JP2004203976A - Vulcanized rubber chip molded article and its production method - Google Patents
Vulcanized rubber chip molded article and its production method Download PDFInfo
- Publication number
- JP2004203976A JP2004203976A JP2002372740A JP2002372740A JP2004203976A JP 2004203976 A JP2004203976 A JP 2004203976A JP 2002372740 A JP2002372740 A JP 2002372740A JP 2002372740 A JP2002372740 A JP 2002372740A JP 2004203976 A JP2004203976 A JP 2004203976A
- Authority
- JP
- Japan
- Prior art keywords
- vulcanized rubber
- rubber
- fine powder
- chip
- rubber chip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004636 vulcanized rubber Substances 0.000 title claims abstract description 122
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 229920001971 elastomer Polymers 0.000 claims abstract description 83
- 239000005060 rubber Substances 0.000 claims abstract description 82
- 239000000843 powder Substances 0.000 claims abstract description 57
- 239000003795 chemical substances by application Substances 0.000 claims description 10
- 238000002156 mixing Methods 0.000 claims description 5
- 238000000465 moulding Methods 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 2
- 239000000126 substance Substances 0.000 claims 1
- 229920005989 resin Polymers 0.000 description 21
- 239000011347 resin Substances 0.000 description 21
- 239000011230 binding agent Substances 0.000 description 20
- 239000000463 material Substances 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 238000004073 vulcanization Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 238000013329 compounding Methods 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 230000002776 aggregation Effects 0.000 description 3
- 238000004898 kneading Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 3
- 239000010920 waste tyre Substances 0.000 description 3
- YXIWHUQXZSMYRE-UHFFFAOYSA-N 1,3-benzothiazole-2-thiol Chemical compound C1=CC=C2SC(S)=NC2=C1 YXIWHUQXZSMYRE-UHFFFAOYSA-N 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 2
- 244000043261 Hevea brasiliensis Species 0.000 description 2
- 229920000459 Nitrile rubber Polymers 0.000 description 2
- 239000005062 Polybutadiene Substances 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 239000010426 asphalt Substances 0.000 description 2
- IOJUPLGTWVMSFF-UHFFFAOYSA-N benzothiazole Chemical compound C1=CC=C2SC=NC2=C1 IOJUPLGTWVMSFF-UHFFFAOYSA-N 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229920003052 natural elastomer Polymers 0.000 description 2
- 229920001194 natural rubber Polymers 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229920001084 poly(chloroprene) Polymers 0.000 description 2
- 229920002857 polybutadiene Polymers 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000005057 refrigeration Methods 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229920003051 synthetic elastomer Polymers 0.000 description 2
- 239000005061 synthetic rubber Substances 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- KUAZQDVKQLNFPE-UHFFFAOYSA-N thiram Chemical compound CN(C)C(=S)SSC(=S)N(C)C KUAZQDVKQLNFPE-UHFFFAOYSA-N 0.000 description 2
- 229960002447 thiram Drugs 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- OWRCNXZUPFZXOS-UHFFFAOYSA-N 1,3-diphenylguanidine Chemical compound C=1C=CC=CC=1NC(=N)NC1=CC=CC=C1 OWRCNXZUPFZXOS-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- KWIPUXXIFQQMKN-UHFFFAOYSA-N 2-azaniumyl-3-(4-cyanophenyl)propanoate Chemical compound OC(=O)C(N)CC1=CC=C(C#N)C=C1 KWIPUXXIFQQMKN-UHFFFAOYSA-N 0.000 description 1
