[go: up one dir, main page]

JP2004200777A - Piezoelectric substrate of mesa structure, piezoelectric vibration element, piezoelectric vibrator, and piezoelectric oscillator - Google Patents

Piezoelectric substrate of mesa structure, piezoelectric vibration element, piezoelectric vibrator, and piezoelectric oscillator Download PDF

Info

Publication number
JP2004200777A
JP2004200777A JP2002363951A JP2002363951A JP2004200777A JP 2004200777 A JP2004200777 A JP 2004200777A JP 2002363951 A JP2002363951 A JP 2002363951A JP 2002363951 A JP2002363951 A JP 2002363951A JP 2004200777 A JP2004200777 A JP 2004200777A
Authority
JP
Japan
Prior art keywords
piezoelectric
substrate
thick
vibrating element
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002363951A
Other languages
Japanese (ja)
Inventor
Kenji Komine
賢二 小峰
Yuichiro Kawaguchi
雄一郎 川口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Communication Equipment Co Ltd
Original Assignee
Toyo Communication Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Communication Equipment Co Ltd filed Critical Toyo Communication Equipment Co Ltd
Priority to JP2002363951A priority Critical patent/JP2004200777A/en
Publication of JP2004200777A publication Critical patent/JP2004200777A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To eliminate wire breaking and poor connection between a lead electrode on a thin part and a driving electrode by the existence of a step formed between a thick center 10 of a mesa type piezoelectric oscillator element 1 and the thin part located at the peripheral edge of the thick center forming the driving electrode 3. <P>SOLUTION: The piezoelectric board has a mesa structure having a center thicker than a peripheral part. The central part forms a driving electrode. Lead electrode forming parts extending to one end edge of the board from thick centers on front and back sides of the piezoelectric board are formed into thick projective strips. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、メサ構造を備えた圧電基板、この圧電基板上に電極を形成した圧電振動素子、この圧電振動素子を利用した圧電振動子、及び圧電発振器の改良に関する。
【0002】
【従来の技術】
水晶振動子、水晶発振器等の圧電デバイスは、従来から産業用、民生用電子機器の基準周波数源として広く用いられており、水晶振動子や水晶発振器の出力周波数は、水晶振動子や水晶発振器を構成する水晶振動素子の共振周波数によって決定される。水晶は物理的に安定した圧電結晶体であり、その共振周波数も極めて高い安定性を有する。特に、ATカット水晶振動素子は、温度−周波数特性が優れていることから、種々の分野で多用されている。ATカット水晶振動素子は、人工水晶の原石のX、Z軸に平行な面をもつY板をX軸を中心として約35°回転させたアングルで切り出すことにより得た水晶基板の表裏両面に夫々励振用の電極パターンを対向するように成膜したものである。その共振周波数は、水晶基板の板厚によって決定される。この水晶振動素子は、所要の支持構造を備えたパッケージ内に配置して封止することにより、一つの圧電デバイス(水晶振動子)として構成される。また、プリント基板上にチップ部品等を用いて作成した発振回路ループ中に水晶振動素子を挿入することにより、水晶発振器が構成される。
水晶基板に励振電極を形成することにより構成される水晶振動素子にあっては、質量の大きい部分に振動エネルギーが集中することを利用し、水晶基板の中央部に電極を形成することにより、電極の質量分だけ中央部の質量を増大させて、中央部にエネルギーを集中させている(閉じ込めている)。この結果、水晶振動素子をパッケージ内に支持する際に、その特性に影響を与えることなくその端縁をサポータ等によって支持することが可能となる。
【0003】
しかし、均一な厚みを有した平板状の水晶基板を用いた水晶振動素子の中央部に閉じ込めることができるエネルギー量はたかが知れており、このため従来から、図5(a)及び(b)の平面図、及び正面図に示す如く、水晶基板101の中央部の表裏両面側に夫々同一形状の凸面102を設けて励振電極105を形成する一方で、基板端縁103の肉厚を薄くしこの薄肉部分の両面に励振電極105から延びるリード電極106を形成したメサ形状の水晶振動素子100が用いられている。このような形状を有した水晶基板101を用いた水晶振動素子100にあっては、水晶基板の面積を小さくしながら所望の振動モードでの励振を確保できるので、各種部品類の小型化の要請に対応することができる。この種の水晶振動子に係る従来例としては、例えば特開昭51−24892号公報がある。
しかし、メサ型の水晶振動素子にあっては、凸面102の外周が急激な段差となっているため、励振電極105とリード電極106との境界部で断線が発生しやすく、これが信頼性を低下させる原因となっている。
【0004】
また、図6に示す如くこの水晶振動素子100を表面実装用のパッケージ110の凹所内に収容して水晶振動子等の圧電デバイスを構築する場合には、薄肉の基板端縁103の一方103aをパッケージ内底面に設けた内部端子111上に導電性接着剤112を用いてほぼ水平な片持ち状態で支持する必要がある。この際、水晶基板101の励振電極105を形成した凸面102がパッケージ内底面に接触して自由振動を制限されることがないように、一方の基板端縁103aの下面と内部端子111との間の接着剤厚を十分に厚くしておく必要がある。なお、導電性接着剤112は樹脂製接着剤中に銀粒子を混練した構成を備えており、水晶振動素子100の端縁103aを支持した状態で加熱炉内で加熱されることにより一旦軟化し、徐々に硬化するが、軟化した際に水晶振動素子はその自重により初期高さ位置よりも内部端子111側へ変位する。このため、この下方への変位分を考慮して内部端子111上の導電性接着剤112の量を多めに塗布するが、接着剤量が過剰な場合には加熱溶融時に軟化した接着剤が近接配置された他の内部端子111、或いはリード電極106側に展開してブリッジを起こす虞があるため、使用可能な接着剤量には限度がある。
【0005】
このように、基板端縁103aの下面と内部端子111との間に塗布し得る接着剤量には限界があるにも拘わらず、水晶基板の端縁103aの下面は、水晶基板の下面側の凸面102よりも、段差分だけ上側に待避しているため、端縁103aの下面に塗布可能な最大量の接着剤を塗布して内部端子111との間を接続したとしても、下方に突出した凸面102に形成した励振電極とパッケージ内底面との間の距離は近接した状態となる。加熱時に水晶振動素子が下方に変位した場合には、更に近接する。また、パッケージの低背化によって凹所深さが浅くなっているため、下側の凸面102とパッケージ内底面との間の間隔を必要以上に拡大することも困難である。
従って、従来のメサ型水晶振動素子を用いた表面実装型の水晶振動子にあっては、水晶振動素子の薄肉の端縁を導電性接着剤によってパッケージ内底面の内部端子上に接続して片持ち支持する場合に、パッケージの凹所を浅くして薄型化を図ることに大きな限界があった。
【特許文献1】特開昭51−24892号公報
【0006】
【発明が解決しようとする課題】
本発明は上記に鑑みてなされたものであり、メサ型の圧電振動素子において、励振電極を形成した厚肉の中央部と、厚肉中央部の周縁に位置する薄肉部との間に段差が存在することにより、薄肉部上に形成されるリード電極と励振電極との間に断線、接続不良が発生する不具合をなくすることを一つの目的とする。
また、メサ型の圧電振動素子を表面実装用のパッケージ内に気密封止した構造の圧電デバイスにおいて、薄肉の基板端縁を導電性接着剤によってパッケージ内底面の内部端子上に片持ち支持した場合に、使用可能な接着剤量に限界があることに起因して励振電極を形成した基板凸面がパッケージ内底面に接触して作動不良を起こす等の不具合を解消することを他の目的とする。
【0007】
【課題を解決するための手段】
上記課題を解決するため、請求項1の発明に係るメサ構造の圧電基板は、励振電極を形成する中央部の厚さが周縁部よりも厚いメサ構造の圧電基板において、該圧電基板の表裏両面側の厚肉の中央部から基板一端縁に向けて夫々延びるリード電極形成部を厚肉の突条としたことを特徴とする。
従来のメサ型の圧電基板は、励振電極を形成する中央部を凸面とし、周縁部を薄肉としてこの薄肉部の面にリード電極を形成していた、このため、厚肉部上面に形成される励振電極と、リード電極との接続部が段差部となり、電極膜の付着不良による断線や、接続不良が発生し、不良品が発生する原因となっていた。本実施形態では、厚肉の中央部からリード電極を形成するための突条を基板端縁に向けて引き出したので、励振電極とリード電極が連続した平坦面上に位置することとなり、段差に起因した断線等の不具合が発生する余地がなくなる。
請求項2の発明は、請求項1において、前記厚肉の中央部をはさんで前記基板一端縁と反対側の基板他端縁の少なくとも一部を厚肉部としたことを特徴とする。
パッケージ内に圧電振動素子の一端縁を導電性接着剤により片持ち支持した場合、圧電振動素子の他端側が下方に傾斜すると、中央の凸部上に位置する励振電極がパッケージ内底面に当接して自由振動を妨げられ、特性が不安定化、悪化する虞がある。そこで、本発明では、圧電振動素子の他端縁に厚肉部を設けて、圧電振動素子の傾斜時にこの厚肉部がパッケージ内底面に当接するように構成したので、厚肉の中央部がパッケージ内底面に当接する虞を皆無にすることが出来る。
請求項3の発明に係る圧電振動素子は、請求項1又は2に記載の圧電基板の前記厚肉の中央部の表裏両面に励振電極を形成すると共に、表裏両面側の前記リード電極形成部にリード電極を形成したことを特徴とする。
請求項4の発明に係る圧電振動子は、請求項3に記載の圧電振動素子を表面実装用のパッケージ内に気密収容したことを特徴とする。
請求項5の発明に係る圧電発振器は、請求項3に記載の圧電振動素子、或いは請求項4に記載の圧電振動子と、発振回路と、を備えたことを特徴とする。
【0008】
【発明の実施の形態】
以下、本発明を図面に示した実施の形態により詳細に説明する。
なお、以下の実施形態では圧電振動素子の一例として水晶振動素子について説明する。
図1(a)(b)及び(c)は本発明の一実施形態に係る水晶振動素子の外観斜視図、平面図、及び側面図であり、図2はこの水晶振動素子をパッケージ内に収容した構成を備えた表面実装型水晶振動子の断面図である。
図1に示した水晶振動素子1は、励振電極を形成する中央部の厚さが周縁部よりも厚いメサ型の水晶基板2の表裏両面上に夫々励振電極3及びリード電極4を夫々形成した構成を備えている。
