a state where the back surface is corrected to be flat, and therefore the front surface and the back surface are flattened. A pattern position error occurs due to a difference in shape of the back surface.
[0010]
[Patent Document 1]
JP-A-8-250394
[Patent Document 2]
Japanese Patent Publication No. 3-52210
[Problems to be solved by the invention]
As described above, conventionally, when a mask on which a pattern is formed by a pattern drawing apparatus is mounted on a stepper and a pattern is transferred onto a wafer, there has been a problem that transfer accuracy is reduced due to a positional shift of a pattern forming surface of the mask.
[0013]
The present invention has been made in consideration of the above circumstances, and an object thereof is to perform pattern drawing in consideration of a positional shift of a pattern forming surface when a back surface of a substrate to be drawn is brought into close contact with a predetermined reference surface. To provide a pattern drawing method and a drawing apparatus which can contribute to improvement of pattern transfer accuracy using a stepper or the like.
[0014]
[Means for Solving the Problems]
(Constitution)
In order to solve the above problems, the present invention employs the following configuration.
[0015]
That is, the present invention is a pattern drawing method for drawing a desired pattern by an energy beam on a substrate to be drawn held by a substrate holding unit, wherein the substrate is held by the substrate holding unit, Measure the distribution of the height position of the back surface opposite to the surface forming the pattern, based on the distribution of the measured height position, the back surface of the substrate occurs in a state corrected to an arbitrary curved surface or flat surface, The method is characterized in that a position shift amount of a surface on which a pattern is formed is calculated, and a pattern drawing position when drawing the pattern is corrected based on the calculated position shift amount.
[0016]
Further, the present invention is a pattern drawing method for drawing a desired pattern with an energy beam on a substrate to be drawn held by a substrate holding unit, wherein the substrate is held by the substrate holding unit before the substrate is held by the substrate holding unit. In a state where the back surface opposite to the surface on which the pattern of the substrate is formed is held so as to include the direction axis in which gravity acts, the unevenness distribution of the back surface is measured, and based on the measurement result, the substrate is mounted on the substrate holding unit. Calculate the distribution of the height position of the back surface in the state held in, based on the calculated distribution of the height position, the pattern generated in a state where the back surface of the substrate is corrected to an arbitrary curved surface or flat surface, the pattern The method is characterized in that a position shift amount of a surface to be formed is calculated, and a pattern drawing position when drawing the pattern is corrected based on the calculated position shift amount.
[0017]
The present invention also provides a pattern writing apparatus for performing the above method, wherein a means for writing a circuit pattern of a semiconductor device by irradiating a substrate to be drawn with an energy beam, a means for holding the substrate, and a pattern on the substrate. Means for measuring the distribution of the height position of the back surface facing the surface to be formed, based on the distribution of the measured height position, occurs in a state where the back surface of the substrate is corrected to any curved surface or flat surface, It is characterized by comprising means for calculating the amount of positional shift of the surface on which the pattern is formed, and means for correcting the pattern drawing position based on the calculated amount of positional shift.
[0018]
Here, preferred embodiments of the present invention include the following.
[0019]
(1) The energy beam must be an electron beam or a laser beam.
[0020]
(2) In order to measure the height position of the back surface of the substrate to be drawn, light is applied to the back surface of the substrate from an oblique direction, and the reflected light from the back surface of the substrate is detected by a position sensor such as a two-division detector.
[0021]
(3) The substrate holding unit holds the substrate to be drawn by three-point support.
[0022]
(4) To calculate the distribution of the height position on the back surface of the substrate, add the measurement result of the unevenness distribution on the back surface of the substrate and the calculation result of the deflection due to the weight of the substrate.
