[go: up one dir, main page]

JP2004201406A - Magnet-saving type rotor of synchronous motor - Google Patents

Magnet-saving type rotor of synchronous motor Download PDF

Info

Publication number
JP2004201406A
JP2004201406A JP2002366700A JP2002366700A JP2004201406A JP 2004201406 A JP2004201406 A JP 2004201406A JP 2002366700 A JP2002366700 A JP 2002366700A JP 2002366700 A JP2002366700 A JP 2002366700A JP 2004201406 A JP2004201406 A JP 2004201406A
Authority
JP
Japan
Prior art keywords
magnet
magnetic pole
polarity
angle
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002366700A
Other languages
Japanese (ja)
Inventor
Jiro Asai
二郎 浅井
Shinichi Ogawa
新一 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002366700A priority Critical patent/JP2004201406A/en
Priority to DE10316831A priority patent/DE10316831A1/en
Priority to US10/412,426 priority patent/US20040007930A1/en
Publication of JP2004201406A publication Critical patent/JP2004201406A/en
Priority to US10/959,369 priority patent/US7105971B2/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a magnet-saving type rotor of a synchronous motor which has superior output characteristics. <P>SOLUTION: In the magnet-saving type rotor, an occupancy angle of a magnetic pole portion 5 of primary polarity which is occupied with a permanent magnet 2 is set as θ1, an occupancy angle of a magnetic pole portion 6 of secondary polarity which is occupied with a core portion 1 is set as θ2, and an occupancy angle of a vacancy portion 4 is set as θ0. At that time, an occupancy angle θ0 of a boundary region 7 between the magnetic pole portion 5 of primary polarity and the magnetic pole portion 6 of secondary polarity is made (θn-θ1-θ2). That is, the boundary region 7 is wholly occupied by the vacancy portion 4. The occupancy angle θ2 is set in a range of 0.9-1.1 of the occupancy angle θ1. As a result, average magnetic flux density, i.e. effective magnetic flux of a gap between a stator/a rotor can be increased. Hence, magnetic leakage flux flowing in a core part 8 in the conventional case can be reduced, so that torque can be increased with the amount of the reduction. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、同期機の磁石半減型ロータの改良に関する。
【0002】
【従来の技術】
永久磁石ロータを用いる永久磁石型同期機において、機械的強度特に高速回転時の遠心力に対する耐性が優れているために、ロータ鉄心部に永久磁石を埋設した磁石内蔵型モータ(IPM)が通常採用されている。
【0003】
IPMのロータの径方向断面例を図5に示す。図5において、1は軟鉄製のロータ鉄心部、2は永久磁石、3はロータ鉄心部1の外周面近傍に位置して設けた軸方向に貫設される磁石収容孔部、4は磁石収容孔部3の周方向両側に位置して軸方向に貫設される空孔部である。磁石収容孔部3の径方向外側の外周面部分には永久磁石2により第1極性(たとえばS極)の磁極部5と第2極性の磁極部6とが周方向交互に形成され、周方向に隣接する二つの永久磁石の間には境界部7が形成されている。したがって、2磁極ピッチθnは、磁極部5、6の占有角θと境界部7の占有角θ0との和の2倍となる。8は、空孔部4、4の間の鉄心部分である。
【0004】
また、下記の特許文献1は、この永久磁石ロータにおいて磁極数に対して永久磁石数を半減し、各永久磁石の磁極の径方向向きを同一とした磁石半減型ロータを提案している。この公報のロータの径方向断面を図6に示す。
【0005】
図6において、1は軟鉄製のロータ鉄心部、2は永久磁石、3はロータ鉄心部1の外周面近傍に位置して設けた軸方向に貫設される磁石収容孔部、4は磁石収容孔部3の周方向両側に位置して軸方向に貫設される空孔部である。磁石収容孔部3の径方向外側の外周面部分には永久磁石2により第1極性(たとえばS極)の磁極部5が形成され、周方向に隣接する任意の2つの空孔部4、4間の外周面部分には永久磁石2により第2極性(たとえばN極)の磁極部6が形成され、これら磁極部5、6の間には境界部7が形成されている。したがって、2磁極ピッチθnは、第1極性の磁極部5の占有角θ1と、第2極性の磁極部6の占有角θ2と、境界部7の占有角θ0との和となる。8は磁石収容孔部3と空孔部4との間の隙間をなす鉄心部分である。
【0006】
【発明が解決しようとする課題】
しかしながら、上記した図5に示すごとき従来の永久磁石ロータでは、原理的に空孔部4、4の間の鉄心部分8を0とすることができず、特に高速回転タイプでは、この鉄心部分8の周方向幅を図5の低速タイプのものに比較して格段に大きく確保する必要があり、その結果としてこの部分を漏れる磁束によりロータ外周面からステータ側へ流れる有効磁束が減少し、発生トルクが減少するという問題があった。また、高速回転タイプでは、上記した鉄心部分8の周方向幅の増大により、磁石の周方向幅が小さくなり、これによっても有効磁束の減少とそれによるトルクの減少が生じてしまう。
【0007】
これに対して、図6に示した上記公報の磁石半減型ロータでは、鉄心部により構成される第2極性の磁極部6の存在により、優れた耐遠心性が得られるため、更に永久磁石の厚さを倍増できるため、高速タイプにおいて特に有利であり、高速化により回転電機の小型軽量化を期待することができる。
【0008】
しかしながら、図6に示す従来の磁石半減型ロータでは、空孔部4と磁石収容孔部3との間の境界部分に形成される鉄心部分8の間を流れる漏洩磁束により、図5の場合と同様に有効磁束が減少して発生トルクが減少するという問題、並びに、磁束漏洩により第2極性の磁極部6の磁束密度が第1極性の磁極部5のそれよりも小さくなってしまい、トルクリップルが生じるという問題があった。
【0009】
本発明は上記問題点に鑑みなされたものであり、優れた出力特性をもつ同期機の磁石半減型ロータを提供することをその目的としている。
【0010】
【課題を解決するための手段】