この圧電基板2は、その形状に特徴を有しており、図示のように、圧電基板の表裏両面側の厚肉の中央部(凸面)10(10a、10b)から一方の基板端縁2Aに向けて夫々延びる細幅帯状のリード電極形成部11(11a、11b)を厚肉の突条とした構成が特徴的である。各厚肉中央部10の上面とリード電極形成部11の上面は、共に平坦であり、無段状に連続している。各リード電極形成部11a、11bは基板端縁にて一旦終端しているが、対応する反対側面には夫々短尺のリード電極形成部11a’、11b’が形成されている。
各厚肉中央部10a、10bの平坦な上面には夫々励振電極3a、3bを形成するとともに、各励振電極3a、3bからのびるリード電極4a、4bを上面が平坦なリード電極形成部11a、11b上に連続形成している。このため、従来のメサ型水晶振動子における段差部における断線が発生する余地がない。また、断線に至らない電極膜の塗布不良状態における電気抵抗値の増大という不具合も発生しない。
また、各リード電極形成部11a、11bのリード電極4a、4bは基板端面を経て反対側の短尺のリード電極形成部11a’、11b’の上面にまで連続して延在している。このため、水晶振動素子1の何れの面をパッケージ内底面側に向けた状態でも搭載が可能となる。
なお、水晶振動素子1の製造手順としては、圧電基板の表裏両面を図示の如き形状にエッチング等によって加工してから、所定のマスクを用いて厚肉中央部10及びリード電極形成部11上に電極膜を蒸着等によって形成してもよいし、圧電基板をエッチングする前に、励振電極及びリード電極に相当する電極膜を蒸着等によって形成しておき、これらの電極膜をマスクとして他の部位をエッチングにより薄肉化してもよい。
【0009】
図2に示すように、この水晶振動素子1を、表面実装用のセラミックパッケージ21内に搭載して気密封止することにより、水晶振動子20が完成する。
パッケージ21は、上面に凹所22を有した容器本体23と、容器本体23の周壁上面に固定される金属蓋30と、を備えている。容器本体23は、その外底面に表面実装用の実装端子25を有すると共に、凹所22の内底面に実装端子25と導通した内部端子26を備えている。
水晶振動素子1は、下側のリード電極形成部11bと11a’に夫々形成したリード電極4b、4a’を、パッケージ内底面に設けた2つの内部端子26に対して導電性接着剤27を用いて電気的機械的に接続することにより、水晶振動素子1を容器内底面に片持ち支持される。
この際、導電性接着剤27は、下面側の厚肉中央部10bと同等の高さに位置する下側のリード電極形成部11bと11a’の下面に塗布されるため、必要最低限の塗布量によって、水晶振動素子を十分な高さ位置に保持することができる。即ち、本実施形態では水晶基板の薄肉の端縁に接着剤を塗布するのではなく、水晶振動素子の厚肉中央部10bの下面に形成した励振電極3bを、凹所内底面から十分に離間した状態で水平に支持することが可能となり、水晶振動素子の姿勢が多少下方へ傾斜したとしても、励振電極3bと凹所内底面との接触を防止することが可能となる。
なお、上記の如くリード電極形成部を厚肉に構成し、この部分とパッケージ内の内部端子とを導電性接着剤により片持ち支持した場合にも、水晶振動素子が大きく下向き傾斜した場合には、励振電極3bが凹所内底面と接触する虞がないとはいえない。
【0010】
図3はこのような不具合に対処するための水晶振動素子の構成例であり、(a)は斜視図、(b)は平面図、(c)は側面図、(d)は正面図である。また、図4はこの水晶振動素子を用いた水晶振動子のパッケージ構成を示す断面図である。なお、図1、及び図2と同一部分には同一符号を付して説明する。
この実施形態に係る水晶振動素子1は、圧電基板2の厚肉中央部10をはさんで基板一端縁2Aと反対側の基板他端縁2Bの少なくとも一部を厚肉部15とした構成が特徴的である。
このように、導電性接着剤27によって内部端子26上に一端縁2Aの厚肉部を支持した場合に、反対側の他端縁2Bに厚肉部15を設けておけば、パッケージ内において水晶振動素子が下向きに傾斜した場合に、厚肉部15だけが凹所内底面と当接するため、励振電極3及び中央厚肉部下面が凹所内底面と接触して自由振動を阻害されることがなくなり、安定した特性を維持することが出来る。
なお、本発明の水晶振動素子、或いは水晶振動子は、図示しない発振回路等を構成する回路部品と組み合わせることにより、表面実装用の水晶発振器を構築することができる。
【0011】
【発明の効果】
以上のように本発明によれば、メサ型の圧電振動素子において、励振電極を形成した厚肉の中央部と、厚肉中央部の周縁に位置する薄肉部との間に段差が存在することにより、薄肉部上に形成されるリード電極と励振電極との間に断線、接続不良が発生する不具合をなくすることができる。
また、メサ型の圧電振動素子を表面実装用のパッケージ内に気密封止した構造の圧電デバイスにおいて、薄肉の基板端縁を導電性接着剤によってパッケージ内底面の内部端子上に片持ち支持した場合に、使用可能な接着剤量に限界があることに起因して励振電極を形成した基板凸面がパッケージ内底面に接触して作動不良を起こす等の不具合を解消することができる。
【図面の簡単な説明】
【図1】(a)(b)及び(c)は本発明の一実施形態に係る水晶振動素子の外観斜視図、側面図、及び平面図。
【図2】水晶振動素子をパッケージ内に収容した構成を備えた表面実装型水晶振動子の断面図。
【図3】本発明の他の実施形態に係る水晶振動素子の構成例を示し、(a)は斜視図、(b)は平面図、(c)は側面図。
【図4】水晶振動素子を用いた水晶振動子のパッケージ構成を示す断面図。
【図5】(a)及び(b)は従来例に係る圧電振動素子の構成図。
【図6】従来の圧電振動子の欠点を説明する図。
【符号の説明】
1 水晶振動素子(圧電振動素子)、2 水晶基板(圧電基板)、3、3a、3b 励振電極、4、4a、4b リード電極、10、10a、10b 厚肉中央部、11、11a、11b リード電極形成部、20 水晶振動子(圧電振動子)、21 パッケージ、22 凹所、23 容器本体、25 実装端子、26
内部端子、27 導電性接着剤、30 金属蓋。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a piezoelectric substrate having a mesa structure, a piezoelectric vibrating element having electrodes formed on the piezoelectric substrate, a piezoelectric vibrator using the piezoelectric vibrating element, and an improvement of a piezoelectric oscillator.
[0002]
[Prior art]
Piezoelectric devices such as crystal oscillators and crystal oscillators have been widely used as reference frequency sources for industrial and consumer electronic devices.The output frequencies of crystal oscillators and crystal oscillators are based on crystal oscillators and crystal oscillators. It is determined by the resonance frequency of the quartz crystal element to be constituted. Quartz is a physically stable piezoelectric crystal, and its resonance frequency has extremely high stability. In particular, AT-cut quartz resonators are widely used in various fields because of their excellent temperature-frequency characteristics. The AT-cut quartz crystal vibrating element is obtained by cutting a Y plate having a surface parallel to the X and Z axes of an artificial quartz ore at an angle of about 35 ° rotated about the X axis. The electrode patterns for excitation are formed so as to face each other. The resonance frequency is determined by the thickness of the quartz substrate. This quartz vibrating element is configured as one piezoelectric device (quartz vibrator) by arranging and sealing in a package having a required support structure. In addition, a crystal oscillator is configured by inserting a crystal resonator element into an oscillation circuit loop created using chip components or the like on a printed circuit board.
In the case of a quartz crystal vibrating element formed by forming an excitation electrode on a quartz substrate, the electrode is formed in the center of the quartz substrate by utilizing the fact that vibration energy is concentrated on a portion having a large mass. The mass at the center is increased by the mass of, and the energy is concentrated (confined) at the center. As a result, when supporting the crystal resonator element in the package, it is possible to support the edge by a supporter or the like without affecting its characteristics.
[0003]
However, it has been known how much energy can be confined in the center of a quartz-crystal vibrating element using a flat quartz substrate having a uniform thickness. For this reason, conventionally, the energy amount shown in FIGS. 5A and 5B has been known. As shown in the plan view and the front view, the excitation electrode 105 is formed by forming the convex surface 102 of the same shape on each of the front and back surfaces at the center of the quartz substrate 101, and the thickness of the substrate edge 103 is reduced. A mesa-shaped quartz-crystal vibrating element 100 in which lead electrodes 106 extending from an excitation electrode 105 are formed on both surfaces of a thin portion is used. In the crystal vibrating element 100 using the crystal substrate 101 having such a shape, it is possible to secure excitation in a desired vibration mode while reducing the area of the crystal substrate. Can be handled. A conventional example of this type of crystal resonator is disclosed in, for example, Japanese Patent Application Laid-Open No. 51-24892.
