[go: up one dir, main page]

JP2004200679A - Method for manufacturing multilayer circuit board - Google Patents

Method for manufacturing multilayer circuit board Download PDF

Info

Publication number
JP2004200679A
JP2004200679A JP2003407890A JP2003407890A JP2004200679A JP 2004200679 A JP2004200679 A JP 2004200679A JP 2003407890 A JP2003407890 A JP 2003407890A JP 2003407890 A JP2003407890 A JP 2003407890A JP 2004200679 A JP2004200679 A JP 2004200679A
Authority
JP
Japan
Prior art keywords
insulating layer
laminate
shrinkage
circuit board
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003407890A
Other languages
Japanese (ja)
Inventor
Tsutomu Oda
勉 小田
Akihiro Sakanoue
聡浩 坂ノ上
Norio Nakano
紀男 中野
Kazumasa Furuhashi
和雅 古橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2003407890A priority Critical patent/JP2004200679A/en
Publication of JP2004200679A publication Critical patent/JP2004200679A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

【課題】面方向の収縮を抑制させることにより、変形や層間剥離の発生を抑え、寸法精度を高くすることができる多層回路基板の製造方法を提供する。
【解決手段】第1の無機組成物から成る複数の第1絶縁層1a〜1fと、前記第1絶縁層よりも厚みが厚く、熱の印加に伴い前記第1絶縁層よりも高温で収縮を開始する第2の無機組成物からなる複数の第2絶縁層1g〜1kとを積層して形成した積層体を、第2絶縁層の収縮開始温度よりも低く、且つ第1絶縁層の収縮開始温度より高い第1の温度領域で加熱することにより、第1絶縁層1a〜1fをその面方向に比して厚み方向に大きく収縮させ、しかる後、前記積層体を、第2絶縁層の収縮開始温度よりも高い第2の温度領域で加熱することにより、第2絶縁層1g〜1kをその面方向に比して厚み方向に大きく収縮させて、前記積層体を焼結させる。
【選択図】図2
An object of the present invention is to provide a method of manufacturing a multilayer circuit board capable of suppressing deformation and delamination by suppressing shrinkage in a plane direction and improving dimensional accuracy.
A plurality of first insulating layers made of a first inorganic composition, which are thicker than the first insulating layer and shrink at a higher temperature than the first insulating layer with the application of heat. The laminated body formed by laminating the plurality of second insulating layers 1g to 1k made of the second inorganic composition to be started is lower than the shrinkage starting temperature of the second insulating layer and starts shrinking of the first insulating layer. By heating in a first temperature region higher than the temperature, the first insulating layers 1a to 1f are largely contracted in the thickness direction as compared with the plane direction, and then the laminate is shrunk by the second insulating layer. By heating in a second temperature range higher than the starting temperature, the second insulating layers 1g to 1k are largely shrunk in the thickness direction as compared with the plane direction, and the laminate is sintered.
[Selection diagram] FIG.

Description

本発明は、半導体装置や複合電子部品等に用いられる多層配線基板の製造方法に関するものである。   The present invention relates to a method for manufacturing a multilayer wiring board used for a semiconductor device, a composite electronic component, and the like.

従来より、半導体装置や複合電子部品等に多層回路基板が用いられている。   Conventionally, multilayer circuit boards have been used for semiconductor devices, composite electronic components, and the like.

かかる従来の多層回路基板としては、例えば、無機組成物から成る複数の絶縁層を積層した積層体の内部に配線導体やビアホール導体を設けてこれらを相互に接続し、更に前記積層体の一主面に電子部品素子を接続するための搭載部を設けた構造のものが知られており、また、その寸法精度を高くするために、異なる無機組成物で形成した2種類の絶縁層を組み合わせることによって多層回路基板を構成することが知られている(例えば、特許文献1参照)。   As such a conventional multilayer circuit board, for example, a wiring conductor or a via-hole conductor is provided inside a laminate in which a plurality of insulating layers made of an inorganic composition are laminated, and these are connected to each other. Known is a structure in which a mounting portion for connecting an electronic component element is provided on the surface, and in order to increase the dimensional accuracy, a combination of two types of insulating layers formed of different inorganic compositions is used. It is known that a multi-layer circuit board is constituted by such a method (for example, see Patent Document 1).

