[go: up one dir, main page]

JP2004205784A - Liquid crystal display - Google Patents

Liquid crystal display Download PDF

Info

Publication number
JP2004205784A
JP2004205784A JP2002374364A JP2002374364A JP2004205784A JP 2004205784 A JP2004205784 A JP 2004205784A JP 2002374364 A JP2002374364 A JP 2002374364A JP 2002374364 A JP2002374364 A JP 2002374364A JP 2004205784 A JP2004205784 A JP 2004205784A
Authority
JP
Japan
Prior art keywords
liquid crystal
light
crystal element
rear side
transmission axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002374364A
Other languages
Japanese (ja)
Inventor
Yoshiaki Sawano
義昭 澤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2002374364A priority Critical patent/JP2004205784A/en
Publication of JP2004205784A publication Critical patent/JP2004205784A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Planar Illumination Modules (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a liquid crystal display capable of performing display by efficiently utilizing light from a surface light source. <P>SOLUTION: The surface light source 10 which consists of, a light guide plate 11 guiding and emitting light from a light emitting elements 13 to a liquid crystal element 1 and transmitting light made incident from the front and the rear sides, a reflection plate 14 disposed in the rear side of the light guide plate 14, and a λ/4 retardation plate 15 disposed between the light guide plate 11 and the reflection plate 14, is arranged on the rear side of a liquid crystal element 1 which is composed of a liquid crystal cell 2 and absorbing polarization plate 7 and 8 disposed in the front side and rear side of the liquid crystal cell 2, respectively. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、面光源を備えた液晶表示装置に関する。
【0002】
【従来の技術】
液晶表示装置として、表示の観察側である前側の基板とこの前側基板に対向する後側基板との間に印加される電界に応じて透過光の偏光状態を制御する液晶層が設けられた液晶セルと、前記液晶セルの前側に配置され、入射光の互いに直交する2つの直線偏光成分のうち、一方の偏光成分を吸収し、他方の偏光成分を透過させる吸収偏光板と、前記液晶素子の後側に配置され、入射光の互いに直交する2つの直線偏光成分のうち、一方の偏光成分を反射し、他方の偏光成分を透過させる反射偏光板とからなる液晶素子の後側に、前記液晶素子に向けて光を出射する面光源を配置したものがある(特許文献1参照)。
【0003】
この液晶表示装置は、前記面光源からの光による透過表示と、外部環境の光である外光を利用する反射表示との両方の表示を行なうものであり、前記面光源からの光により透過表示を行なうときは、前記面光源から出射して前記液晶素子にその後側から入射した光を前記反射偏光板により直線偏光として液晶セルに入射させ、液晶層への印加電界に応じて偏光状態を制御されて前記液晶セルの前側に出射した光のうち、一方の直線偏光成分を前記吸収偏光板により吸収し、他方の直線偏光成分を前記吸収偏光板を透過させて前側に出射して表示する。
【0004】
また、外光を利用して反射表示を行なうときは、表示の観察側である前側から前記液晶素子に入射した光を前記吸収偏光板により直線偏光として液晶セルに入射させ、液晶層への印加電界に応じて偏光状態を制御されて前記液晶セルの後側に出射した光のうち、一方の直線偏光成分を前記反射偏光板により反射して前側に出射させ、他方の直線偏光成分を前記反射偏光板の後側に透過させて表示する。
【0005】
【特許文献1】
特開2002−47195号公報
【0006】
【発明が解決しようとする課題】
しかし、上記液晶表示装置は、面光源から出射して液晶素子にその後側から入射した光のうち、前記反射偏光板の透過軸に平行な直線偏光成分がこの反射偏光板を透過して液晶セルに入射し、前記反射偏光板の反射軸に平行な直線偏光成分はこの反射偏光板により反射されるため、前記面光源からの光の利用効率が悪い。
【0007】
この発明は、面光源からの光を効率良く利用して表示することができる液晶表示装置を提供することを目的としたものである。
【0008】
【課題を解決するための手段】
この発明の液晶表示装置は、表示の観察側である前側の基板とこの前側基板に対向する後側基板との間に、印加される電界に応じて透過光の偏光状態を制御する液晶層が設けられた液晶セルと、前記液晶セルの少なくとも前側に配置され、互いに直交する方向に透過軸と吸収軸とをもち、入射光の互いに直交する2つの直線偏光成分のうち、前記吸収軸に平行な一方の偏光成分を吸収し、前記透過軸に平行な他方の偏光成分を透過させる吸収偏光板とからなる液晶素子と、
前記液晶素子の後側に配置され、発光素子からの光を導いて前記液晶素子に向けて出射し、且つ前側及び後側から入射した光を透過させる導光板と、前記導光板の後側に配置され、前記導光板の後側に出射した光を反射する反射板と、前記導光板と前記反射板との間に配置され、透過光の常光と異常光との間に1/4波長の位相差を与えるλ/4位相差板とからなる面光源と、
前記液晶素子と前記面光源との間に配置され、互いに直交する方向に透過軸と反射軸とをもち、入射光の互いに直交する2つの直線偏光成分のうち、前記反射軸に平行な一方の偏光成分を反射し、前記透過軸に平行な他方の偏光成分を透過させる反射偏光板とを備えたことを特徴とする。
【0009】
この液晶表示装置によれば、前記面光源の導光板から出射した光のうち、前記反射偏光板の透過軸に平行な直線偏光成分をこの反射偏光板を透過させて前記液晶素子に入射させるとともに、前記反射偏光板により反射された光、つまり前記反射偏光板の反射軸に平行な直線偏光成分を、前記導光板の後側に配置されたλ/4位相差板を透過して反射板により反射され、前記λ/4位相差板を再び透過して前記導光板の前側に出射する間に前記反射偏光板の透過軸に平行な直線偏光に変換して前記反射偏光板に再入射させ、その光も前記反射偏光板を透過させて前記液晶素子に入射させることができるため、前記面光源からの光を効率良く利用して表示することができる。
【0010】
このように、この発明の液晶表示装置は、液晶セルとその少なくとも前側に配置された吸収偏光板とからなる液晶素子の後側に、発光素子からの光を導いて前記液晶素子に向けて出射し、且つ前側及び後側から入射した光を透過させる導光板と、前記導光板の後側に配置された反射板と、前記導光板と前記反射板との間に配置されたλ/4位相差板とからなる面光源を配置し、さらに前記液晶素子と前記面光源との間に反射偏光板を配置することにより、前記面光源からの光を効率良く利用して表示することができるようにしたものである。
【0011】
この発明の液晶表示装置は、前記液晶素子の液晶セルの液晶層の液晶分子を前後の基板間において実質的に90°のツイスト角でツイスト配向させ、前記液晶セルの前側に配置された吸収偏光板の透過軸と、前記液晶素子と面光源との間の反射偏光板の透過軸とを実質的に直交させた構成のものが望ましい。
【0012】
さらに、この液晶表示装置は、前記液晶素子に、前記液晶セルの前側と後側とにそれぞれ配置された2枚の吸収偏光板を備えさせ、前記液晶素子と面光源との間の反射偏光板を、その透過軸を前記液晶素子の後側の吸収偏光板の透過軸と実質的に平行にして配置した構成とするのが好ましい。
【0013】
【発明の実施の形態】
図1〜図3はこの発明の一実施例を示しており、図1は液晶表示装置の分解斜視図、図2は前記液晶表示装置の面光源からの光による透過表示のときの光の出射経路を示すハッチングを省略した断面図、図3は前記液晶表示装置の外光を利用する反射表示のときの光の出射経路を示すハッチングを省略した断面図である。
【0014】
この液晶表示装置は、図1〜図3に示したように、液晶素子1と、前記液晶素子1の後側に配置された面光源10と、前記液晶素子1と面光源10との間に配置された反射偏光板9とを備えている。
【0015】
前記液晶素子1は、液晶セル2と、この液晶セル2の前側と後側とにそれぞれ配置された2枚の偏光板7,8とからなっている。
【0016】
前記液晶セル2は、表示の観察側である前側の透明基板3と、この前側基板3に対向する後側の透明基板4との間に、印加される電界に応じて透過光の偏光状態を制御する液晶層6が設けられたものであり、前記前側基板3と後側基板4は、枠状のシール材5を介して接合され、これらの基板3,4間の前記シール材5により囲まれた領域に液晶層6が設けられている。
【0017】
なお、図では省略しているが、前記液晶セル2の前後の基板3,4の対向する内面には、互いに対向する領域によりマトリックス状に配列する複数の画素を形成する透明電極が設けられ、その上に、前記液晶層6の液晶分子のそれぞれの基板3,4の近傍における配向方向を規定するための配向膜が設けられている。
【0018】
また、前記液晶セル2の前側と後側にそれぞれ配置された2枚の偏光板7,8は、互いに直交する方向に透過軸7a,8aと吸収軸(図示せず)とをもち、入射光の互いに直交する2つの直線偏光成分のうち、前記吸収軸に平行な一方の偏光成分を吸収し、前記透過軸7a,8aに平行な他方の偏光成分を透過させる吸収偏光板である。
【0019】
この液晶素子1は、TN(ツイステッドネマティック)型のものであり、前記液晶セル2の液晶層6は、液晶分子が前後の基板3,4間において実質的に90°のツイスト角でツイスト配向した誘電異方性が正のネマティック液晶からなっている。
【0020】
図1において、矢印3aは前記液晶セル2の前側基板3の近傍における液晶分子配向方向、矢印4aは後側基板4の近傍における液晶分子配向方向を示しており、前記前側基板3の近傍における液晶分子配向方向3aは、液晶表示装置の画面の横軸xに対して一方の方向に実質的に45°の方向、後側基板4の近傍における液晶分子配向方向4aは、前記横軸xに対して他方の方向に実質的に45°の方向にあり、前記液晶層6の液晶分子は、後側基板4から前側基板3に向かって、図1に破線矢印で示したツイスト方向に実質的に90°のツイスト角でツイスト配向している。
【0021】
さらに、この液晶素子1はノーマリーホワイトモードのものであり、前記液晶セル2の前側の吸収偏光板7は、その透過軸7aを前記液晶セル2の前側基板3の近傍における液晶分子配向方向3aと実質的に平行または直交(図1では直交)させて前記液晶セル2の前側基板3の外面に貼付けられ、後側の吸収偏光板8は、その透過軸8aを前記前側の吸収偏光板7の透過軸7aと実質的に直交させて前記液晶セル2の後側基板4の外面に貼付けられている。
【0022】
一方、前記液晶素子1と面光源10との間に配置された反射偏光板9は、互いに直交する方向に透過軸9aと反射軸9bとをもっており、入射光の互いに直交する2つの直線偏光成分のうち、前記反射軸9bに平行な一方の偏光成分を反射し、前記透過軸9aに平行な他方の偏光成分を透過させる。
【0023】
この反射偏光板9は、その透過軸9aを、前記液晶素子1の前側の吸収偏光板7の透過軸7aと実質的に直交させ、前記液晶素子1の後側の吸収偏光板8の透過軸8aと実質的に平行にして、前記後側の吸収偏光板8の後面に貼付けられている。
【0024】
また、前記面光源10は、発光素子13からの光を導いて前記液晶素子1に向けて出射し、且つ前側及び後側から入射した光を透過させる導光板11と、前記導光板11の後側に配置され、前記導光板11の後側に出射した光を反射する反射板14と、前記導光板11と前記反射板14との間に配置された位相差板15とからなっている。
【0025】
前記導光板11は、一端面に光を入射させる入射端面が形成され、前面が平坦な出射面に形成されるとともに、後面に、前記入射端面から入射してこの導光板11内を導かれてきた光を、導光板前面(出射面)の法線に対する角度が小さくなる方向に反射して前記前面から出射させるための複数の溝状凹部12が前記入射端面と平行に形成されたアクリル系樹脂板等の透明板からなっている。
【0026】
この導光板11は、その入射端面から入射した光を導いてそのほとんどを前面から出射するものであり、前記入射端面から入射した光を導光板11の前後面と外気である空気層との界面で全反射させながら導光板11内を導き、その過程で導光板後面の複数の溝状凹部12により導光板前面の法線に対する角度が小さくなる方向に反射された光を、導光板前面と空気層との界面を透過させて前側に出射する。
【0027】
また、この導光板11は、その前面から入射した光を板厚方向に透過させて後面から出射し、後面から入射した光を板厚方向に透過させて前面から出射する。
【0028】
前記導光板11は、その前面(出射面)を前記液晶素子1に対向させて、前記反射偏光板9の後側に、この反射偏光板9との間に空気層を設けて配置されており、その側方に、前記導光板11の入射端面に対向させて発光素子13が配置されている。
【0029】
前記発光素子13は、例えばLED(発光ダイオード)からなる固体発光素子であり、この実施例では、複数の固体発光素子13を前記導光板11の入射端面に対向させて配置している。なお、前記発光素子は、直管状の冷陰極管等でもよい。
【0030】
また、前記導光板11と反射板14との間に配置された位相差板15は、透過光の常光と異常光との間に1/4波長の位相差を与えるλ/4位相差板であり、このλ/4位相差板15は、その遅相軸15aを前記反射偏光板9の透過軸9aに対して実質的に45°の角度で交差させて前記反射板14の反射面(導光板11に対向する面)上に貼付けられている。
【0031】
そして、前記反射板14とその反射面上に貼付けられた前記λ/4位相差板15は、前記導光板11の後側に、この導光板11と前記λ/4位相差板15との間に空気層を設けて配置されている。
【0032】
この液晶表示装置は、前記面光源10からの光による透過表示と、外部環境の光である外光を利用する反射表示との両方の表示を行なうものであり、前記面光源10の発光素子13は、充分な明るさの外光が得られる環境下で反射表示を行なうときは消灯され、透過表示を行なうときに点灯される。
【0033】
まず、前記面光源10からの光による透過表示について説明すると、この透過表示のときは、前記発光素子13からの出射光(非偏光)が前記導光板11にその端面から入射してこの導光板11内を導かれ、その光のほとんどが、図2に矢線で示したように前記導光板11の前面から前側に出射する。
【0034】
前記導光板11の前側に出射した光は、この導光板11と前記液晶素子との間に配置された反射偏光板9にその後側から入射し、その光のうち、前記反射偏光板9の透過軸9aに平行な直線偏光成分がこの反射偏光板9を透過して前記液晶素子1にその後側から入射する。
【0035】
一方、前記導光板11の前側に出射して前記反射偏光板9にその後側から入射した光のうち、前記反射偏光板9の反射軸9bに平行な直線偏光成分は、この反射偏光板9により後側に反射される。
【0036】
前記反射偏光板9により後側に反射された光、つまり前記反射偏光板9の反射軸9bに平行な直線偏光は、前記導光板11を透過して前記λ/4位相差板15に入射し、このλ/4位相差板15により円偏光とされて反射板14により反射される。
【0037】
前記反射板14により反射された円偏光は、前記λ/4位相差板15を再び透過して前記反射偏光板9により反射された直線偏光の偏光面が実質的に90°回転した直線偏光、つまり前記反射偏光板9の透過軸9aに平行な直線偏光となり、その光が前記導光板11を再び透過して前記反射偏光板9に再入射し、この反射偏光板9を透過して前記液晶素子1にその後側から入射する。
【0038】
すなわち、この液晶表示装置は、前記面光源10の導光板11から出射した光のうち、前記反射偏光板9の透過軸9aに平行な直線偏光成分をこの反射偏光板9を透過させて前記液晶素子1に入射させるとともに、前記反射偏光板9により反射された光、つまり前記反射偏光板9の反射軸9bに平行な直線偏光成分を、前記導光板11の後側に配置されたλ/4位相差板15を透過して反射板14により反射され、前記λ/4位相差板15を再び透過して前記導光板11の前側に出射する間に前記反射偏光板9の透過軸9aに平行な直線偏光に変換して前記反射偏光板9に再入射させ、その光も前記反射偏光板9を透過させて前記液晶素子1に入射させるようにしたものであり、したがって、前記面光源10からの光のほとんどを、前記反射偏光板9の透過軸9aに平行な直線偏光として前記液晶素子1に入射させることができる。
【0039】