[0023]
(Action)
Consider the positional fluctuation of the substrate surface before and after the substrate is brought into close contact with a flat surface. As shown in FIG. 5A, when the substrate is curved convexly upward, compressive strain is generated on the surface of the substrate by bringing the back surface of the substrate into close contact with a flat surface. This results in pattern displacement. In addition, even when the substrate has no curvature, when the thickness of the substrate is not uniform and has irregularities on the back surface of the substrate, as shown in FIG. Irregularities are formed on the surface of the substrate reflecting the shape of the back surface of the substrate and the thickness distribution of the substrate, resulting in displacement of the surface of the substrate. When the back surface of the substrate is curved convexly downward, if the back surface of the substrate is brought into close contact with a flat surface, tensile strain is generated on the surface of the substrate. This results in pattern displacement.
[0024]
As described above, it is extremely difficult to form the rear surface of the substrate to be flat over the entire surface, and the distribution of the height position is generated on the rear surface of the substrate. Therefore, when the back surface of the substrate is brought into close contact with a flat surface, irregularities or distortions are generated on the surface of the substrate reflecting the shape of the back surface of the substrate, which causes a pattern position shift. The present invention takes this into consideration in advance and performs correction accompanying the above-mentioned positional deviation at the time of pattern drawing.
[0025]
That is, if the distribution of the height position of the back surface of the substrate in a state where the substrate to be drawn is held by the substrate holding unit is determined in advance, it is determined how much distortion is applied to the surface of the substrate when the back surface of the substrate is in close contact with a flat surface. And the horizontal displacement of the substrate surface can be calculated. If correction is made during pattern writing by the amount of this positional deviation, the original pattern is formed on the substrate surface in a state where the back surface of the substrate is in close contact with a flat surface.
[0026]
Therefore, when a mask is used as a substrate to be drawn, when a pattern is drawn on the mask, the pattern can be corrected so as to have no displacement when the mask is mounted on a stepper and used. This makes it possible to realize a mask that can contribute to the improvement of pattern transfer accuracy by the stepper.
[0027]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.
[0028]
(1st Embodiment)
FIG. 1 is a schematic configuration diagram showing an electron beam writing apparatus according to the first embodiment of the present invention.
[0029]
An electron optical barrel 20 having an electron gun, various deflection systems, various lenses, and the like is installed on a drawing chamber 10 held in vacuum. The electron optical column 20 is controlled by a drawing control circuit 21 and irradiates an electron beam onto a surface of a substrate 11 to be described later to draw a desired pattern. In the drawing chamber 10, a stage 12 for holding a substrate 11 to be drawn, which serves as an exposure mask, is housed. The holding of the substrate 11 by the stage 12 is performed by a spring mechanism 13 that supports the substrate 11 from below and a guide 14 that contacts the surface of the substrate 11 and defines the height position of the substrate surface. The holding of the substrate 11 is, for example, three-point support as shown in FIG.
[0030]
The stage 12 can be moved in the horizontal direction (X, Y directions) by the motor 15 under the control of the drawing control circuit 21. Further, a height measuring device for measuring a height position (irregularity) on the back surface of the substrate 11 is provided. This measuring device is composed of an irradiation system 17 for irradiating the back surface of the substrate 11 with light obliquely, and a detection system 18 for detecting the reflected light from the back surface of the substrate 11 with a two-part detector or the like. Is processed by the signal processing, so that the height position on the back surface of the substrate can be measured. Then, the height distribution of the entire back surface of the substrate 11 can be measured by sequentially moving the stage 12 in the X direction and the Y direction by the motor 15.
[0031]
The height distribution h (x, y) (x and y are measurement coordinates) obtained by the measuring device is supplied to the arithmetic circuit 22. The calculation result of the calculation circuit 22 is supplied to the drawing control circuit 21 so that the pattern drawing position by the electron optical barrel 20 is corrected.
[0032]
Next, a pattern drawing method using the above apparatus will be described.