本発明の同期機の磁石半減型ロータは、軟鉄製の鉄心部と、前記鉄心部の外周面近傍に埋設されるk個の永久磁石とを有し、前記鉄心部は、角度θn(=360/k)のピッチで軸方向へ貫設されて前記永久磁石を個別に収容するk個の磁石収容孔部と、前記永久磁石を収容することなく前記各磁石収容孔部の周方向両側に位置して軸方向に貫設される2k個の空孔部と、前記磁石収容孔部の径方向外側の外周面部分により構成される第1極性の磁極部と、周方向に隣接する任意の2つの前記空孔部の間の外周面部分により構成される第2極性の磁極部とを有する同期機の磁石半減型ロータにおいて、
前記第1極性の磁極部の占有角をθ1、前記第2極性の磁極部の占有角をθ2、前記第1極性の磁極部と前記第2極性の磁極部との間の境界領域の占有角をθ0(=θnーθ1ーθ2)とした場合に、占有角θ0は前記空孔部の占有角に等しく設定されていることを特徴としている。
【0011】
すなわち、この発明では、図6を参照して説明すれば第1極性の磁極部5と第2極性の磁極部6との間の境界領域7の占有角θ0一杯に空孔部4を形成し、空孔部4と磁石収容孔部3との間の鉄心部分8をなくして空孔部4と磁石収容孔部3とを連通させる。これにより、従来、この鉄心部分8を流れる漏洩磁束を0とすることができ、その分だけトルク向上を図ることができる。また、磁束漏洩の低減により、周方向における磁束分布の対称性を向上することができ、トルクリップルを低減することができる。
【0012】
好適態様において、角度θnに対する占有角θ0の比率(θ0/θn)は、0.05〜0.125の範囲に設定されていることを特徴とする。実験結果によれば、このようにすればステータ/ロータ間ギャップの平均磁束密度すなわち有効磁束を向上できることがわかった。本発明者の推定では、2磁極ピッチ当たりの空孔部の占有角の比率(θ0/θn)を上記範囲より大きくし過ぎると第1極性の磁極部、第2極性の磁極部の占有角が小さくなってステータ/ロータ間ギャップの平均磁束密度すなわち有効磁束が減少し、比率(θ0/θn)を上記範囲より小さくし過ぎると第2極性の磁極部のうち空孔部の近傍を通過する磁路の磁気抵抗が空孔部より遠い磁路の磁気抵抗よりも大幅に小さくなり、その結果として、第2極性の磁極部の磁束分布の不均一が大きくなってしまうためにステータ/ロータ間ギャップの平均磁束密度すなわち有効磁束が減少してしまうためであると思われる。なお、この有効磁束の減少は出力減少に直結する。
【0013】
好適態様において、前記占有角θ2は前記占有角θ1の0.9〜1.1の範囲に設定されていることを特徴とする。実験結果によれば、このようにすることにより、ステータ/ロータ間ギャップの平均磁束密度すなわち有効磁束を増大できることがわかった。
【0014】
好適な態様において、永久磁石は希土類磁石からなる。このようにすれば、希土類磁石の大きな残留磁束を利用して高出力化が可能となる。希土類磁石は脆いのでできるだけ厚くすることが好ましいが、この磁石半減型ロータでは、第1極性の磁極部、ステータ/ロータ間ギャップ、ステータ鉄心、ステータ/ロータ間ギャップ、第2極性の磁極部、第1極性の磁極部と流れる磁気回路中において界磁磁束源として一個の永久磁石だけを持つので、高価な永久磁石使用量を増やすことなく永久磁石の厚さを通常のロータ(図5参照)に比較して倍増することができ、高速タイプの回転電機において特に好都合である。
【0015】
【発明の実施の形態】
本発明の同期機の磁石半減型ロータの好適実施態様を図1を参照して具体的に説明する。
【0016】
図1において、1は軟鉄製のロータ鉄心部、2は永久磁石、3はロータ鉄心部1の外周面近傍に位置して設けた軸方向に貫設される磁石収容孔部、4は磁石収容孔部3の周方向両側に位置して軸方向に貫設される空孔部である。
【0017】
磁石収容孔部3の径方向外側の外周面部分には永久磁石2により第1極性(たとえばS極)の磁極部5が形成され、周方向に隣接する任意の2つの空孔部4、4間の外周面部分には永久磁石2により第2極性(たとえばN極)の磁極部6が形成され、これら磁極部5、6の間には境界部7が形成されている。したがって、2磁極ピッチθnは、第1極性の磁極部5の占有角θ1と、第2極性の磁極部6の占有角θ2と、境界部7の占有角θ0との和となる。境界部7の占有角θ0のすべては空孔部4により占有されている。なお、この明細書でいう占有角θとは、ロータ鉄心部(本発明でいう鉄心部)の径方向中央部に軸方向に貫設された回転軸挿入孔である。
【0018】
この実施例では、永久磁石2は3個用い、各永久磁石2は希土類磁石を用いている。また、第1極性の磁極部5の占有角θ1と第2極性の磁極部6との占有角θ2とは等しく設定されている。また、2磁極ピッチに相当する角度θnに対する占有角θ0の比率(θ0/θn)は、0.065に設定されている。
【0019】
なお、図1に示すように、占有角θ1は、板状の永久磁石2の4つの角部のうち径方向外側の2つの角部間の角度を意味する。空孔部4とロータ鉄心部1の外周面との間の鉄心部分は機械的強度を維持できる範囲でできるだけ薄くされている。
【0020】
このように構成された磁石半減型ロータは同期機のロータとしてステータ/ロータ間ギャップの磁束密度を従来より改善できるので、出力を向上することができる。
【0021】
実験結果を図2〜図3に示す。なお、ロータ形状は図1と本質的に同じであり、ロータ鉄心部1の外径は50mm、内径は16mmとされている。
【0022】
図2において、θ1=θ2とされ、空孔部4の占有角θ0を種々変更した場合のステータ/ロータ間ギャップの平均磁束密度を示す。図2から、角度θnに対する占有角2θ0の比率(2θ0/θn)は、0.1〜0.25とすることが好ましいことがわかる。
【0023】
図3において、2θ0/θnは、0.125とされ、θ2に対するθ1の比率を種々変更した場合のステータ/ロータ間ギャップの平均磁束密度を示す。図3から、この比率を0.9〜1.1の範囲に設定することが好ましいことがわかる。
【0024】
図4は、磁石半減型ロータにおいて、空孔部4がある場合(A)と、空孔部4がない場合(B)とにおけるステータ/ロータ間ギャップの磁束の周方向分布を示す。ただし、空孔部4がある場合において、角度θnに対する占有角2θ0の比率(2θ0/θn)は0.125、θ1=θ2に設定されている。図4から、空孔部4がある場合(A)の境界部7における磁界変化は、空孔部4がない場合(B)のそれに対して急峻となっていることがわかる。すなわち、空孔部4がある磁石半減型ロータは、境界部7に漏れる永久磁石2の磁束が少ない分だけ、空孔部4がない磁石半減型ロータよりも第2極性の磁極部6の磁束密度が高く成っていることがわかる。
【0025】
また、図4から、空孔部4がある場合には、上記磁束密度の向上分だけ、第1極性の磁極部5と第2極性の磁極部6との磁束密度の差が少なく、その分だけ、磁束密度の周方向分布の対称性が改善され、その分だけ、トルクリップルが小さくなる。
(変形態様)磁石収容孔部3および永久磁石2の数は、上記実施例の3以外に種々変更できることは明白である。
【図面の簡単な説明】
【図1】本発明の磁石半減型ロータの径方向模式断面図である。
【図2】図1の磁石半減型ロータにおいて空孔部の占有角の割合を種々変更した場合のステータ/ロータ間ギャップの平均磁束密度を示す図である。
【図3】図1の磁石半減型ロータにおいて第1極性の磁極部と第2極性の磁極部との占有角の比率を種々変更した場合のステータ/ロータ間ギャップの平均磁束密度を示す図である。
【図4】図1の磁石半減型ロータにおいて空孔部の占有角の割合を種々変更した場合のステータ/ロータ間ギャップの平均磁束密度を示す図である。
【図5】従来の永久磁石通常配置型ロータの径方向模式断面図である。
【図6】従来の磁石半減型ロータの径方向模式断面図である。
【符号の説明】
1 ロータ鉄心部(鉄心部)
2 永久磁石
3 磁石収容孔部
4 空孔部
5 第1極性の磁極部
6 第2極性の磁極部
7 境界部
θ0 境界部の占有角
θ1 第1極性の磁極部の占有角
θ2 第2極性の磁極部の占有角
θn 2磁石ピッチの占有角
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an improvement of a half magnet type rotor of a synchronous machine.
[0002]
[Prior art]
Permanent-magnet synchronous machines using permanent-magnet rotors usually use a built-in magnet motor (IPM) with a permanent magnet embedded in the rotor core because of its excellent mechanical strength, especially resistance to centrifugal force during high-speed rotation. Have been.
[0003]