なお、前記発光素子13から出射して前記導光板11にその端面から入射し、この導光板11内を導かれる光のうち、一部の光は、図2に破矢線で示したように前記導光板11の後側に漏れるが、その漏れ光は、前記λ/4位相差板15を偏光状態を変えること無く透過して反射板14により反射され、前記λ/4位相差板15を再び偏光状態を変えること無く透過し、さらに前記導光板11を透過して前記反射偏光板9にその後側から入射する。
【0040】
そして、前記反射偏光板9にその後側から入射した光のうち、前記反射偏光板9の透過軸9aに平行な直線偏光成分はこの反射偏光板9を透過して前記液晶素子1に入射し、前記反射偏光板9の反射軸9bに平行な直線偏光成分はこの反射偏光板9により後側に反射されるが、この光も、前記λ/4位相差板15を再度透過して反射板14により反射され、さらに前記λ/4位相差板15を透過することにより前記反射偏光板9の透過軸9aに平行な直線偏光となって前記反射偏光板9に再入射し、この反射偏光板9を透過して前記液晶素子1に入射する。
【0041】
したがって、この液晶表示装置によれば、前記導光板11の後側に漏れた光も、そのほとんどを、前記反射偏光板9の透過軸9aに平行な直線偏光として前記液晶素子1に入射させることができる。
【0042】
前記面光源10から出射し、前記反射偏光板9を透過して前記液晶素子1にその後側から入射した光は、前記液晶素子1の後側の吸収偏光板8を透過し、偏光度の高い直線偏光となって液晶セル2に入射する。
【0043】
なお、前記反射偏光板9は、その透過軸9aを前記液晶素子1の後側の吸収偏光板8の透過軸8aと実質的に平行にして配置されているため、前記反射偏光板9を透過して前記液晶素子1にその後側から入射した光は、前記液晶素子1の後側の吸収偏光板8を高い透過率で透過して液晶セル2に入射する。
【0044】
前記液晶セル2にその後側から入射した光(反射偏光板9の透過軸9a及び後側の吸収偏光板8の透過軸8aに平行な直線偏光)は、その各画素の電極間に印加される電界により変化する液晶分子の配向状態に応じた液晶層6の複屈折作用を受けて前記液晶セル2の前側に出射し、その光のうち、前側の吸収偏光板7の透過軸7aに平行な直線偏光成分がこの吸収偏光板7を透過して前側に出射し、前記前側の吸収偏光板7の吸収軸に平行な直線偏光成分がこの吸収偏光板7により吸収される。
【0045】
すなわち、前記液晶セル2にその後側から入射した光のうち、液晶分子が初期のツイスト配向状態にある無電界画素に入射した光は、液晶層6により実質的に90°旋光され、前側の吸収偏光板7の透過軸7aに平行な直線偏光となって液晶セル2の前側に出射し、液晶分子が基板3,4面に対して実質的に垂直に立ち上がり配向した電界印加画素に入射した光は、液晶層6の複屈折作用を受けずに液晶セル2の前側に出射する。
【0046】
したがって、この透過表示のときは、前記液晶セル2の無電界画素を透過した光が前記前側の吸収偏光板7を透過して前側に出射し、その領域が明表示になり、前記液晶セル2の電界印加画素を透過した光が前記前側の吸収偏光板7により吸収され、その領域が暗表示になる。
【0047】
そして、この液晶表示装置は、上述したように、前記面光源10からの光のほとんどを、前記反射偏光板9の透過軸9aに平行な直線偏光として前記液晶素子1に入射させることができるため、前記面光源10からの光を効率良く利用して表示することができる。
【0048】
また、この実施例では、前記液晶素子1に、液晶セル2の前側と後側とにそれぞれ配置された2枚の吸収偏光板7,8を備えさせ、前記液晶素子1と面光源10との間の反射偏光板9を、その透過軸9aを前記液晶素子1の後側の吸収偏光板8の透過軸8aと実質的に平行にして配置しているため、前記面光源10から出射して前記反射偏光板9を透過した直線偏光を、前記後側の吸収偏光板8により偏光度の高い直線偏光として液晶セル2に入射させ、前記液晶素子1にコントラストの良い画像を表示させることができる。
【0049】
次に、外光を利用する反射表示について説明すると、この反射表示のときは、図3に矢線で示したように、表示の観察側である前側から入射した光が、前記液晶素子1の前側の吸収偏光板7によりその透過軸7aに平行な直線偏光とされて液晶セル2にその前側から入射する。
【0050】
そして、液晶セル2にその前側から入射した光のうち、液晶分子が初期のツイスト配向状態にある無電界画素に入射した光は、液晶層6により実質的に90°旋光され、後側の吸収偏光板8の透過軸8aに平行な直線偏光となって前記液晶セル2の後側に出射する。
【0051】
前記液晶セル2の後側に出射した光は、前記後側の吸収偏光板8を透過し、さらに前記反射偏光板9を透過してその後側に出射する。
【0052】
前記反射偏光板9を透過してその後側に出射した光(液晶素子1の後側の吸収偏光板8の透過軸8a及び反射偏光板9の透過軸9aに平行な直線偏光)は、前記面光源10の導光板11を透過して前記λ/4位相差板15により円偏光とされ、さらに反射板14により反射され、前記λ/4位相差板15を再び透過して前記反射偏光板9の反射軸9bに平行な直線偏光とされ、その光が前記導光板11の前側に出射して前記反射偏光板9により後側に反射される。
【0053】
そして、前記反射偏光板9により後側に反射された光は、再び前記λ/4位相差板15を透過して反射板14により反射され、前記λ/4位相差板15を再度透過して前記導光板11の前側に出射する間に偏光面をさらに90°回転されて前記反射偏光板9の透過軸9aに平行な直線偏光となって前記反射偏光板9に再入射し、この反射偏光板9を透過し、前記液晶素子1の後側の吸収偏光板8と液晶セル2と前側の吸収偏光板7とを透過して前側に出射する。
【0054】
また、前記液晶セル2にその前側から入射した光のうち、液晶分子が基板3,4面に対して実質的に垂直に立ち上がり配向した電界印加画素に入射した光は、液晶層6の複屈折作用を受けずに液晶セル2の後側に出射し、前記後側の吸収偏光板8により吸収される。
【0055】
したがって、この反射表示のときは、前記液晶セル2の無電界画素を透過し、後側の吸収偏光板8を透過して液晶素子1の後側に出射した光が前記面光源10の反射板14により反射されて前側に出射し、その領域が明表示になり、前記液晶セル2の電界印加画素を透過した光が前記後側の吸収偏光板8により吸収され、その領域が暗表示になる。
【0056】
この実施例では、前記液晶素子1に、液晶セル2の前側と後側とにそれぞれ配置された2枚の吸収偏光板7,8を備えさせ、前記液晶素子1と面光源10との間の反射偏光板9を、その透過軸9aを前記液晶素子1の後側の吸収偏光板8の透過軸8aと実質的に平行にして配置しているため、前記反射表示のときに、前側から入射し、前記液晶素子1の後側の吸収偏光板8を透過してその後側に出射した直線偏光を、高い透過率で前記反射偏光板9を透過させて前記面光源10に入射させ、前記面光源10の反射板14により反射され、前記反射偏光板9を透過してその前側に出射した直線偏光を前記液晶素子1の後側の吸収偏光板8を高い透過率で透過して液晶セル2に入射させることができ、したがって、前記明表示を充分に明るくすることができるとともに、前記吸収偏光板7,8の偏光度が前記反射偏光板9に比べて高いため、前記反射表示のときも、前記液晶素子1にコントラストの良い画像を表示させることができる。
【0057】
なお、上記実施例では、前記液晶素子1を、液晶セル2の前側と後側とにそれぞれ吸収偏光板7,8を配置した構成としているが、そのうちの後側の吸収偏光板8を省略し、前記反射偏光板9に、液晶素子1の後側の偏光板を兼ねさせてもよい。
【0058】
また、上記実施例の液晶表示装置は、TN型の液晶素子1を備えたものであるが、液晶素子は、液晶セルの液晶層の液晶分子を前後の基板間において180°〜270°(好ましくは200°〜250°)のツイスト角でツイスト配向させたSTN型、液晶分子を一方向に分子長軸を揃えてホモジニアス配向させたホモジニアス配向型等の液晶素子でもよい。
【0059】
【発明の効果】
この発明の液晶表示装置は、液晶セルとその少なくとも前側に配置された吸収偏光板とからなる液晶素子の後側に、発光素子からの光を導いて前記液晶素子に向けて出射し、且つ前側及び後側から入射した光を透過させる導光板と、前記導光板の後側に配置された反射板と、前記導光板と前記反射板との間に配置されたλ/4位相差板とからなる面光源を配置し、さらに前記液晶素子と前記面光源との間に反射偏光板を配置したものであるため、前記面光源からの光を効率良く利用して表示することができる。
【0060】
この発明の液晶表示装置は、前記液晶素子の液晶セルの液晶層の液晶分子を前後の基板間において実質的に90°のツイスト角でツイスト配向させ、前記液晶セルの前側に配置された吸収偏光板の透過軸と、前記液晶素子と面光源との間の反射偏光板の透過軸とを実質的に直交させた構成のものが望ましく、このようにすることにより、ノーマリーホワイトモードの表示を行なうことができる。
【0061】
さらに、この液晶表示装置は、前記液晶素子に、前記液晶セルの前側と後側とにそれぞれ配置された2枚の吸収偏光板を備えさせ、前記液晶素子と面光源との間の反射偏光板を、その透過軸を前記液晶素子の後側の吸収偏光板の透過軸と実質的に平行にして配置した構成とするのが好ましく、このようにすることにより、前記面光源から出射して前記反射偏光板を透過した直線偏光を、前記後側の吸収偏光板により偏光度の高い直線偏光として液晶セルに入射させ、前記液晶素子にコントラストの良い画像を表示させることができる。
【図面の簡単な説明】
【図1】この発明の一実施例を示す液晶表示装置の分解斜視図。
【図2】前記液晶表示装置の面光源からの光による透過表示のときの光の出射経路を示すハッチングを省略した断面図。
【図3】前記液晶表示装置の外光を利用する反射表示のときの光の出射経路を示すハッチングを省略した断面図。
【符号の説明】
1…液晶素子、2…液晶セル、3,4…基板、6…液晶層、7,8…吸収偏光板、7a,8a…透過軸、9…反射偏光板、9a…透過軸、9b…反射軸、10…面光源、11…導光板、13…発光素子、14…反射板、15…λ/4位相差板、15a…遅相軸。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a liquid crystal display device having a surface light source.
[0002]
[Prior art]
As a liquid crystal display device, a liquid crystal provided with a liquid crystal layer that controls the polarization state of transmitted light according to an electric field applied between a front substrate that is a display observation side and a rear substrate that faces the front substrate. A cell, an absorption polarizer disposed on the front side of the liquid crystal cell and absorbing one of the two linearly polarized light components of the incident light orthogonal to each other and transmitting the other polarized light component; and The liquid crystal element is disposed on the rear side of a liquid crystal element comprising a reflective polarizer that is disposed on the rear side and reflects one of two linearly polarized light components of the incident light and transmits the other polarized light component. There is one in which a surface light source that emits light toward an element is arranged (see Patent Document 1).
[0003]
This liquid crystal display device performs both a transmissive display using light from the surface light source and a reflective display using external light that is light of an external environment, and performs a transmissive display using light from the surface light source. Is performed, light emitted from the surface light source and incident on the liquid crystal element from the rear side is incident on the liquid crystal cell as linearly polarized light by the reflective polarizer, and the polarization state is controlled according to the electric field applied to the liquid crystal layer. Then, of the light emitted to the front side of the liquid crystal cell, one linearly polarized light component is absorbed by the absorbing polarizer, and the other linearly polarized light component is transmitted through the absorbing polarizer and emitted to the front side for display.
[0004]
When performing reflective display using external light, light incident on the liquid crystal element from the front side, which is the display observation side, is incident on the liquid crystal cell as linearly polarized light by the absorbing polarizer, and is applied to the liquid crystal layer. Of the light emitted to the rear side of the liquid crystal cell whose polarization state is controlled in accordance with the electric field, one linearly polarized light component is reflected by the reflective polarizer and emitted to the front side, and the other linearly polarized light component is reflected. The light is transmitted through the rear side of the polarizing plate for display.
[0005]
[Patent Document 1]
JP 2002-47195 A
[Problems to be solved by the invention]
However, in the above liquid crystal display device, of the light emitted from the surface light source and incident on the liquid crystal element from the rear side, a linearly polarized light component parallel to the transmission axis of the reflective polarizing plate is transmitted through the reflective polarizing plate, and And the linearly polarized light component parallel to the reflection axis of the reflective polarizer is reflected by the reflective polarizer, so that the utilization efficiency of light from the surface light source is poor.
[0007]
SUMMARY OF THE INVENTION It is an object of the present invention to provide a liquid crystal display device capable of performing display by efficiently using light from a surface light source.
[0008]
[Means for Solving the Problems]