[0033]
First, the substrate to be drawn 11 is held on the stage 12. This holding is three-point support using the spring mechanism 13 and the guide 14 as described above. The substrate 11 finally becomes a mask for exposure. For example, a Cr film is formed on the entire surface of a glass substrate, and a resist is applied thereon. Further, the thickness distribution of the substrate 11 is given as substrate data and is assumed to be known in advance. If the thickness distribution of the substrate 11 is not known, measure the distance between the front surface and the back surface using a contact-type measuring instrument such as a micrometer or a non-contact displacement meter based on the optical principle or the like as a pre-process of drawing. With this, the thickness distribution of the substrate 11 is measured.
[0034]
Next, the height position of the back surface of the substrate 11 is measured by a measuring device, and the height distribution of the back surface is measured by moving the stage 12 in the X and Y directions. The correction amount is calculated by the arithmetic circuit 22 based on the measured height distribution and the thickness distribution of the substrate 11. That is, based on the height distribution and the thickness distribution of the substrate 11, when the back surface of the substrate 11 is chucked flat from the state where the substrate 11 is held on the stage 12 of the pattern drawing apparatus, the pattern of the substrate 11 is The amount of displacement of the drawing surface in the horizontal direction is calculated, and the amount of correction of the pattern drawing position is calculated based on the amount of displacement. Then, the drawing control circuit 21 corrects the pattern drawing position and performs pattern drawing.
[0035]
After the LSI pattern is drawn on the resist by this pattern drawing, the resist is developed to form a resist pattern, and the Cr film is selectively etched using the resist pattern as a mask to form an LSI pattern on the Cr film. Will be. Then, the exposure mask thus formed is mounted on a stepper, and the mask pattern is transferred while the back surface is attracted to a flat surface by a vacuum chuck or the like. The transfer method of the mask pattern in the stepper may be a reflection type or a transmission type. If a chuck member or the like is present on the back side of the mask and these may be shadowed, the reflection type is preferable.
[0036]
As described above, according to this embodiment, the height distribution of the back surface of the substrate 11 is measured for the substrate 11 held on the stage 12, and the height distribution of the substrate 11 when mounted on a stepper and the back surface is held flat is measured. The displacement of the substrate surface is calculated, and drawing is performed based on the calculation result so that the substrate 11 is mounted on the stepper so as to have an optimal pattern. Therefore, when the back surface of the substrate 11 is held flat by the stepper, it is possible to realize high-precision pattern position accuracy, and it is possible to improve pattern transfer accuracy.
[0037]
(Second embodiment)
FIG. 3 is a schematic configuration diagram showing an electron beam writing apparatus according to the second embodiment of the present invention. The same parts as those in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted.
[0038]
In this apparatus, a height measuring device is omitted from the apparatus shown in FIG. 1, and instead of measuring the height distribution on the back surface of the substrate, the height distribution is obtained by calculation. In the present embodiment, before mounting the substrate to be drawn 11 serving as an exposure mask on the stage 12, the correction amount at the time of drawing is calculated in advance.
[0039]
First, as shown in FIG. 4, the substrate 11 is placed (vertically) so that the pattern drawing surface and the back surface facing the pattern drawing surface include the direction of the gravity axis. The back surface of the substrate 11 is arranged close to an optical flat (a glass plate finished with high precision flatness and parallelism: plane parallel) 41 and illuminated via a half mirror 43 by an illumination light source 42 whose wavefront is controlled. Is done. Since the substrate 11 and the plane parallel 41 are placed close to each other, the observation optical system 44 observes interference fringes according to the flatness of the substrate 11. By performing image processing on the shape of the stripe with the signal processing circuit 45, the unevenness (flatness) on the back surface of the mask can be accurately measured. Then, from this measurement result, the displacement amount of the mask surface (pattern drawing surface) when the mask back surface is chucked to a flat surface can be calculated.
[0040]
Next, the same substrate 11 is placed on the stage 12 accommodated in the drawing chamber 10. At this time, since the substrate 11 is supported at three points, the substrate 11 is deformed by its own weight. However, since the amount of deformation is uniquely determined by the material of the substrate, the position of the supporting point, the size of the substrate, and the like based on the material dynamics, the amount of deformation due to its own weight can be obtained in advance. Then, the amount of displacement of the pattern drawing surface due to the deflection of the mask under its own weight can be calculated based on the amount of deformation.