- HLBZWYXLQJQBKU-UHFFFAOYSA-N 4-(morpholin-4-yldisulfanyl)morpholine Chemical compound C1COCCN1SSN1CCOCC1 HLBZWYXLQJQBKU-UHFFFAOYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- PDQAZBWRQCGBEV-UHFFFAOYSA-N Ethylenethiourea Chemical compound S=C1NCCN1 PDQAZBWRQCGBEV-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000006004 Quartz sand Substances 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- FZWLAAWBMGSTSO-UHFFFAOYSA-N Thiazole Chemical compound C1=CSC=N1 FZWLAAWBMGSTSO-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 229940090948 ammonium benzoate Drugs 0.000 description 1
- SRGBNANKQPZXFZ-UHFFFAOYSA-N aniline;butanal Chemical compound CCCC=O.NC1=CC=CC=C1 SRGBNANKQPZXFZ-UHFFFAOYSA-N 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 1
- 239000004312 hexamethylene tetramine Substances 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- DEQZTKGFXNUBJL-UHFFFAOYSA-N n-(1,3-benzothiazol-2-ylsulfanyl)cyclohexanamine Chemical compound C1CCCCC1NSC1=NC2=CC=CC=C2S1 DEQZTKGFXNUBJL-UHFFFAOYSA-N 0.000 description 1
- DZCCLNYLUGNUKQ-UHFFFAOYSA-N n-(4-nitrosophenyl)hydroxylamine Chemical compound ONC1=CC=C(N=O)C=C1 DZCCLNYLUGNUKQ-UHFFFAOYSA-N 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- DUBNHZYBDBBJHD-UHFFFAOYSA-L ziram Chemical compound [Zn+2].CN(C)C([S-])=S.CN(C)C([S-])=S DUBNHZYBDBBJHD-UHFFFAOYSA-L 0.000 description 1
Images
Landscapes
- Road Paving Structures (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、加硫ゴムチップ成形体およびその製法に関するものであり、詳しくは、屋内外で使用される多孔質マット、例えば、道路のような多孔質弾性舗装材等に用いられる加硫ゴムチップ成形体およびその製法に関するものである。
【0002】
【従来の技術】
従来、加硫ゴムチップを使用した加硫ゴムチップ成形体としては、自動車の廃タイヤ,ウェザーストリップ等の廃ゴム製品を用い、これをチップ状に成形して得た加硫ゴムチップを、ウレタン樹脂,エポキシ樹脂等の樹脂バインダーで結合したものが知られている(例えば、特許文献1参照)。このように、樹脂バインダーを用いて加硫ゴムチップを結合させる場合には、加硫ゴムチップ同士は、化学結合(一次結合)しておらず、樹脂バインダーの結着力のみで、加硫ゴムチップ成形体を形成する必要があるため、樹脂バインダーをある程度の量配合する必要がある。この樹脂バインダーの配合量は、加硫ゴムチップ100重量部に対して、通常、10〜50重量部程度配合する必要がある。このようにして得られる加硫ゴムチップ成形体は、歩道,公園,競技場等の舗装材に用いられてきた。また、近年では、車道用の舗装材として一部実用化されている。
【0003】
この加硫ゴムチップ成形体を用いた舗装材は、弾性骨材である加硫ゴムチップを用いているため、通常のアスファルト舗装や、インターロッキングブロックに比べて弾性があり、また、成型時に数10%の空隙率に調整することにより、透水性や歩行感も向上させることが可能である。また、車道の場合には、この空隙により、タイヤから発生するエアポンピング音の発生を抑制できるとともに、走行する車両から伝播する特定の周波数の音を吸収できる。さらに、この舗装材は、タイヤと路面の接触時の衝撃によって発生するタイヤ衝撃音や、パターン加振音を低減することができるため、交通騒音の大幅な低減が可能になる。
【0004】
【特許文献1】
特開2002−21008号公報
【0005】
【発明が解決しようとする課題】
しかしながら、上記のように、樹脂バインダーを用いて成形した加硫ゴムチップ成形体は、加硫ゴムチップと樹脂バインダーとの接着性が悪いため、加硫ゴムチップ成形体全体としての強度が低く、また、経年で樹脂バインダーの劣化が生じるため、加硫ゴムチップ成形体の耐候性が悪化する。その結果、加硫ゴムチップ成形体から加硫ゴムチップが飛散して、加硫ゴムチップ成形体自体の耐久性が悪くなる等の難点があった。
【0006】
本発明は、このような事情に鑑みなされたもので、耐候性、耐久性に優れた加硫ゴムチップ成形体およびその製法の提供をその目的とする。
【0007】
【課題を解決するための手段】
上記の目的を達成するため、本発明は、加硫ゴムチップと、微粉末ゴムとを用いて成形され、この加硫ゴムチップ同士が微粉末ゴムを介して相互に接着して成形体を構成している加硫ゴムチップ成形体を第1の要旨とし、加硫ゴムチップと微粉末ゴムとを準備し、加硫ゴムチップと微粉末ゴムとを混合して加硫ゴムチップの表面に微粉末ゴムを多数付着させ、その状態で成形型内において加熱することにより、加硫ゴムチップ同士を、微粉末ゴムを介して相互に接着させ成形体化する加硫ゴムチップ成形体の製法を第2の要旨とする。
【0008】
本発明者らは、耐候性、耐久性に優れた加硫ゴムチップ成形体を得るべく、鋭意研究を重ねた。この研究の過程で、樹脂バインダーに代わる接着剤を見いだすべく各種の実験を重ねた結果、ゴムを微粉末状にすると好結果が得られることを見いだした。すなわち、ゴムを微粉末状にすると、単位重量当たりのゴムの表面積が相対的に大きくなるためか、微粉末ゴムがある程度の自己粘着性を有するようになる。そして、この微粉末ゴムと、加硫ゴムチップとを混合すると、加硫ゴムチップの表面に、微粉末ゴムがそれ自身の自己粘着性により多数付着するようになり、この状態で成形型内において加熱すると、加硫ゴムチップ同士が微粉末ゴムを介して相互に接着して強固な成形体を構成するようになる。このように、本発明の加硫ゴムチップ成形体は、樹脂バインダーに代えて、微粉末ゴムを用い、この微粉末ゴムと加硫ゴムチップとを架橋させ、微粉末ゴムを介して加硫ゴムチップ同士を接着して成形体化してなるものである。そのため、特に樹脂バインダーを必要とせず、したがって、樹脂バインダーの劣化がなく、加硫ゴムチップ成形体から加硫ゴムチップが飛散することもなく、加硫ゴムチップ成形体の耐候性、耐久性に優れている。
【0009】
【発明の実施の形態】
つぎに、本発明の実施の形態を詳しく説明する。
【0010】
本発明の加硫ゴムチップ成形体は、加硫ゴムチップと、微粉末ゴムとを用いて成形され、この加硫ゴムチップ同士が微粉末ゴムを介して相互に接着して成形体を構成してなるものである。
【0011】
この加硫ゴムチップは、特に限定するものではないが、天然ゴム,合成ゴム等のゴム材料を、ひじき状,粒状等のチップ形状に粉砕したものが用いられる。なかでも、資源再利用の観点から、廃タイヤ等の廃ゴムを、チップ形状に粉砕したゴムチップが好適に用いられる。