In the liquid crystal display device of the present invention, a liquid crystal layer that controls the polarization state of transmitted light according to an applied electric field is provided between a front substrate that is a display observation side and a rear substrate that faces the front substrate. The liquid crystal cell provided is disposed at least on the front side of the liquid crystal cell, has a transmission axis and an absorption axis in directions orthogonal to each other, and is parallel to the absorption axis among two linear polarization components of the incident light orthogonal to each other. A liquid crystal element comprising an absorbing polarizer that absorbs one polarized component and transmits the other polarized component parallel to the transmission axis;
A light guide plate disposed on the rear side of the liquid crystal element, for guiding light from the light emitting element and emitting toward the liquid crystal element, and transmitting light incident from the front side and the rear side, and a rear side of the light guide plate. A reflector that reflects the light emitted to the rear side of the light guide plate, and is disposed between the light guide plate and the reflector, and has a quarter wavelength between the ordinary light and the extraordinary light of the transmitted light. A surface light source comprising a λ / 4 retardation plate providing a phase difference;
One of the two linearly polarized light components of the incident light, which are disposed between the liquid crystal element and the surface light source, have a transmission axis and a reflection axis in directions orthogonal to each other, and are parallel to the reflection axis. And a reflective polarizing plate that reflects the polarized light component and transmits the other polarized light component parallel to the transmission axis.
[0009]
According to this liquid crystal display device, of the light emitted from the light guide plate of the surface light source, a linearly polarized light component parallel to the transmission axis of the reflective polarizer is transmitted through the reflective polarizer and incident on the liquid crystal element. The light reflected by the reflective polarizing plate, that is, the linearly polarized light component parallel to the reflection axis of the reflective polarizing plate is transmitted through a λ / 4 retardation plate disposed on the rear side of the light guide plate, and is reflected by the reflecting plate. While being reflected and transmitted again through the λ / 4 retardation plate and exiting to the front side of the light guide plate, the reflected light is converted into linearly polarized light parallel to the transmission axis of the reflective polarizer and re-entered into the reflective polarizer, Since the light can also be transmitted through the reflective polarizing plate and enter the liquid crystal element, display can be performed by efficiently using the light from the surface light source.
[0010]
As described above, the liquid crystal display device of the present invention guides light from the light emitting element to the rear side of the liquid crystal element including the liquid crystal cell and the absorption polarizer disposed at least in front of the liquid crystal cell and emits the light toward the liquid crystal element. A light guide plate for transmitting light incident from the front side and the rear side; a reflection plate disposed on the rear side of the light guide plate; and a λ / 4 position disposed between the light guide plate and the reflection plate. By arranging a surface light source including a phase difference plate and further arranging a reflective polarizer between the liquid crystal element and the surface light source, it is possible to efficiently use light from the surface light source for display. It was made.
[0011]
In the liquid crystal display device of the present invention, the liquid crystal molecules of the liquid crystal cell of the liquid crystal element are twist-aligned at a twist angle of substantially 90 ° between the front and rear substrates, and the absorption polarization disposed at the front side of the liquid crystal cell. It is desirable that the transmission axis of the plate and the transmission axis of the reflective polarizer between the liquid crystal element and the surface light source be substantially orthogonal to each other.
[0012]
Further, in this liquid crystal display device, the liquid crystal element is provided with two absorbing polarizers respectively disposed on the front side and the rear side of the liquid crystal cell, and the reflective polarizer between the liquid crystal element and the surface light source is provided. Is preferably arranged such that the transmission axis is substantially parallel to the transmission axis of the absorption polarizer on the rear side of the liquid crystal element.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
1 to 3 show an embodiment of the present invention. FIG. 1 is an exploded perspective view of a liquid crystal display device, and FIG. 2 is an emission of light at the time of transmissive display using light from a surface light source of the liquid crystal display device. FIG. 3 is a cross-sectional view of the liquid crystal display device in which hatching is omitted and hatching indicating a light emission path in a reflective display using external light is omitted.
[0014]
As shown in FIGS. 1 to 3, the liquid crystal display device has a liquid crystal element 1, a surface light source 10 disposed on the rear side of the liquid crystal element 1, and a liquid crystal element 1 and the surface light source 10. And a reflection polarizing plate 9 disposed.
[0015]
The liquid crystal element 1 includes a liquid crystal cell 2 and two polarizing plates 7 and 8 arranged on the front and rear sides of the liquid crystal cell 2, respectively.
[0016]
The liquid crystal cell 2 changes a polarization state of transmitted light between a front transparent substrate 3 which is a display observation side and a rear transparent substrate 4 opposed to the front substrate 3 in accordance with an applied electric field. A liquid crystal layer 6 to be controlled is provided, and the front substrate 3 and the rear substrate 4 are joined via a frame-shaped sealing material 5 and surrounded by the sealing material 5 between these substrates 3 and 4. The liquid crystal layer 6 is provided in the region which is located.
[0017]
Although not shown in the drawing, transparent electrodes forming a plurality of pixels arranged in a matrix by opposing regions are provided on opposing inner surfaces of the substrates 3 and 4 before and after the liquid crystal cell 2, An alignment film for defining the alignment direction of the liquid crystal molecules of the liquid crystal layer 6 in the vicinity of each of the substrates 3 and 4 is provided thereon.
[0018]
Further, the two polarizing plates 7, 8 disposed on the front side and the rear side of the liquid crystal cell 2, respectively, have transmission axes 7a, 8a and an absorption axis (not shown) in directions orthogonal to each other. Is an absorption polarizer that absorbs one of the two linearly polarized light components orthogonal to each other and that is parallel to the absorption axis and transmits the other polarized light component parallel to the transmission axes 7a and 8a.
[0019]
The liquid crystal element 1 is of a TN (twisted nematic) type, and the liquid crystal layer 6 of the liquid crystal cell 2 has liquid crystal molecules twist-oriented at a twist angle of substantially 90 ° between the front and rear substrates 3 and 4. It consists of a nematic liquid crystal having a positive dielectric anisotropy.
[0020]
In FIG. 1, an arrow 3a indicates a liquid crystal molecule alignment direction in the vicinity of the front substrate 3 of the liquid crystal cell 2, and an arrow 4a indicates a liquid crystal molecule alignment direction in the vicinity of the rear substrate 4. The molecular alignment direction 3a is substantially 45 ° in one direction with respect to the horizontal axis x of the screen of the liquid crystal display device, and the liquid crystal molecular alignment direction 4a near the rear substrate 4 is relative to the horizontal axis x. And the liquid crystal molecules of the liquid crystal layer 6 move from the rear substrate 4 toward the front substrate 3 substantially in the twist direction indicated by the broken arrow in FIG. It is twist-oriented at a twist angle of 90 °.