[0041]
Therefore, the correction amount of the pattern drawing position can be calculated by inputting the displacement amount due to its own weight deflection and the displacement amount based on the measurement result of the mask back surface to the arithmetic circuit 22 at the time of drawing. Then, based on this correction amount, the pattern drawing position is corrected by the electron optical barrel 20 to perform the pattern drawing, so that when the back surface of the substrate 11 is held flat by the pattern transfer device, the pattern position accuracy is high. Can be realized.
[0042]
The calculation of the correction amount of the pattern drawing position can also be performed as follows. Since the deflection of the substrate 11 due to its own weight can be calculated in advance, the amount of deformation of the back surface of the substrate due to its own weight can also be calculated. Therefore, the height distribution of the back surface of the substrate 11 in a state where the substrate 11 is mounted on the stage 12 can be calculated by adding the previously measured unevenness of the back surface of the substrate and the amount of deformation of the back surface of the substrate due to its own weight deflection. . If the height distribution of the back surface of the substrate is known, the amount of displacement of the pattern drawing surface of the substrate 11 in the horizontal direction when the back surface of the substrate 11 is chucked flat is calculated as in the first embodiment. The correction amount of the pattern drawing position can be calculated based on the displacement amount.
[0043]
As described above, in the present embodiment, similarly to the first embodiment, it is possible to draw the LSI pattern so that the pattern position accuracy becomes high when the back surface of the substrate 11 is held flat. Thus, the accuracy of pattern transfer by the stepper can be improved. In this case, this can be realized only by providing the arithmetic circuit 22 for the correction calculation, and there is no need to provide a height measuring device in the drawing apparatus. Therefore, there is an advantage that the conventional apparatus can be used as a drawing apparatus as it is.
[0044]
(Modification)
Note that the present invention is not limited to the above embodiments. In the embodiment, an electron beam is used to draw a pattern, but an ion beam, a laser beam, or the like may be used instead of the electron beam.
[0045]
The substrate to be drawn is not necessarily limited to an exposure mask, but may be a semiconductor wafer. A plurality of patterns are transferred to a semiconductor wafer. In order to achieve both accuracy and throughput, there is a method of drawing a fine pattern with an electron beam and transferring other patterns with a stepper. As described above, the present invention can be effectively applied to the case where an LSI pattern is formed on a semiconductor wafer by combining pattern drawing by an electron beam drawing apparatus and pattern transfer by a stepper.
[0046]
Further, in the embodiment, when the substrate to be drawn is mounted on the stepper, the description has been made on the assumption that the back surface of the substrate is brought into close contact with a flat surface. The present invention is similarly applicable to the present invention. The means for measuring the height of the back surface of the substrate is not limited to oblique incidence illumination, and a laser interferometer that irradiates laser light from the vertical direction to the back surface of the substrate and measures the distance to the back surface of the substrate is used. be able to. Further, any measuring instrument that can measure without contacting the back surface of the substrate can be used.
[0047]
In addition, various modifications can be made without departing from the scope of the present invention.
[0048]
【The invention's effect】
As described in detail above, according to the present invention, it is possible to perform pattern drawing in consideration of the positional deviation of the pattern forming surface when the back surface of the substrate to be drawn is brought into close contact with a predetermined reference surface, using a stepper or the like. This can contribute to improvement in pattern transfer accuracy.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an electron beam writing apparatus according to a first embodiment.
FIG. 2 is a diagram showing a state in which a mask is supported at three points on a stage in the first embodiment.
FIG. 3 is a schematic configuration diagram showing an electron beam writing apparatus according to a second embodiment.
FIG. 4 is a diagram showing a state of measuring flatness of a back surface of a mask in the second embodiment.
FIG. 5 is a diagram illustrating a state of a positional shift of a mask surface that occurs when the back surface of the mask is brought into close contact with a flat surface.
