JP2004203715A - Alkali activated carbon, its producing method, polarizable electrode for electric double-layer capacitor containing it and electric double-layer capacitor containing the electrode - Google Patents
Alkali activated carbon, its producing method, polarizable electrode for electric double-layer capacitor containing it and electric double-layer capacitor containing the electrode Download PDFInfo
- Publication number
- JP2004203715A JP2004203715A JP2002377875A JP2002377875A JP2004203715A JP 2004203715 A JP2004203715 A JP 2004203715A JP 2002377875 A JP2002377875 A JP 2002377875A JP 2002377875 A JP2002377875 A JP 2002377875A JP 2004203715 A JP2004203715 A JP 2004203715A
- Authority
- JP
- Japan
- Prior art keywords
- activated carbon
- alkali
- electric double
- layer capacitor
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
Landscapes
- Carbon And Carbon Compounds (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、アルカリ賦活活性炭及びその製造方法に関するものであり、さらに詳しくはアルカリ賦活により多孔質化した活性炭及びその製造方法に関し、特に電気二重層コンデンサの分極性電極用として好適なアルカリ賦活により多孔質化した活性炭の精製方法に関するものである。
本発明はまた、上記アルカリ賦活活性炭又は上記方法により製造された精製活性炭を含む電気二重層コンデンサ用分極性電極、及び該電極を用いた電気二重層コンデンサに関するものである。
【0002】
【従来の技術】
電気二重層コンデンサは、ファラッド級の大容量を有し、充放電サイクル特性にも優れることから、電子機器のバックアップ電源、車載のバッテリーなどの用途に使用されている。この電気二重層コンデンサは、活性炭からなる一対の分極性電極がセパレータを介して対向して設けられ、該分極性電極にテトラアルキルアンモニウム塩等の有機溶媒溶液を電解液として含浸させてそれぞれ陽極および陰極として作用するよう構成されている。このような電気二重層コンデンサの分極性電極には、微細な細孔を有する活性炭が用いられているが、電気二重層コンデンサをより小型化・軽量化・大容量化するために、前記分極性電極の静電容量密度を高くすることができる活性炭が求められている。
【0003】
このような活性炭は、例えば、塩化ビニル系樹脂を焼成して得られた炭化物を、アルカリ賦活することにより得られる。アルカリ賦活した活性炭は、電極密度が高く、容積当たりの静電容量密度に優れた分極性電極を形成することができ、該分極性電極によりエネルギー密度の高い電気二重層コンデンサを構成することができる。しかしながら、アルカリ賦活処理を行った活性炭には、多量のアルカリ金属が付着しており、電気二重層コンデンサの分極性電極に使用するためには、得られた活性炭を水洗、中和洗浄して、未反応の活性化剤や夾雑物等を除去する必要がある。
【0004】
従来、アルカリ賦活処理した活性炭の不純物除去法としては、活性炭を水に分散した後、固液分離し、分離液中に不純物がなくなるまでこの操作を繰り返す方法(ろ過法▲1▼)や活性炭を水に分散し、固液分離する際に水を掛け洗浄し、分離液中に不純物がなくなるまで洗浄を続ける方法(ろ過法▲2▼)が一般的に知られている。
しかし、ろ過法▲1▼では、活性炭のろ過による分離に時間がかかるため、コストが高くなるという問題がある。また、ろ過法▲2▼では、分離時の洗浄効果に均一性がなく、品質に問題が生じ、大量の水を使用する必要があり、洗浄水の処理問題も発生してくる。
さらに、従来の方法による場合には、多量のアルカリ金属や、ニッケル、鉄等の金属の除去が不十分であり、電気二重層コンデンサの分極性電極として使用するのに好適な強熱残分値の低いアルカリ賦活活性炭は得られないという問題がある。
【0005】
【発明が解決しようとする課題】
本発明の第1の目的は、強熱残分値の低いアルカリ賦活活性炭を提供することである。
本発明の第2の目的は、簡単で、かつ安価に、目的の純度を有するアルカリ賦活活性炭を得ることができるアルカリ賦活活性炭の製造方法を提供することである。
本発明の第3の目的は、上記強熱残分値の低いアルカリ賦活活性炭又は上記方法により製造された精製活性炭を含む電気二重層コンデンサ用分極性電極を提供することである。
本発明の第4の目的は、上記電極を含む電気二重層コンデンサを提供することである。
【0006】
【課題を解決するための手段】
本発明は以下のアルカリ賦活活性炭、その製造方法、それを含む電気二重層コンデンサ用分極性電極、及び電気二重層コンデンサを提供するものである。
1.アルカリ賦活により多孔質化した活性炭であって、強熱残分値が1000ppm以下であるアルカリ賦活活性炭。
2.強熱残分値が500ppm以下である上記1記載のアルカリ賦活活性炭。
3.強熱残分値が200ppm以下である上記1記載のアルカリ賦活活性炭。
4.強熱残分値が100ppm以下である上記1記載のアルカリ賦活活性炭。
5.アルカリ賦活により多孔質化した活性炭の製造方法であって、
(1)アルカリ賦活により多孔質化した活性炭を水に、分散し、静置し、活性炭を沈降させ、上澄み液をデカント除去する工程、
(2)工程1で処理した活性炭に希酸水溶液を加えて、分散し、静置し、活性炭を沈降させ、上澄み液をデカント除去する工程、及び
(3)工程2で処理した活性炭に水を加えて、分散し、静置し、活性炭を沈降させ、上澄み液をデカント除去する工程、
を含むことを特徴とする方法。
6.上記工程1を2回以上繰り返すことを特徴とする上記5記載の方法。
7.上記工程2を1回以上繰り返すことを特徴とする上記5又は6記載の方法。
8.上記工程3を2回以上繰り返すことを特徴とする上記5〜7のいずれか1項記載の方法。
9.活性炭を分散する水がイオン交換水、蒸留水又はこれらの混合物である上記5〜8のいずれか1項記載の方法。
10.精製活性炭の強熱残分値が1000ppm以下である上記5〜9のいずれか1項記載の方法。
11.上記1〜4のいずれか1項記載のアルカリ賦活活性炭又は上記5〜10のいずれか1項記載の方法により製造されたアルカリ賦活活性炭を含む電気二重層コンデンサ用分極性電極。
12.上記11記載の電気二重層コンデンサ用分極性電極を含む電気二重層コンデンサ。
【0007】
【発明の実施の形態】
本発明に使用する原料としてのアルカリ賦活により多孔質化した活性炭は、従来既知の方法、例えば、特許文献1〜3等に記載の方法により製造できる。
【0008】
【特許文献1】
特開平7−302735号公報
【特許文献2】
特開平10−149957号公報
【特許文献3】
特開平10−149958号公報
【0009】
活性炭のアルカリ賦活処理は例えば、次のように行われる。
内壁をニッケルコーティングした賦活炉に、石油系活性炭100質量部を充填し、KOH180〜220質量部、例えば、200質量部を加え、攪拌する。炉内は、ライン窒素を供給して常時不活性にする。賦活炉を100〜300℃/時間、例えば、200℃/時間で昇温し、反応温度600〜950℃、例えば、800℃でアルカリ賦活反応を1〜20時間、例えば、4時間行い、放冷し、350〜250℃、例えば、300℃以下になったら、炭酸ガス又は水蒸気飽和窒素により室温まで冷却し、賦活炉に純水、例えば、イオン交換水500〜1000質量部、例えば、640質量部を入れ、アルカリ賦活活性炭を水に分散させる。