[0021]
Further, the liquid crystal element 1 is of a normally white mode, and the absorption polarizer 7 on the front side of the liquid crystal cell 2 has its transmission axis 7a oriented in the liquid crystal molecule alignment direction 3a near the front substrate 3 of the liquid crystal cell 2. The liquid crystal cell 2 is affixed to the outer surface of the front substrate 3 of the liquid crystal cell 2 substantially parallel or orthogonal (in FIG. 1, orthogonal), and the rear absorption polarizer 8 has its transmission axis 8a set to the front absorption polarizer 7. The liquid crystal cell 2 is affixed to the outer surface of the rear substrate 4 so as to be substantially perpendicular to the transmission axis 7a.
[0022]
On the other hand, the reflective polarizing plate 9 disposed between the liquid crystal element 1 and the surface light source 10 has a transmission axis 9a and a reflection axis 9b in directions orthogonal to each other, and two orthogonal linear polarization components of incident light. Among them, one of the polarization components parallel to the reflection axis 9b is reflected, and the other polarization component parallel to the transmission axis 9a is transmitted.
[0023]
The reflective polarizing plate 9 has its transmission axis 9a substantially orthogonal to the transmission axis 7a of the absorption polarizing plate 7 on the front side of the liquid crystal element 1, and the transmission axis of the absorption polarizing plate 8 on the rear side of the liquid crystal element 1. 8a, and is adhered to the rear surface of the rear absorbing polarizing plate 8 substantially parallel to 8a.
[0024]
Also, the surface light source 10 guides light from the light emitting element 13 and emits the light toward the liquid crystal element 1 and transmits light incident from the front side and the rear side; The light guide plate 11 includes a reflector 14 that reflects light emitted to the rear side of the light guide plate 11, and a retardation plate 15 disposed between the light guide plate 11 and the reflector 14.
[0025]
The light guide plate 11 has an incident end face on which light is incident on one end face, a front face formed on a flat exit face, and a light incident on the rear face from the incident end face to be guided through the light guide plate 11. Acrylic resin in which a plurality of groove-shaped recesses 12 are formed in parallel with the incident end face to reflect the light from the front face of the light guide plate (outgoing face) in a direction in which the angle with respect to the normal to the front face becomes smaller. It is made of a transparent plate such as a plate.
[0026]
The light guide plate 11 guides light incident from the incident end face and emits most of the light from the front face, and transmits the light incident from the incident end face to the interface between the front and rear faces of the light guide plate 11 and the air layer which is the outside air. In the process, the light reflected by the plurality of groove-shaped recesses 12 on the rear surface of the light guide plate in the direction in which the angle with respect to the normal to the front surface of the light guide plate becomes smaller is transmitted to the front surface of the light guide plate by air. The light passes through the interface with the layer and is emitted to the front side.
[0027]
The light guide plate 11 transmits light incident from the front surface in the thickness direction and emits the light from the rear surface, and transmits light incident from the rear surface in the thickness direction and emits the light from the front surface.
[0028]
The light guide plate 11 is arranged such that an air layer is provided between the light guide plate 11 and the reflective polarizer 9 on the rear side of the reflective polarizer 9 with its front surface (emission surface) facing the liquid crystal element 1. A light-emitting element 13 is arranged on the side of the light-guiding plate 11 so as to face the incident end face of the light guide plate 11.
[0029]
The light-emitting element 13 is a solid-state light-emitting element composed of, for example, an LED (light-emitting diode). In this embodiment, a plurality of solid-state light-emitting elements 13 are arranged so as to face the incident end face of the light guide plate 11. The light emitting element may be a straight tube cold cathode tube or the like.
[0030]
The phase difference plate 15 disposed between the light guide plate 11 and the reflection plate 14 is a λ / 4 phase difference plate that gives a phase difference of 1/4 wavelength between the ordinary light and the extraordinary light of the transmitted light. The λ / 4 retardation plate 15 has its slow axis 15 a crossing the transmission axis 9 a of the reflective polarizing plate 9 at an angle of substantially 45 °, so that the reflection surface of the (The surface facing the light plate 11).
[0031]
Then, the reflection plate 14 and the λ / 4 phase difference plate 15 stuck on the reflection surface are provided between the light guide plate 11 and the λ / 4 phase difference plate 15 on the rear side of the light guide plate 11. Is provided with an air layer.
[0032]
The liquid crystal display device performs both a transmissive display using light from the surface light source 10 and a reflective display using external light that is light of an external environment. Is turned off when performing reflective display in an environment where external light of sufficient brightness can be obtained, and is turned on when performing transmissive display.
[0033]
First, transmission display using light from the surface light source 10 will be described. In this transmission display, light (non-polarized light) emitted from the light emitting element 13 enters the light guide plate 11 from an end face thereof and the light guide plate Most of the light is guided from inside the light guide plate 11 to the front side as shown by the arrow in FIG.
[0034]
The light emitted to the front side of the light guide plate 11 is incident on the reflective polarizer 9 disposed between the light guide plate 11 and the liquid crystal element from the rear side. A linearly polarized component parallel to the axis 9a passes through the reflective polarizing plate 9 and enters the liquid crystal element 1 from behind.
[0035]
On the other hand, among the light emitted to the front side of the light guide plate 11 and incident on the reflective polarizing plate 9 from the rear side, a linearly polarized component parallel to the reflection axis 9b of the reflective polarizing plate 9 is converted by the reflective polarizing plate 9. It is reflected back.
[0036]
The light reflected rearward by the reflective polarizing plate 9, that is, linearly polarized light parallel to the reflection axis 9 b of the reflective polarizing plate 9 passes through the light guide plate 11 and enters the λ / 4 phase difference plate 15. The light is converted into circularly polarized light by the λ / 4 phase difference plate 15 and reflected by the reflection plate 14.
[0037]
The circularly polarized light reflected by the reflection plate 14 is transmitted through the λ / 4 retardation plate 15 again, and is linearly polarized light in which the plane of polarization of the linearly polarized light reflected by the reflection polarization plate 9 is substantially rotated by 90 °. That is, the light becomes a linearly polarized light parallel to the transmission axis 9a of the reflective polarizing plate 9, and the light is transmitted again through the light guide plate 11 and re-enters the reflective polarizing plate 9, and transmitted through the reflective polarizing plate 9 to form the liquid crystal. The light enters the element 1 from the rear side.
[0038]