FIG. 5 shows an example of a radial cross section of the IPM rotor. In FIG. 5, 1 is a soft iron rotor core, 2 is a permanent magnet, 3 is a magnet housing hole provided in the vicinity of the outer peripheral surface of the rotor core 1 and penetrated in the axial direction, and 4 is a magnet housing. It is a hole which is located on both sides in the circumferential direction of the hole 3 and penetrates in the axial direction. A magnetic pole portion 5 of the first polarity (for example, S pole) and a magnetic pole portion 6 of the second polarity are alternately formed in the radially outer peripheral surface portion of the magnet housing hole portion 3 by the permanent magnet 2 in the circumferential direction. A boundary portion 7 is formed between two permanent magnets adjacent to each other. Therefore, the two magnetic pole pitch θn is twice the sum of the occupation angle θ of the magnetic pole portions 5 and 6 and the occupation angle θ0 of the boundary portion 7. Reference numeral 8 denotes an iron core between the holes 4.
[0004]
Patent Document 1 below proposes a permanent magnet rotor in which the number of permanent magnets in this permanent magnet rotor is halved with respect to the number of magnetic poles, and the magnetic poles of each permanent magnet have the same radial direction. FIG. 6 shows a radial cross section of the rotor disclosed in this publication.
[0005]
In FIG. 6, 1 is a rotor core made of soft iron, 2 is a permanent magnet, 3 is a magnet housing hole provided near the outer peripheral surface of the rotor core 1 and penetrated in the axial direction, and 4 is a magnet housing. It is a hole which is located on both sides in the circumferential direction of the hole 3 and penetrates in the axial direction. A magnetic pole portion 5 of a first polarity (for example, S-pole) is formed by a permanent magnet 2 on a radially outer peripheral surface portion of the magnet housing hole portion 3, and any two void portions 4, 4 adjacent in the circumferential direction are formed. A magnetic pole portion 6 of a second polarity (for example, N pole) is formed by the permanent magnet 2 on the outer peripheral surface portion therebetween, and a boundary portion 7 is formed between the magnetic pole portions 5 and 6. Therefore, the two magnetic pole pitch θn is the sum of the occupation angle θ1 of the first polarity magnetic pole part 5, the occupation angle θ2 of the second polarity magnetic pole part 6, and the occupation angle θ0 of the boundary part 7. Reference numeral 8 denotes an iron core portion forming a gap between the magnet housing hole 3 and the hole 4.
[0006]
[Problems to be solved by the invention]
However, in the conventional permanent magnet rotor as shown in FIG. 5 described above, the core portion 8 between the holes 4 cannot be set to 0 in principle. It is necessary to secure the circumferential width of the rotor significantly larger than that of the low-speed type shown in FIG. 5, and as a result, the effective magnetic flux flowing from the rotor outer peripheral surface to the stator side due to the magnetic flux leaking through this portion is reduced, and the generated torque There was a problem that was reduced. Further, in the high-speed rotation type, the circumferential width of the magnet is reduced due to the increase in the circumferential width of the iron core portion 8, which also causes a decrease in effective magnetic flux and a decrease in torque.
[0007]
On the other hand, in the magnet half-reduced rotor of the above publication shown in FIG. 6, excellent centrifugal resistance is obtained due to the presence of the magnetic pole portion 6 of the second polarity constituted by the iron core portion. Since the thickness can be doubled, it is particularly advantageous in a high-speed type, and a reduction in the size and weight of a rotating electric machine can be expected by increasing the speed.
[0008]