【0010】
本発明方法の第1工程では、アルカリ賦活により多孔質化した活性炭を水に分散する。アルカリ賦活により多孔質化した活性炭を分散する水は、洗浄水であることから不純物をできる限り含まないものが良く、例えば、イオン交換、蒸留その他の方法により精製した純水を使用することが望ましい。
適当な大きさのタンクに活性炭と水を加え、攪拌する。この際、精製活性炭100質量部に対して、水の量は1000〜3000質量部とすることが望ましい。水の量が1000質量部より少ないと不純物洗浄効果が充分でないという点で好ましくなく、また3000質量部より多いと活性炭精製の処理能力が低下し、コストアップになるという点で好ましくない。
次に、活性炭の分散水に、この分散水の容量に対して1〜3倍量、例えば、1.6倍量のイオン交換水等の純水を加え、0〜100℃、例えば、室温で30分〜2時間、例えば、1時間攪拌して活性炭を分散させる。イオン交換水の使用量は、活性炭に対して多くした方が洗浄効果が高い。
分散後、30分〜2時間、例えば、1時間静置し、活性炭を沈降させた後、上澄み液をデカント除去する。次に、デカント除去した量のイオン交換水を再度加え、分散、静置、活性炭の沈降、デカント処理を行う。処理温度は20℃以上、例えば、20〜100℃が好ましく、通常は20〜30℃である。
この処理は、2回以上、好ましくは2〜8回、通常は3〜5回行う。
【0011】
第2工程
次に、好ましくは0.1〜5質量%、さらに好ましくは3質量%の酸水溶液を用いて、先のデカント洗浄と同様に、分散、静置、活性炭の沈降、上澄みのデカント処理を行う。水のpHは酸性、好ましくはpH5以下、さらに好ましくはpH3〜0が望ましい。pHは、酸(例えば、硫酸、塩酸等)を加えて調整すればよい。pHが5より高いと不純物洗浄効果が充分でないという点で好ましくない。処理温度が高い方が不純物の溶解性が高く、例えば、20〜100℃が好ましく、通常は20〜30℃である。
この処理は、1回以上、好ましくは1〜3回、通常は1回行う。
【0012】
第3工程
その後、第1工程と同様に純水、例えば、イオン交換水を用いて、酸成分が除去されるまで、分散、静置、活性炭の沈降、上澄みのデカント処理を行う。処理温度は20〜100℃が好ましく、通常は20〜30℃である。
この処理は、2回以上、好ましくは2〜6回、通常は4〜5回行う。
第4工程
上記洗浄処理終了後、活性炭を例えば、遠心分離機により脱液し、必要により100〜110℃で12〜48時間乾燥し、目的の精製活性炭を得る。
【0013】
本発明に用いられる水は、純度の高いものほど好ましく、電気伝導率1.0マイクロジーメンス(μS/cm)以下のイオン交換水(比抵抗106Ωcm)が好ましい。蒸留水は、2×105Ωcm程度であるが、使用可能である。
本発明において、デカント洗浄回数は多い方が不純物の除去率が高くなるが、pH中性領域(pH6〜8)では活性炭の沈降性が悪く、デカント操作が困難になり好ましくない。そこで洗浄回数を増やすときは、処理液を酸性又はアルカリ性となるようにpH調整することが望ましい。第1工程の上澄み液のpHが10以下になったら、第2工程の酸洗浄を行うことが望ましい。
また、デカント洗浄温度は、0〜100℃の範囲であるが、温度が高い方が不純物の溶出が効率よくなされ、不純物の除去率が高い。
【0014】
本発明の方法により、未処理のアルカリ賦活活性炭中の不純物(通常は60質量%程度)は、好ましくは0.1質量%以下、さらに好ましくは0.03質量%以下まで除去される。
未処理のアルカリ賦活活性炭中の不純物の主成分は、KOH、K2CO3、K2O、その他のカリウム化合物、鉄及び鉄化合物、ニッケル及びニッケル化合物、コバルト及びコバルト化合物、硫黄化合物などである。
未処理のアルカリ賦活活性炭中の不純物の除去率は、試料を電気炉中強熱灰化し、その灰分量により判定する。本発明のアルカリ賦活活性炭中の、強熱残分値は、好ましくは1000ppm以下、より好ましくは500ppm以下、さらに好ましくは200ppm以下、最も好ましくは100ppm以下である。強熱残分値が1000ppmを超えると、静電容量が大きく、自己放電特性に優れた電気二重層コンデンサを得ることが困難である。
【0015】
強熱残分値の測定は、次のように行う。試料5gをあらかじめ恒量にした磁器蒸発皿に0.1mgの桁まで量り取る。電気炉に入れ、はじめは弱く加熱し、徐々に温度を上げて完全に灰化した後、800℃で10時間強熱する。デシケーター(乾燥剤シリカゲル)中で放冷した後、質量を量り残分を求める。
強熱残分値は、次の式によって算出する。
A=R/S×100
ここに、A=強熱残分(%)、R=残分(g)、S=灰化前の試料の質量(g)
【0016】
本発明の方法により製造することができる精製アルカリ賦活活性炭は、食品工業、化学工業、医薬工業、その他種々の用途に使用できる。例えば、精製したアルカリ賦活活性炭の特に好ましい用途は、電気二重層コンデンサとしての使用である。アルカリ賦活活性炭を含む電気二重層コンデンサの典型的な例を、特開2001−52972を引用して説明する。
特開2001−52972の図1及び図2に示されているように、円筒型電気二重層コンデンサ1は、Al製容器2と、その容器2内に収容された電極巻回体3と、その容器2内に注入された電解液とを有する。容器2は有底筒形本体4と、その一端開口部を閉鎖する端子板5とよりなり、その端子板5に正、負端子6、7と安全弁8とが設けられている。
【0017】
電極巻回体3は、正極積層帯9と負極積層帯10とを有する。その正極積層帯9は、アルミ箔よりなる帯状集電体11の両面に、それぞれ帯状分極性電極eを導電性接着剤を用いて貼付し、一方の帯状分極性電極eにPTFE(ポリテトラフルオロエチレン)よりなる第1のセパレータ13を重ね合せたものである。これら一対の分極性電極eにより帯状正極12が構成される。また第1のセパレータ13に電解液が含浸保持される。負極積層帯10は、アルミ箔よりなる帯状集電体14の両面に、それぞれ帯状分極性電極eを導電性接着剤を用いて貼付し、一方の帯状分極性電極eにPTFEよりなる第2のセパレータ16を重ね合せたものである。これら一対の分極性電極eにより帯状負極15が構成される。また第2のセパレータ16に電解液が含浸保持される。
【0018】
電極巻回体3の製造に当っては、正極積層帯9の、露出している分極性電極eに負極積層帯10の第2のセパレータ16を重ね合せ、その重ね合せ物を、正極積層帯9の第1のセパレータ13が最外側に位置するように渦巻き状に巻回するものである。
電解液としては、ホウフッ化第4アンモニウム化合物、例えばTEMA・BF4[(C2H5)3CH3N・BF4 (ホウフッ化トリエチルメチルアンモニウム)、溶質]のPC(プロピレンカーボネート、溶媒)溶液が用いられる。
上記電極用活性炭として、本発明の精製されたアルカリ賦活活性炭が用いられる。
【0019】
以下、実施例及び比較例を示し本発明をさらに具体的に説明する。
参考例(アルカリ賦活活性炭の製造)
内壁をニッケルコーティングした賦活炉に、石油系活性炭300kgを充填し、KOH600kgを加え、攪拌した。炉内は、ライン窒素を供給して常時不活性にした。賦活炉を200℃/時間で昇温し、反応温度800℃でアルカリ賦活反応を1時間行い、放冷し、300℃以下になったら、炭酸ガス(または水蒸気飽和窒素)により室温まで冷却し、賦活炉にイオン交換水1920kgを入れ、アルカリ賦活活性炭の水分散液2400kg(1850L)を得た。
【0020】
実施例1
第1工程
リアクター(5m3)に、参考例で得た活性炭分散水(粗製品2400kg)を入れ、これにイオン交換水3000kgを加え、室温で30分攪拌して活性炭を分散させた。分散後、30分静置し、活性炭を沈降させた後、上澄み液をデカント除去した。
デカント除去した量(約3000L)のイオン交換水を再度加え、同様に分散、静置、活性炭の沈降、デカント処理を行った。このデカント処理を合計3回行った。
【0021】
第2工程
次に、水3000Lと75%硫酸25kgを加えて中和し、75%硫酸120kgを加えて、先のデカント洗浄と同様に、分散、静置、活性炭の沈降、上澄みのデカント処理を室温で行った。このデカント処理を1回行った。
第3工程
その後、イオン交換水3000Lを加え、30分攪拌し、30〜60分静置して活性炭を沈降させ、上澄み液をデカント除去した。このデカント処理を5回行った。
第4工程