That is, the liquid crystal display device transmits the linearly polarized light component parallel to the transmission axis 9a of the reflective polarizing plate 9 out of the light emitted from the light guide plate 11 of the surface light source 10 While being incident on the element 1, the light reflected by the reflective polarizing plate 9, that is, the linearly polarized light component parallel to the reflection axis 9 b of the reflective polarizing plate 9, is reflected by the λ / 4 disposed on the rear side of the light guide plate 11. The light passes through the phase difference plate 15 and is reflected by the reflection plate 14, passes through the λ / 4 phase difference plate 15 again, and is emitted to the front side of the light guide plate 11 while being parallel to the transmission axis 9 a of the reflection polarization plate 9. Is converted into a linearly polarized light, and is re-incident on the reflective polarizer 9. The light is also transmitted through the reflective polarizer 9 and is incident on the liquid crystal element 1. Most of the light The light can be incident on the liquid crystal element 1 as linearly polarized light parallel to the transmission axis 9 a of the light plate 9.
[0039]
In addition, out of the light emitted from the light emitting element 13 and incident on the light guide plate 11 from the end face thereof, and a part of the light guided in the light guide plate 11, some of the light is as shown by broken lines in FIG. The light leaks to the rear side of the light guide plate 11, and the leaked light passes through the λ / 4 phase difference plate 15 without changing the polarization state, is reflected by the reflection plate 14, and passes through the λ / 4 phase difference plate 15. The light is transmitted again without changing the polarization state, and further transmitted through the light guide plate 11 to enter the reflective polarizing plate 9 from the rear side.
[0040]
Then, of the light incident on the reflective polarizer 9 from the rear side, a linearly polarized component parallel to the transmission axis 9a of the reflective polarizer 9 is transmitted through the reflective polarizer 9 and is incident on the liquid crystal element 1, The linearly polarized light component parallel to the reflection axis 9b of the reflection polarizing plate 9 is reflected by the reflection polarizing plate 9 to the rear side, and this light also passes through the λ / 4 phase difference plate 15 again and is reflected by the reflection plate 14. And is transmitted through the λ / 4 retardation plate 15 to become linearly polarized light parallel to the transmission axis 9 a of the reflective polarizing plate 9, re-enters the reflective polarizing plate 9, and And is incident on the liquid crystal element 1.
[0041]
Therefore, according to this liquid crystal display device, almost all of the light leaked to the rear side of the light guide plate 11 is incident on the liquid crystal element 1 as linearly polarized light parallel to the transmission axis 9a of the reflective polarizer 9. Can be.
[0042]
Light emitted from the surface light source 10, transmitted through the reflective polarizer 9, and incident on the liquid crystal element 1 from behind is transmitted through the absorption polarizer 8 on the rear side of the liquid crystal element 1 and has a high degree of polarization. The light enters the liquid crystal cell 2 as linearly polarized light.
[0043]
Since the reflective polarizing plate 9 is disposed with its transmission axis 9a substantially parallel to the transmission axis 8a of the absorption polarizing plate 8 on the rear side of the liquid crystal element 1, the reflective polarizing plate 9 transmits through the reflective polarizing plate 9. Then, the light incident on the liquid crystal element 1 from the rear side passes through the absorbing polarizer 8 on the rear side of the liquid crystal element 1 with a high transmittance and is incident on the liquid crystal cell 2.
[0044]
Light incident on the liquid crystal cell 2 from the rear side (linearly polarized light parallel to the transmission axis 9a of the reflective polarizer 9 and the transmission axis 8a of the rear absorption polarizer 8) is applied between the electrodes of each pixel. The birefringent action of the liquid crystal layer 6 according to the orientation state of the liquid crystal molecules changed by the electric field causes the liquid crystal cell 2 to emit to the front side of the liquid crystal cell 2, and out of the light, the light is parallel to the transmission axis 7 a of the absorption polarizer 7 on the front side. The linearly polarized light component passes through the absorbing polarizer 7 and is emitted to the front side, and the linearly polarized light component parallel to the absorption axis of the front absorbing polarizer 7 is absorbed by the absorbing polarizer 7.
[0045]
That is, of the light incident on the liquid crystal cell 2 from the rear side, the light incident on the non-electric field pixel in which the liquid crystal molecules are in the initial twist alignment state is substantially rotated by 90 ° by the liquid crystal layer 6 and absorbed on the front side. Light that is emitted as linearly polarized light parallel to the transmission axis 7a of the polarizing plate 7 and is emitted to the front side of the liquid crystal cell 2 and is incident on an electric field application pixel in which liquid crystal molecules rise substantially vertically to the substrates 3 and 4 and are aligned. Emits to the front side of the liquid crystal cell 2 without being subjected to the birefringence action of the liquid crystal layer 6.
[0046]
Therefore, in this transmissive display, the light transmitted through the non-electric field pixel of the liquid crystal cell 2 passes through the front absorption polarizer 7 and is emitted to the front side, and the area becomes a bright display. The light transmitted through the electric field application pixel is absorbed by the absorption polarizer 7 on the front side, and the area becomes dark.
[0047]
Then, as described above, this liquid crystal display device can make most of the light from the surface light source 10 enter the liquid crystal element 1 as linearly polarized light parallel to the transmission axis 9a of the reflective polarizing plate 9. The display from the surface light source 10 can be efficiently utilized.
[0048]
Further, in this embodiment, the liquid crystal element 1 is provided with two absorbing polarizers 7 and 8 arranged on the front side and the rear side of the liquid crystal cell 2, respectively. Since the reflection polarizing plate 9 is disposed with its transmission axis 9a substantially parallel to the transmission axis 8a of the absorption polarizing plate 8 on the rear side of the liquid crystal element 1, light is emitted from the surface light source 10. The linearly polarized light transmitted through the reflective polarizing plate 9 is made to enter the liquid crystal cell 2 as linearly polarized light having a high degree of polarization by the rear absorbing polarizing plate 8, so that a high-contrast image can be displayed on the liquid crystal element 1. .
[0049]
Next, a description will be given of a reflective display using external light. In the case of the reflective display, as shown by an arrow in FIG. The light is converted into linearly polarized light parallel to the transmission axis 7a by the absorption polarizing plate 7 on the front side and enters the liquid crystal cell 2 from the front side.
[0050]
Then, of the light incident on the liquid crystal cell 2 from the front side, the light incident on the non-electric field pixel in which the liquid crystal molecules are in the initial twist alignment state is substantially rotated by 90 ° by the liquid crystal layer 6 and absorbed on the rear side. The light becomes linearly polarized light parallel to the transmission axis 8a of the polarizing plate 8 and is emitted to the rear side of the liquid crystal cell 2.
[0051]
The light emitted to the rear side of the liquid crystal cell 2 is transmitted through the absorption polarizer 8 on the rear side, further transmitted through the reflective polarizer 9 and emitted to the rear side.