However, in the case of the mesa-type crystal resonator element, since the outer periphery of the convex surface 102 has a sharp step, disconnection is likely to occur at the boundary between the excitation electrode 105 and the lead electrode 106, which lowers the reliability. It is a cause to cause.
[0004]
As shown in FIG. 6, when a piezoelectric device such as a crystal resonator is constructed by housing the crystal resonator element 100 in a recess of a surface mounting package 110, one of the thin substrate edges 103a is connected to the other. It is necessary to support the internal terminals 111 provided on the inner bottom surface of the package in a substantially horizontal cantilever state using a conductive adhesive 112. At this time, between the lower surface of one substrate edge 103a and the internal terminal 111, the convex surface 102 on which the excitation electrode 105 of the quartz substrate 101 is formed is not in contact with the inner bottom surface of the package so that free vibration is not restricted. It is necessary to make the thickness of the adhesive sufficiently thick. The conductive adhesive 112 has a configuration in which silver particles are kneaded in a resin adhesive, and is softened once by being heated in a heating furnace while supporting the edge 103a of the crystal resonator element 100. The quartz vibrating element is gradually hardened, but when softened, the quartz vibrating element is displaced from the initial height position toward the internal terminal 111 due to its own weight. Therefore, a large amount of the conductive adhesive 112 on the internal terminal 111 is applied in consideration of the downward displacement, but if the amount of the adhesive is excessive, the adhesive softened during heating and melting becomes close. Since there is a possibility that a bridge may be generated by spreading to the other internal terminal 111 or the lead electrode 106 side, the amount of the adhesive that can be used is limited.
[0005]
As described above, although there is a limit in the amount of adhesive that can be applied between the lower surface of the substrate edge 103a and the internal terminal 111, the lower surface of the edge 103a of the crystal substrate is Since it is retracted upward by a step difference from the convex surface 102, even if the maximum amount of adhesive that can be applied is applied to the lower surface of the edge 103a to connect with the internal terminal 111, it protrudes downward. The distance between the excitation electrode formed on the convex surface 102 and the inner bottom surface of the package is close. When the quartz vibrating element is displaced downward during heating, it comes closer. In addition, since the depth of the recess is reduced due to the reduction in height of the package, it is also difficult to unnecessarily increase the distance between the lower convex surface 102 and the inner bottom surface of the package.
Therefore, in a conventional surface-mount type crystal unit using a mesa-type crystal unit, the thin edge of the crystal unit is connected to the internal terminal on the bottom surface of the package with a conductive adhesive. When holding and supporting the package, there is a great limitation in reducing the thickness of the package by making the recesses shallow.
[Patent Document 1] Japanese Patent Laid-Open Publication No. Sho 51-24892
[Problems to be solved by the invention]
The present invention has been made in view of the above, and in a mesa-type piezoelectric vibrating element, a step is formed between a thick central portion on which an excitation electrode is formed and a thin portion located on the periphery of the thick central portion. An object of the present invention is to eliminate the problem of disconnection and poor connection between a lead electrode formed on a thin portion and an excitation electrode due to the presence thereof.
In the case of a piezoelectric device with a structure in which a mesa-type piezoelectric vibrating element is hermetically sealed in a surface mount package, when the thin substrate edge is cantilevered on the internal terminals on the bottom surface of the package with conductive adhesive Another object of the present invention is to solve such a problem that a convex surface of a substrate on which an excitation electrode is formed contacts an inner bottom surface of a package to cause an operation failure due to a limited amount of usable adhesive.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, a mesa structure piezoelectric substrate according to the invention of claim 1 is a mesa structure piezoelectric substrate in which the thickness of a central portion where an excitation electrode is formed is thicker than a peripheral portion. The lead electrode forming portions extending from the thick central portion on the side toward one edge of the substrate are thick ridges.
In the conventional mesa-type piezoelectric substrate, the central portion forming the excitation electrode has a convex surface, the peripheral portion is thin, and the lead electrode is formed on the surface of the thin portion. Therefore, it is formed on the upper surface of the thick portion. The connection between the excitation electrode and the lead electrode forms a step, which causes disconnection or poor connection due to poor adhesion of the electrode film, causing defective products. In the present embodiment, the protruding ridge for forming the lead electrode is drawn out from the thick central portion toward the edge of the substrate, so that the excitation electrode and the lead electrode are located on a continuous flat surface. There is no room for problems such as disconnection caused by this.