However, in the conventional magnet half-reduced rotor shown in FIG. 6, the leakage magnetic flux flowing between the iron core portions 8 formed at the boundary between the hole portion 4 and the magnet housing hole portion 3 causes the case shown in FIG. Similarly, the effective magnetic flux is reduced and the generated torque is reduced, and the magnetic flux density of the magnetic pole portion 6 of the second polarity becomes smaller than that of the magnetic pole portion 5 of the first polarity due to magnetic flux leakage. There was a problem that occurs.
[0009]
The present invention has been made in view of the above problems, and has as its object to provide a magnet half-reduced rotor for a synchronous machine having excellent output characteristics.
[0010]
[Means for Solving the Problems]
A magnet half-reduced rotor of a synchronous machine according to the present invention includes a soft iron core and k permanent magnets embedded near an outer peripheral surface of the core, and the iron core has an angle θn (= 360). / K) k magnet accommodation holes which are individually penetrated in the axial direction at a pitch of / k) and individually accommodate the permanent magnets, and are located on both circumferential sides of each of the magnet accommodation holes without accommodating the permanent magnets. 2k holes formed in the axial direction, a magnetic pole portion of a first polarity formed by a radially outer peripheral surface portion of the magnet housing hole, and any two magnetic poles adjacent in the circumferential direction. A magnet half-reduced rotor of a synchronous machine having a magnetic pole portion of a second polarity constituted by an outer peripheral surface portion between the two holes.
The occupation angle of the magnetic pole portion of the first polarity is θ1, the occupation angle of the magnetic pole portion of the second polarity is θ2, and the occupation angle of the boundary region between the magnetic pole portion of the first polarity and the magnetic pole portion of the second polarity. Is defined as θ0 (= θn−θ1−θ2), the occupation angle θ0 is set equal to the occupation angle of the hole.
[0011]
That is, according to the present invention, as described with reference to FIG. 6, the void portion 4 is formed to fill the occupation angle θ0 of the boundary region 7 between the magnetic pole portion 5 of the first polarity and the magnetic pole portion 6 of the second polarity. In addition, the iron core portion 8 between the hole 4 and the magnet housing hole 3 is eliminated so that the hole 4 and the magnet housing hole 3 communicate with each other. Thereby, conventionally, the leakage magnetic flux flowing through the iron core portion 8 can be reduced to zero, and the torque can be improved accordingly. Further, by reducing the magnetic flux leakage, the symmetry of the magnetic flux distribution in the circumferential direction can be improved, and the torque ripple can be reduced.
[0012]
In a preferred embodiment, the ratio (θ0 / θn) of the occupation angle θ0 to the angle θn is set in a range of 0.05 to 0.125. According to the experimental results, it has been found that the average magnetic flux density of the gap between the stator and the rotor, that is, the effective magnetic flux can be improved. According to the estimation of the present inventor, if the ratio of the occupied angle of the hole portion per two magnetic pole pitches (θ0 / θn) is made larger than the above range, the occupied angles of the magnetic pole portion of the first polarity and the magnetic pole portion of the second polarity are increased. When the ratio (θ0 / θn) is made smaller than the above range, the average magnetic flux density of the stator / rotor gap, that is, the effective magnetic flux decreases. The magnetic resistance of the magnetic path is much smaller than the magnetic resistance of the magnetic path farther from the hole, and as a result, the non-uniformity of the magnetic flux distribution in the magnetic pole part of the second polarity becomes large. It is considered that the average magnetic flux density, that is, the effective magnetic flux decreases. This decrease in the effective magnetic flux is directly linked to a decrease in output.