[0052]
Light transmitted through the reflective polarizer 9 and emitted to the rear side (linearly polarized light parallel to the transmission axis 8a of the absorption polarizer 8 on the rear side of the liquid crystal element 1 and the transmission axis 9a of the reflective polarizer 9) is incident on the surface. The light passes through the light guide plate 11 of the light source 10, is converted into circularly polarized light by the λ / 4 retardation plate 15, is reflected by the reflection plate 14, passes through the λ / 4 retardation plate 15 again, and passes through the reflection polarizing plate 9. The light is emitted to the front side of the light guide plate 11 and is reflected to the rear side by the reflection polarizing plate 9.
[0053]
The light reflected rearward by the reflective polarizing plate 9 passes through the λ / 4 phase difference plate 15 again, is reflected by the reflection plate 14, and passes through the λ / 4 phase difference plate 15 again. The polarization plane is further rotated by 90 ° while being emitted to the front side of the light guide plate 11, becomes linearly polarized light parallel to the transmission axis 9 a of the reflection polarization plate 9, and re-enters the reflection polarization plate 9. The light passes through the plate 9, passes through the absorption polarizer 8 on the rear side of the liquid crystal element 1, the liquid crystal cell 2, and the absorption polarizer 7 on the front side, and is emitted to the front side.
[0054]
Also, of the light incident on the liquid crystal cell 2 from the front side, the light incident on the electric field application pixel in which the liquid crystal molecules rise substantially perpendicularly to the surfaces of the substrates 3 and 4 is incident on the liquid crystal layer 6. The light is emitted to the rear side of the liquid crystal cell 2 without being affected, and is absorbed by the rear absorption polarizer 8.
[0055]
Therefore, in the case of this reflective display, the light transmitted through the non-electric field pixels of the liquid crystal cell 2, transmitted through the rear absorbing polarizing plate 8 and emitted to the rear side of the liquid crystal element 1 is reflected by the reflecting plate of the surface light source 10. The liquid crystal cell 2 reflects the light toward the front side and emits light in the area, and the area becomes a bright display. The light transmitted through the electric field application pixel of the liquid crystal cell 2 is absorbed by the rear absorbing polarizing plate 8 and the area becomes a dark display. .
[0056]
In this embodiment, the liquid crystal element 1 is provided with two absorbing polarizers 7 and 8 arranged on the front side and the rear side of the liquid crystal cell 2 respectively. Since the reflection polarizing plate 9 is disposed with its transmission axis 9a substantially parallel to the transmission axis 8a of the absorption polarizing plate 8 on the rear side of the liquid crystal element 1, the light enters from the front side during the reflective display. Then, the linearly polarized light transmitted through the rear absorption polarizer 8 on the rear side of the liquid crystal element 1 and emitted to the rear side is transmitted through the reflective polarizer 9 with a high transmittance and is incident on the surface light source 10, and The linearly polarized light reflected by the reflector 14 of the light source 10 and transmitted through the reflective polarizer 9 and emitted to the front side thereof is transmitted through the absorbing polarizer 8 on the rear side of the liquid crystal element 1 with a high transmittance and the liquid crystal cell 2 , So that the bright display is sufficiently bright Preparative it is, because the degree of polarization of the absorption polarizer 7,8 is higher than that of the reflective polarizer 9, even when the reflective display, it is possible to display a good image contrast in the liquid crystal device 1.
[0057]
In the above-described embodiment, the liquid crystal element 1 has a configuration in which the absorbing polarizers 7 and 8 are disposed on the front side and the rear side of the liquid crystal cell 2, respectively. The reflective polarizer 9 may also serve as the rear polarizer of the liquid crystal element 1.
[0058]
Further, the liquid crystal display device of the above embodiment is provided with the TN type liquid crystal element 1. The liquid crystal element is arranged such that the liquid crystal molecules of the liquid crystal layer of the liquid crystal cell are 180 ° to 270 ° (preferably between the front and rear substrates). The liquid crystal element may be an STN-type liquid crystal element in which the liquid crystal molecules are twist-aligned at a twist angle of 200 ° to 250 °, or a homogeneously-aligned liquid crystal element in which liquid crystal molecules are homogeneously aligned with their molecular long axes aligned in one direction.
[0059]
【The invention's effect】
The liquid crystal display device according to the present invention is a liquid crystal display device comprising: a liquid crystal element comprising a liquid crystal cell and an absorbing polarizer disposed at least in front of the liquid crystal cell; And a light guide plate for transmitting light incident from the rear side, a reflector disposed on the rear side of the light guide plate, and a λ / 4 phase difference plate disposed between the light guide plate and the reflector. Since a surface light source is disposed and a reflective polarizing plate is disposed between the liquid crystal element and the surface light source, display can be performed by efficiently using light from the surface light source.
[0060]
In the liquid crystal display device of the present invention, the liquid crystal molecules of the liquid crystal cell of the liquid crystal element are twist-aligned at a twist angle of substantially 90 ° between the front and rear substrates, and the absorption polarization disposed at the front side of the liquid crystal cell. It is desirable that the transmission axis of the plate and the transmission axis of the reflective polarizing plate between the liquid crystal element and the surface light source be substantially orthogonal to each other. Can do it.
[0061]
Further, in this liquid crystal display device, the liquid crystal element is provided with two absorbing polarizers respectively disposed on the front side and the rear side of the liquid crystal cell, and the reflective polarizer between the liquid crystal element and the surface light source is provided. It is preferable that the transmission axis is arranged substantially in parallel with the transmission axis of the absorbing polarizer on the rear side of the liquid crystal element. The linearly polarized light transmitted through the reflective polarizing plate is incident on the liquid crystal cell as linearly polarized light having a high degree of polarization by the rear absorbing polarizing plate, so that an image with good contrast can be displayed on the liquid crystal element.
[Brief description of the drawings]
FIG. 1 is an exploded perspective view of a liquid crystal display device according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of the liquid crystal display device, in which hatching is omitted, showing light emission paths in a transmissive display using light from a surface light source.
FIG. 3 is a cross-sectional view of the liquid crystal display device, without hatching, showing a light emission path in a reflective display using external light.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Liquid crystal element, 2 ... Liquid crystal cell, 3, 4 ... Substrate, 6 ... Liquid crystal layer, 7, 8 ... Absorption polarizing plate, 7a, 8a ... Transmission axis, 9 ... Reflection polarizing plate, 9a ... Transmission axis, 9b ... Reflection Axis: 10: Surface light source, 11: Light guide plate, 13: Light emitting element, 14: Reflector, 15: λ / 4 phase plate, 15a: Slow axis.