A second aspect of the present invention is characterized in that, in the first aspect, at least a part of the other end of the substrate opposite to the one end of the substrate is a thick portion with the center portion of the thick wall interposed therebetween.
When one end of the piezoelectric vibrating element is cantilevered by a conductive adhesive in the package, and the other end of the piezoelectric vibrating element is inclined downward, the excitation electrode located on the central convex portion comes into contact with the bottom surface of the package. Therefore, the free vibration may be hindered, and the characteristics may become unstable or deteriorate. Therefore, in the present invention, a thick portion is provided at the other end edge of the piezoelectric vibrating element, and the thick portion comes into contact with the inner bottom surface of the package when the piezoelectric vibrating element is inclined. The possibility of contact with the bottom surface in the package can be completely eliminated.
According to a third aspect of the present invention, there is provided a piezoelectric vibrating element, wherein excitation electrodes are formed on both front and back surfaces of the thick central portion of the piezoelectric substrate according to the first or second aspect, and the lead electrode formation portions on both front and back surfaces are formed. A lead electrode is formed.
A piezoelectric vibrator according to a fourth aspect of the present invention is characterized in that the piezoelectric vibrating element according to the third aspect is hermetically housed in a surface mounting package.
According to a fifth aspect of the present invention, there is provided a piezoelectric oscillator including the piezoelectric vibrating element according to the third aspect, or the piezoelectric vibrator according to the fourth aspect, and an oscillation circuit.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to embodiments shown in the drawings.
In the following embodiments, a quartz vibrating element will be described as an example of a piezoelectric vibrating element.
1 (a), 1 (b) and 1 (c) are an external perspective view, a plan view, and a side view of a quartz-crystal vibrating element according to one embodiment of the present invention, and FIG. 2 accommodates this quartz-crystal vibrating element in a package. FIG. 3 is a cross-sectional view of a surface-mount type crystal unit having the above-described configuration.
In the crystal vibrating element 1 shown in FIG. 1, the excitation electrode 3 and the lead electrode 4 are respectively formed on the front and back surfaces of a mesa-type crystal substrate 2 in which the thickness of the center part where the excitation electrode is formed is thicker than the peripheral part. It has a configuration.
The piezoelectric substrate 2 has a characteristic in its shape. As shown in the drawing, the piezoelectric substrate 2 has a thick central portion (convex surface) 10 (10a, 10b) on both the front and back surfaces of the piezoelectric substrate, and extends to one substrate edge 2A. A characteristic feature is that the narrow band-shaped lead electrode forming portions 11 (11a, 11b) extending toward each other are formed as thick ridges. The upper surface of each thick central portion 10 and the upper surface of the lead electrode forming portion 11 are both flat and continuous in a stepless manner. Each of the lead electrode forming portions 11a and 11b once terminates at the edge of the substrate, and short lead electrode forming portions 11a 'and 11b' are formed on the corresponding opposite side surfaces.
Excitation electrodes 3a and 3b are formed on the flat upper surfaces of the thick central portions 10a and 10b, respectively, and the lead electrodes 4a and 4b extending from the excitation electrodes 3a and 3b are used as lead electrode forming portions 11a and 11b having flat upper surfaces. Formed continuously on top. For this reason, there is no room for disconnection at the step portion in the conventional mesa-type quartz resonator. Further, there is no problem that the electric resistance value increases in the state of poor application of the electrode film that does not lead to disconnection.
The lead electrodes 4a and 4b of the lead electrode forming portions 11a and 11b extend continuously to the upper surfaces of the short lead electrode forming portions 11a 'and 11b' on the opposite side via the end face of the substrate. For this reason, it is possible to mount the crystal vibrating element 1 in any state in which any surface of the vibrating element 1 faces the bottom surface side in the package.
In addition, as a manufacturing procedure of the quartz crystal vibrating element 1, the front and back surfaces of the piezoelectric substrate are processed into a shape as illustrated by etching or the like, and then the thick central portion 10 and the lead electrode forming portion 11 are formed using a predetermined mask. The electrode film may be formed by vapor deposition or the like, or before etching the piezoelectric substrate, an electrode film corresponding to the excitation electrode and the lead electrode may be formed by vapor deposition or the like, and these electrode films may be used as masks for other portions. May be thinned by etching.
[0009]
As shown in FIG. 2, the crystal resonator 20 is completed by mounting the crystal resonator element 1 in a ceramic package 21 for surface mounting and hermetically sealing it.