[0013]
In a preferred embodiment, the occupation angle θ2 is set in a range of 0.9 to 1.1 of the occupation angle θ1. According to the experimental results, it has been found that the average magnetic flux density of the gap between the stator and the rotor, that is, the effective magnetic flux can be increased by doing so.
[0014]
In a preferred embodiment, the permanent magnet comprises a rare earth magnet. In this case, high output can be achieved by utilizing a large residual magnetic flux of the rare earth magnet. Since the rare earth magnet is brittle, it is preferable to make the magnet as thick as possible. However, in this magnet half-reduced rotor, the magnetic pole portion of the first polarity, the gap between the stator / rotor, the stator core, the gap between the stator / rotor, the magnetic pole portion of the second polarity, Since only one permanent magnet is used as a field magnetic flux source in a magnetic circuit flowing with a magnetic pole of one polarity, the thickness of the permanent magnet can be reduced to a normal rotor (see FIG. 5) without increasing the amount of expensive permanent magnet used. This can be doubled in comparison, which is particularly advantageous in a high-speed type rotating electric machine.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
A preferred embodiment of the half magnet type rotor of the synchronous machine of the present invention will be specifically described with reference to FIG.
[0016]
In FIG. 1, 1 is a soft iron rotor core, 2 is a permanent magnet, 3 is a magnet receiving hole provided near the outer peripheral surface of the rotor core 1 and penetrated in the axial direction. It is a hole which is located on both sides in the circumferential direction of the hole 3 and penetrates in the axial direction.
[0017]
A magnetic pole portion 5 of a first polarity (for example, S-pole) is formed by a permanent magnet 2 on a radially outer peripheral surface portion of the magnet housing hole portion 3, and any two void portions 4, 4 adjacent in the circumferential direction are formed. A magnetic pole portion 6 of a second polarity (for example, N pole) is formed by the permanent magnet 2 on the outer peripheral surface portion therebetween, and a boundary portion 7 is formed between the magnetic pole portions 5 and 6. Therefore, the two magnetic pole pitch θn is the sum of the occupation angle θ1 of the first polarity magnetic pole part 5, the occupation angle θ2 of the second polarity magnetic pole part 6, and the occupation angle θ0 of the boundary part 7. The entire occupation angle θ0 of the boundary 7 is occupied by the hole 4. In this specification, the occupation angle θ is a rotation shaft insertion hole that is provided in the center in the radial direction of the rotor core (the core in the present invention) in the axial direction.
[0018]
In this embodiment, three permanent magnets 2 are used, and each permanent magnet 2 uses a rare earth magnet. The occupation angle θ1 of the first polarity magnetic pole portion 5 and the occupation angle θ2 of the second polarity magnetic pole portion 6 are set to be equal. The ratio (θ0 / θn) of the occupation angle θ0 to the angle θn corresponding to the two magnetic pole pitch is set to 0.065.
[0019]
As shown in FIG. 1, the occupation angle θ <b> 1 means an angle between two radially outer corners of the four corners of the plate-shaped permanent magnet 2. The core portion between the hole portion 4 and the outer peripheral surface of the rotor core portion 1 is made as thin as possible as long as the mechanical strength can be maintained.