Claims (3)

表示の観察側である前側の基板とこの前側基板に対向する後側基板との間に、印加される電界に応じて透過光の偏光状態を制御する液晶層が設けられた液晶セルと、前記液晶セルの少なくとも前側に配置され、互いに直交する方向に透過軸と吸収軸とをもち、入射光の互いに直交する2つの直線偏光成分のうち、前記吸収軸に平行な一方の偏光成分を吸収し、前記透過軸に平行な他方の偏光成分を透過させる吸収偏光板とからなる液晶素子と、
前記液晶素子の後側に配置され、発光素子からの光を導いて前記液晶素子に向けて出射し、且つ前側及び後側から入射した光を透過させる導光板と、前記導光板の後側に配置され、前記導光板の後側に出射した光を反射する反射板と、前記導光板と前記反射板との間に配置され、透過光の常光と異常光との間に1/4波長の位相差を与えるλ/4位相差板とからなる面光源と、
前記液晶素子と前記面光源との間に配置され、互いに直交する方向に透過軸と反射軸とをもち、入射光の互いに直交する2つの直線偏光成分のうち、前記反射軸に平行な一方の偏光成分を反射し、前記透過軸に平行な他方の偏光成分を透過させる反射偏光板と、
を備えたことを特徴とする液晶表示装置。
A liquid crystal cell provided with a liquid crystal layer for controlling a polarization state of transmitted light according to an applied electric field between a front substrate that is a display observation side and a rear substrate facing the front substrate; It is disposed at least on the front side of the liquid crystal cell, has a transmission axis and an absorption axis in directions orthogonal to each other, and absorbs one of the two linear polarization components of the incident light orthogonal to each other, which is parallel to the absorption axis. A liquid crystal element comprising: an absorption polarizer that transmits the other polarization component parallel to the transmission axis;
A light guide plate disposed on the rear side of the liquid crystal element, for guiding light from the light emitting element and emitting toward the liquid crystal element, and transmitting light incident from the front side and the rear side, and a rear side of the light guide plate. A reflector that reflects the light emitted to the rear side of the light guide plate, and is disposed between the light guide plate and the reflector, and has a quarter wavelength between the ordinary light and the extraordinary light of the transmitted light. A surface light source comprising a λ / 4 retardation plate providing a phase difference;
One of the two linearly polarized light components of the incident light, which are disposed between the liquid crystal element and the surface light source, have a transmission axis and a reflection axis in directions orthogonal to each other, and are parallel to the reflection axis. A reflective polarizer that reflects a polarized light component and transmits the other polarized light component parallel to the transmission axis,
A liquid crystal display device comprising:
液晶素子の液晶セルの液晶層の液晶分子が前後の基板間において実質的に90°のツイスト角でツイスト配向しており、前記液晶セルの前側に配置された吸収偏光板の透過軸と、前記液晶素子と面光源との間の反射偏光板の透過軸とが実質的に直交していることを特徴とする請求項1に記載の液晶表示装置。The liquid crystal molecules of the liquid crystal layer of the liquid crystal cell of the liquid crystal element are twist-oriented at a twist angle of substantially 90 ° between the front and rear substrates, and the transmission axis of an absorbing polarizer disposed on the front side of the liquid crystal cell; 2. The liquid crystal display device according to claim 1, wherein a transmission axis of the reflective polarizing plate between the liquid crystal element and the surface light source is substantially orthogonal. 液晶素子は、液晶セルの前側と後側とにそれぞれ配置された2枚の吸収偏光板を備えており、前記液晶素子と面光源との間の反射偏光板は、その透過軸を前記液晶素子の後側の吸収偏光板の透過軸と実質的に平行にして配置されていることを特徴とする請求項1または2に記載の液晶表示装置。The liquid crystal element includes two absorption polarizers disposed on the front side and the rear side of the liquid crystal cell, respectively, and the reflection polarizer between the liquid crystal element and the surface light source has a transmission axis corresponding to the liquid crystal element. The liquid crystal display device according to claim 1, wherein the liquid crystal display device is arranged substantially parallel to a transmission axis of a rear absorption polarizing plate.
JP2002374364A 2002-12-25 2002-12-25 Liquid crystal display Pending JP2004205784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002374364A JP2004205784A (en) 2002-12-25 2002-12-25 Liquid crystal display