The package 21 includes a container body 23 having a recess 22 on the upper surface, and a metal lid 30 fixed to the upper surface of the peripheral wall of the container body 23. The container main body 23 has mounting terminals 25 for surface mounting on the outer bottom surface thereof, and has internal terminals 26 electrically connected to the mounting terminals 25 on the inner bottom surface of the recess 22.
The crystal vibrating element 1 uses the lead electrodes 4b and 4a 'formed on the lower lead electrode forming portions 11b and 11a' by using a conductive adhesive 27 for two internal terminals 26 provided on the bottom surface inside the package. In this way, the quartz-crystal vibrating element 1 is cantilevered on the inner bottom surface of the container.
At this time, the conductive adhesive 27 is applied to the lower surfaces of the lower lead electrode forming portions 11b and 11a ′ located at the same height as the thick central portion 10b on the lower surface side, so that the minimum necessary amount of application is required. Depending on the amount, the crystal resonator element can be held at a sufficient height position. That is, in the present embodiment, the excitation electrode 3b formed on the lower surface of the thick central portion 10b of the quartz vibrating element is sufficiently separated from the inner bottom surface of the recess instead of applying the adhesive to the thin edge of the quartz substrate. In this state, it is possible to support horizontally, and even if the attitude of the quartz vibrating element is slightly inclined downward, it is possible to prevent the contact between the excitation electrode 3b and the bottom surface in the recess.
In addition, even when the lead electrode forming portion is configured to be thick as described above, and this portion and the internal terminal in the package are cantilevered by a conductive adhesive, even if the crystal resonator element is greatly inclined downward, However, it cannot be said that there is no fear that the excitation electrode 3b contacts the bottom surface in the recess.
[0010]
FIGS. 3A and 3B are configuration examples of a crystal vibrating element for coping with such a problem. FIG. 3A is a perspective view, FIG. 3B is a plan view, FIG. 3C is a side view, and FIG. . FIG. 4 is a cross-sectional view showing a package structure of a crystal unit using the crystal unit. 1 and 2 will be described with the same reference numerals.
The crystal vibrating element 1 according to this embodiment has a configuration in which at least a part of the other end 2B of the substrate opposite to the one end 2A of the substrate is sandwiched by the thick portion 15 with the thick central portion 10 of the piezoelectric substrate 2 interposed therebetween. It is characteristic.
As described above, when the thick portion of one end 2A is supported on the internal terminal 26 by the conductive adhesive 27, the thick portion 15 is provided on the other end 2B on the opposite side. When the vibrating element is tilted downward, only the thick portion 15 contacts the bottom surface of the recess, so that the excitation electrode 3 and the bottom surface of the central thick portion do not contact the bottom surface of the recess, so that free vibration is not hindered. And stable characteristics can be maintained.
Note that the crystal resonator element or the crystal resonator of the present invention can be combined with a circuit component constituting an oscillation circuit or the like (not shown) to construct a crystal oscillator for surface mounting.
[0011]
【The invention's effect】
As described above, according to the present invention, in the mesa-type piezoelectric vibrating element, there is a step between the thick central portion where the excitation electrode is formed and the thin portion located at the periphery of the thick central portion. Accordingly, it is possible to eliminate the problem of disconnection and poor connection between the lead electrode formed on the thin portion and the excitation electrode.
In the case of a piezoelectric device with a structure in which a mesa-type piezoelectric vibrating element is hermetically sealed in a surface mounting package, the thin substrate edge is cantilevered on the internal terminals on the bottom surface of the package with conductive adhesive. In addition, it is possible to solve a problem such as that the convex surface of the substrate on which the excitation electrode is formed comes into contact with the bottom surface of the package to cause an operation failure due to the limitation of the usable amount of adhesive.
[Brief description of the drawings]
FIGS. 1A, 1B, and 1C are an external perspective view, a side view, and a plan view of a crystal resonator element according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view of a surface-mounted crystal resonator having a configuration in which a crystal resonator element is housed in a package.
3A and 3B show a configuration example of a crystal resonator element according to another embodiment of the present invention, wherein FIG. 3A is a perspective view, FIG. 3B is a plan view, and FIG.
FIG. 4 is a cross-sectional view illustrating a package configuration of a crystal resonator using a crystal resonator element.
FIGS. 5A and 5B are configuration diagrams of a piezoelectric vibration element according to a conventional example.
FIG. 6 is a view for explaining a drawback of a conventional piezoelectric vibrator.
[Explanation of symbols]
1 Quartz crystal vibrating element (piezoelectric vibrating element), 2 Quartz crystal substrate (piezoelectric substrate), 3, 3a, 3b Exciting electrode, 4, 4a, 4b Lead electrode, 10, 10a, 10b Thick central part, 11, 11a, 11b lead Electrode forming part, 20 crystal oscillator (piezoelectric oscillator), 21 package, 22 recess, 23 container body, 25 mounting terminal, 26
Internal terminals, 27 conductive adhesive, 30 metal lid.