【0012】
上記合成ゴムとしては、特に限定はなく、例えば、スチレン−ブタジエンゴム(SBR)、アクリロニトリル−ブタジエンゴム(NBR)、エチレン−プロピレン−ジエン三元共重合体(EPDM)、ブタジエンゴム(BR)、クロロプレンゴム(CR)や、これらのブレンドゴム等があげられる。
【0013】
このような加硫ゴムチップは、ひじき状の場合、直径は、通常、0.3〜5mmであり、長さは、通常、5〜50mmの範囲内である。また、加硫ゴムチップは、粒状の場合、平均粒径は、通常、5〜10mmの範囲内である。
【0014】
本発明において、上記微粉末ゴムとは、加硫ゴムチップよりも粒径が小さいゴムであって、平均粒径が、通常、100〜2000μmの範囲内のものをいい、好ましくは平均粒径が150〜500μmの範囲内である。すなわち、微粉末ゴムの平均粒径が100μm未満であると、微細になりすぎ、微粉末ゴムの有する自己粘着性が高くなりすぎて、凝集してしまい、加硫ゴムチップとの混練等が困難になる傾向がみられ、逆に2000μmを超えると、微粉末ゴムの粒径が大きくなりすぎ、加硫ゴムチップ表面への付着が困難になる傾向がみられるからである。
【0015】
また、微粉末ゴムは、未加硫ゴムと、加硫ゴムとを、単独で、もしくは併用したものが好ましい。上記未加硫ゴムと、加硫ゴムとの重量混合比は、未加硫ゴム/加硫ゴム=100/0〜5/95の範囲内が好ましく、特に好ましくは未加硫ゴム/加硫ゴム=100/0〜25/75の範囲内である。すなわち、未加硫ゴムの重量比が5未満(加硫ゴムの重量比が95を超える)であると、加硫ゴムチップ同士の接着が悪くなり、強度が低下する傾向がみられるからである。
【0016】
このような微粉末ゴムは、例えば、つぎのようにして作製することができる。すなわち、未加硫ゴムと加硫ゴムとを、常温下で、約5mm×5mm×2mmの大きさのチップ状に裁断した後、未加硫ゴムと加硫ゴムとの比が、重量比で、未加硫ゴム/加硫ゴム=100/0〜5/95の割合になるように秤量した。つぎに、冷却装置を備えた冷凍破砕機(例えば、SPEX社製、品番6700)を用いて、液体窒素により、−50℃以下の低温、好ましくは−70〜−90℃に冷却しながら、約6分間、上記チップ状のゴムを破砕することにより、先に述べたような平均粒径の範囲内にある、微粉末ゴムを作製することができる。なお、冷凍破砕の際、未加硫ゴムの割合が多すぎて凝集してしまう場合は、離型性のある粉末、例えば、タルク等を混入して同時に粉砕することによって凝集を抑えることも可能である。
【0017】
また、微粉末ゴムの配合割合は、上記加硫ゴムチップ100重量部(以下「部」と略す)に対して、5〜50部の範囲内が好ましく、特に好ましくは10〜30部の範囲内である。すなわち、微粉末ゴムの配合割合が5部未満であると、加硫ゴムチップ同士の接着が悪くなり、得られる加硫ゴムチップ成形体の強度が弱くなる傾向がみられ、逆に微粉末ゴムの配合割合が50部を超えると、微粉末ゴムと加硫ゴムチップの混練作業性が悪くなる傾向がみられるからである。
【0018】
本発明の加硫ゴムチップ成形体は、加硫ゴムチップおよび微粉末ゴムに加えて、必要に応じて加硫剤を用いて形成しても差し支えない。このように、加硫剤を用いると、加硫ゴムチップと、微粉末ゴムとの界面に、架橋点が形成され、加硫ゴムチップと、微粉末ゴムとが化学結合するようになって、加硫ゴムチップ成形体の強度がより向上するため好ましい。
【0019】
このような加硫剤としては、特に限定はないが、硫黄、酸化亜鉛、4,4′−ジチオジモルホリン、テトラメチルチウラムジスルフィド、ベンゾチアゾール、ジクミルパーオキシド、p−キノンジオキシム、アンモニウムベンゾエート等があげられる。これらは単独でもしくは2種以上併せて用いられる。
【0020】
また、加硫剤の配合割合は、加硫ゴムチップ100部に対して、1〜70部の範囲内が好ましく、特に好ましくは3〜50部の範囲内である。
【0021】
なお、本発明の加硫ゴムチップ成形体は、加硫ゴムチップ、微粉末ゴムおよび加硫剤に加えて、必要に応じて、加硫促進剤、硬質骨材等を用いて形成しても差し支えない。
【0022】
上記加硫促進剤としては、例えば、ヘキサメチレンテトラミン、n−ブチルアルデヒドアニリン、ジフェニルグアニジン、エチレンチオウレア、2−メルカプトベンゾチアゾール、N−シクロヘキシル−2−ベンゾチアゾール−スルフェンアミド、テトラメチルチウラムジスルフィド、ジメチルジチオカルバミン酸亜鉛、ブチルキサントゲン酸亜鉛等があげられる。これらは単独でもしくは2種以上併せて用いられる。
【0023】
また、加硫促進剤の配合割合は、加硫ゴムチップ100部に対して、0.1〜15部の範囲内が好ましく、特に好ましくは0.5〜5部の範囲内である。
【0024】
上記硬質骨材としては、特に限定はないが、例えば、砕石,珪砂,砂,シリカ,ガラス等の無機材料や、ナイロン樹脂,ウレタン樹脂等の有機材料があげられる。これらは単独でもしくは2種以上併せて用いられる。これらのなかでも、入手のしやすさ、コストの点で、砕石または珪砂が好適に用いられる。
【0025】
この硬質骨材の平均粒径は、0.01〜2.5mmの範囲内が好ましく、特に好ましくは0.01〜0.5mmの範囲内である。すなわち、硬質骨材の平均粒径が0.01mm未満であると、加硫ゴム成形体の成形性が悪くなる傾向がみられ、逆に2.5mmを超えると、濡れ時のすべり摩擦係数(μwet)が低いため、多量の添加が必要となるからである。
【0026】
また、硬質骨材の配合割合は、加硫ゴムチップ100部に対して、5〜40部の範囲内が好ましく、特に好ましくは10〜30部の範囲内である。すなわち、硬質骨材の配合割合が5部未満であると、濡れ時のすべり摩擦係数(μwet)が小さくなる傾向がみられ、逆に、硬質骨材の配合割合が40部を超えると、得られる加硫ゴムチップ成形体の強度が低下する傾向がみられるからである。
【0027】
本発明の加硫ゴムチップ成形体は、例えば、つぎのようにして作製することができる。すなわち、加硫ゴムチップと、微粉末ゴムと、必要に応じて加硫剤、加硫促進剤、硬質骨材等とを所定の割合で配合し、これらを攪拌機を用いて混合し、その混合物を成形型内に投入した後、所定の条件(例えば、150℃で20分間)で熱プレスすることにより、平板状(厚み20〜50mm)の、本発明に係る加硫ゴムチップ成形体を作製することができる。
【0028】
本発明の加硫ゴムチップ成形体は、例えば、道路用もしくは、遊歩道や競技場のフィールド等に用いられる多孔質弾性舗装材として好適に用いられる。
【0029】
本発明の加硫ゴムチップ成形体は、つぎのようにして施工される。例えば、図1に示すように、地面41に設けたコンクリートあるいはアスファルトの路盤31に、エポキシ系,ウレタン系等の接着剤21を用いて、本発明の加硫ゴムチップ成形体11を敷設する。これにより、排水性弾性舗装構造を形成することができる。図において、1は加硫ゴムチップ、2は微粉末ゴムを示し、微粉末ゴム2は加硫ゴムチップ1の表面に多数付着しており、この微粉末ゴム2を介して、加硫ゴムチップ1同士が相互に接着して、多孔質の加硫ゴムチップ成形体11を構成している。
【0030】
このように、本発明の加硫ゴムチップ成形体を多孔質の弾性舗装材に用いる場合、弾性舗装材の空隙率は10〜60%の範囲内が好ましく、特に好ましくは35〜45%の範囲内である。
【0031】
つぎに、実施例について比較例と併せて説明する。
【0032】
まず、実施例および比較例に先立ち、下記に示す材料を準備した。
【0033】
〔加硫ゴムチップ〕
廃タイヤ由来の加硫ゴムチップ(平均直径:1mm、平均長さ:10mmのひじき状)
【0034】
〔微粉末ゴム〕