上述した多層回路基板を製造する場合は、まず図3に示すように複数の絶縁層31a〜31eを用意し、それぞれの絶縁層に配線導体32やビアホール導体33を設ける。しかる後、図4に示すように絶縁層31a〜31eを積層してこれを一体焼成することにより、多層回路基板30が製作される。このとき、絶縁層31a、31c、31eを形成する無機組成物と、絶縁層31b、31dを形成する無機組成物とでは、焼成に伴い収縮を開始する温度が相互に異なっている。   When manufacturing the above-described multilayer circuit board, first, as shown in FIG. 3, a plurality of insulating layers 31a to 31e are prepared, and a wiring conductor 32 and a via-hole conductor 33 are provided on each of the insulating layers. Thereafter, as shown in FIG. 4, the insulating layers 31a to 31e are stacked and baked integrally, whereby the multilayer circuit board 30 is manufactured. At this time, the inorganic composition forming the insulating layers 31a, 31c and 31e and the inorganic composition forming the insulating layers 31b and 31d have different temperatures at which shrinkage starts with firing.

このような多層回路基板の製造方法によれば、収縮開始温度の低い絶縁層が収縮を開始した際は、未焼結状態にある収縮開始温度の高い絶縁層により面方向における収縮が抑制される。一方、収縮開始温度の高い絶縁層が収縮を開始した際は、収縮開始温度の低い絶縁層により面方向における収縮が抑制される。以上のようなメカニズムにより、積層体の面方向への収縮を抑制し、厚み方向に大きく収縮させることで、多層回路基板の寸法精度を高くなす試みがなされている。
特開2001−15875号公報
According to such a method of manufacturing a multilayer circuit board, when an insulating layer having a low shrinkage start temperature starts shrinking, shrinkage in a plane direction is suppressed by the insulating layer having a high shrinkage start temperature in an unsintered state. . On the other hand, when the insulating layer having a high shrinkage start temperature starts shrinking, the shrinkage in the plane direction is suppressed by the insulating layer having a low shrinkage start temperature. Attempts have been made to increase the dimensional accuracy of the multilayer circuit board by suppressing shrinkage in the plane direction of the laminate and greatly shrinking in the thickness direction by the mechanism described above.
JP 2001-15875 A

しかしながら、上述した従来の製造方法においては、積層体の焼成時、収縮開始温度の低い絶縁層が収縮を開始した際に収縮による応力が大きすぎたり、収縮開始温度の高い絶縁層の剛性が不足したりすると、面方向への収縮を十分に抑制することが不可となる不都合があった。その場合、積層体の面方向への収縮が大きくなってしまうことから、多層回路基板の寸法精度が著しく低下し、多層回路基板の全体構造が変形する欠点を有していた。   However, in the above-described conventional manufacturing method, when firing the laminated body, when the insulating layer having a low shrinkage start temperature starts shrinking, the stress due to shrinkage is too large, or the rigidity of the insulating layer having a high shrinkage start temperature is insufficient. For example, there is a disadvantage that it is impossible to sufficiently suppress shrinkage in the plane direction. In this case, since the shrinkage in the plane direction of the laminated body becomes large, the dimensional accuracy of the multilayer circuit board is remarkably reduced, and the entire structure of the multilayer circuit board is disadvantageously deformed.

更に、上述した従来の製造方法によれば、積層体の最上層及び最下層は、収縮の抑制が一方面に限られてしまうため、特にその端部において面方向への収縮の応力が集中し、変形や層間剥離が発生しやすくなる。このような変形が発生すると、特にビアホール導体の近傍、キャビティ端部、積層体の端部付近において電子部品素子の搭載性が劣化するという欠点があり、また層間剥離が発生すると、積層体の絶縁性や強度の劣化を招く欠点が誘発される。   Furthermore, according to the above-described conventional manufacturing method, since the uppermost layer and the lowermost layer of the laminated body are limited in the suppression of shrinkage on only one side, the stress of shrinkage in the plane direction is concentrated particularly at the end. , Deformation and delamination are likely to occur. When such deformation occurs, there is a disadvantage that the mountability of the electronic component element is deteriorated particularly in the vicinity of the via hole conductor, the end of the cavity, and the vicinity of the end of the laminate. Defects that lead to deterioration of properties and strength are induced.