Claims (5)

励振電極を形成する中央部の厚さが周縁部よりも厚いメサ構造の圧電基板において、該圧電基板の表裏両面側の厚肉の中央部から基板一端縁に向けて夫々延びるリード電極形成部を厚肉の突条としたことを特徴とするメサ構造の圧電基板。In a piezoelectric substrate having a mesa structure in which the thickness of the central portion where the excitation electrode is formed is thicker than the peripheral portion, a lead electrode forming portion extending from the thick central portion on both front and back sides of the piezoelectric substrate toward one edge of the substrate is provided. A piezoelectric substrate having a mesa structure characterized by a thick ridge. 前記厚肉の中央部をはさんで前記基板一端縁と反対側の基板他端縁の少なくとも一部を厚肉部としたことを特徴とする請求項1に記載のメサ構造の圧電基板。The mesa structure piezoelectric substrate according to claim 1, wherein at least a part of the other end of the substrate opposite to the one end of the substrate is formed as a thick portion with the central portion of the thick sandwiched therebetween. 請求項1又は2に記載の圧電基板の前記厚肉の中央部の表裏両面に励振電極を形成すると共に、表裏両面側の前記リード電極形成部にリード電極を形成したことを特徴とする圧電振動素子。3. The piezoelectric vibration according to claim 1, wherein an excitation electrode is formed on both front and back surfaces of the thick central portion of the piezoelectric substrate according to claim 1 and a lead electrode is formed on the lead electrode formation portion on both front and back surfaces. element. 請求項3に記載の圧電振動素子を表面実装用のパッケージ内に気密収容したことを特徴とする圧電振動子。A piezoelectric vibrator, wherein the piezoelectric vibrating element according to claim 3 is hermetically housed in a surface mounting package. 請求項3に記載の圧電振動素子、或いは請求項4に記載の圧電振動子と、発振回路と、を備えたことを特徴とする圧電発振器。A piezoelectric oscillator comprising the piezoelectric vibrating element according to claim 3 or the piezoelectric vibrator according to claim 4 and an oscillation circuit.
JP2002363951A 2002-12-16 2002-12-16 Piezoelectric substrate of mesa structure, piezoelectric vibration element, piezoelectric vibrator, and piezoelectric oscillator Pending JP2004200777A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002363951A JP2004200777A (en) 2002-12-16 2002-12-16 Piezoelectric substrate of mesa structure, piezoelectric vibration element, piezoelectric vibrator, and piezoelectric oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002363951A JP2004200777A (en) 2002-12-16 2002-12-16 Piezoelectric substrate of mesa structure, piezoelectric vibration element, piezoelectric vibrator, and piezoelectric oscillator