加硫ゴムには、村岡ゴム社製、粉末ゴム♯10TBを用いた。また、未加硫ゴムには、天然ゴム100部と、ステリン酸1部と、酸化亜鉛5部と、カーボンブラック70部と、オイル40部と、老化防止剤2部とを配合し、これらをバンバリーミキサーで混練りし、さらに加硫剤3部と、加硫促進剤2部とを配合し、ロールで混練りした後に、リボン状にし、約5mm×5mm×2mmの大きさに裁断したものを用いた。つぎに、この加硫ゴムと、未加硫ゴムとを、重量比で、加硫ゴム/未加硫ゴム=30/70の割合で混合し、さらに凝集防止のためにタルク10部を混入し、冷凍破砕機(SPEX社製、品番6700)を用いて、液体窒素で冷却して、−50℃以下の低温で粉砕し、微粉末ゴム(平均粒径:500μm)を作製した。
【0035】
〔加硫剤〕
硫黄
【0036】
〔加硫促進剤〕
チアゾール系加硫促進剤(大内新興化学工業社製、ノクセラーM)
【0037】
〔ウレタン系樹脂バインダー〕
三井武田ケミカル社製、F181P
【0038】
【実施例1〜6、比較例1〜3】
後記の表1および表2に示す各成分を、同表に示す割合で配合して攪拌混合した後、混合物を所定の空隙率となるように金型内に投入し、この金型を150℃で20分間熱プレスすることにより、平板状の加硫ゴムチップ成形体(大きさ:1000mm×1000mm、厚み30mm)を作製した。
【0039】
このようにして得られた実施例品および比較例品の加硫ゴムチップ成形体を用いて、下記の基準に従い、各特性の評価を行った。これらの結果を、後記の表1および表2に併せて示した。
【0040】
〔空隙率〕
成形型の体積と、加硫ゴムチップの比重とから、空隙率を算出した。
【0041】
〔引張強度〕
各加硫ゴムチップ成形体を用いて、JIS K 6251に準じて、引張強度を測定した。評価は、引張強度が0.98MPa以上の場合を○、0.98MPa未満の場合を×とした。
【0042】
〔耐候性〕
各加硫ゴムチップ成形体を用いて、JIS K 6266に準じて、劣化試験を行った(温度:63±3℃、湿度:50±5%、試験時間:1000時間)。耐候性の評価は、劣化試験後の破断伸びを測定し、劣化試験前に比べて、破断伸びが30%以上低下する場合を×、破断伸びの低下が30%未満の場合を○とした。
【0043】
【表1】
【0044】
【表2】
【0045】
上記結果から、実施例品はいずれも、樹脂バインダーに代えて微粉末ゴムを用いているため、引張強度および耐候性に優れていることがわかる。
【0046】
これに対して、比較例1品は、樹脂バインダーを用いていないため、耐候性に優れているが、微粉末ゴムを用いていないため、引張強度に劣ることがわかる。比較例2,3品は、微粉末ゴムに代えて樹脂バインダーを用いているため、耐候性に劣り、引張強度も実施例品よりも劣ることがわかる。
【0047】
【発明の効果】
以上のように、本発明の加硫ゴムチップ成形体は、粉末ゴムをより微粉化したときに生じる自己粘着性を利用し、加硫ゴムチップの表面に、微粉末ゴムを多数付着させ、その状態で加熱成形することにより、加硫ゴムチップ同士を微粉末ゴムを介して相互に接着させて構成されている。このように、本発明の加硫ゴムチップ成形体は、樹脂バインダーに代えて、微粉末ゴムを用い、この微粉末ゴムと加硫ゴムチップとを架橋させ、微粉末ゴムを介して加硫ゴムチップ同士を接着して成形体化してなるものである。そのため、樹脂バインダーを用いたときのような劣化が生じず、耐候性、耐久性の向上効果が得られるようになる。
【0048】
また、樹脂バインダーを使用せず、原料がゴム材だけであるため、使用後の加硫ゴムチップ成形体を再度粉砕することにより、原料の加硫ゴムチップとして再利用(回収)することができ、リサイクル性にも優れている。
【0049】
また、加硫剤を用いると、加硫ゴムチップと、微粉末ゴムとの界面に、架橋点が形成され、加硫ゴムチップと、微粉末ゴムとが化学結合するようになって、加硫ゴムチップ成形体の強度がより向上するようになる。
【図面の簡単な説明】
【図1】本発明の加硫ゴムチップ成形体を用いた弾性舗装構造を模式的に示す断面図である。
【符号の説明】
1 加硫ゴムチップ
2 微粉末ゴム
11 加硫ゴムチップ成形体
21 接着剤
31 路盤
41 地面[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vulcanized rubber chip molded product and a method for producing the same, and more particularly, to a porous mat used indoors and outdoors, for example, a vulcanized rubber chip molded product used for a porous elastic pavement material such as a road. And its manufacturing method.
[0002]
[Prior art]
Conventionally, as a vulcanized rubber chip molded body using a vulcanized rubber chip, waste rubber products such as automobile waste tires and weather strips are used, and a vulcanized rubber chip obtained by molding the same into a chip shape is used as a urethane resin, an epoxy resin. One bonded with a resin binder such as a resin is known (for example, see Patent Document 1). As described above, when the vulcanized rubber chips are bonded by using the resin binder, the vulcanized rubber chips are not chemically bonded (primarily bonded), and the vulcanized rubber chip molded body is formed only by the binding force of the resin binder. Since the resin binder needs to be formed, it is necessary to mix a certain amount of the resin binder. The compounding amount of the resin binder is usually required to be about 10 to 50 parts by weight based on 100 parts by weight of the vulcanized rubber chip. The vulcanized rubber chip molded body thus obtained has been used for pavement materials for sidewalks, parks, stadiums and the like. In recent years, it has been partially used as a pavement material for roadways.
[0003]