本発明は上記欠点に鑑み案出されたもので、その目的は、面方向の収縮を抑制させることにより、変形や層間剥離の発生を抑え、寸法精度を高くすることができる多層回路基板の製造方法を提供することにある。   The present invention has been devised in view of the above-described drawbacks, and has as its object to suppress the occurrence of deformation and delamination by suppressing shrinkage in the plane direction, and to manufacture a multilayer circuit board capable of increasing dimensional accuracy. It is to provide a method.

本発明の多層配線基板の製造方法は、第1の無機組成物から成る複数の第1絶縁層と、該第1絶縁層よりも厚みが厚く、熱の印加に伴い前記第1絶縁層よりも高温で収縮を開始する第2の無機組成物からなる複数の第2絶縁層とを積層して積層体を形成する工程Aと、前記積層体を、第2絶縁層の収縮開始温度よりも低く、且つ第1絶縁層の収縮開始温度より高い第1の温度領域で加熱することにより、前記第1絶縁層をその面方向に比して厚み方向に大きく収縮させ、しかる後、前記積層体を、第2絶縁層の収縮開始温度よりも高い第2の温度領域で加熱することにより、前記第2絶縁層をその面方向に比して厚み方向に大きく収縮させて、第1及び第2絶縁層を焼結させる工程Bとを含むものである。   The method for manufacturing a multilayer wiring board according to the present invention includes a plurality of first insulating layers made of a first inorganic composition, the first insulating layers being thicker than the first insulating layers, and being more intense than the first insulating layers with the application of heat. A step A of forming a laminate by laminating a plurality of second insulating layers made of a second inorganic composition that starts shrinking at a high temperature, and setting the laminate to a temperature lower than the shrinkage start temperature of the second insulating layer. And, by heating in a first temperature region higher than the shrinkage start temperature of the first insulating layer, the first insulating layer is largely shrunk in the thickness direction as compared with the plane direction, and then the laminate is removed. By heating the second insulating layer in a second temperature range higher than the shrinkage start temperature of the second insulating layer, the second insulating layer is largely shrunk in the thickness direction as compared with the surface direction, and the first and second insulation layers are shrunk. B) sintering the layer.

また、本発明の多層配線基板の製造方法は、前記工程Aにおける第1絶縁層の厚みが第2絶縁層の厚みの50%以下に設定されていることを特徴とするものである。   Further, in the method for manufacturing a multilayer wiring board of the present invention, the thickness of the first insulating layer in the step A is set to 50% or less of the thickness of the second insulating layer.

更に、本発明の多層配線基板の製造方法は、前記第1絶縁層が前記積層体の最上層及び最下層を構成していることを特徴とするものである。   Further, in the method for manufacturing a multilayer wiring board according to the present invention, the first insulating layer constitutes an uppermost layer and a lowermost layer of the laminate.

また更に、本発明の多層配線基板の製造方法は、前記積層体の一主面に電子部品素子の搭載部が設けられることを特徴とするものである。   Still further, in the method for manufacturing a multilayer wiring board according to the present invention, a mounting portion for an electronic component element is provided on one main surface of the laminate.

更にまた、本発明の多層配線基板の製造方法は、前記積層体の内部に、銀、銅、金のいずれか一種を含む導電材料から成るビアホール導体及び配線導体が配置されることを特徴とするものである。   Still further, in the method for manufacturing a multilayer wiring board according to the present invention, a via-hole conductor and a wiring conductor made of a conductive material containing any one of silver, copper, and gold are arranged inside the laminate. Things.

また、本発明の多層配線基板の製造方法は、前記工程Bにおいて第2絶縁層が収縮を開始するまでの間に、前記第1絶縁層は、その全収縮量に対し90%に相当する体積収縮が完了していることを特徴とするものである。   In the method for manufacturing a multilayer wiring board according to the present invention, the first insulating layer may have a volume corresponding to 90% of the total shrinkage before the second insulating layer starts shrinking in the step B. The contraction is completed.

更に、本発明の多層配線基板の製造方法は、前記第2絶縁層はセラミックグリーンシートにより形成され、前記第1絶縁層は第2絶縁層の主面に対する無機組成物ペーストの塗布により形成されることを特徴とするものである。   Further, in the method for manufacturing a multilayer wiring board according to the present invention, the second insulating layer is formed of a ceramic green sheet, and the first insulating layer is formed by applying an inorganic composition paste to a main surface of the second insulating layer. It is characterized by the following.