[0020]
The half-magnet type rotor configured as described above can improve the magnetic flux density of the gap between the stator and the rotor as a rotor of the synchronous machine as compared with the related art, so that the output can be improved.
[0021]
The experimental results are shown in FIGS. The rotor shape is essentially the same as that of FIG. 1, and the outer diameter of the rotor core 1 is 50 mm and the inner diameter is 16 mm.
[0022]
FIG. 2 shows the average magnetic flux density of the gap between the stator and the rotor when θ1 = θ2 and the occupation angle θ0 of the hole 4 is variously changed. FIG. 2 shows that the ratio of the occupation angle 2θ0 to the angle θn (2θ0 / θn) is preferably set to 0.1 to 0.25.
[0023]
In FIG. 3, 2θ0 / θn is set to 0.125, and indicates the average magnetic flux density of the gap between the stator and the rotor when the ratio of θ1 to θ2 is variously changed. FIG. 3 shows that it is preferable to set this ratio in the range of 0.9 to 1.1.
[0024]
FIG. 4 shows the circumferential distribution of the magnetic flux in the gap between the stator and the rotor in the case where the holes 4 are provided (A) and the case where the holes 4 are not provided (B) in the half magnet type rotor. However, when there is a hole 4, the ratio of the occupation angle 2θ0 to the angle θn (2θ0 / θn) is set to 0.125, and θ1 = θ2. From FIG. 4, it can be seen that the change in the magnetic field at the boundary 7 when there is a hole 4 (A) is steeper than that when there is no hole 4 (B). That is, the magnet half-reduced rotor having the holes 4 has a smaller magnetic flux than the magnet half-reduced rotor having no holes 4 because the magnetic flux of the permanent magnet 2 leaking to the boundary 7 is smaller. It can be seen that the density is high.
[0025]
Further, from FIG. 4, when the holes 4 are present, the difference in magnetic flux density between the magnetic pole part 5 of the first polarity and the magnetic pole part 6 of the second polarity is small by the improvement in the magnetic flux density. Only, the symmetry of the circumferential distribution of the magnetic flux density is improved, and the torque ripple is reduced accordingly.
(Modification) It is obvious that the numbers of the magnet housing holes 3 and the permanent magnets 2 can be variously changed other than the three in the above embodiment.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view in the radial direction of a half magnet type rotor according to the present invention.
2 is a diagram showing an average magnetic flux density of a gap between a stator and a rotor when the ratio of the occupied angle of a hole is variously changed in the magnet half-reduced rotor of FIG. 1;
3 is a view showing an average magnetic flux density of a gap between a stator and a rotor when the ratio of the occupied angle between a magnetic pole portion of a first polarity and a magnetic pole portion of a second polarity is variously changed in the half magnet type rotor of FIG. 1; is there.
FIG. 4 is a diagram showing an average magnetic flux density of a gap between a stator and a rotor when the ratio of the occupied angle of a hole is variously changed in the magnet half-reduced rotor of FIG. 1;
FIG. 5 is a schematic cross-sectional view in the radial direction of a conventional permanent magnet rotor with a permanent magnet.
FIG. 6 is a schematic sectional view in the radial direction of a conventional half magnet type rotor.
[Explanation of symbols]
1 Rotor core (iron core)
2 Permanent magnet 3 Magnet accommodating hole 4 Void 5 Magnetic pole of first polarity 6 Magnetic pole of second polarity 7 Boundary θ0 Boundary angle θ1 Boundary angle θ1 of magnetic pole of first polarity θ2 Second polarity of magnetic pole Occupation angle of magnetic pole part θn Occupation angle of two magnet pitch