その後、イオン交換水1000Lを加え、さらに25%アンモニア水1〜3kgを加えて中和し(pH5〜8)、遠心分離機(径48インチ)により分離し、480kgの湿活性炭を得た。これを110℃で24時間乾燥して、目的の精製活性炭240kgを得た。
【0022】
実施例2
実施例1において、デカントの代わりに、遠心分離機により固液分離を行った他は同様の操作を行った。
以下に実施例1と実施例2の作業時間を比較して示す。
各作業及び標準的作業時間(活性炭500kg処理)は以下のとおりである。
▲1▼イオン交換水、又は酸性イオン交換水仕込み時間 0.5時間
▲2▼分散時間 1.0時間
▲3▼静置時間 0.5時間
▲4▼デカント時間 1.0時間
▲5▼遠心分離時間 8.0時間
▲6▼活性炭再仕込み時間 1.0時間
【0023】
実施例1(デカント法)の作業所要時間
▲1▼→▲2▼→▲3▼→▲4▼の操作を計9回繰返し(但し最終回では▲3▼と▲4▼はなし)、最後に▲5▼の操作を行った。作業所要時間は合計で33.5時間であった。
実施例2(ろ過法)の作業所要時間
▲1▼→▲2▼→▲5▼→▲6▼の操作を計7回繰返した(但し最終回では▲6▼はなし)。作業所要時間は合計で71.5時間であった。
【0024】
遠心分離工程は、労働の負荷が非常に高く、実施例2では、遠心分離工程が7回であるのに対し、本発明のデカント法では、遠心分離工程が1回で終了し、 労働の負荷の軽減が成されている。また全体の作業時間も本発明の実施例1では実施例2の1/2以下に短縮されている。
【0025】
実施例1と実施例2の各工程終了後の不純物除去量を以下に示す。最終的な不純物除去量は両者とも同様であり、差は見られなかった。
不純物除去量(活性炭中の強熱残分)
実施例1
各デカント処理後試料を採取し、ろ過を行い、測定に使用した。
【0026】
実施例2
【0027】
実施例1では、実施例2と比較し、回収率でのコストダウンも達成した。実施例2では、1回のろ過時にろ過漏れが起こり、1回のろ過の回収率は98%である。ゆえに、ろ過回数が増えるにつれ、回収率の低下が増加していく。次の式にて回収率(%)が得られる。
回収率(%)=(98/100)n×100 (n=ろ過回数)
実施例2では、ろ過を7回行っているので回収率は、(98/100)7×100=86.8%である。
これに対して実施例1では、デカント法での分離は、1回のみであり、回収率は98.0%である。従って、実施例2と比べて回収率で11.2%分のコストダウンを達成している。
なお、実施例1及び2においてデカント回数又はろ過回数を増加することにより、強熱残分値が100ppm以下の高純度アルカリ賦活活性炭を得ることができる。
【0028】
実施例3(電気二重層コンデンサ用分極性電極及びこれを用いた電気二重層コンデンサの製造)
実施例1で精製した平均粒径20μmを有するKOH賦活炭(強熱残分値150ppm)、黒鉛粉末(導電フィラ)およびPTFE(バインダ)を85:12.5:2.5の質量比となるように秤量し、次いでその秤量物を混練し、その後、混練物を用いて圧延を行い、厚さ175μmの電極シートを製作した。電極シートから幅95mm、長さ1500mmの複数の帯状分極性電極eを切出し、これら2枚の帯状分極性電極eと、幅105mm、長さ1500mm、厚さ40μmの帯状集電体11と、導電性接着剤とを用い、またPTFEよりなる厚さ75μmの第1のセパレータ13を用いて正極積層帯9を製作した。さらに、前記同様の2枚の帯状分極性電極eと、帯状集電体14と、導電性接着剤とを用い、また厚さ75μmの第2のセパレータ16を用いて負極積層帯10を製作した。
【0029】
そして、正極積層帯9の、露出している帯状分極性電極eに負極積層帯10の第2のセパレータ16を重ね合せ、その重ね合せ物を、正極積層帯9の第1のセパレータ13が最外側に位置するように渦巻き状に巻回して、電極巻回体3を製造し、この電極巻回体3と、1.5モルのTEMA・BF4 をPC溶液に溶解した電解液とを内径50mm、長さ130mmの容器2の有底筒型本体4内に入れ、その開口部を端子板5を用いて閉鎖して円筒型電気二重層コンデンサ1を得た。その閉鎖の際に正極積層帯9および負極積層帯10の両集電体11が端子板5の正端子6および負端子7にそれぞれ接続される。
【0030】
【発明の効果】
上述したように本発明の、強熱残分値の低いアルカリ賦活活性炭は、電気二重層コンデンサ用分極性電極に使用するのに好適であり、またこの分極性電極を含む電気二重層コンデンサは、静電容量が大きく、自己放電特性にも優れている。また、本発明のアルカリ賦活活性炭の精製方法によれば、遠心ろ過による固液分離回数が1回で活性炭中の不純物除去を効率的に行うことができ、不純物が充分に除去された、安定した品質の活性炭を、短時間で、且つ安価に供給できる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an alkali-activated activated carbon and a method for producing the same, and more particularly to an activated carbon made porous by alkali activation and a method for producing the same. The present invention relates to a method for purifying purified activated carbon.
The present invention also relates to a polarizable electrode for an electric double-layer capacitor containing the above-mentioned alkali-activated activated carbon or purified activated carbon produced by the above-mentioned method, and an electric double-layer capacitor using the electrode.
[0002]
[Prior art]
Electric double-layer capacitors have farad-class large capacities and excellent charge / discharge cycle characteristics, and are therefore used for applications such as backup power supplies for electronic devices and in-vehicle batteries. In this electric double layer capacitor, a pair of polarizable electrodes made of activated carbon are provided to face each other with a separator interposed therebetween, and the polarizable electrodes are impregnated with an organic solvent solution such as a tetraalkylammonium salt as an electrolytic solution to form an anode and an anode, respectively. It is configured to act as a cathode. Activated carbon having fine pores is used for the polarizable electrode of such an electric double layer capacitor.However, in order to make the electric double layer capacitor smaller, lighter, and larger in capacity, the polarizable electrode is used. Activated carbon capable of increasing the capacitance density of an electrode is required.