Since the pavement material using the vulcanized rubber chip molded body uses the vulcanized rubber chip which is an elastic aggregate, the pavement material has elasticity as compared with ordinary asphalt pavement or interlocking block. By adjusting the porosity to the above, it is possible to improve the water permeability and walking sensation. In addition, in the case of a road, the air gap can suppress the generation of air pumping noise generated from the tire and can absorb the sound of a specific frequency transmitted from the traveling vehicle. Further, since the pavement material can reduce tire impact noise and pattern excitation noise generated by impact at the time of contact between the tire and the road surface, traffic noise can be significantly reduced.
[0004]
[Patent Document 1]
JP, 2002-21008, A
[Problems to be solved by the invention]
However, as described above, the vulcanized rubber chip molded body molded using a resin binder has poor adhesion between the vulcanized rubber chip and the resin binder, and therefore has low strength as a whole vulcanized rubber chip molded body, and As a result, the resin binder is deteriorated, and the weather resistance of the vulcanized rubber chip molded body is deteriorated. As a result, vulcanized rubber chips are scattered from the vulcanized rubber chip molded body, and the durability of the vulcanized rubber chip molded body itself is deteriorated.
[0006]
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a vulcanized rubber chip molded article having excellent weather resistance and durability and a method for producing the same.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a molded article formed by using a vulcanized rubber chip and fine powder rubber, and the vulcanized rubber chips are bonded to each other via the fine powder rubber. The vulcanized rubber chip molded body is the first gist, a vulcanized rubber chip and fine powder rubber are prepared, and the vulcanized rubber chip and fine powder rubber are mixed and a large number of fine powder rubber is adhered to the surface of the vulcanized rubber chip. A second gist of the present invention is a method for producing a vulcanized rubber chip molded body in which a vulcanized rubber chip is adhered to each other via fine powder rubber by heating in a mold in this state to form a molded body.
[0008]
The present inventors have intensively studied to obtain a vulcanized rubber chip molded article having excellent weather resistance and durability. In the course of this research, various experiments were conducted to find an adhesive that could replace the resin binder, and as a result, it was found that good results could be obtained when the rubber was pulverized. That is, if the rubber is made into a fine powder, the rubber powder has a certain degree of self-adhesiveness, probably because the surface area of the rubber per unit weight becomes relatively large. When this fine powder rubber is mixed with a vulcanized rubber chip, a large number of fine powder rubbers adhere to the surface of the vulcanized rubber chip due to its own self-adhesion, and when heated in a molding die in this state. Then, the vulcanized rubber chips adhere to each other via the fine powder rubber to form a strong molded body. As described above, the vulcanized rubber chip molded body of the present invention uses fine powder rubber instead of the resin binder, cross-links the fine powder rubber and the vulcanized rubber chip, and connects the vulcanized rubber chips via the fine powder rubber. It is formed by bonding to form a molded body. Therefore, it does not particularly require a resin binder, and therefore, there is no deterioration of the resin binder, no vulcanized rubber chips are scattered from the vulcanized rubber chip molded body, and the weather resistance and durability of the vulcanized rubber chip molded body are excellent. .