[Explanation of symbols]
Reference Signs List 10 drawing room 11 drawing substrate 12 stage 13 spring mechanism 14 guide 15 motor 17 irradiation system 18 detection system 20 electron optical column 21 drawing control circuit 22 arithmetic circuit 41 optical flat 42 ... Illumination light source 43 ... Half mirror 44 ... Observation optical system 45 ... Signal processing circuit

Claims (3)

基板保持部に保持された被描画基板に対して、エネルギービームにより所望パターンを描画するパターン描画方法であって、
前記基板を前記基板保持部に保持した状態で、前記基板のパターンを形成する面と対向する裏面の高さ位置の分布を測定し、測定された高さ位置の分布を基に、前記基板の裏面が任意の曲面又は平面に矯正された状態で生じる、前記パターンを形成する面の位置ずれ量を計算し、計算された位置ずれ量に基づき前記パターンを描画する際のパターン描画位置を補正することを特徴とするパターン描画方法。
A pattern drawing method for drawing a desired pattern by an energy beam on a substrate to be drawn held by a substrate holding unit,
In a state where the substrate is held by the substrate holding unit, a distribution of height positions on a back surface facing a surface on which a pattern is formed on the substrate is measured, and based on the measured distribution of height positions, Calculate the positional shift amount of the surface forming the pattern, which occurs when the back surface is corrected to an arbitrary curved surface or flat surface, and correct the pattern drawing position when drawing the pattern based on the calculated positional shift amount. A pattern drawing method characterized by the above-mentioned.
基板保持部に保持された被描画基板に対して、エネルギービームにより所望パターンを描画するパターン描画方法であって、
前記基板を前記基板保持部に保持する前に、前記基板を該基板のパターンを形成する面と対向する裏面が重力の働く方向軸を含むように保持した状態で、裏面の凹凸分布を測定しておき、この測定結果に基づき、前記基板が前記基板保持部に保持された状態における裏面の高さ位置の分布を計算し、計算された高さ位置の分布を基に、前記基板の裏面が任意の曲面又は平面に矯正された状態で生じる、前記パターンを形成する面の位置ずれ量を計算し、計算された位置ずれ量に基づき前記パターンを描画する際のパターン描画位置を補正することを特徴とするパターン描画方法。
A pattern drawing method for drawing a desired pattern by an energy beam on a substrate to be drawn held by a substrate holding unit,
Before holding the substrate in the substrate holding unit, in a state where the substrate is held so that the back surface opposite to the surface on which the pattern of the substrate is formed includes the direction axis in which gravity acts, the unevenness distribution of the back surface is measured. In advance, based on the measurement result, the distribution of the height position of the back surface in a state where the substrate is held by the substrate holding unit is calculated, and based on the calculated distribution of the height position, the back surface of the substrate is Calculating a positional shift amount of a surface on which the pattern is formed, which is generated in a state corrected to an arbitrary curved surface or a flat surface, and correcting a pattern drawing position when drawing the pattern based on the calculated positional shift amount. Characteristic pattern drawing method.
被描画基板にエネルギービームの照射により半導体装置の回路パターンを描画する手段と、前記基板を保持する手段と、前記基板のパターンを形成する面と対向する裏面の高さ位置の分布を測定する手段と、前記測定された高さ位置の分布を基に、前記基板の裏面が任意の曲面又は平面に矯正された状態で生じる、前記パターンを形成する面の位置ずれ量を計算する手段と、前記計算された位置ずれ量に基づきパターン描画位置を補正する手段とを具備してなることを特徴とするパターン描画装置。Means for drawing a circuit pattern of a semiconductor device by irradiating an energy beam on a substrate to be drawn, means for holding the substrate, and means for measuring the distribution of height positions on the back surface facing the surface on which the pattern of the substrate is formed Based on the distribution of the measured height position, the back surface of the substrate occurs in a state corrected to an arbitrary curved surface or flat surface, means for calculating the amount of positional deviation of the surface forming the pattern, Means for correcting a pattern writing position based on the calculated positional deviation amount.