[0003]
Such activated carbon is obtained by, for example, alkali-activating a carbide obtained by firing a vinyl chloride resin. Activated carbon activated with alkali can form a polarizable electrode having a high electrode density and an excellent capacitance density per volume, and an electric double layer capacitor having a high energy density can be formed by the polarizable electrode. . However, a large amount of alkali metal is attached to the activated carbon subjected to the alkali activation treatment, and in order to use the polarizable electrode of the electric double layer capacitor, the obtained activated carbon is washed with water, neutralized and washed. It is necessary to remove unreacted activator, impurities and the like.
[0004]
Conventionally, as a method of removing impurities from activated carbon activated with alkali, a method of dispersing activated carbon in water, separating the solution into solids and liquids, and repeating this operation until there are no impurities in the separated liquid (filtration method (1)) or a method of removing activated carbon It is generally known to disperse in water, wash with water during solid-liquid separation, and continue washing until there are no impurities in the separated liquid (filtration method (2)).
However, in the filtration method (1), there is a problem that the cost is increased because it takes time to separate the activated carbon by filtration. Further, in the filtration method (2), the washing effect at the time of separation is not uniform, quality is problematic, a large amount of water needs to be used, and a problem of washing water treatment also occurs.
Furthermore, according to the conventional method, a large amount of alkali metal, nickel, iron, and other metals are not sufficiently removed, and the ignition residue value suitable for use as a polarizable electrode of an electric double layer capacitor is insufficient. However, there is a problem that an alkali-activated activated carbon having a low content cannot be obtained.
[0005]
[Problems to be solved by the invention]
A first object of the present invention is to provide an alkali-activated activated carbon having a low ignition residue value.
A second object of the present invention is to provide a method for producing alkali-activated activated carbon that can obtain an alkali-activated activated carbon having a desired purity in a simple and inexpensive manner.
A third object of the present invention is to provide a polarizable electrode for an electric double layer capacitor containing the above-mentioned alkali activated activated carbon having a low ignition residue value or purified activated carbon produced by the above method.
A fourth object of the present invention is to provide an electric double layer capacitor including the above electrode.
[0006]
[Means for Solving the Problems]
The present invention provides the following alkali-activated activated carbon, a method for producing the same, a polarizable electrode for an electric double layer capacitor including the same, and an electric double layer capacitor.
1. Activated carbon which is made porous by alkali activation and has an ignition residue value of 1000 ppm or less.
2. 2. The alkali-activated activated carbon according to the above 1, wherein the ignition residue value is 500 ppm or less.
3. 2. The alkali-activated activated carbon according to the above item 1, wherein the ignition residue value is 200 ppm or less.
4. 2. The alkali-activated activated carbon according to the above item 1, wherein the ignition residue value is 100 ppm or less.
5. A method for producing activated carbon which has been made porous by alkali activation,
(1) a step of dispersing activated carbon which has been made porous by alkali activation in water, leaving it to stand, allowing the activated carbon to settle, and decanting off the supernatant;
(2) a step of adding a dilute acid aqueous solution to the activated carbon treated in step 1, dispersing and standing, allowing the activated carbon to settle, and decanting off the supernatant, and (3) adding water to the activated carbon treated in step 2 In addition, a step of dispersing, standing, sedimenting the activated carbon, and decanting the supernatant,
A method comprising:
6. 6. The method according to the above item 5, wherein the step 1 is repeated at least twice.
7. 7. The method according to the above item 5 or 6, wherein the step 2 is repeated one or more times.
8. 8. The method according to any one of the above items 5 to 7, wherein the step 3 is repeated at least twice.
9. The method according to any one of claims 5 to 8, wherein the water in which the activated carbon is dispersed is ion-exchanged water, distilled water, or a mixture thereof.
10. 10. The method according to any one of the above items 5 to 9, wherein the value of the residue on ignition of the purified activated carbon is 1000 ppm or less.
11. 11. A polarizable electrode for an electric double layer capacitor, comprising the alkali-activated activated carbon according to any one of the above items 1 to 4 or the alkali-activated activated carbon produced by the method according to any one of the above items 5 to 10.
12. 12. An electric double layer capacitor comprising the polarizable electrode for an electric double layer capacitor according to the above item 11.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
The activated carbon which has been made porous by alkali activation as a raw material used in the present invention can be produced by a conventionally known method, for example, a method described in Patent Documents 1 to 3.
[0008]
[Patent Document 1]
JP-A-7-302735 [Patent Document 2]
JP-A-10-149957 [Patent Document 3]
JP-A-10-149958
The alkali activation treatment of activated carbon is performed, for example, as follows.
An activation furnace having an inner wall coated with nickel is filled with 100 parts by mass of petroleum-based activated carbon, and 180 to 220 parts by mass of KOH, for example, 200 parts by mass is added and stirred. The inside of the furnace is always inactivated by supplying line nitrogen. The activation furnace is heated at a rate of 100 to 300 ° C./hour, for example, 200 ° C./hour, and an alkali activation reaction is performed at a reaction temperature of 600 to 950 ° C., for example, 800 ° C. for 1 to 20 hours, for example, 4 hours. Then, when the temperature becomes 350 to 250 ° C., for example, 300 ° C. or lower, the mixture is cooled to room temperature with carbon dioxide gas or steam-saturated nitrogen, and pure water, for example, 500 to 1000 parts by mass, for example, 640 parts by mass, is added to the activation furnace. And disperse the alkali activated carbon in water.
[0010]
In the first step of the method of the present invention, activated carbon made porous by alkali activation is dispersed in water. The water for dispersing the activated carbon which has been made porous by alkali activation is preferably free of impurities as much as possible because it is washing water. For example, it is desirable to use pure water purified by ion exchange, distillation or other methods. .
Activated carbon and water are added to an appropriately sized tank and stirred. At this time, the amount of water is desirably 1000 to 3000 parts by mass with respect to 100 parts by mass of the purified activated carbon. If the amount of water is less than 1000 parts by mass, the effect of cleaning impurities is not sufficient, and if it is more than 3,000 parts by mass, the processing capacity of activated carbon purification is reduced, which is not preferable in that the cost is increased.
Next, pure water such as ion-exchanged water in an amount of 1 to 3 times, for example, 1.6 times the volume of the dispersed water is added to the dispersion water of the activated carbon, and the mixture is added at 0 to 100 ° C, for example, at room temperature. The activated carbon is dispersed by stirring for 30 minutes to 2 hours, for example, 1 hour. The greater the amount of ion-exchanged water used for activated carbon, the higher the cleaning effect.
After the dispersion, the mixture is allowed to stand for 30 minutes to 2 hours, for example, 1 hour to settle the activated carbon, and then the supernatant is decanted. Next, the decanted amount of ion-exchanged water is added again, and dispersion, standing, sedimentation of activated carbon, and decanting are performed. The processing temperature is preferably 20 ° C. or higher, for example, 20 to 100 ° C., and usually 20 to 30 ° C.
This treatment is performed twice or more, preferably 2 to 8 times, usually 3 to 5 times.
[0011]
Second step Next, using an aqueous acid solution of preferably 0.1 to 5% by mass, more preferably 3% by mass, dispersing, standing, sedimentation of activated carbon, and decanting the supernatant in the same manner as in the previous decant washing. I do. The pH of water is acidic, preferably pH 5 or less, and more preferably pH 3 to 0. The pH may be adjusted by adding an acid (for example, sulfuric acid, hydrochloric acid, or the like). If the pH is higher than 5, the effect of cleaning impurities is not sufficient, which is not preferable. The higher the processing temperature, the higher the solubility of the impurities. For example, the temperature is preferably from 20 to 100C, and usually from 20 to 30C.
This process is performed once or more, preferably 1 to 3 times, usually once.
[0012]
After the third step, dispersion, standing, sedimentation of activated carbon, and decanting of the supernatant are performed using pure water, for example, ion-exchanged water, until the acid component is removed, as in the first step. The treatment temperature is preferably from 20 to 100C, and usually from 20 to 30C.
This treatment is performed twice or more, preferably 2 to 6 times, usually 4 to 5 times.
Fourth Step After the completion of the above-mentioned washing treatment, the activated carbon is drained by, for example, a centrifugal separator and, if necessary, dried at 100 to 110 ° C. for 12 to 48 hours to obtain the desired purified activated carbon.
[0013]
The higher the purity of the water used in the present invention is, the more preferable it is ion-exchanged water (specific resistance 10 6 Ωcm) having an electric conductivity of 1.0 micro Siemens (μS / cm) or less. Distilled water is about 2 × 10 5 Ωcm, but can be used.
In the present invention, the greater the number of decant washings, the higher the impurity removal rate. However, in the neutral pH range (pH 6 to 8), the sedimentation of activated carbon is poor, and the decanting operation becomes difficult, which is not preferable. Therefore, when increasing the number of times of cleaning, it is desirable to adjust the pH so that the treatment liquid becomes acidic or alkaline. When the pH of the supernatant in the first step becomes 10 or less, it is desirable to perform the acid washing in the second step.
In addition, the decant cleaning temperature is in the range of 0 to 100 ° C. The higher the temperature, the more efficiently elution of impurities is performed, and the higher the impurity removal rate is.
[0014]
According to the method of the present invention, impurities (usually about 60% by mass) in untreated alkali-activated activated carbon are preferably removed to 0.1% by mass or less, more preferably to 0.03% by mass or less.
The main components of impurities in the untreated alkali-activated activated carbon are KOH, K 2 CO 3 , K 2 O, other potassium compounds, iron and iron compounds, nickel and nickel compounds, cobalt and cobalt compounds, sulfur compounds, and the like. .
The removal rate of impurities in the untreated alkali-activated activated carbon is determined by ash-igniting the sample in an electric furnace and determining the ash content. The value of the residue on ignition in the alkali activated carbon of the present invention is preferably 1000 ppm or less, more preferably 500 ppm or less, further preferably 200 ppm or less, and most preferably 100 ppm or less. If the residual value of the ignition exceeds 1000 ppm, it is difficult to obtain an electric double layer capacitor having a large capacitance and excellent self-discharge characteristics.
[0015]
The measurement of the ignition residue value is performed as follows. 5 g of a sample is weighed to the order of 0.1 mg in a porcelain evaporating dish having a constant weight. Place in an electric furnace, heat weakly at first, gradually increase the temperature and completely incinerate, then ignite at 800 ° C for 10 hours. After cooling in a desiccator (desiccant silica gel), the weight is measured and the residue is determined.
The ignition residue value is calculated by the following equation.
A = R / S × 100
Where A = residue on ignition (%), R = residue (g), S = mass of sample before incineration (g)
[0016]
The purified alkali-activated activated carbon that can be produced by the method of the present invention can be used for the food industry, chemical industry, pharmaceutical industry, and various other uses. For example, a particularly preferred application of the purified alkali-activated activated carbon is for use as an electric double layer capacitor. A typical example of an electric double layer capacitor containing alkali-activated activated carbon will be described with reference to JP-A-2001-52972.
As shown in FIGS. 1 and 2 of JP-A-2001-52972, a cylindrical electric double-layer capacitor 1 includes an Al container 2, an electrode winding body 3 housed in the container 2, And an electrolytic solution injected into the container 2. The container 2 comprises a bottomed cylindrical main body 4 and a terminal plate 5 for closing one end opening thereof. The terminal plate 5 is provided with positive and negative terminals 6, 7 and a safety valve 8.
[0017]
The electrode winding body 3 has a positive electrode laminated band 9 and a negative electrode laminated band 10. In the positive electrode laminated band 9, a band-shaped polarizable electrode e is adhered to both sides of a band-shaped current collector 11 made of aluminum foil using a conductive adhesive, and one of the band-shaped polarizable electrodes e is made of PTFE (polytetrafluoroethylene). The first separator 13 made of ethylene is superposed. A belt-like positive electrode 12 is constituted by the pair of polarizable electrodes e. Further, the first separator 13 is impregnated and held with the electrolytic solution. In the negative electrode laminated strip 10, a strip-shaped polarizable electrode e is attached to both sides of a strip-shaped current collector 14 made of aluminum foil using a conductive adhesive, and a second strip made of PTFE is attached to one of the strip-shaped polarizable electrodes e. The separator 16 is overlapped. A strip-shaped negative electrode 15 is formed by the pair of polarizable electrodes e. Further, the second separator 16 is impregnated and held with the electrolytic solution.
[0018]
In manufacturing the electrode winding body 3, the second separator 16 of the negative electrode laminated band 10 is superimposed on the exposed polarizable electrode e of the positive electrode laminated band 9, and the superimposed product is placed on the positive electrode laminated band 9. The first separator 13 is spirally wound so that the first separator 13 is located on the outermost side.
As the electrolytic solution, a PC (propylene carbonate, solvent) solution of a quaternary ammonium borofluoride compound, for example, TEMA.BF 4 [(C 2 H 5 ) 3 CH 3 N.BF 4 (triethylmethylammonium borofluoride), solute] Is used.
The purified activated carbon of the present invention is used as the activated carbon for an electrode.
[0019]
Hereinafter, the present invention will be described more specifically by showing Examples and Comparative Examples.
Reference example (manufacture of activated alkali activated carbon)
An activation furnace having an inner wall coated with nickel was charged with 300 kg of petroleum-based activated carbon, and 600 kg of KOH was added and stirred. The furnace was constantly inactivated by supplying line nitrogen. The activation furnace was heated at a rate of 200 ° C./hour, an alkali activation reaction was performed at a reaction temperature of 800 ° C. for 1 hour, and the mixture was allowed to cool. When the temperature reached 300 ° C. or lower, the mixture was cooled to room temperature with carbon dioxide (or steam-saturated nitrogen). 1920 kg of ion-exchanged water was put into the activation furnace to obtain 2400 kg (1850 L) of an aqueous dispersion of alkali-activated activated carbon.
[0020]
Example 1
In the first step reactor (5 m 3 ), the activated carbon dispersion water (crude product 2400 kg) obtained in Reference Example was added, and 3000 kg of ion-exchanged water was added thereto, followed by stirring at room temperature for 30 minutes to disperse the activated carbon. After the dispersion, the mixture was allowed to stand for 30 minutes to settle the activated carbon, and then the supernatant was decanted.
The decanted amount (about 3000 L) of ion-exchanged water was added again, and the dispersion, standing, sedimentation of activated carbon, and decanting were performed in the same manner. This decanting treatment was performed three times in total.
[0021]
Second step Next, 3000 L of water and 25 kg of 75% sulfuric acid were added to neutralize, and 120 kg of 75% sulfuric acid was added. Dispersion, standing, sedimentation of activated carbon, and decanting of the supernatant were performed in the same manner as in the previous decant washing. Performed at room temperature. This decanting process was performed once.
After the third step, 3000 L of ion-exchanged water was added, the mixture was stirred for 30 minutes, and allowed to stand for 30 to 60 minutes to settle the activated carbon, and the supernatant was decanted off. This decanting process was performed five times.
After the fourth step, 1000 L of ion-exchanged water is added, and 1 to 3 kg of 25% ammonia water is further added to neutralize (pH 5 to 8) and separated by a centrifuge (48 inches in diameter) to obtain 480 kg of wet activated carbon. Was. This was dried at 110 ° C. for 24 hours to obtain 240 kg of the desired purified activated carbon.
[0022]
Example 2
In Example 1, the same operation was performed except that solid-liquid separation was performed by a centrifuge instead of decanting.
The working times of the first embodiment and the second embodiment will be compared below.
Each operation and standard operation time (500 kg of activated carbon treatment) are as follows.
(1) Preparation time of ion-exchanged water or acidic ion-exchanged water 0.5 hour (2) Dispersion time 1.0 hour (3) Standing time 0.5 hour (4) Decant time 1.0 hour (5) Centrifugation Separation time 8.0 hours (6) Activated carbon recharge time 1.0 hours
Operation time required in Example 1 (decant method) (1) → (2) → (3) → (4) is repeated 9 times in total (however, (3) and (4) are not provided in the last round). The operation of (5) was performed. The work required time was 33.5 hours in total.
The operation time required in Example 2 (filtration method) (1) → (2) → (5) → (6) was repeated 7 times in total (however, (6) was not provided in the last time). The work required time was 71.5 hours in total.
[0024]
In the centrifugation step, the labor load is very high, and in Example 2, the centrifugation step is performed seven times, whereas in the decant method of the present invention, the centrifugation step is completed once and the labor load is increased. Has been reduced. In the first embodiment of the present invention, the entire operation time is also reduced to 1 / or less of the second embodiment.
[0025]
The amounts of impurities removed after completion of each step in Example 1 and Example 2 are shown below. The final impurity removal amounts were the same for both, and no difference was seen.
Impurity removal (ignition residue in activated carbon)
Example 1
After each decanting process, a sample was collected, filtered, and used for measurement.
[0026]
Example 2
[0027]
In Example 1, as compared with Example 2, cost reduction in the recovery rate was also achieved. In Example 2, filtration leakage occurs at the time of one filtration, and the recovery rate of one filtration is 98%. Therefore, as the number of filtrations increases, the decrease in the recovery rate increases. The recovery rate (%) is obtained by the following equation.
Recovery rate (%) = (98/100) n × 100 (n = number of filtrations)
In Example 2, since the filtration was performed seven times, the recovery rate was (98/100) 7 × 100 = 86.8%.
In contrast, in Example 1, the separation by the decant method was performed only once, and the recovery was 98.0%. Therefore, a cost reduction of 11.2% in the recovery rate is achieved as compared with the second embodiment.
In addition, by increasing the number of times of decanting or the number of times of filtration in Examples 1 and 2, high-purity alkali-activated activated carbon having a residue on ignition value of 100 ppm or less can be obtained.
[0028]
Example 3 (Polarizable electrode for electric double layer capacitor and production of electric double layer capacitor using the same)
A mass ratio of 85: 12.5: 2.5 of the KOH-activated carbon having an average particle size of 20 μm (ignition residue value 150 ppm), graphite powder (conductive filler) and PTFE (binder) purified in Example 1 was obtained. Then, the weighed material was kneaded, and then rolled using the kneaded material to produce an electrode sheet having a thickness of 175 μm. A plurality of band-shaped polarizable electrodes e having a width of 95 mm and a length of 1500 mm are cut out from the electrode sheet, and the two band-shaped polarizable electrodes e, a band-shaped current collector 11 having a width of 105 mm, a length of 1500 mm and a thickness of 40 μm, and The positive-electrode laminated band 9 was manufactured by using a first adhesive 13 and a 75 μm-thick first separator 13 made of PTFE. Further, the negative electrode laminated band 10 was manufactured using the same two band-shaped polarizable electrodes e, the band-shaped current collector 14 and the conductive adhesive, and using the second separator 16 having a thickness of 75 μm. .
[0029]
Then, the second separator 16 of the negative electrode laminated band 10 is overlapped on the exposed band-shaped polarizable electrode e of the positive electrode laminated band 9, and the first separator 13 of the positive electrode laminated band 9 is placed on the second separator 16. The electrode wound body 3 is manufactured by spirally winding the electrode wound body so as to be located on the outside, and the electrode wound body 3 and an electrolytic solution obtained by dissolving 1.5 mol of TEMA.BF4 in a PC solution have an inner diameter of 50 mm. The cylindrical electric double layer capacitor 1 was obtained by putting the container 2 having a length of 130 mm into the bottomed cylindrical main body 4 and closing the opening thereof using the terminal plate 5. At the time of closing, both the current collectors 11 of the positive electrode laminated band 9 and the negative electrode laminated band 10 are connected to the positive terminal 6 and the negative terminal 7 of the terminal plate 5, respectively.
[0030]
【The invention's effect】
As described above, the alkali-activated activated carbon having a low residual ignition value is suitable for use in a polarizable electrode for an electric double layer capacitor, and an electric double layer capacitor including the polarizable electrode is: It has a large capacitance and excellent self-discharge characteristics. According to the method for purifying alkali-activated activated carbon of the present invention, the number of solid-liquid separations by centrifugal filtration can be one, and impurities in activated carbon can be efficiently removed. High quality activated carbon can be supplied in a short time and at low cost.
Claims (12)
(1)アルカリ賦活により多孔質化した活性炭を水に、分散し、静置し、活性炭を沈降させ、上澄み液をデカント除去する工程、
(2)工程1で処理した活性炭に希酸水溶液を加えて、分散し、静置し、活性炭を沈降させ、上澄み液をデカント除去する工程、及び
(3)工程2で処理した活性炭に水を加えて、分散し、静置し、活性炭を沈降させ、上澄み液をデカント除去する工程、
を含むことを特徴とする方法。A method for producing activated carbon made porous by alkali activation,
(1) a step of dispersing activated carbon which has been made porous by alkali activation in water, leaving it to stand, allowing the activated carbon to settle, and decanting off the supernatant;
(2) a diluted acid aqueous solution is added to the activated carbon treated in step 1, dispersed and allowed to stand, the activated carbon is settled, and the supernatant is decanted; and (3) water is added to the activated carbon treated in step 2. In addition, a step of dispersing, standing, settling the activated carbon, and decanting the supernatant,
A method comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002377875A JP2004203715A (en) | 2002-12-26 | 2002-12-26 | Alkali activated carbon, its producing method, polarizable electrode for electric double-layer capacitor containing it and electric double-layer capacitor containing the electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002377875A JP2004203715A (en) | 2002-12-26 | 2002-12-26 | Alkali activated carbon, its producing method, polarizable electrode for electric double-layer capacitor containing it and electric double-layer capacitor containing the electrode |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004203715A true JP2004203715A (en) | 2004-07-22 |
Family
ID=32814911
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002377875A Pending JP2004203715A (en) | 2002-12-26 | 2002-12-26 | Alkali activated carbon, its producing method, polarizable electrode for electric double-layer capacitor containing it and electric double-layer capacitor containing the electrode |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004203715A (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007169117A (en) * | 2005-12-22 | 2007-07-05 | Nippon Oil Corp | Activated carbon and electrical double layer capacitor using same |
CN100337911C (en) * | 2005-01-27 | 2007-09-19 | 西北农林科技大学 | Method for producing active carbon by using straw mixed raw material |
JP2010168238A (en) * | 2009-01-21 | 2010-08-05 | Kansai Coke & Chem Co Ltd | Method for producing highly purified activated carbon and electric double layer capacitor obtained by the method |
JP2012532088A (en) * | 2009-07-01 | 2012-12-13 | エナジーツー・テクノロジーズ・インコーポレイテッド | Ultra high purity synthetic carbon material |
JP2014511322A (en) * | 2010-12-28 | 2014-05-15 | エナジー2 テクノロジーズ,インコーポレイテッド | Carbon materials with improved electrochemical properties |
US8797717B2 (en) | 2006-11-15 | 2014-08-05 | University Of Washington | Electrodes and electric double layer capacitance devices comprising an activated carbon cryogel |
US8906978B2 (en) | 2009-04-08 | 2014-12-09 | Energ2 Technologies, Inc. | Manufacturing methods for the production of carbon materials |
US8916296B2 (en) | 2010-03-12 | 2014-12-23 | Energ2 Technologies, Inc. | Mesoporous carbon materials comprising bifunctional catalysts |
US9409777B2 (en) | 2012-02-09 | 2016-08-09 | Basf Se | Preparation of polymeric resins and carbon materials |
US9412523B2 (en) | 2010-09-30 | 2016-08-09 | Basf Se | Enhanced packing of energy storage particles |
US10147950B2 (en) | 2015-08-28 | 2018-12-04 | Group 14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
US10195583B2 (en) | 2013-11-05 | 2019-02-05 | Group 14 Technologies, Inc. | Carbon-based compositions with highly efficient volumetric gas sorption |
US10454103B2 (en) | 2013-03-14 | 2019-10-22 | Group14 Technologies, Inc. | Composite carbon materials comprising lithium alloying electrochemical modifiers |
US10490358B2 (en) | 2011-04-15 | 2019-11-26 | Basf Se | Flow ultracapacitor |
US10522836B2 (en) | 2011-06-03 | 2019-12-31 | Basf Se | Carbon-lead blends for use in hybrid energy storage devices |
US10590277B2 (en) | 2014-03-14 | 2020-03-17 | Group14 Technologies, Inc. | Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same |
US10763501B2 (en) | 2015-08-14 | 2020-09-01 | Group14 Technologies, Inc. | Nano-featured porous silicon materials |
US11174167B1 (en) | 2020-08-18 | 2021-11-16 | Group14 Technologies, Inc. | Silicon carbon composites comprising ultra low Z |
US11335903B2 (en) | 2020-08-18 | 2022-05-17 | Group14 Technologies, Inc. | Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z |
US11611071B2 (en) | 2017-03-09 | 2023-03-21 | Group14 Technologies, Inc. | Decomposition of silicon-containing precursors on porous scaffold materials |
US11639292B2 (en) | 2020-08-18 | 2023-05-02 | Group14 Technologies, Inc. | Particulate composite materials |
US12046744B2 (en) | 2020-09-30 | 2024-07-23 | Group14 Technologies, Inc. | Passivated silicon-carbon composite materials |
-
2002
- 2002-12-26 JP JP2002377875A patent/JP2004203715A/en active Pending
Cited By (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100337911C (en) * | 2005-01-27 | 2007-09-19 | 西北农林科技大学 | Method for producing active carbon by using straw mixed raw material |
JP2007169117A (en) * | 2005-12-22 | 2007-07-05 | Nippon Oil Corp | Activated carbon and electrical double layer capacitor using same |
US10141122B2 (en) | 2006-11-15 | 2018-11-27 | Energ2, Inc. | Electric double layer capacitance device |
US10600581B2 (en) | 2006-11-15 | 2020-03-24 | Basf Se | Electric double layer capacitance device |
US8797717B2 (en) | 2006-11-15 | 2014-08-05 | University Of Washington | Electrodes and electric double layer capacitance devices comprising an activated carbon cryogel |
JP2010168238A (en) * | 2009-01-21 | 2010-08-05 | Kansai Coke & Chem Co Ltd | Method for producing highly purified activated carbon and electric double layer capacitor obtained by the method |
US8906978B2 (en) | 2009-04-08 | 2014-12-09 | Energ2 Technologies, Inc. | Manufacturing methods for the production of carbon materials |
US9112230B2 (en) | 2009-07-01 | 2015-08-18 | Basf Se | Ultrapure synthetic carbon materials |
US10287170B2 (en) | 2009-07-01 | 2019-05-14 | Basf Se | Ultrapure synthetic carbon materials |
JP2012532088A (en) * | 2009-07-01 | 2012-12-13 | エナジーツー・テクノロジーズ・インコーポレイテッド | Ultra high purity synthetic carbon material |
US9580321B2 (en) | 2009-07-01 | 2017-02-28 | Basf Se | Ultrapure synthetic carbon materials |
US8916296B2 (en) | 2010-03-12 | 2014-12-23 | Energ2 Technologies, Inc. | Mesoporous carbon materials comprising bifunctional catalysts |
US9680159B2 (en) | 2010-03-12 | 2017-06-13 | Basf Se | Mesoporous carbon materials comprising bifunctional catalysts |
US9412523B2 (en) | 2010-09-30 | 2016-08-09 | Basf Se | Enhanced packing of energy storage particles |
US9985289B2 (en) | 2010-09-30 | 2018-05-29 | Basf Se | Enhanced packing of energy storage particles |
JP7114260B2 (en) | 2010-12-28 | 2022-08-08 | ビーエーエスエフ ソシエタス・ヨーロピア | Carbon materials with improved electrochemical properties |
JP2018115106A (en) * | 2010-12-28 | 2018-07-26 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Carbon material in which electrochemical characteristics are improved |
US9269502B2 (en) | 2010-12-28 | 2016-02-23 | Basf Se | Carbon materials comprising enhanced electrochemical properties |
JP2014511322A (en) * | 2010-12-28 | 2014-05-15 | エナジー2 テクノロジーズ,インコーポレイテッド | Carbon materials with improved electrochemical properties |
US10490358B2 (en) | 2011-04-15 | 2019-11-26 | Basf Se | Flow ultracapacitor |
US10522836B2 (en) | 2011-06-03 | 2019-12-31 | Basf Se | Carbon-lead blends for use in hybrid energy storage devices |
US12006400B2 (en) | 2012-02-09 | 2024-06-11 | Group14 Technologies, Inc. | Preparation of polymeric resins and carbon materials |
US11999828B2 (en) | 2012-02-09 | 2024-06-04 | Group14 Technologies, Inc. | Preparation of polymeric resins and carbon materials |
US11718701B2 (en) | 2012-02-09 | 2023-08-08 | Group14 Technologies, Inc. | Preparation of polymeric resins and carbon materials |
US9409777B2 (en) | 2012-02-09 | 2016-08-09 | Basf Se | Preparation of polymeric resins and carbon materials |
US12084549B2 (en) | 2012-02-09 | 2024-09-10 | Group 14 Technologies, Inc. | Preparation of polymeric resins and carbon materials |
US11401363B2 (en) | 2012-02-09 | 2022-08-02 | Basf Se | Preparation of polymeric resins and carbon materials |
US11725074B2 (en) | 2012-02-09 | 2023-08-15 | Group 14 Technologies, Inc. | Preparation of polymeric resins and carbon materials |
US11732079B2 (en) | 2012-02-09 | 2023-08-22 | Group14 Technologies, Inc. | Preparation of polymeric resins and carbon materials |
US10714744B2 (en) | 2013-03-14 | 2020-07-14 | Group14 Technologies, Inc. | Composite carbon materials comprising lithium alloying electrochemical modifiers |
US10454103B2 (en) | 2013-03-14 | 2019-10-22 | Group14 Technologies, Inc. | Composite carbon materials comprising lithium alloying electrochemical modifiers |
US11495793B2 (en) | 2013-03-14 | 2022-11-08 | Group14 Technologies, Inc. | Composite carbon materials comprising lithium alloying electrochemical modifiers |
US10814304B2 (en) | 2013-11-05 | 2020-10-27 | Group14 Technologies, Inc. | Carbon-based compositions with highly efficient volumetric gas sorption |
US12064747B2 (en) | 2013-11-05 | 2024-08-20 | Group14 Technologies, Inc. | Carbon-based compositions with highly efficient volumetric gas sorption |
US10195583B2 (en) | 2013-11-05 | 2019-02-05 | Group 14 Technologies, Inc. | Carbon-based compositions with highly efficient volumetric gas sorption |
US11707728B2 (en) | 2013-11-05 | 2023-07-25 | Group14 Technologies, Inc. | Carbon-based compositions with highly efficient volumetric gas sorption |
US11661517B2 (en) | 2014-03-14 | 2023-05-30 | Group14 Technologies, Inc. | Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same |
US12173165B2 (en) | 2014-03-14 | 2024-12-24 | Group14 Technologies, Inc. | Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same |
US10711140B2 (en) | 2014-03-14 | 2020-07-14 | Group14 Technologies, Inc. | Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same |
US10590277B2 (en) | 2014-03-14 | 2020-03-17 | Group14 Technologies, Inc. | Methods for sol-gel polymerization in absence of solvent and creation of tunable carbon structure from same |
US10763501B2 (en) | 2015-08-14 | 2020-09-01 | Group14 Technologies, Inc. | Nano-featured porous silicon materials |
US11942630B2 (en) | 2015-08-14 | 2024-03-26 | Group14 Technologies, Inc. | Nano-featured porous silicon materials |
US11611073B2 (en) | 2015-08-14 | 2023-03-21 | Group14 Technologies, Inc. | Composites of porous nano-featured silicon materials and carbon materials |
US10147950B2 (en) | 2015-08-28 | 2018-12-04 | Group 14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
US11646419B2 (en) | 2015-08-28 | 2023-05-09 | Group 14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
US11495798B1 (en) | 2015-08-28 | 2022-11-08 | Group14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
US10608254B2 (en) | 2015-08-28 | 2020-03-31 | Group14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
US11437621B2 (en) | 2015-08-28 | 2022-09-06 | Group14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
US10756347B2 (en) | 2015-08-28 | 2020-08-25 | Group14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
US10784512B2 (en) | 2015-08-28 | 2020-09-22 | Group14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
US10923722B2 (en) | 2015-08-28 | 2021-02-16 | Group14 Technologies, Inc. | Materials with extremely durable intercalation of lithium and manufacturing methods thereof |
US11611071B2 (en) | 2017-03-09 | 2023-03-21 | Group14 Technologies, Inc. | Decomposition of silicon-containing precursors on porous scaffold materials |
US12155066B2 (en) | 2017-03-09 | 2024-11-26 | Group14 Technologies, Inc. | Decomposition of silicon-containing precursors on porous scaffold materials |
US11174167B1 (en) | 2020-08-18 | 2021-11-16 | Group14 Technologies, Inc. | Silicon carbon composites comprising ultra low Z |
US11804591B2 (en) | 2020-08-18 | 2023-10-31 | Group14 Technologies, Inc. | Highly efficient manufacturing of silicon-carbon composite materials comprising ultra low Z |
US11498838B2 (en) | 2020-08-18 | 2022-11-15 | Group14 Technologies, Inc. | Silicon carbon composites comprising ultra low z |
US12057569B2 (en) | 2020-08-18 | 2024-08-06 | Group14 Technologies, Inc. | Highly efficient manufacturing of silicon-carbon composite materials comprising ultra low Z |
US11335903B2 (en) | 2020-08-18 | 2022-05-17 | Group14 Technologies, Inc. | Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low z |
US11492262B2 (en) | 2020-08-18 | 2022-11-08 | Group14Technologies, Inc. | Silicon carbon composites comprising ultra low Z |
US11639292B2 (en) | 2020-08-18 | 2023-05-02 | Group14 Technologies, Inc. | Particulate composite materials |
US11611070B2 (en) | 2020-08-18 | 2023-03-21 | Group14 Technologies, Inc. | Highly efficient manufacturing of silicon-carbon composites materials comprising ultra low Z |
US12046744B2 (en) | 2020-09-30 | 2024-07-23 | Group14 Technologies, Inc. | Passivated silicon-carbon composite materials |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2004203715A (en) | Alkali activated carbon, its producing method, polarizable electrode for electric double-layer capacitor containing it and electric double-layer capacitor containing the electrode | |
US8842417B2 (en) | High voltage electro-chemical double layer capacitor | |
AU774448B2 (en) | Activated carbon, process for producing the same, polarisable electrode, and electric double layer capacitor | |
JP5473282B2 (en) | Carbon material for electric double layer capacitor and manufacturing method thereof | |
JP6417524B2 (en) | High capacitance activated carbon and carbon-based electrode | |
WO2008053919A1 (en) | Activated carbon and process for production thereof, nonaqueous type polarizable electrodes and electric double-layer capacitors | |
CN107924770B (en) | Composition for gel electrolyte | |
KR20150039885A (en) | Carbonaceous material for negative electrodes of lithium ion capacitors and method for producing same | |
JP2014093412A (en) | Polyaniline/graphene complex, and electrode material using the same | |
KR20120091383A (en) | Activated carbon for electric double-layer capacitor electrode and method for producing the same | |
WO2014062498A1 (en) | Amorphous activated carbon materials and methods for producing the same | |
JP2013161835A (en) | Electroconductive polymer/porous carbon material complex, and electrode material using the same | |
CN115974043B (en) | Production method of battery-level nano sodium ferrous sulfate | |
EP3223344A1 (en) | Cathode material preparation method, cathode material and lithium-ion battery | |
JP2020531405A (en) | Manufacturing method of activated carbon for electrode material | |
CN116022775B (en) | Carbon nano tube purification method and application | |
JP2000138141A (en) | Method for producing carbon porous body for electric double layer capacitor polarizable electrode | |
US20180330894A1 (en) | Activated carbon and electric double layer capacitor thereof | |
CN111433872B (en) | Preparation method of activated carbon for electrode material | |
JP2007106750A (en) | Purification method of spiro compound and electric double layer capacitor using the same | |
JP2005093779A (en) | Electric double layer capacitor | |
CN107785574B (en) | Iodide cylindrical battery and assembling method thereof | |
JP2007169117A (en) | Activated carbon and electrical double layer capacitor using same | |
JP6803582B2 (en) | Electrode forming material for electrochemical capacitors | |
JP4018614B2 (en) | Electric double layer capacitor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040819 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070406 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20071225 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20080526 |