また更に、本発明の多層配線基板の製造方法は、前記工程Bにおいて第1絶縁層が収縮する際、第1絶縁層の面方向への収縮が未焼結状態の第2絶縁層の剛性により抑制され、また、第2絶縁層が収縮する際、第2絶縁層の面方向への収縮が第1絶縁層の剛性により抑制されることを特徴とするものである。   Still further, in the method for manufacturing a multilayer wiring board according to the present invention, when the first insulating layer shrinks in the step B, the shrinkage of the first insulating layer in the surface direction is caused by the rigidity of the unsintered second insulating layer. In addition, when the second insulating layer shrinks, the shrinkage of the second insulating layer in the plane direction is suppressed by the rigidity of the first insulating layer.

更にまた、本発明の多層回路基板の製造方法は、前記工程Aにおける積層体が矩形状を成しており、前記工程Bにおける熱の印加に伴い前記第1絶縁層及び第2絶縁層が、前記積層体の一辺及び該一辺と直交する他辺と平行な方向に比し前記積層体の積層方向に3倍以上大きく収縮することを特徴とするものである。   Furthermore, in the method for manufacturing a multilayer circuit board of the present invention, the laminate in the step A has a rectangular shape, and the first insulating layer and the second insulating layer are formed by applying heat in the step B. It is characterized in that the laminate shrinks at least three times more in the laminating direction of the laminate than in a direction parallel to one side of the laminate and the other side orthogonal to the one side.

本発明の多層回路基板の製造方法によれば、積層体を、第2絶縁層の収縮開始温度よりも低く、且つ第1絶縁層の収縮開始温度より高い第1の温度領域で加熱することにより、前記第1絶縁層をその面方向に比して厚み方向に大きく収縮させ、しかる後、前記積層体を、第2絶縁層の収縮開始温度よりも高い第2の温度領域で加熱することにより、前記第2絶縁層をその面方向に比して厚み方向に大きく収縮させて、第1及び第2絶縁層を焼結させている。即ち、第1絶縁層が収縮する際、第1絶縁層の面方向への収縮が未焼結状態の第2絶縁層の剛性により抑制され、また、第2絶縁層が収縮する際、第2絶縁層の面方向への収縮が第1絶縁層の剛性により抑制されることにより、結果として、面方向の収縮を抑制させることとなり、多層回路基板の反りの発生を抑え、寸法精度を高くすることができる。   According to the method for manufacturing a multilayer circuit board of the present invention, the laminate is heated in the first temperature range lower than the shrinkage start temperature of the second insulating layer and higher than the shrinkage start temperature of the first insulating layer. By shrinking the first insulating layer more largely in the thickness direction than in the plane direction, and thereafter, heating the laminate in a second temperature region higher than the shrinkage start temperature of the second insulating layer. The first and second insulating layers are sintered by shrinking the second insulating layer more largely in the thickness direction than in the plane direction. That is, when the first insulating layer contracts, the contraction of the first insulating layer in the plane direction is suppressed by the rigidity of the unsintered second insulating layer, and when the second insulating layer contracts, the second insulating layer contracts. Since the contraction of the insulating layer in the plane direction is suppressed by the rigidity of the first insulating layer, as a result, the contraction in the plane direction is suppressed, and the warpage of the multilayer circuit board is suppressed and the dimensional accuracy is increased. be able to.

また、本発明の多層回路基板の製造方法によれば、前記積層体を構成する第1絶縁層及び第2絶縁層は、高温で収縮を開始する第2絶縁層の厚みが低温で収縮を開始する第1絶縁層の厚みよりも厚くなるようにしている。これにより、収縮開始温度の低い第1絶縁層は、その収縮による応力が小さいので、収縮開始温度の高い第2絶縁層によって面方向への収縮がより効果的に抑制されることとなる。   Further, according to the method for manufacturing a multilayer circuit board of the present invention, the first insulating layer and the second insulating layer constituting the laminate start shrinking at a high temperature. The thickness of the second insulating layer starts shrinking at a low temperature. The thickness of the first insulating layer is larger than that of the first insulating layer. Thus, since the first insulating layer having a low shrinkage start temperature has a small stress due to the shrinkage, the shrinkage in the plane direction is more effectively suppressed by the second insulating layer having a high shrinkage start temperature.