JP2002382390A 2002-12-27 2002-12-27 Pattern drawing method and drawing apparatus Expired - Fee Related JP4005910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002382390A JP4005910B2 (en) 2002-12-27 2002-12-27 Pattern drawing method and drawing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002382390A JP4005910B2 (en) 2002-12-27 2002-12-27 Pattern drawing method and drawing apparatus

Publications (2)

Publication Number Publication Date
JP2004214415A true JP2004214415A (en) 2004-07-29
JP4005910B2 JP4005910B2 (en) 2007-11-14

Family

ID=32817964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002382390A Expired - Fee Related JP4005910B2 (en) 2002-12-27 2002-12-27 Pattern drawing method and drawing apparatus

Country Status (1)

Country Link
JP (1) JP4005910B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007150287A (en) * 2005-11-04 2007-06-14 Nuflare Technology Inc Position measuring device and misalignment measuring method
JP2007150286A (en) * 2005-11-04 2007-06-14 Nuflare Technology Inc Charged particle beam drawing method, charged particle beam drawing apparatus, positional deviation amount measuring method, and position measuring apparatus
JP2008205291A (en) * 2007-02-21 2008-09-04 Jeol Ltd Pattern drawing method
US7554107B2 (en) 2005-11-04 2009-06-30 Nuflare Technology, Inc. Writing method and writing apparatus of charged particle beam, positional deviation measuring method, and position measuring apparatus
JP2009253119A (en) * 2008-04-09 2009-10-29 Nuflare Technology Inc Electron beam lithography device and method of correcting displacement amount
US7643130B2 (en) 2005-11-04 2010-01-05 Nuflare Technology, Inc. Position measuring apparatus and positional deviation measuring method
US7704645B2 (en) 2004-03-24 2010-04-27 Kabushiki Kaisha Toshiba Method of generating writing pattern data of mask and method of writing mask
JP2010191162A (en) * 2009-02-18 2010-09-02 Canon Inc Method for manufacturing reticle, apparatus for measuring surface shape, and computer
JP2013153167A (en) * 2007-04-23 2013-08-08 Kla-Tencor Corp Method and system for creating or performing dynamic sampling scheme for process in measurement performed on wafer
JPWO2012102313A1 (en) * 2011-01-26 2014-06-30 旭硝子株式会社 Photomask manufacturing method
US9116442B2 (en) 2007-05-30 2015-08-25 Kla-Tencor Corporation Feedforward/feedback litho process control of stress and overlay
JP2018017833A (en) * 2016-07-26 2018-02-01 Hoya株式会社 Method for manufacturing photomask, drawing apparatus, method for manufacturing display device, inspection method for photomask substrate, and inspection apparatus for photomask substrate

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7704645B2 (en) 2004-03-24 2010-04-27 Kabushiki Kaisha Toshiba Method of generating writing pattern data of mask and method of writing mask
JP2007150286A (en) * 2005-11-04 2007-06-14 Nuflare Technology Inc Charged particle beam drawing method, charged particle beam drawing apparatus, positional deviation amount measuring method, and position measuring apparatus
US7554107B2 (en) 2005-11-04 2009-06-30 Nuflare Technology, Inc. Writing method and writing apparatus of charged particle beam, positional deviation measuring method, and position measuring apparatus
JP2007150287A (en) * 2005-11-04 2007-06-14 Nuflare Technology Inc Position measuring device and misalignment measuring method
US7643130B2 (en) 2005-11-04 2010-01-05 Nuflare Technology, Inc. Position measuring apparatus and positional deviation measuring method
DE102006052015B4 (en) 2005-11-04 2019-03-21 Nuflare Technology, Inc. Position measuring device and position deviation measuring method
DE102006052140B4 (en) 2005-11-04 2019-01-17 Nuflare Technology, Inc. Charged particle beam writing method and charged particle beam writing apparatus
JP2008205291A (en) * 2007-02-21 2008-09-04 Jeol Ltd Pattern drawing method