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described in detail.
[0010]
The vulcanized rubber chip molded product of the present invention is formed by using a vulcanized rubber chip and fine powder rubber, and the vulcanized rubber chips are mutually bonded via the fine powder rubber to form a molded product. It is.
[0011]
Although the vulcanized rubber chip is not particularly limited, a rubber material such as a natural rubber or a synthetic rubber which is ground into a chip shape such as a sword or a granule is used. Above all, from the viewpoint of resource recycling, rubber chips obtained by grinding waste rubber such as waste tires into chip shapes are preferably used.
[0012]
The synthetic rubber is not particularly limited. For example, styrene-butadiene rubber (SBR), acrylonitrile-butadiene rubber (NBR), ethylene-propylene-diene terpolymer (EPDM), butadiene rubber (BR), chloroprene Rubber (CR) and blended rubbers thereof.
[0013]
In the case of such a vulcanized rubber chip, the diameter is usually 0.3 to 5 mm, and the length is usually in the range of 5 to 50 mm. When the vulcanized rubber chip is granular, the average particle size is usually in the range of 5 to 10 mm.
[0014]
In the present invention, the fine powder rubber is rubber having a particle size smaller than that of the vulcanized rubber chip and having an average particle size usually in the range of 100 to 2000 μm, and preferably having an average particle size of 150 μm. 500500 μm. That is, if the average particle size of the fine powder rubber is less than 100 μm, it becomes too fine, the self-adhesiveness of the fine powder rubber becomes too high, agglomerates, and it becomes difficult to knead with the vulcanized rubber chip. On the other hand, if it exceeds 2000 μm, the particle size of the fine powder rubber becomes too large, and it tends to be difficult to adhere to the surface of the vulcanized rubber chip.
[0015]
Further, as the fine powder rubber, it is preferable that an unvulcanized rubber and a vulcanized rubber are used alone or in combination. The weight ratio of the unvulcanized rubber to the vulcanized rubber is preferably in the range of unvulcanized rubber / vulcanized rubber = 100/0 to 5/95, particularly preferably unvulcanized rubber / vulcanized rubber. = 100/0 to 25/75. That is, when the weight ratio of the unvulcanized rubber is less than 5 (the weight ratio of the vulcanized rubber exceeds 95), the adhesion between the vulcanized rubber chips becomes poor, and the strength tends to decrease.
[0016]
Such fine powder rubber can be produced, for example, as follows. That is, after cutting the unvulcanized rubber and the vulcanized rubber into a chip having a size of about 5 mm × 5 mm × 2 mm at room temperature, the ratio between the unvulcanized rubber and the vulcanized rubber is expressed in terms of weight ratio. And unvulcanized rubber / vulcanized rubber = 100/0 to 5/95. Next, using a refrigeration crusher equipped with a cooling device (for example, SPEX Co., Ltd., product number 6700), while cooling to a low temperature of −50 ° C. or lower, preferably −70 to −90 ° C. with liquid nitrogen, By crushing the chip-shaped rubber for 6 minutes, a fine powder rubber having an average particle size within the range described above can be produced. In the case of freezing and crushing, if the unvulcanized rubber is too agglomerated to cause agglomeration, agglomeration can be suppressed by mixing powder with releasable properties such as talc and pulverizing at the same time. It is.
[0017]
The compounding ratio of the fine powder rubber is preferably in the range of 5 to 50 parts, more preferably in the range of 10 to 30 parts with respect to 100 parts by weight of the vulcanized rubber chip (hereinafter abbreviated as “part”). is there. That is, when the compounding ratio of the fine powder rubber is less than 5 parts, the adhesion between the vulcanized rubber chips is deteriorated, and the strength of the obtained vulcanized rubber chip molded article tends to be weak. If the proportion exceeds 50 parts, the kneading workability of the fine powder rubber and the vulcanized rubber chip tends to be deteriorated.
[0018]
The vulcanized rubber chip molded article of the present invention may be formed by using a vulcanizing agent, if necessary, in addition to the vulcanized rubber chip and the fine powder rubber. As described above, when the vulcanizing agent is used, a cross-linking point is formed at the interface between the vulcanized rubber chip and the fine powder rubber, and the vulcanized rubber chip and the fine powder rubber are chemically bonded to each other. This is preferable because the strength of the rubber chip molded body is further improved.
[0019]
Such vulcanizing agents are not particularly limited, but include sulfur, zinc oxide, 4,4'-dithiodimorpholine, tetramethylthiuram disulfide, benzothiazole, dicumyl peroxide, p-quinone dioxime, and ammonium benzoate. And the like. These may be used alone or in combination of two or more.
[0020]
The mixing ratio of the vulcanizing agent is preferably in the range of 1 to 70 parts, more preferably in the range of 3 to 50 parts, based on 100 parts of the vulcanized rubber chip.
[0021]
In addition, the vulcanized rubber chip molded article of the present invention may be formed using a vulcanization accelerator, a hard aggregate, or the like, if necessary, in addition to the vulcanized rubber chip, the fine powder rubber, and the vulcanizing agent. .
[0022]
Examples of the vulcanization accelerator include, for example, hexamethylenetetramine, n-butyraldehyde aniline, diphenylguanidine, ethylenethiourea, 2-mercaptobenzothiazole, N-cyclohexyl-2-benzothiazole-sulfenamide, tetramethylthiuram disulfide, Examples include zinc dimethyldithiocarbamate and zinc butylxanthogenate. These may be used alone or in combination of two or more.
[0023]
The compounding ratio of the vulcanization accelerator is preferably in the range of 0.1 to 15 parts, more preferably in the range of 0.5 to 5 parts, based on 100 parts of the vulcanized rubber chip.
[0024]
The hard aggregate is not particularly limited, but examples thereof include inorganic materials such as crushed stone, silica sand, sand, silica, and glass, and organic materials such as nylon resin and urethane resin. These may be used alone or in combination of two or more. Among these, crushed stone or quartz sand is preferably used in terms of availability and cost.
[0025]
The average particle size of the hard aggregate is preferably in the range of 0.01 to 2.5 mm, and particularly preferably in the range of 0.01 to 0.5 mm. That is, when the average particle size of the hard aggregate is less than 0.01 mm, the moldability of the vulcanized rubber molded article tends to be deteriorated, and when it exceeds 2.5 mm, the sliding friction coefficient when wet ( μwet) is low, so that a large amount of addition is required.
[0026]
Further, the compounding ratio of the hard aggregate is preferably in the range of 5 to 40 parts, particularly preferably in the range of 10 to 30 parts, based on 100 parts of the vulcanized rubber chip. That is, when the blending ratio of the hard aggregate is less than 5 parts, the sliding friction coefficient (μwet) when wet tends to be small. This is because there is a tendency for the strength of the vulcanized rubber chip molded article to be reduced.
[0027]
The vulcanized rubber chip molded article of the present invention can be produced, for example, as follows. That is, a vulcanized rubber chip, a fine powder rubber, and, if necessary, a vulcanizing agent, a vulcanization accelerator, a hard aggregate and the like are blended in a predetermined ratio, and these are mixed using a stirrer, and the mixture is mixed. After being put into a molding die, hot pressing is performed under predetermined conditions (for example, at 150 ° C. for 20 minutes) to produce a flat (20 to 50 mm thick) vulcanized rubber chip molded product according to the present invention. Can be.
[0028]
The vulcanized rubber chip molded article of the present invention is suitably used, for example, as a porous elastic pavement material used for roads, promenades, stadiums, and the like.
[0029]
The vulcanized rubber chip molded body of the present invention is constructed as follows. For example, as shown in FIG. 1, a vulcanized rubber chip molded
[0030]
As described above, when the vulcanized rubber chip molded article of the present invention is used for a porous elastic pavement, the porosity of the elastic pavement is preferably in the range of 10 to 60%, particularly preferably in the range of 35 to 45%. It is.
[0031]
Next, examples will be described together with comparative examples.
[0032]
First, prior to Examples and Comparative Examples, the following materials were prepared.
[0033]
[Vulcanized rubber chip]
Vulcanized rubber chips derived from waste tires (hijiki with an average diameter of 1 mm and an average length of 10 mm)
[0034]
(Fine powder rubber)
Powdered rubber # 10TB manufactured by Muraoka Rubber Co., Ltd. was used as the vulcanized rubber. The unvulcanized rubber is compounded with 100 parts of natural rubber, 1 part of stearic acid, 5 parts of zinc oxide, 70 parts of carbon black, 40 parts of oil, and 2 parts of an antioxidant. After kneading with a Banbury mixer, further mixing 3 parts of a vulcanizing agent and 2 parts of a vulcanization accelerator, kneading with a roll, forming a ribbon, and cutting into a size of about 5 mm × 5 mm × 2 mm. Was used. Next, the vulcanized rubber and the unvulcanized rubber were mixed at a weight ratio of vulcanized rubber / unvulcanized rubber = 30/70, and 10 parts of talc were further mixed to prevent aggregation. Using a refrigeration crusher (product number: SPEX, product number 6700), the mixture was cooled with liquid nitrogen and pulverized at a low temperature of −50 ° C. or less to produce fine powder rubber (average particle size: 500 μm).
[0035]
(Vulcanizing agent)
Sulfur
(Vulcanization accelerator)
Thiazole vulcanization accelerator (Ouchi Shinko Chemical Co., Ltd., Noxeller M)
[0037]
(Urethane resin binder)
F181P, manufactured by Mitsui Takeda Chemical Co., Ltd.
[0038]
Examples 1 to 6, Comparative Examples 1 to 3
The components shown in Tables 1 and 2 described below were blended in the proportions shown in the same table and mixed by stirring, and then the mixture was charged into a mold so as to have a predetermined porosity. For 20 minutes to produce a flat vulcanized rubber chip molded product (size: 1000 mm × 1000 mm, thickness 30 mm).
[0039]
Using the vulcanized rubber chip molded products of the example product and the comparative example product thus obtained, each characteristic was evaluated according to the following criteria. The results are shown in Tables 1 and 2 below.
[0040]
(Porosity)
The porosity was calculated from the volume of the mold and the specific gravity of the vulcanized rubber chip.
[0041]
(Tensile strength)
Using each of the vulcanized rubber chip molded bodies, the tensile strength was measured according to JIS K6251. The evaluation was evaluated as ○ when the tensile strength was 0.98 MPa or more, and as × when the tensile strength was less than 0.98 MPa.
[0042]
〔Weatherability〕
Using each of the vulcanized rubber chip molded bodies, a deterioration test was performed according to JIS K6266 (temperature: 63 ± 3 ° C., humidity: 50 ± 5%, test time: 1000 hours). For the evaluation of weather resistance, the elongation at break after the deterioration test was measured, and the case where the elongation at break decreased by 30% or more compared to before the deterioration test was evaluated as x, and the case where the decrease in elongation at break was less than 30% was evaluated as o.
[0043]
[Table 1]
[0044]
[Table 2]
[0045]
From the above results, it can be seen that all of the examples have excellent tensile strength and weather resistance because fine powder rubber is used in place of the resin binder.
[0046]
On the other hand, the product of Comparative Example 1 is excellent in weather resistance because no resin binder is used, but is inferior in tensile strength because no rubber powder is used. It can be seen that the comparative examples 2 and 3 are inferior in weather resistance and inferior in tensile strength to the example products because the resin binder is used instead of the fine powder rubber.
[0047]
【The invention's effect】
As described above, the vulcanized rubber chip molded article of the present invention utilizes self-adhesion generated when powder rubber is further pulverized, and attaches a large number of fine powder rubber to the surface of the vulcanized rubber chip. By heat molding, the vulcanized rubber chips are bonded to each other via fine powder rubber. As described above, the vulcanized rubber chip molded body of the present invention uses fine powder rubber instead of the resin binder, cross-links the fine powder rubber and the vulcanized rubber chip, and connects the vulcanized rubber chips via the fine powder rubber. It is formed by bonding to form a molded body. Therefore, deterioration such as when a resin binder is used does not occur, and the effect of improving weather resistance and durability can be obtained.
[0048]
In addition, since the raw material is only a rubber material without using a resin binder, the used vulcanized rubber chip molded body can be reused (recovered) as a vulcanized rubber chip of the raw material by pulverizing the used vulcanized rubber chip again. Also excellent in nature.
[0049]
In addition, when a vulcanizing agent is used, a crosslinking point is formed at the interface between the vulcanized rubber chip and the fine powder rubber, and the vulcanized rubber chip and the fine powder rubber are chemically bonded to form a vulcanized rubber chip. The strength of the body is improved.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view schematically showing an elastic pavement structure using a vulcanized rubber chip molded product of the present invention.
[Explanation of symbols]
DESCRIPTION OF
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002372740A JP2004203976A (en) | 2002-12-24 | 2002-12-24 | Vulcanized rubber chip molded article and its production method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002372740A JP2004203976A (en) | 2002-12-24 | 2002-12-24 | Vulcanized rubber chip molded article and its production method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004203976A true JP2004203976A (en) | 2004-07-22 |
Family
ID=32811263
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002372740A Pending JP2004203976A (en) | 2002-12-24 | 2002-12-24 | Vulcanized rubber chip molded article and its production method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004203976A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005120166A (en) * | 2003-10-15 | 2005-05-12 | The Eco Kk | Air-permeable rubber composition, air-permeable rubber molding and its manufacturing method |
JP2008002066A (en) * | 2006-06-20 | 2008-01-10 | Yokohama Rubber Co Ltd:The | Freezing inhibit paving material |
JP2010241045A (en) * | 2009-04-08 | 2010-10-28 | Nishikawa Rubber Co Ltd | Recycling method of thermosetting resin waste |
-
2002
- 2002-12-24 JP JP2002372740A patent/JP2004203976A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005120166A (en) * | 2003-10-15 | 2005-05-12 | The Eco Kk | Air-permeable rubber composition, air-permeable rubber molding and its manufacturing method |
JP2008002066A (en) * | 2006-06-20 | 2008-01-10 | Yokohama Rubber Co Ltd:The | Freezing inhibit paving material |
JP2010241045A (en) * | 2009-04-08 | 2010-10-28 | Nishikawa Rubber Co Ltd | Recycling method of thermosetting resin waste |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101239399B1 (en) | Modified asphalt composition and method for preparing the same | |
WO2017002966A1 (en) | Tire tread rubber composition | |
JPH02170840A (en) | Rubber composition for tire tread | |
JPWO2002038655A1 (en) | Method for producing surface-modified rubber | |
JP2015059169A (en) | Tire tread rubber composition and pneumatic tire | |
JP2004203976A (en) | Vulcanized rubber chip molded article and its production method | |
JPH10128752A (en) | Reclamation of used tire rubber | |
JPWO2019031144A1 (en) | Rubber composition, method for producing the same, and tire | |
JP4976665B2 (en) | Rubber composition for tread and pneumatic tire | |
JP4344041B2 (en) | Tread rubber composition and studless tire | |
JP3459311B2 (en) | Tread rubber composition | |
JP2003342905A (en) | Construction method of elastic paving surface | |
JP2004202767A (en) | Vulcanized rubber chip molded product and its manufacturing method | |
JP2008050836A (en) | Elastic paving body | |
JP4350973B2 (en) | Rubber composition for tire and studless tire | |
JP5356116B2 (en) | Rubber composition and pneumatic tire | |
JP2004052318A (en) | Elastic pavement structure | |
KR20060098183A (en) | Rubber composition for snow tire tread | |
KR102307085B1 (en) | Black ice zone road pavement composition combining room temperature pavement method and dot method to prevent accidents in black ice section and construction method thereof | |
JP2005002640A (en) | Elastic paving material and rubber chip used therefor | |
JP2005188147A (en) | Elastic paving material | |
JPH07324146A (en) | Heat-conductive rubber composition | |
JP2003211469A (en) | Vulcanized rubber chip molded product | |
JP2002146030A (en) | Method for producing surface-modified rubber | |
JPH0386741A (en) | Rubber mat manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Effective date: 20050208 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070301 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070313 |
|
A02 | Decision of refusal |
Effective date: 20070717 Free format text: JAPANESE INTERMEDIATE CODE: A02 |