Claims (4)

軟鉄製の鉄心部と、前記鉄心部の外周面近傍に埋設されるk個の永久磁石とを有し、
前記鉄心部は、
角度θn(=360/k)のピッチで軸方向へ貫設されて前記永久磁石を個別に収容するk個の磁石収容孔部と、
前記永久磁石を収容することなく前記各磁石収容孔部の周方向両側に位置して軸方向に貫設される2k個の空孔部と、
前記磁石収容孔部の径方向外側の外周面部分により構成される第1極性の磁極部と、
周方向に隣接する任意の2つの前記空孔部の間の外周面部分により構成される第2極性の磁極部と、
を有する同期機の磁石半減型ロータにおいて、
前記第1極性の磁極部の占有角をθ1、前記第2極性の磁極部の占有角をθ2、前記第1極性の磁極部と前記第2極性の磁極部との間の境界領域の占有角をθ0(=θnーθ1ーθ2)とした場合に、占有角θ0は前記空孔部の占有角に等しく設定されていることを特徴とする同期機の磁石半減型ロータ。
Having a soft iron core portion and k permanent magnets embedded near the outer peripheral surface of the iron core portion;
The iron core is
K magnet accommodating holes that penetrate in the axial direction at a pitch of an angle θn (= 360 / k) and individually accommodate the permanent magnets;
2k holes that are axially penetrated and located on both sides in the circumferential direction of each magnet housing hole without housing the permanent magnet,
A magnetic pole portion of a first polarity configured by a radially outer peripheral surface portion of the magnet housing hole portion;
A magnetic pole portion of a second polarity configured by an outer peripheral surface portion between any two of the holes that are circumferentially adjacent to each other;
In a magnet half rotor of a synchronous machine having
The occupation angle of the magnetic pole portion of the first polarity is θ1, the occupation angle of the magnetic pole portion of the second polarity is θ2, and the occupation angle of the boundary region between the magnetic pole portion of the first polarity and the magnetic pole portion of the second polarity. Is defined as θ0 (= θn−θ1−θ2), the occupation angle θ0 is set equal to the occupation angle of the hole portion.
請求項1記載の同期機の磁石半減型ロータにおいて、
角度θnに対する占有角θ0の比率(θ0/θn)は、0.05〜0.125の範囲に設定されていることを特徴とする磁石半減型同期機。
The magnet half rotor of the synchronous machine according to claim 1,
The ratio of the occupation angle θ0 to the angle θn (θ0 / θn) is set in the range of 0.05 to 0.125.
請求項2記載の磁石半減型同期機において、
前記占有角θ2は前記占有角θ1の0.9〜1.1の範囲に設定されていることを特徴とする同期機の磁石半減型ロータ。
The magnet half-type synchronous machine according to claim 2,
The occupation angle θ2 is set in a range of 0.9 to 1.1 of the occupation angle θ1.
請求項3記載の磁石半減型同期機において、
前記永久磁石は希土類磁石からなることを特徴とする同期機の磁石半減型ロータ。
The magnet half-type synchronous machine according to claim 3,
The permanent magnet is made of a rare earth magnet.
JP2002366700A 2002-04-15 2002-12-18 Magnet-saving type rotor of synchronous motor Pending JP2004201406A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002366700A JP2004201406A (en) 2002-12-18 2002-12-18 Magnet-saving type rotor of synchronous motor
DE10316831A DE10316831A1 (en) 2002-04-15 2003-04-11 Permanent magnet rotor for rotary electric machine with inner rotor has all permanent magnets magnetized in such a way that direction of magnetization is same looking in radial direction
US10/412,426 US20040007930A1 (en) 2002-04-15 2003-04-14 Permanent-magnet rotor for an inner rotor type electric rotary machine and magnet-saving type rotor for a synchronous motor
US10/959,369 US7105971B2 (en) 2002-04-15 2004-10-07 Permanent-magnet rotor for an inner rotor type electric rotary machine and magnet-saving type rotor for a synchronous motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002366700A JP2004201406A (en) 2002-12-18 2002-12-18 Magnet-saving type rotor of synchronous motor