JP2014140058A (en) * 2007-04-23 2014-07-31 Kla-Tencor Corp Methods and systems for creating or performing dynamic sampling scheme for process during which measurements are performed on wafers
JP2013153167A (en) * 2007-04-23 2013-08-08 Kla-Tencor Corp Method and system for creating or performing dynamic sampling scheme for process in measurement performed on wafer
US9651943B2 (en) 2007-04-23 2017-05-16 Kla-Tencor Corp. Methods and systems for creating or performing a dynamic sampling scheme for a process during which measurements are performed on wafers
US9116442B2 (en) 2007-05-30 2015-08-25 Kla-Tencor Corporation Feedforward/feedback litho process control of stress and overlay
JP2009253119A (en) * 2008-04-09 2009-10-29 Nuflare Technology Inc Electron beam lithography device and method of correcting displacement amount
US8718972B2 (en) 2008-04-09 2014-05-06 Nuflare Technology, Inc. Electron beam writing apparatus and position displacement amount correcting method
US8338805B2 (en) 2009-02-18 2012-12-25 Canon Kabushiki Kaisha Reticle manufacturing method, surface shape measuring apparatus and signal processor
JP2010191162A (en) * 2009-02-18 2010-09-02 Canon Inc Method for manufacturing reticle, apparatus for measuring surface shape, and computer
JPWO2012102313A1 (en) * 2011-01-26 2014-06-30 旭硝子株式会社 Photomask manufacturing method
JP2018017833A (en) * 2016-07-26 2018-02-01 Hoya株式会社 Method for manufacturing photomask, drawing apparatus, method for manufacturing display device, inspection method for photomask substrate, and inspection apparatus for photomask substrate

Also Published As

Publication number Publication date
JP4005910B2 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
US8153336B2 (en) Photomask substrate, photomask substrate forming member, photomask substrate fabricating method, photomask, and exposing method that uses the photomask
TWI357096B (en) Lithographic apparatus and method
CN111158220A (en) Measuring device and method, photoetching system, exposure device and method
JP3393947B2 (en) Semiconductor circuit pattern evaluation method and evaluation system, writing method, and writing system
US9639008B2 (en) Lithography apparatus, and article manufacturing method
JP2000228356A (en) Position detecting method, positioning method and aligner
JP4005910B2 (en) Pattern drawing method and drawing apparatus
HK1225513A1 (en) Exposure apparatus, exposure method, and device manufacturing method
JP2003282420A (en) Method and device for exposure
JP3251362B2 (en) Exposure apparatus and exposure method
KR20050074552A (en) Exposure device, exposure method, and semiconductor device manufacturing method
JP4588010B2 (en) Lithographic apparatus
CN114514475B (en) Measurement system and method for characterizing a patterning device
JPH09223650A (en) Aligner
KR101679941B1 (en) Imprint device, and device manufacturing method
JP2024016068A (en) EUV mask pattern inspection device and EUV mask pattern inspection method
US12321091B2 (en) Device and method for determining placements of pattern elements of a reflective photolithographic mask in the operating environment thereof
JP6748428B2 (en) Lithographic apparatus, article manufacturing method, stage apparatus, and measuring apparatus
JP2010185807A (en) Surface profile measuring device, surface profile measuring method, exposure system, and device manufacturing method
JP2017215617A (en) Substrate holding device
JP4721393B2 (en) Near-field exposure method
JP2006032807A (en) Exposure device and device manufacturing method
JP2003214984A (en) Optical characteristic measuring method and optical characteristic measuring device, adjusting method of optical system and exposing device
JP2005184034A (en) Aligner and method of forming pattern using same
US6486953B1 (en) Accurate real-time landing angle and telecentricity measurement in lithographic systems

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees