[go: up one dir, main page]

JP2004207690A - Heat sink made of resin material - Google Patents

Heat sink made of resin material Download PDF

Info

Publication number
JP2004207690A
JP2004207690A JP2003377024A JP2003377024A JP2004207690A JP 2004207690 A JP2004207690 A JP 2004207690A JP 2003377024 A JP2003377024 A JP 2003377024A JP 2003377024 A JP2003377024 A JP 2003377024A JP 2004207690 A JP2004207690 A JP 2004207690A
Authority
JP
Japan
Prior art keywords
heat
heat sink
resin material
resin
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003377024A
Other languages
Japanese (ja)
Other versions
JP2004207690A5 (en
Inventor
Masayoshi Usui
正佳 臼井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Usui Kokusai Sangyo Kaisha Ltd
Original Assignee
Usui Kokusai Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usui Kokusai Sangyo Kaisha Ltd filed Critical Usui Kokusai Sangyo Kaisha Ltd
Priority to JP2003377024A priority Critical patent/JP2004207690A/en
Publication of JP2004207690A publication Critical patent/JP2004207690A/en
Publication of JP2004207690A5 publication Critical patent/JP2004207690A5/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat sink made of a resin material, light in weight, small in size, and excellent in heat exchanging efficiency, by using an inexpensive resin material in a simplified manufacturing process for the achievement of a low cost. <P>SOLUTION: In this heat sink 1 made of a resin material, a multiplicity of heat radiating fins 3 made of the resin material protrude en bloc from a substrate 2 made of the resin material. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、電子素子等の発熱体に接触配置して、発熱体の熱を放熱フィンにより放出して冷却したり、ヒートパイプの凝縮部に接続し、ヒートパイプにより移送される熱を外部に放出する、ヒートシンクに係るものである。   The present invention is arranged in such a manner that the heat from the heating element is released by radiating fins for cooling by connecting to a heating element such as an electronic element, or connected to a condenser of a heat pipe, and the heat transferred by the heat pipe to the outside. It relates to a heat sink that emits.

従来、コンピュータ等の電子機器等では、半導体等の電子素子の発熱量が膨大で、これを効果的に冷却するために、下記特許文献1〜3に示す如く、金属材製ヒートシンクを使用した熱交換器が広く用いられている。この金属材製ヒートシンクは、例えば受熱部としての基板を電子素子等の発熱体の表面に直に配置し、ビス等の固定手段により発熱体に固定して使用する。また、発熱体とヒートシンクとを密着させて、伝熱性や配置安定性を高めるため、基板と発熱体との間にシリコングリース等のサーマルペーストを塗布する事もある。このような配設により、基板が受熱部となって発熱体から熱を受熱し、放熱フィンを介して熱が外気中に放出される事により、発熱体が冷却されるものである。また、ヒートシンクを、ヒートパイプの凝縮部に接続し、発熱体から該ヒートパイプを介して伝熱される熱を、ヒートシンクにて外部に放出して、発熱体の冷却等を行う熱交換器も存在する。   2. Description of the Related Art Conventionally, in electronic devices such as computers, heat generated by an electronic element such as a semiconductor is enormous. Exchangers are widely used. This metal heat sink is used, for example, by disposing a substrate as a heat receiving portion directly on the surface of a heating element such as an electronic element and fixing the substrate to the heating element by fixing means such as screws. In addition, a thermal paste such as silicon grease may be applied between the substrate and the heating element in order to bring the heating element and the heat sink into close contact with each other and to enhance heat transfer properties and arrangement stability. With such an arrangement, the substrate serves as a heat receiving portion to receive heat from the heating element, and the heat is released to the outside air via the radiation fins, thereby cooling the heating element. There is also a heat exchanger that connects a heat sink to the condensing part of the heat pipe and releases heat transferred from the heating element through the heat pipe to the outside by the heat sink to cool the heating element. I do.

ところで、近年、前記コンピュータ等の電子機器では、よりコンパクトで軽量な製品が好まれる傾向にあり、そのためにはヒートシンクやヒートシンクを使用した熱交換器の小型化や軽量化が重要な課題となり、しかも小型で軽量であっても高い熱交換性能を持つものが要求されるようになった。
特開2002−1511号公報 特開2002−64170号公報 特開2002−190558号公報
By the way, in recent years, in electronic devices such as the computer, there has been a tendency for more compact and lightweight products to be preferred, and for that purpose, downsizing and weight reduction of a heat sink and a heat exchanger using the heat sink have become important issues. What is required is a small and lightweight one that has high heat exchange performance.
JP-A-2002-1511 JP-A-2002-64170 JP 2002-190558 A

しかしながら、従来のヒートシンクは、前述の如く銅、アルミニウム、銅基合金、アルミニウム基合金等の金属材製であるため、最も軽量なアルミニウム製とした場合でも、軽量化には限界があった。また、小型であっても熱交換効率の高い製品を得るには、ヒートシンクの放熱フィンの表面積を大きく形成して、放熱性や吸熱性を高めれば良いが、従来の放熱フィンは、断面形状が円形、楕円形、四角形のピン状や平板状の単純な形状であり、金属材では表面積を増大させるような複雑な形状とするのは困難で、小型化には限界があった。   However, since the conventional heat sink is made of a metal material such as copper, aluminum, a copper-based alloy, or an aluminum-based alloy as described above, there is a limit to the weight reduction even when the lightest aluminum is used. In addition, in order to obtain a product with high heat exchange efficiency even though it is small, it is sufficient to increase the surface area of the heat radiation fin of the heat sink to increase heat radiation and heat absorption, but the conventional heat radiation fin has a cross-sectional shape. It is a simple shape such as a circular, oval, or square pin or a flat plate, and it is difficult to form a complicated shape that increases the surface area of a metal material, and there is a limit to miniaturization.

そこで、本発明者らは、軽量で加工性に優れた樹脂材に注目し、金属材製の伝熱面と樹脂材製の伝熱面の熱交換性能の比較実験を行ったところ、金属材製伝熱面に比べて樹脂材製伝熱面は、条件にもよるが熱交換性能が4〜15%程度しか劣化しない事を見出した。この4〜15%程度の熱交換性能を補うためには、樹脂材製伝熱面の表面積を15%以上増加させれば、金属材製の伝熱面と同等若しくはそれ以上の熱交換性能を得る事が可能となると言う結論を得た。   Therefore, the present inventors focused on a resin material that is lightweight and excellent in workability, and conducted a comparative experiment of heat exchange performance between a heat transfer surface made of a metal material and a heat transfer surface made of a resin material. It has been found that the heat exchange surface made of a resin material deteriorates only about 4 to 15% in heat exchange performance as compared with the heat transfer surface made of a resin material, depending on conditions. In order to supplement the heat exchange performance of about 4 to 15%, if the surface area of the resin material heat transfer surface is increased by 15% or more, heat exchange performance equal to or greater than that of the metal heat transfer surface can be obtained. I came to the conclusion that I could get it.

本発明は上述の如き課題を解決しようとするものであって、熱交換のためのヒートシンクを、特に軽量であって小型に形成するとともに、廉価な樹脂材と簡易な製造作業で低コストに得ようとするものである。しかも、軽量で小型であっても、熱交換効率に優れる製品を得る事を目的とするものである。   SUMMARY OF THE INVENTION The present invention is to solve the above-described problems. In particular, a heat sink for heat exchange can be formed at a low cost by using a low-priced resin material and a simple manufacturing operation while forming a light-weight and small-sized heat sink. Is to try. Moreover, the object is to obtain a product that is excellent in heat exchange efficiency even if it is lightweight and small.

本発明は上述の如き課題を解決するため、樹脂材製の基板に複数の樹脂材製の放熱フィンを一体に突出形成して成るものである。   In order to solve the above-described problems, the present invention is configured by integrally forming a plurality of resin-made heat radiation fins on a resin-made substrate.

また、放熱フィンは、断面形状を円形、楕円形、多角形、星形、又はギア形とするピン状としても良い。   Further, the radiation fin may be in the form of a pin having a circular, elliptical, polygonal, star, or gear cross section.

また、放熱フィンは、片面又は両面を平坦面とするか又は曲面とした板状としても良い。   In addition, the radiation fins may be plate-shaped with one or both surfaces flat or curved.

また、放熱フィンは、表面に微細な凹凸及び/又は突起を設けても良い。   Further, the heat radiation fins may have fine irregularities and / or protrusions on the surface.

また、基板及び放熱フィンは、これらを形成する樹脂材よりも熱伝導性の高い粒子及び/又は繊維を含有させても良い。   Further, the substrate and the radiation fins may contain particles and / or fibers having higher thermal conductivity than the resin material forming them.

また、基板及び放熱フィンは、これらを形成する樹脂材にカーボンナノファイバーを含有させても良い。   Further, the substrate and the radiation fins may contain carbon nanofibers in a resin material forming them.

また、カーボンナノファイバーは、5wt%より多く30wt%より少ない含有量で含有させても良い。   Further, the carbon nanofibers may be contained at a content of more than 5 wt% and less than 30 wt%.

本発明は上述の如く構成したもので、樹脂材で形成する事により、ヒートシンクの軽量化や小型化が可能となり、その結果ヒートシンクを用いた熱交換器の軽量化や小型化も可能となる。また、樹脂材で形成する事により、金属材に比べ成形時の自由度が高く、放熱フィンの伝熱面積を増大させる事ができ、ヒートシンクの吸熱性や放熱性を高めて、優れた熱交換性能を有する製品を、容易な製作技術で廉価に製造する事が可能となる。   The present invention is configured as described above. By forming the heat sink using a resin material, the heat sink can be reduced in weight and size. As a result, the heat exchanger using the heat sink can be reduced in weight and size. In addition, by using resin material, the degree of freedom during molding is higher than that of metal materials, and the heat transfer area of the radiating fins can be increased. Products with high performance can be manufactured at low cost with easy manufacturing technology.

本発明のヒートシンクは上述の如く構成したもので、発熱体からの熱を受熱する基板と、基板で受熱した熱を外部に放出する放熱フィンとを、樹脂材にて一体に形成したので、金属材製品に比べ、特に軽量で廉価な製品を得る事ができる。また、一般に金属材に比べて樹脂材は熱伝導性に劣るが、加工性に優れるので、放熱フィンを、金属材では加工が困難であった複雑な形状に容易に加工できる。そのため、放熱フィンを複雑な形状として表面積を増大させる事により、樹脂材製であっても熱交換性能の高いヒートシンクを得る事ができる。また、表面積の増大により熱交換性能の向上が可能であるから、ヒートシンクの小型化も可能となる。また、樹脂材は、金属材に比べて柔らかく、加工時の温度も過度に高温とならないので、ヒートシンク成形用の金型の劣化を抑制して、金型寿命を長くする事もできる。   Since the heat sink of the present invention is configured as described above, the substrate for receiving heat from the heating element and the radiation fins for releasing the heat received by the substrate to the outside are integrally formed of a resin material. Compared with material products, it is possible to obtain products that are particularly lightweight and inexpensive. In general, resin materials are inferior in heat conductivity to metal materials, but are excellent in workability, so that the heat radiation fins can be easily processed into a complicated shape which is difficult to process with metal materials. Therefore, a heat sink having high heat exchange performance can be obtained even if it is made of a resin material by increasing the surface area by forming the radiation fins in a complicated shape. In addition, since the heat exchange performance can be improved by increasing the surface area, the heat sink can be downsized. Further, since the resin material is softer than the metal material and the temperature during processing does not become excessively high, the deterioration of the mold for heat sink molding can be suppressed and the life of the mold can be extended.

このような熱交換性能に優れた樹脂材製のヒートシンクを電子素子の冷却に使用する場合は、該電子素子の表面に受熱部である基板を配設し、ビス等によりヒートシンクを装置に固定する。また、従来と同様に、基板と電子素子との間にシリコングリース等のサーマルペーストを介在しても良い。すると、電子素子から発生する熱が、受熱部である基板に伝熱され、この基板の熱が放熱フィンを介して外気中に放出される事により、電子素子が効率的に冷却される。   When such a resin heat sink having excellent heat exchange performance is used for cooling an electronic element, a substrate serving as a heat receiving portion is disposed on the surface of the electronic element, and the heat sink is fixed to the device with screws or the like. . Further, as in the conventional case, a thermal paste such as silicon grease may be interposed between the substrate and the electronic element. Then, the heat generated from the electronic element is transferred to the substrate which is the heat receiving portion, and the heat of the substrate is released into the outside air through the radiation fins, so that the electronic element is efficiently cooled.

また、ヒートシンクとシリコングリース等のサーマルペーストとは、共に樹脂材製であるから、互いの熱伝導性を高める事ができる。また、サーマルペーストは、発熱体とヒートシンクとの隙間を閉塞して伝熱性を高めるものであるが、樹脂材製ヒートシンクでは、その弾性力により金属材製品に比べて発熱体への密着性に優れ、サーマルペーストの使用を少なくする事もできるし、使用しなくても良好な伝熱性を得る事が可能である。また、サーマルペーストは、伝熱性能だけでなく電気絶縁体としての役割もあるが、ヒートシンクを樹脂材製とする事により、ヒートシンク自身も電気絶縁体としての役割も果たす事ができる。   In addition, since the heat sink and the thermal paste such as silicon grease are both made of a resin material, the mutual thermal conductivity can be increased. Thermal paste closes the gap between the heating element and the heat sink to increase heat transfer.However, the resin heat sink has better adhesion to the heating element than metal products due to its elastic force. In addition, the use of thermal paste can be reduced, and good heat conductivity can be obtained without using it. Further, the thermal paste has a role as an electric insulator as well as a heat transfer performance. However, when the heat sink is made of a resin material, the heat sink itself can also serve as an electric insulator.

また、上記では冷却手段としてヒートシンクを用いているが、放熱フィンからの放熱により外気を暖める暖房等の加熱用や、熱交換器、空調等の熱輸送用等、冷却、加熱、何れの熱交換手段としても使用が可能で、熱交換性能に優れ、特に軽量であって小型の製品が得られる。   In the above description, a heat sink is used as a cooling means. However, any of heat exchange such as cooling and heating for heating such as heating for warming the outside air by radiating heat from radiating fins, and for heat transport such as a heat exchanger and air conditioning is used. It can also be used as a means, and has excellent heat exchange performance, so that a lightweight and small product can be obtained.

また、基板と放熱フィンとは、成形時に一体に形成しても良いし、各々を別個に形成し、熱溶着や接着剤等により、後工程で双方を接続しても良い。基板と放熱フィンとを後工程で接続する場合、金属材製品ではろう付け等に手間や技術が必要となるが、樹脂材同志の溶着は金属材に比べて低い温度で作業できるし、接着剤等での接続も簡単で高度な技術を必要とせず、作業性を向上させる事ができる。   Further, the substrate and the radiation fins may be formed integrally at the time of molding, or may be formed separately, and both may be connected in a later step by heat welding or an adhesive. When connecting the board and the radiating fins in a later process, metal products require time and skill for brazing, etc., but welding of resin materials can be performed at a lower temperature than metal materials, and adhesives can be used. The connection is easy and does not require advanced technology, so that the workability can be improved.

また、放熱フィンは、断面形状を円形、楕円形、多角形、星形、又はギア形等とするピン状としても良い。円形、楕円形、四角形、又は五角形等のピン状放熱フィンは、金属材製の従来品でも存在するが、金属材ではピンの形成長さの長尺化に限界がある。しかし、樹脂材では金属材では困難な長尺なピン状に放熱フィンを形成する事が可能で、伝熱面積を増大させる事ができる。更に、金属材では成形や切削が困難な六角形以上の多角形や、星形、又はギア形のピン状放熱フィンであっても、樹脂材では容易な成形が可能で、放熱フィンの伝熱面積を増大させる事ができる。   Further, the radiation fins may be in the shape of a pin having a circular, elliptical, polygonal, star-shaped, or gear-shaped cross section. Pin-shaped heat radiation fins such as circular, elliptical, quadrangular, and pentagonal shapes exist even in conventional metal-made products, but there is a limit in elongating the length of a pin formed of a metal material. However, in the resin material, the radiation fin can be formed in a long pin shape which is difficult with a metal material, and the heat transfer area can be increased. Furthermore, even if it is a hexagonal or more polygonal, star-shaped or gear-shaped pin-shaped radiating fin that is difficult to mold or cut with metal material, it can be easily molded with resin material, The area can be increased.

また、放熱フィンは、片面又は両面を平坦面とするか又は曲面とした板状としても良く、加工の容易な樹脂材にて板状の放熱フィンを多く形成したり、曲面を多く形成する事により、板状放熱フィンの伝熱面積を増大させる事ができる。   Further, the radiation fins may be plate-shaped with one or both surfaces flat or curved, and a large number of plate-shaped radiation fins or a large number of curved surfaces may be formed of a resin material which is easy to process. Thereby, the heat transfer area of the plate-shaped radiating fins can be increased.

また、ピン状、板状、その他の放熱フィンの表面に、微細な凹凸や突起を設ければ、伝熱面積の更なる増大が可能となるし、放熱性も向上し、効率的な熱交換が可能となる。また、樹脂材では、このような微細な凹凸や突起でも容易に設ける事ができる。   Also, if fine irregularities or projections are provided on the surface of the pin-shaped, plate-shaped, or other radiating fins, the heat transfer area can be further increased, the heat dissipation can be improved, and efficient heat exchange can be achieved. Becomes possible. In the case of a resin material, even such minute unevenness and protrusions can be easily provided.

このように、金属材では困難な複雑な形状や凹凸や突起を設けた放熱フィンであっても、樹脂材では容易に成形可能で、放熱フィンの伝熱面積を増大させて、樹脂材製の伝熱面であっても、金属材製の伝熱面と同等若しくはそれ以上の優れた放熱特性を有するものとなり、熱交換性能に優れ、特に軽量なヒートシンクを得る事が可能で、ヒートシンクの小型化も可能となる。   As described above, even a heat radiation fin having a complicated shape, irregularities, and projections, which is difficult with a metal material, can be easily molded with a resin material, and the heat transfer area of the heat radiation fin is increased, so that the resin material is Even if the heat transfer surface is used, the heat transfer surface will have the same or better heat radiating characteristics as the metal heat transfer surface, and will have excellent heat exchange performance, making it possible to obtain a particularly lightweight heat sink. It becomes possible.

また、上記基板及び放熱フィンを形成する樹脂材に、カーボンナノファイバーを含有させれば、樹脂材製伝熱面の熱伝導性が更に高まり、ヒートシンクの放熱特性を更に向上させる事が可能となる。また、カーボンナノファイバーは、5wt%より多く30wt%より少ない含有量で含有させれば、最良の熱伝導性を得る事ができる。このカーボンナノファイバーの含有量を5wt%以下とすると、伝熱効果の向上作用に乏しく、30wt%以上を樹脂材に含有させるのは困難で、生産性が低下するとともに高価で、伝熱効果に大きな差を生じない。   When carbon nanofibers are contained in the resin material forming the substrate and the radiation fins, the heat conductivity of the resin material heat transfer surface is further increased, and the heat radiation characteristics of the heat sink can be further improved. . In addition, when the carbon nanofiber is contained in a content of more than 5 wt% and less than 30 wt%, the best thermal conductivity can be obtained. If the content of the carbon nanofibers is 5 wt% or less, the effect of improving the heat transfer effect is poor, and it is difficult to include 30 wt% or more in the resin material. No big difference.

尚、本明細書で言うカーボンナノファイバーとは、ナノテクノロジー分野に於いて、カーボンナノチューブ、カーボンナノホーン、その他ナノ単位のカーボン繊維を含んだ総称を示すものである。また、カーボンナノチューブ、カーボンナノホーン、その他を混在させて樹脂材に含有させても良いし、単体で含有させても良い。また、カーボンナノチューブを樹脂材に含有させる場合は、カーボンナノチューブが単層であっても良いし、複層であっても良い。更に、このカーボンナノチューブのアスペクト比は問わないものである。また、カーボンナノチューブの太さ、長さ等も問わないものである。   The term "carbon nanofiber" as used in the present specification indicates a general term including carbon nanotubes, carbon nanohorns, and other nano-unit carbon fibers in the field of nanotechnology. Further, carbon nanotubes, carbon nanohorns, and others may be mixed and contained in the resin material, or may be contained alone. When the carbon nanotube is contained in the resin material, the carbon nanotube may be a single layer or a multi-layer. Further, the aspect ratio of the carbon nanotube does not matter. Further, the thickness, length, and the like of the carbon nanotube are not limited.

また、黒色で黒体輻射効果のある樹脂材を使用すれば、基板及び放熱フィンの熱伝導性が高まり、ヒートシンクの放熱特性を向上させる事ができる。また、樹脂材に熱伝導性の高い銅、アルミニウム、ステンレス鋼等の金属材製、カーボン材製又はガラス材製の粒子及び/又は繊維を含有したり、樹脂材の表面に前記金属材の粉末等を混合した塗料を塗布したり、金属材をめっき或いは蒸着等させても、熱交換性能の向上が可能となる。更には、黒色で黒体輻射効果のある樹脂材に前記金属材製、カーボン材製又はガラス材製の粒子や繊維、及び/又はカーボンナノファイバーを含有させれば、放熱特性の更なる向上が可能となる。   When a black resin material having a black body radiation effect is used, the heat conductivity of the substrate and the radiation fins is increased, and the heat radiation characteristics of the heat sink can be improved. The resin material may contain particles and / or fibers made of a metal material such as copper, aluminum, and stainless steel having high thermal conductivity, a carbon material, or a glass material, or a powder of the metal material may be formed on the surface of the resin material. The heat exchange performance can be improved by applying a coating material or the like or plating or depositing a metal material. Furthermore, when the metal material, the carbon material or the glass material particles and fibers, and / or carbon nanofibers are contained in the resin material having a black body radiation effect with black color, the heat radiation characteristics are further improved. It becomes possible.

以下、本発明の実施例を図面に於て詳細に説明する。図1は実施例1で、断面形状が四角形のピン状放熱フィンを設けた樹脂材製ヒートシンクの斜視図である。図2は実施例2で、断面形状が星形のピン状放熱フィンを設けた樹脂材製ヒートシンクの斜視図である。また、図3は実施例3で、波形の曲面を有する複数の板状放熱フィンを、平行に設けた樹脂材製ヒートシンクの斜視図である。図4は実施例4で、鋸状の曲面を有する複数の板状放熱フィンを、放射状に設けた樹脂材製ヒートシンクの平面図である。図5は平坦面を有する複数の板状放熱フィンを平行に設けたヒートシンクを用いた熱交換器の斜視図である。また、図6は鋼管の外表面をPA樹脂でコートした配管、鋼管の外表面をPA樹脂とPP樹脂でコートした配管、鋼管のみで形成した配管の各々に於いて行った熱交換性能の比較実験の概念図である。図7はその比較実験結果をグラフ化したものである。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a perspective view of a resin heat sink provided with a pin-shaped heat dissipating fin having a rectangular cross section in Example 1. FIG. 2 is a perspective view of a resin-made heat sink provided with pin-shaped heat radiation fins having a star-shaped cross section in Example 2. FIG. 3 is a perspective view of a resin heat sink in which a plurality of plate-shaped radiation fins having a corrugated curved surface are provided in parallel in Example 3. FIG. 4 is a plan view of a resin-made heat sink in which a plurality of plate-shaped heat radiation fins having a saw-like curved surface are provided radially in Example 4. FIG. 5 is a perspective view of a heat exchanger using a heat sink provided with a plurality of plate-shaped radiating fins having flat surfaces in parallel. FIG. 6 is a comparison of the heat exchange performance of a pipe having an outer surface coated with PA resin, a pipe having an outer surface coated with PA resin and PP resin, and a pipe formed of only steel pipe. It is a conceptual diagram of an experiment. FIG. 7 is a graph of the result of the comparative experiment.

まず、本発明をするにあたり、表面材質を樹脂材とした伝熱面の熱交換性能の比較実験を行った。この実験装置は、図6に示す如く、風洞部(31)内に直径8mm、長さ1900mmとした配管(32)を配置し、この配管(32)に、温度計(33)を設けた温水タンク(34)及びポンプ(35)、流量計(36)を接続し、前記配管(32)に0.9L/mの流量で温度約60℃の温水を流通させている。そして、前記風洞部(31)内にファン(37)にて冷却風を送っている。そして、冷却風と配管(32)内の温水との熱交換性能を、温水の入口温度と出口温度を計測して、その温度差を算出する事により測定する。その温度差及び風速との関係を下記表1及び図7のグラフに示した。実験には、肉厚0.7mmとする鋼管の外表面に13μmの亜鉛めっきとクロメート処理を施し、更に肉厚50μmのPA樹脂でコートした配管(32)(以下PAコート配管と言う)と、肉厚0.7mmとする鋼管の外表面に13μmの亜鉛めっきとクロメート処理を施し、更に肉厚50μmのPA樹脂及び肉厚1.0mmのPP樹脂でコートした配管(32)(以下PA+PPコート配管と言う)を使用した。また、比較実験として鋼管のみで形成した配管(32)の熱交換性能も測定した。この鋼管は、肉厚0.7mmとし、外表面には何等の表面処理も施していない。   First, in carrying out the present invention, a comparative experiment was conducted on the heat exchange performance of a heat transfer surface having a resin surface material. As shown in FIG. 6, in this experimental apparatus, a pipe (32) having a diameter of 8 mm and a length of 1900 mm was arranged in a wind tunnel (31), and a hot water provided with a thermometer (33) was provided in the pipe (32). A tank (34), a pump (35), and a flow meter (36) are connected, and hot water at a temperature of about 60 ° C. is flowed through the pipe (32) at a flow rate of 0.9 L / m. Cooling air is sent into the wind tunnel portion (31) by a fan (37). Then, the heat exchange performance between the cooling air and the hot water in the pipe (32) is measured by measuring the inlet and outlet temperatures of the hot water and calculating the temperature difference. The relationship between the temperature difference and the wind speed is shown in Table 1 below and the graph of FIG. In the experiment, pipes (32) (hereinafter referred to as PA coated pipes) were prepared by subjecting the outer surface of a steel pipe having a wall thickness of 0.7 mm to zinc plating and chromate treatment of 13 μm and further coating with a PA resin having a wall thickness of 50 μm. A pipe (32) (13 mm) which is formed by applying 13 μm zinc plating and chromate treatment to the outer surface of a steel pipe having a thickness of 0.7 mm and further coating it with a PA resin having a thickness of 50 μm and a PP resin having a thickness of 1.0 mm. It was used. Further, as a comparative experiment, the heat exchange performance of a pipe (32) formed only of a steel pipe was also measured. This steel pipe had a wall thickness of 0.7 mm and had no outer surface subjected to any surface treatment.

尚、下記表1中で、風速(m/s)がPAコート配管、PA+PPコート配管、鋼管のみの配管で完全に一致していないのは、完全に一致する風速を得るのが技術的に困難である事による。そのため、近似した風速を生じさせ、これを計測して得たものが表1に示す風速である。   In Table 1 below, the reason why the wind speed (m / s) does not completely match between the PA-coated pipe, the PA + PP-coated pipe, and the pipe made of only the steel pipe is that it is technically difficult to obtain a completely matched wind velocity. Because it is. Therefore, an approximate wind speed is generated, and the wind speed shown in Table 1 is obtained by measuring the wind speed.

Figure 2004207690
Figure 2004207690

上述の実験により、従来の鋼管のみに比べて、PAコート配管及びPA+PPコート配管では、約6m/sの風速時に於いて熱交換性能が、4〜15%程度しか劣化せず、優れた熱交換性能を示した。この実験結果より、樹脂材製伝熱面の表面積を15%程度以上増加させれば、金属材製伝熱面と同等若しくはそれ以上の熱交換性能を得る事ができる。   According to the above-mentioned experiment, the heat exchange performance of the PA-coated pipe and the PA + PP-coated pipe at a wind speed of about 6 m / s is deteriorated by only about 4 to 15% as compared with the conventional steel pipe alone. Performance was shown. From these experimental results, it is possible to obtain a heat exchange performance equal to or higher than that of the metal material heat transfer surface by increasing the surface area of the resin material heat transfer surface by about 15% or more.

尚、本発明を実施する際は、下記表2に示す如き樹脂材等を使用する事により、熱交換性能が優れるだけでなく、耐食性や耐熱性にも優れるヒートシンク及びヒートシンクを用いた熱交換器を得る事ができる。また、あまり耐熱性が必要でなければ、更に多くの種類の樹脂材を使用する事が可能となる。   In carrying out the present invention, the use of a resin material or the like as shown in Table 2 below provides not only excellent heat exchange performance, but also a heat sink having excellent corrosion resistance and heat resistance, and a heat exchanger using the heat sink. Can be obtained. Further, if heat resistance is not so required, more kinds of resin materials can be used.

Figure 2004207690
Figure 2004207690

上記樹脂材により、図1〜図5に示すヒートシンク及びヒートシンクを用いた熱交換器を形成した。まず、図1に示す実施例1を詳細に説明すれば、(1)はヒートシンクで、上記表2に示す如き樹脂材等で形成する事により、従来の金属材製品に比べて特に軽量であるとともに、耐熱性にも優れた廉価な製品を得る事ができる。このヒートシンク(1)は、基板(2)と、この基板(2)の一面に複数突設した断面形状を四角形とするピン状放熱フィン(3)とから構成し、該基板(2)と放熱フィン(3)とを成形時に一体に形成している。尚、断面形状が四角形のピン状放熱フィン(3)は、従来の金属材製品でも存在するが、金属材では成形や切削が困難な長尺なピン状放熱フィン(3)とする事ができ、伝熱面積を増大させて、金属材製品と同等又はそれ以上の熱伝導性を得る事が可能となる。   The heat sink and the heat exchanger using the heat sink shown in FIGS. 1 to 5 were formed from the resin material. First, the first embodiment shown in FIG. 1 will be described in detail. (1) is a heat sink, which is made of a resin material or the like as shown in Table 2 above, and is particularly lighter in weight than a conventional metal material product. At the same time, an inexpensive product having excellent heat resistance can be obtained. The heat sink (1) comprises a substrate (2) and a plurality of pin-shaped radiating fins (3) projecting from one surface of the substrate (2) and having a rectangular cross section. The fin (3) and the fin (3) are integrally formed at the time of molding. Although the pin-shaped heat radiation fins (3) having a square cross section exist in conventional metal products, they can be used as long pin heat radiation fins (3) that are difficult to form and cut with metal materials. By increasing the heat transfer area, it is possible to obtain a thermal conductivity equal to or higher than that of a metal product.

また、上記では、基板(2)と放熱フィン(3)とを、成形時に一体に形成しているので、製作工程が少なく簡易な製作が可能となる。また、他の異なる製作手順として、基板(2)と放熱フィン(3)とを別個に形成し、後工程で双方を接続しても良い。この場合、樹脂材同志の接着であるから、金属材のろう付けに比べて低い温度で熱溶着したり、接着剤等により簡単に行う事ができ、高度な製作技術や手間を必要とする事なく、容易な作業が可能となる。   Further, in the above, since the substrate (2) and the radiation fin (3) are integrally formed at the time of molding, the number of manufacturing steps is small, and simple manufacturing is possible. Further, as another different manufacturing procedure, the substrate (2) and the radiation fin (3) may be separately formed, and both may be connected in a later step. In this case, since resin materials are bonded together, they can be heat-welded at a lower temperature than brazing metal materials, or can be easily performed with an adhesive, etc., and require advanced manufacturing technology and labor. And easy work becomes possible.

上述の如く形成したヒートシンク(1)を電子素子等の発熱体(図示せず)の冷却に使用する場合には、受熱部としての基板(2)を発熱体の表面に配置する。また、ビス(図示せず)等の固定手段により発熱体に固定しても良い。また、基板(2)と発熱体との間に、シリコングリース等のサーマルペーストを塗布して、発熱体とヒートシンク(1)とを隙間無く密着させて、伝熱性や載置安定性を高めても良い。また、この場合、樹脂材製のヒートシンク(1)とシリコンとでは、熱の伝達を効率的に行う事ができる。   When the heat sink (1) formed as described above is used for cooling a heating element (not shown) such as an electronic element, a substrate (2) as a heat receiving unit is disposed on the surface of the heating element. Further, the heating element may be fixed by fixing means such as a screw (not shown). Also, a thermal paste such as silicon grease is applied between the substrate (2) and the heating element, and the heating element and the heat sink (1) are brought into close contact with each other without any gap, thereby improving heat transfer and mounting stability. Is also good. Further, in this case, heat can be efficiently transmitted between the heat sink (1) made of the resin material and the silicon.

上述の如き配設により、基板(2)が受熱部となって発熱体から熱を受熱し、放熱部である放熱フィン(3)を介して熱が外気中に放出される。本実施例の放熱フィン(3)は、ピン状放熱フィン(3)を長尺に形成して、伝熱面積を増大して熱伝導性を高めているので、外気との熱交換が効率的に行われ、発熱体の冷却を良好に行う事ができる。   With the arrangement as described above, the substrate (2) serves as a heat receiving portion to receive heat from the heating element, and the heat is released to the outside air via the radiating fins (3) serving as the heat radiating portion. In the heat radiation fin (3) of this embodiment, since the pin-shaped heat radiation fin (3) is formed in a long length to increase the heat transfer area and enhance the heat conductivity, heat exchange with the outside air is efficient. The heating element can be cooled well.

また、上記実施例1では、ピン状放熱フィン(3)の断面形状を四角形としているが、図2に示す実施例2では、断面形状を星形としている。このような複雑な形状であっても、樹脂材を用いる事により、放熱フィン(3)の容易な成形が可能となるとともに、伝熱面積を更に増大可能で、熱交換性能を高める事ができる。また、ピン状放熱フィン(3)は、上記四角形や星形だけでなく、従来の円形、楕円形、四角形以外の多角形、又はギア形等としても良い。   In the first embodiment, the cross-sectional shape of the pin-shaped heat radiation fins (3) is square, but in the second embodiment shown in FIG. 2, the cross-sectional shape is star-shaped. Even with such a complicated shape, by using a resin material, the radiation fins (3) can be easily formed, and the heat transfer area can be further increased, and the heat exchange performance can be enhanced. . Further, the pin-shaped heat radiation fins (3) may be not only the above-described square and star but also a conventional circle, ellipse, polygon other than the square, or a gear.

また、上記実施例1、2では、放熱フィン(3)をピン状に形成しているが、他の異なる実施例3では、図3に示す如く、放熱フィン(3)を板状に形成している。そして、この板状の放熱フィン(3)の表面を波形の曲面とし、基板(2)に平行に複数配置する事により、伝熱面積を増大させて、放熱フィン(3)の熱交換性能を高めている。   In the first and second embodiments, the radiation fin (3) is formed in a pin shape. In another different third embodiment, as shown in FIG. 3, the radiation fin (3) is formed in a plate shape. ing. The surface of the plate-shaped heat radiation fin (3) is formed into a wavy curved surface, and a plurality of heat radiation areas are arranged in parallel with the substrate (2) to increase the heat transfer area and improve the heat exchange performance of the heat radiation fin (3). Is increasing.

また、図4に示す実施例4では、鋸状の曲面を有する板状放熱フィン(3)を、基板(2)に放射状に複数配置している。このような形状であっても、樹脂材にて容易に形成可能であるし、放熱フィン(3)の伝熱面積を増大させる事ができる。   In the fourth embodiment shown in FIG. 4, a plurality of plate-shaped heat radiation fins (3) having a saw-like curved surface are radially arranged on the substrate (2). Even with such a shape, it can be easily formed of a resin material, and the heat transfer area of the radiation fin (3) can be increased.

また、図5に示す実施例5では、平板状の板状の放熱フィン(3)を、基板(2)に複数平行に設けたヒートシンク(1)を用いて、熱交換器(4)を形成している。この熱交換器(4)は、内部に設けた密閉空間に、水、アルコール等の作動流体を収納したヒートパイプ(5)を備え、このヒートパイプ(5)の一端に、発熱体の熱を受熱しヒートパイプ(5)に伝熱する平板状の受熱体(6)を接続し、ヒートパイプ(5)の他端に前記ヒートシンク(1)を接続し、ヒートパイプ(5)の作動流体により伝達される熱を放熱フィン(3)を介して外部に放出可能としている。   In the fifth embodiment shown in FIG. 5, a heat exchanger (4) is formed by using a heat sink (1) having a plurality of plate-shaped heat radiation fins (3) provided in parallel with a substrate (2). are doing. The heat exchanger (4) is provided with a heat pipe (5) containing a working fluid such as water or alcohol in a closed space provided therein, and heat of a heating element is applied to one end of the heat pipe (5). A flat heat receiving body (6) that receives heat and transfers the heat to the heat pipe (5) is connected, the heat sink (1) is connected to the other end of the heat pipe (5), and the working fluid of the heat pipe (5) is used. The transmitted heat can be released to the outside via the radiation fins (3).

上述の如き熱交換器(4)は、樹脂材を用いる事により、ヒートシンク(1)、ヒートパイプ(5)、受熱体(6)を、成形時に一体に形成する事が可能で、特に軽量化が可能となるとともに、材料が廉価で製造も容易であるから、廉価な製品とする事ができる。勿論、ヒートシンク(1)、ヒートパイプ(5)、受熱体(6)を別個に形成し、溶着や接着剤により各々を接続しても良い。また、ヒートシンク(1)のみを樹脂材で形成し、ヒートパイプ(5)や受熱体(6)を金属材製としても良く、全体を金属材製とした場合に比べ、軽量で容易な製作が可能となる。   In the heat exchanger (4) as described above, the use of a resin material allows the heat sink (1), the heat pipe (5), and the heat receiving body (6) to be integrally formed at the time of molding. Is possible, and the material is inexpensive and easy to manufacture, so that an inexpensive product can be obtained. Of course, the heat sink (1), the heat pipe (5), and the heat receiving body (6) may be formed separately and connected to each other by welding or an adhesive. Alternatively, only the heat sink (1) may be made of a resin material, and the heat pipe (5) and the heat receiving body (6) may be made of a metal material. It becomes possible.

また、上記熱交換器(4)を用いて発熱体の冷却を行うには、発熱体に接触配置した受熱体(6)に、該発熱体の熱が伝達されると、この熱によりヒートパイプ(5)内の作動流体が加熱されて蒸発する。この作動流体の蒸気が、内部空間を介してヒートシンク(1)側に流動し、作動流体の熱がヒートシンク(1)に伝達され、このヒートシンク(1)の放熱フィン(3)を介して外気(或いは冷却水や冷却風等の冷却媒体)と作動流体との蒸発潜熱の受け渡しが行われる。この蒸発潜熱の受け渡しにより、作動流体が凝縮され、受熱体(6)側に急速に戻る。そして、発熱体から受熱体(6)への新たな熱伝達により作動流体の蒸発と、ヒートシンク(1)での放熱による作動流体の凝縮が同時並行的に繰り返される事により、発熱体の冷却が連続して行われる。そして、熱交換性能の高いヒートシンク(1)を使用しているので、冷却効果の高い熱交換器(4)を得る事ができ、小型化も実現可能である。   Further, in order to cool the heating element using the heat exchanger (4), when the heat of the heating element is transmitted to the heat receiving element (6) arranged in contact with the heating element, the heat is transferred to the heat pipe. The working fluid in (5) is heated and evaporates. The vapor of the working fluid flows to the heat sink (1) through the internal space, and the heat of the working fluid is transmitted to the heat sink (1). Alternatively, the latent heat of evaporation between the working fluid and the cooling medium such as cooling water or cooling air is transferred. Due to the transfer of the latent heat of vaporization, the working fluid is condensed and rapidly returns to the heat receiving body (6). The evaporation of the working fluid by the new heat transfer from the heating element to the heat receiving body (6) and the condensation of the working fluid by the heat radiation in the heat sink (1) are repeated simultaneously and in parallel, thereby cooling the heating element. It is performed continuously. Since the heat sink (1) having high heat exchange performance is used, a heat exchanger (4) having a high cooling effect can be obtained, and downsizing can be realized.

尚、上記各実施例に於いて、ヒートシンク(1)の基板(2)と放熱フィン(3)及び/又は樹脂材製としたヒートパイプ(5)及び/又は樹脂材製とした受熱体(6)には、これらを形成する樹脂材に、熱伝導性の高い銅、アルミニウム、ステンレス鋼等の金属材の粒子や繊維、ガラス材の粒子や繊維、カーボン材の粒子や繊維等を含有させたり、その表面に金属材の粉末等を混合した塗料を塗布したり、金属材をめっき或いは蒸着等させても良い。   In each of the above embodiments, the substrate (2) of the heat sink (1) and the radiating fins (3) and / or the heat pipe (5) made of a resin material and / or the heat receiver (6) made of a resin material are used. ), The resin material forming these contains particles or fibers of a metal material such as copper, aluminum, and stainless steel having high thermal conductivity, particles or fibers of a glass material, particles or fibers of a carbon material, or the like. Alternatively, a paint in which a powder of a metal material is mixed may be applied to the surface, or the metal material may be plated or vapor-deposited.

また、黒色で黒体輻射効果のある樹脂材を使用した場合でも、ヒートシンク(1)、ヒートパイプ(5)又は受熱体(6)の伝熱面の熱伝導性が高まり、放熱特性を高めて冷却効果の更に高いヒートシンク(1)並びに熱交換器(4)を得る事ができる。更には、黒色で黒体輻射効果のある樹脂材に前記金属材製、カーボン材製、ガラス材製の粒子や繊維、及び/又はカーボンナノファイバーを含有させても良く、冷却効果の更なる向上が可能となる。   In addition, even when a black resin material having a black body radiation effect is used, the heat conductivity of the heat transfer surface of the heat sink (1), the heat pipe (5) or the heat receiving body (6) is increased, and the heat radiation characteristics are improved. The heat sink (1) and the heat exchanger (4) having a higher cooling effect can be obtained. Furthermore, the metal material, carbon material, glass material particles and fibers, and / or carbon nanofibers may be contained in the resin material having a black body radiation effect in black, further improving the cooling effect. Becomes possible.

また、樹脂材にカーボンナノファイバーを含有させる事により、ヒートシンク(1)及び/又は樹脂材製としたヒートパイプ(5)及び/又は樹脂材製とした受熱体(6)の放熱特性を更に向上させる事が可能となり、ヒートシンク(1)並びに熱交換器(4)の冷却性能を効果的に向上させる事が可能となる。また、カーボンナノファイバーを樹脂材に含有させる場合は、5wt%より多く30wt%より少ない含有量で含有させる事で、最良の伝熱効果を得る事が可能となる。   Further, by including carbon nanofibers in the resin material, the heat radiation characteristics of the heat sink (1) and / or the heat pipe (5) made of the resin material and / or the heat receiving body (6) made of the resin material are further improved. The cooling performance of the heat sink (1) and the heat exchanger (4) can be effectively improved. When carbon nanofibers are contained in a resin material, the best heat transfer effect can be obtained by containing carbon nanofibers in a content of more than 5 wt% and less than 30 wt%.

放熱フィンを断面形状が四角形のピン状とした実施例1の斜視図。FIG. 4 is a perspective view of the first embodiment in which the heat radiation fins have a rectangular pin shape in cross section. 放熱フィンを断面形状が星形のピン状とした実施例2の斜視図。FIG. 9 is a perspective view of a second embodiment in which the radiation fins have a star-shaped cross section. 放熱フィンを波形曲面を有する板状とした実施例3の斜視図。FIG. 11 is a perspective view of a third embodiment in which the heat radiation fins are formed in a plate shape having a wavy curved surface. 放熱フィンを鋸状曲面を有する板状とした実施例4の平面図。FIG. 14 is a plan view of a fourth embodiment in which the radiation fins are plate-shaped having a saw-like curved surface. ヒートシンクを用いた実施例5の熱交換器の斜視図。FIG. 14 is a perspective view of a heat exchanger according to a fifth embodiment using a heat sink. 熱交換性能比較実験の概念図。The conceptual diagram of a heat exchange performance comparison experiment. 熱交換性能グラフ。Heat exchange performance graph.

符号の説明Explanation of reference numerals

1 ヒートシンク
2 基板
3 放熱フィン
DESCRIPTION OF SYMBOLS 1 Heat sink 2 Substrate 3 Heat radiation fin

Claims (7)

樹脂材製の基板に複数の樹脂材製の放熱フィンを一体に突出形成した事を特徴とする樹脂材製ヒートシンク。 A resin-made heat sink, wherein a plurality of resin-made heat radiation fins are integrally formed on a resin-made substrate. 放熱フィンは、断面形状を円形、楕円形、多角形、星形、又はギア形とするピン状とした事を特徴とする請求項1の樹脂材製ヒートシンク。 The heat sink made of resin according to claim 1, wherein the radiation fin has a pin shape having a circular, elliptical, polygonal, star, or gear cross section. 放熱フィンは、片面又は両面を平坦面とするか又は曲面とした板状とした事を特徴とする請求項1の樹脂材製ヒートシンク。 The heat sink made of resin according to claim 1, wherein the radiation fin is formed in a plate shape having one or both surfaces flat or curved. 放熱フィンは、表面に微細な凹凸及び/又は突起を設けた事を特徴とする請求項1、2又は3の樹脂材製ヒートシンク。 The heat sink made of a resin material according to claim 1, wherein the heat radiation fin has fine irregularities and / or protrusions provided on a surface thereof. 基板及び放熱フィンは、これらを形成する樹脂材よりも熱伝導性の高い粒子及び/又は繊維を含有させた事を特徴とする請求項1、2、3又は4の樹脂材製ヒートシンク。 The resin heat sink according to claim 1, 2, 3, or 4, wherein the substrate and the radiation fin contain particles and / or fibers having higher thermal conductivity than the resin material forming them. 基板及び放熱フィンは、これらを形成する樹脂材にカーボンナノファイバーを含有させた事を特徴とする請求項1、2、3、4又は5の樹脂材製ヒートシンク。 The resin heat sink according to any one of claims 1, 2, 3, 4 and 5, wherein the substrate and the radiation fin include carbon nanofibers in a resin material forming them. カーボンナノファイバーは、5wt%より多く30wt%より少ない含有量で含有させた事を特徴とする請求項6の樹脂材製ヒートシンク。 7. The resin material heat sink according to claim 6, wherein the carbon nanofibers are contained at a content of more than 5 wt% and less than 30 wt%.
JP2003377024A 2002-12-13 2003-11-06 Heat sink made of resin material Withdrawn JP2004207690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003377024A JP2004207690A (en) 2002-12-13 2003-11-06 Heat sink made of resin material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002362259 2002-12-13
JP2003377024A JP2004207690A (en) 2002-12-13 2003-11-06 Heat sink made of resin material

Publications (2)

Publication Number Publication Date
JP2004207690A true JP2004207690A (en) 2004-07-22
JP2004207690A5 JP2004207690A5 (en) 2006-12-21

Family

ID=32828644

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003377024A Withdrawn JP2004207690A (en) 2002-12-13 2003-11-06 Heat sink made of resin material

Country Status (1)

Country Link
JP (1) JP2004207690A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086471A (en) * 2004-09-17 2006-03-30 Yaskawa Electric Corp Heat radiation fin and its manufacturing method
JP2007208000A (en) * 2006-02-01 2007-08-16 Furukawa Electric Co Ltd:The Heat sink for cooling electronic component, and its process for fabrication
WO2009005029A1 (en) * 2007-07-02 2009-01-08 Starlite Co., Ltd. Resin heat sink
JP2009289725A (en) * 2008-05-28 2009-12-10 Taida Electronic Ind Co Ltd Illuminating device and its heat radiating structure
JP2009290185A (en) * 2008-05-30 2009-12-10 Samsung Electro Mech Co Ltd Radiation pin and package substrate containing radiation pin, and manufacturing method therefor
JP2013036720A (en) * 2011-08-11 2013-02-21 Sharp Corp Air conditioner
JP2013524439A (en) * 2010-04-02 2013-06-17 ジーイー ライティング ソリューションズ エルエルシー Light weight heat sink and LED lamp using the same
US8743546B2 (en) 2007-10-22 2014-06-03 Fujitsu Limited Sheet structure and method of manufacturing the same
JP2015053490A (en) * 2010-03-24 2015-03-19 三菱エンジニアリングプラスチックス株式会社 Heat dissipation structure of heat dissipation member and heating element
JP2015228297A (en) * 2014-05-30 2015-12-17 ダイキョーニシカワ株式会社 Battery module
JP2017149131A (en) * 2015-11-23 2017-08-31 ザ・ボーイング・カンパニーThe Boeing Company Controlling heating of composite part
US9841175B2 (en) 2012-05-04 2017-12-12 GE Lighting Solutions, LLC Optics system for solid state lighting apparatus
US9951938B2 (en) 2009-10-02 2018-04-24 GE Lighting Solutions, LLC LED lamp
KR101869190B1 (en) * 2017-02-23 2018-06-25 한국광기술원 Heat sink structure for LED lighting device of transport equipment, and manufacturing method thereof
US10340424B2 (en) 2002-08-30 2019-07-02 GE Lighting Solutions, LLC Light emitting diode component
CN111834309A (en) * 2020-07-21 2020-10-27 西安科技大学 Hybrid wettability micro-nano composite enhanced heat exchange structure and preparation method thereof

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10340424B2 (en) 2002-08-30 2019-07-02 GE Lighting Solutions, LLC Light emitting diode component
JP2006086471A (en) * 2004-09-17 2006-03-30 Yaskawa Electric Corp Heat radiation fin and its manufacturing method
JP2007208000A (en) * 2006-02-01 2007-08-16 Furukawa Electric Co Ltd:The Heat sink for cooling electronic component, and its process for fabrication
WO2009005029A1 (en) * 2007-07-02 2009-01-08 Starlite Co., Ltd. Resin heat sink
US8743546B2 (en) 2007-10-22 2014-06-03 Fujitsu Limited Sheet structure and method of manufacturing the same
JP2009289725A (en) * 2008-05-28 2009-12-10 Taida Electronic Ind Co Ltd Illuminating device and its heat radiating structure
JP2009290185A (en) * 2008-05-30 2009-12-10 Samsung Electro Mech Co Ltd Radiation pin and package substrate containing radiation pin, and manufacturing method therefor
US8377748B2 (en) 2008-05-30 2013-02-19 Samsung Electro-Mechanics Co., Ltd. Method of manufacturing cooling fin and package substrate with cooling fin
US9951938B2 (en) 2009-10-02 2018-04-24 GE Lighting Solutions, LLC LED lamp
JP2015053490A (en) * 2010-03-24 2015-03-19 三菱エンジニアリングプラスチックス株式会社 Heat dissipation structure of heat dissipation member and heating element
JP2013524439A (en) * 2010-04-02 2013-06-17 ジーイー ライティング ソリューションズ エルエルシー Light weight heat sink and LED lamp using the same
JP2013036720A (en) * 2011-08-11 2013-02-21 Sharp Corp Air conditioner
US9841175B2 (en) 2012-05-04 2017-12-12 GE Lighting Solutions, LLC Optics system for solid state lighting apparatus
US10139095B2 (en) 2012-05-04 2018-11-27 GE Lighting Solutions, LLC Reflector and lamp comprised thereof
JP2015228297A (en) * 2014-05-30 2015-12-17 ダイキョーニシカワ株式会社 Battery module
JP2017149131A (en) * 2015-11-23 2017-08-31 ザ・ボーイング・カンパニーThe Boeing Company Controlling heating of composite part
KR101869190B1 (en) * 2017-02-23 2018-06-25 한국광기술원 Heat sink structure for LED lighting device of transport equipment, and manufacturing method thereof
CN111834309A (en) * 2020-07-21 2020-10-27 西安科技大学 Hybrid wettability micro-nano composite enhanced heat exchange structure and preparation method thereof
CN111834309B (en) * 2020-07-21 2021-10-01 西安科技大学 Hybrid wettability micro-nano composite enhanced heat exchange structure and preparation method thereof

Similar Documents

Publication Publication Date Title
JP2004207690A (en) Heat sink made of resin material
EP1383170B1 (en) Thermosiphon for electronics cooling with nonuniform airflow
TWI748393B (en) heat sink
US20040052051A1 (en) Heat sink with heat pipe and base fins
US20040050535A1 (en) Heat sink with angled heat pipe
CN111664733A (en) Heat radiator combining micro-channel heat exchanger with heat pipe
CN102287962B (en) Semiconductor condensed water device
JP2005228855A (en) Radiator
CN108534103A (en) A kind of great power LED fin-super heat-conductive pipe integral heat dissipation device
WO2018113374A1 (en) Helical line-shaped heat dissipation device
US20040190248A1 (en) High efficiency heat sink/air cooler system for heat-generating components
CN111174188A (en) Circular array heat source heat dissipation device with structure and function integrated
CN106440906A (en) A spiral liquid-cooled vapor chamber composite radiator
CN202549556U (en) Transformer heat pipe radiating device
JP4177337B2 (en) Heat sink with heat pipe
JP2006245560A (en) Structure of heat dissipation fin and its manufacturing process
CN102683307B (en) CPU (Central Processing Unit) radiator with combined corner-tube type flat self-excited capillary heat pipe
JP2004198098A (en) Heat pipe, and heat exchange device using heat pipe
CN212538920U (en) A heat dissipation device with a microchannel heat exchanger combined with a heat pipe
JP2004226056A (en) Resin water tube and radiator device using resin water tube
CN1884954A (en) Heat pipe
TW519865B (en) High efficiency heat sink
TW200539788A (en) Heat pipe cooling assembly and method of manufacturing the same
CN103167783A (en) Heat sink device
CN108614627A (en) A kind of CPU fin-super heat-conductive pipe integral heat dissipation devices

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061101

A621 Written request for application examination

Effective date: 20061101

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090129

A131 Notification of reasons for refusal

Effective date: 20090210

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090409

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090526

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20090617