Publications (1)

Publication Number Publication Date
JP2004201406A true JP2004201406A (en) 2004-07-15

Family

ID=32763827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002366700A Pending JP2004201406A (en) 2002-04-15 2002-12-18 Magnet-saving type rotor of synchronous motor

Country Status (1)

Country Link
JP (1) JP2004201406A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010263774A (en) * 2009-04-10 2010-11-18 Asmo Co Ltd Rotor and motor
DE102011116211A1 (en) 2010-10-19 2012-04-19 Asmo Co., Ltd. Brushless motor
US8179011B2 (en) 2008-12-17 2012-05-15 Asmo Co., Ltd. Brushless motor
JP2012105480A (en) * 2010-11-11 2012-05-31 Asmo Co Ltd Rotor and motor
JP2012110213A (en) * 2010-10-25 2012-06-07 Asmo Co Ltd Motor
US20150001981A1 (en) * 2012-03-23 2015-01-01 Mitsubishi Heavy Industries Automotive Thermal Systems Co., Ltd. Motor and electric compressor using same
US9653952B2 (en) 2009-04-03 2017-05-16 Amso Co., Ltd. Half permanent magnet motor
WO2021171476A1 (en) 2020-02-27 2021-09-02 三菱電機株式会社 Electric motor, fan, and air conditioner
US11177704B2 (en) 2018-06-08 2021-11-16 Samsung Electronics Co., Ltd Inferior permanent magnet motor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8179011B2 (en) 2008-12-17 2012-05-15 Asmo Co., Ltd. Brushless motor
US8264113B2 (en) 2008-12-17 2012-09-11 Asmo Co., Ltd. Brushless motor
US9653952B2 (en) 2009-04-03 2017-05-16 Amso Co., Ltd. Half permanent magnet motor
JP2010263774A (en) * 2009-04-10 2010-11-18 Asmo Co Ltd Rotor and motor
DE102011116211A1 (en) 2010-10-19 2012-04-19 Asmo Co., Ltd. Brushless motor
JP2012110213A (en) * 2010-10-25 2012-06-07 Asmo Co Ltd Motor
JP2012105480A (en) * 2010-11-11 2012-05-31 Asmo Co Ltd Rotor and motor
US20150001981A1 (en) * 2012-03-23 2015-01-01 Mitsubishi Heavy Industries Automotive Thermal Systems Co., Ltd. Motor and electric compressor using same
US9641032B2 (en) * 2012-03-23 2017-05-02 Mitsubishi Heavy Industries Automotive Thermal Systems Co., Ltd. Motor having magnets embedded in a rotor and electric compressor using same
US11177704B2 (en) 2018-06-08 2021-11-16 Samsung Electronics Co., Ltd Inferior permanent magnet motor
WO2021171476A1 (en) 2020-02-27 2021-09-02 三菱電機株式会社 Electric motor, fan, and air conditioner
US12100997B2 (en) 2020-02-27 2024-09-24 Mitsubishi Electric Corporation Motor, fan, and air conditioner

Similar Documents

Publication Publication Date Title
JP5329902B2 (en) Rotor structure of rotating electrical machine
JP5288698B2 (en) Permanent magnet type reluctance type rotating electrical machine
US6815858B2 (en) Permanent magnet rotating electric machine
JP6161793B2 (en) Permanent magnet type rotating electrical machine and manufacturing method thereof
CN101820238B (en) Method and apparatus for a permanent magnet machine with asymmetrical rotor magnets
TWI445282B (en) An electromagnetic steel sheet forming body, an electromagnetic steel sheet laminate, a rotor having a permanent magnet synchronous rotating electric machine, a permanent magnet synchronous rotating electric motor, a vehicle using the rotating electric machine, a lift, a fluid machine, a processing machine
JP5259927B2 (en) Permanent magnet rotating electric machine
US20040007930A1 (en) Permanent-magnet rotor for an inner rotor type electric rotary machine and magnet-saving type rotor for a synchronous motor
US20050179336A1 (en) Axial gap electric rotary machine
JP2010088296A (en) Motor with robed rotor having even air gap and uneven air gap
JP2005341655A (en) Rotor of magnet embedded dynamo-electric machine
JP2005198487A (en) Rotor structure of multilayer embedded permanent-magnet motor
EP2553792A1 (en) Rotor of an electric machine with embedded permanent magnets and electric machine
JP2005176424A (en) Rotor for dynamo-electric machine
JP2003018777A (en) Electric motor
JP2006223052A (en) Permanent-magnet motor
JP2008104353A (en) Permanent magnet type motor
JP2009050148A (en) Permanent-magnet electric motor with constant output in wide range
JP2004201406A (en) Magnet-saving type rotor of synchronous motor
JP2004201407A (en) Magnet-saving type rotor of synchronous motor
JP2003309953A (en) Permanent magnet rotor for inner rotor type rotary electric machine
JPH0833246A (en) Rotor for permanent magnet synchronous electric rotating machine
US20080265705A1 (en) Rotary Machine and Electromagnetic Machine
JP2011091917A (en) Method of adjusting output of rotating machine and the rotating machine
JP2002272067A (en) Squirrel-cage rotor and motor using the squirrel-cage rotor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080403

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080724