Publications (1)

Publication Number Publication Date
JP2004200777A true JP2004200777A (en) 2004-07-15

Family

ID=32761958

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002363951A Pending JP2004200777A (en) 2002-12-16 2002-12-16 Piezoelectric substrate of mesa structure, piezoelectric vibration element, piezoelectric vibrator, and piezoelectric oscillator

Country Status (1)

Country Link
JP (1) JP2004200777A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009130543A (en) * 2007-11-21 2009-06-11 Epson Toyocom Corp Mesa-type vibrating piece, mesa-type vibrating device, and method for manufacturing mesa-type vibrating device
JP2010081473A (en) * 2008-09-29 2010-04-08 Epson Toyocom Corp Inspection method of piezoelectric vibrator and piezoelectric vibrator
JP2010114620A (en) * 2008-11-06 2010-05-20 Epson Toyocom Corp Piezoelectric element, piezoelectric device, and method of manufacturing the piezoelectric element
JP2010147625A (en) * 2008-12-17 2010-07-01 Epson Toyocom Corp Piezoelectric vibrator
JP2011211339A (en) * 2010-03-29 2011-10-20 Kyocera Kinseki Corp Piezoelectric device
JP2012191300A (en) * 2011-03-09 2012-10-04 Seiko Epson Corp Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, and electronic device
JP2012191299A (en) * 2011-03-09 2012-10-04 Seiko Epson Corp Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, and electronic device
JP2013138479A (en) * 2013-02-15 2013-07-11 Seiko Epson Corp Vibration element and vibration device
JP2013141311A (en) * 2013-03-29 2013-07-18 Seiko Epson Corp Piezoelectric element, piezoelectric device and method for manufacturing piezoelectric element
JP2013141312A (en) * 2013-03-29 2013-07-18 Seiko Epson Corp Inspection method of piezoelectric vibrator and piezoelectric vibrator
JP2014075848A (en) * 2014-01-14 2014-04-24 Seiko Epson Corp Vibration piece and oscillator
JP2014180050A (en) * 2014-06-19 2014-09-25 Seiko Epson Corp Vibration element, vibration device, and method for manufacturing vibration element
JP2015037321A (en) * 2013-08-13 2015-02-23 サムソン エレクトロ−メカニックス カンパニーリミテッド. Piezoelectric vibration element and vibration element package including the same
US9030078B2 (en) 2011-03-09 2015-05-12 Seiko Epson Corporation Vibrating element, vibrator, oscillator, and electronic device
US9431995B2 (en) 2014-07-31 2016-08-30 Seiko Epson Corporation Resonator element, resonator, resonator device, oscillator, electronic device, and mobile object
US9948275B2 (en) 2011-03-18 2018-04-17 Seiko Epson Corporation Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, and electronic device
WO2020195818A1 (en) * 2019-03-27 2020-10-01 株式会社村田製作所 Vibration element, vibrator, and method for manufacturing vibration element