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002374364A JP2004205784A (en) 2002-12-25 2002-12-25 Liquid crystal display

Publications (1)

Publication Number Publication Date
JP2004205784A true JP2004205784A (en) 2004-07-22

Family

ID=32812412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002374364A Pending JP2004205784A (en) 2002-12-25 2002-12-25 Liquid crystal display

Country Status (1)

Country Link
JP (1) JP2004205784A (en)

Similar Documents

Publication Publication Date Title
JP4042516B2 (en) Display device
KR100723111B1 (en) Display unit
TW571159B (en) Polarized display with wide-angle illumination
JP2010139760A (en) Display device
JP4903735B2 (en) Backlight device
JP4603594B2 (en) Display device and electronic device
JP2011002596A (en) Liquid crystal display device
KR20040031858A (en) Liquid crystal display
JP3799981B2 (en) Liquid crystal display
JP2000147484A (en) Liquid crystal display device
JP2007219172A (en) Liquid crystal display device
JP4066771B2 (en) Liquid crystal display
JP2004205784A (en) Liquid crystal display
JP2004170792A (en) Display device and electronic equipment
JP3747751B2 (en) Liquid crystal display
JP2020112729A (en) Liquid crystal display device
JP2007256983A (en) Display device and electronic apparatus
JP2002006134A (en) Polarizing element and liquid crystal display device using the same
JP2000180835A (en) Liquid crystal display
JP2004294801A (en) Liquid crystal display
JP2004029695A (en) Display device
WO2005064389A1 (en) Transflective lcd device
KR20010110849A (en) Transparent and Reflective Type Liquid Crystal Display Apparatus
JP2006058704A (en) Liquid crystal display
JP2002098950A (en) Liquid crystal display