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009130543A (en) * 2007-11-21 2009-06-11 Epson Toyocom Corp Mesa-type vibrating piece, mesa-type vibrating device, and method for manufacturing mesa-type vibrating device
JP2010081473A (en) * 2008-09-29 2010-04-08 Epson Toyocom Corp Inspection method of piezoelectric vibrator and piezoelectric vibrator
JP2010114620A (en) * 2008-11-06 2010-05-20 Epson Toyocom Corp Piezoelectric element, piezoelectric device, and method of manufacturing the piezoelectric element
JP2010147625A (en) * 2008-12-17 2010-07-01 Epson Toyocom Corp Piezoelectric vibrator
JP2011211339A (en) * 2010-03-29 2011-10-20 Kyocera Kinseki Corp Piezoelectric device
JP2012191299A (en) * 2011-03-09 2012-10-04 Seiko Epson Corp Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, and electronic device
US9837982B2 (en) 2011-03-09 2017-12-05 Seiko Epson Corporation Vibrating element, vibrator, oscillator, and electronic device with stepped excitation section
JP2012191300A (en) * 2011-03-09 2012-10-04 Seiko Epson Corp Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, and electronic device
US9030078B2 (en) 2011-03-09 2015-05-12 Seiko Epson Corporation Vibrating element, vibrator, oscillator, and electronic device
US9948275B2 (en) 2011-03-18 2018-04-17 Seiko Epson Corporation Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, and electronic device
JP2013138479A (en) * 2013-02-15 2013-07-11 Seiko Epson Corp Vibration element and vibration device
JP2013141311A (en) * 2013-03-29 2013-07-18 Seiko Epson Corp Piezoelectric element, piezoelectric device and method for manufacturing piezoelectric element
JP2013141312A (en) * 2013-03-29 2013-07-18 Seiko Epson Corp Inspection method of piezoelectric vibrator and piezoelectric vibrator
JP2015037321A (en) * 2013-08-13 2015-02-23 サムソン エレクトロ−メカニックス カンパニーリミテッド. Piezoelectric vibration element and vibration element package including the same
CN104378077A (en) * 2013-08-13 2015-02-25 三星电机株式会社 Piezoelectric vibration element and vibration element package having the same
JP2014075848A (en) * 2014-01-14 2014-04-24 Seiko Epson Corp Vibration piece and oscillator
JP2014180050A (en) * 2014-06-19 2014-09-25 Seiko Epson Corp Vibration element, vibration device, and method for manufacturing vibration element
US9716484B2 (en) 2014-07-31 2017-07-25 Seiko Epson Corporation Resonator element, resonator, resonator device, oscillator, electronic device, and mobile object
US9431995B2 (en) 2014-07-31 2016-08-30 Seiko Epson Corporation Resonator element, resonator, resonator device, oscillator, electronic device, and mobile object
WO2020195818A1 (en) * 2019-03-27 2020-10-01 株式会社村田製作所 Vibration element, vibrator, and method for manufacturing vibration element
US12034432B2 (en) 2019-03-27 2024-07-09 Murata Manufacturing Co., Ltd. Vibration element, vibrator, and method for producing vibration element with a vibrating piece having a protruding part for improved vibration characteristics

Similar Documents

Publication Publication Date Title
JP2004200777A (en) Piezoelectric substrate of mesa structure, piezoelectric vibration element, piezoelectric vibrator, and piezoelectric oscillator
JP2002319838A (en) Piezoelectric device and its package
JP2004200917A (en) Piezoelectric vibrating reed, piezoelectric device using the piezoelectric vibrating reed, and mobile phone device using the piezoelectric device and electronic equipment using the piezoelectric device
US7012355B2 (en) Crystal unit
JP7528946B2 (en) Piezoelectric vibration plate, piezoelectric vibration device, and method for manufacturing the piezoelectric vibration device
US20230246632A1 (en) Crystal oscillation element and crystal oscillator
US6362561B1 (en) Piezoelectric vibration device and piezoelectric resonance component
JP5772081B2 (en) Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, and electronic device
EP2355342A2 (en) Piezoelectric vibrator and oscillator using the same
JP5772082B2 (en) Piezoelectric vibration element, piezoelectric vibrator, piezoelectric oscillator, and electronic device
JP2009188483A (en) Piezoelectric device and surface mount piezoelectric oscillator
US7126260B2 (en) Surface mount crystal unit
JP2013042440A (en) Piezoelectric vibrating element, piezoelectric vibrator, electronic device and electronic apparatus
JP2009159000A (en) Inverse mesa type piezoelectric vibrating piece, reverse mesa type piezoelectric device, and method of manufacturing reverse mesa type piezoelectric device
JP2000278079A (en) Piezoelectric device
TW202439778A (en) Piezoelectric vibrating piece and piezoelectric vibrating device
JP2008131197A (en) Piezoelectric vibrator and method for manufacturing the piezoelectric vibrator
JP2008278110A (en) Piezoelectric oscillator
JP2016040950A (en) Vibration element, vibrator, electronic device, and electronic apparatus
CN107210725A (en) Quartz crystal and crystal resonator device
JP2003163567A (en) Crystal oscillator
JP2001237665A (en) Surface mount container and crystal resonator using the same
JP5101369B2 (en) Piezoelectric device
JP2000269772A (en) Electronic component
KR20170029232A (en) Piezoelectric vibration piece, and piezoelectric device