更に、本発明の多層配線基板の製造方法によれば、前記工程Aにおける第1絶縁層の厚みを第2絶縁層の厚みの50%以下に設定することにより、収縮開始温度の低い第1絶縁層の面方向への収縮をよりいっそう抑制することができる。   Further, according to the method for manufacturing a multilayer wiring board of the present invention, by setting the thickness of the first insulating layer in the step A to 50% or less of the thickness of the second insulating layer, the first insulating layer having a low shrinkage onset temperature can be obtained. Shrinkage of the layer in the plane direction can be further suppressed.

また更に、本発明の多層配線基板の製造方法によれば、前記第1絶縁層で積層体の最上層及び最下層を構成している。従って、収縮開始温度の低い第1絶縁層の厚みが薄いことにより、収縮の抑制力が作用しにくい最表面についても、面方向への収縮を抑制することになるので、変形や層間剥離が発生しにくくなる。   Further, according to the method for manufacturing a multilayer wiring board of the present invention, the first insulating layer forms the uppermost layer and the lowermost layer of the multilayer body. Therefore, since the thickness of the first insulating layer having a low shrinkage start temperature is small, the shrinkage in the surface direction is suppressed even on the outermost surface where the force for suppressing shrinkage does not easily act, so that deformation or delamination occurs. It becomes difficult to do.

更にまた、本発明の多層配線基板の製造方法によれば、前記積層体の一主面に電子部品素子の搭載部が設けられた場合においても、ビアホール導体の近傍、キャビティ端部、積層体の端部等に変形が発生しにくいことにより、搭載可能な領域を広く確保することができる。   Furthermore, according to the method for manufacturing a multilayer wiring board of the present invention, even when a mounting portion for an electronic component element is provided on one main surface of the laminate, the vicinity of the via-hole conductor, the cavity end, and the laminate Since deformation is less likely to occur at the ends and the like, a wide mountable area can be ensured.

また更に、本発明の多層配線基板の製造方法によれば、絶縁層の収縮開始温度に差があっても、焼結の完成する温度は第1絶縁層、第2絶縁層共に同一でも構わないので、低温での焼結が可能となり、前記積層体の内部に、融点の低い金属である、銀、銅、金のいずれか一種を含む導電材料から成るビアホール導体及び配線導体を配置させることが可能となり、回路の導体抵抗値の低い多層回路基板を得ることができる。   Furthermore, according to the method for manufacturing a multilayer wiring board of the present invention, even when there is a difference in the shrinkage initiation temperatures of the insulating layers, the temperature at which sintering is completed may be the same for both the first insulating layer and the second insulating layer. Therefore, sintering at a low temperature becomes possible, and a via-hole conductor and a wiring conductor made of a conductive material containing any one of silver, copper, and gold, which are metals having a low melting point, can be arranged inside the laminate. This makes it possible to obtain a multilayer circuit board having a low circuit conductor resistance value.

以下、本発明を添付図面に基づいて詳細に説明する。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

図1は本発明の製造方法によって製作した多層回路基板の断面図であり、図中の1a〜1fは第1絶縁層、1g〜1kは第2絶縁層、2は配線導体、3はビアホール導体である。   FIG. 1 is a sectional view of a multilayer circuit board manufactured by the manufacturing method of the present invention, wherein 1a to 1f are first insulating layers, 1g to 1k are second insulating layers, 2 is a wiring conductor, 3 is a via hole conductor. It is.

同図に示す多層回路基板10は、第1絶縁層1a〜1f、第2絶縁層1g〜1kを積層した構造を有している。多層回路基板10の内部及び表層には、配線導体2が形成されており、表層の配線導体は、主に電子部品素子の搭載部となる接続パッドとして機能し、内部の配線導体及びビアホール導体は、主に各回路素子を電気的に接続する配線や、インダクタやキャパシタ等の回路素子として機能する。   The multilayer circuit board 10 shown in FIG. 1 has a structure in which first insulating layers 1a to 1f and second insulating layers 1g to 1k are stacked. The wiring conductors 2 are formed inside and on the surface of the multilayer circuit board 10, and the wiring conductors on the surface mainly function as connection pads serving as mounting portions for electronic component elements. Mainly function as wiring for electrically connecting each circuit element and circuit elements such as inductors and capacitors.

第1絶縁層1a〜1fは第1の無機組成物から、また第2絶縁層1g〜1kは第2の無機組成物から成り、これら無機組成物の材料としては、例えば800℃〜1200℃の比較的低い温度で焼成が可能なガラス−セラミック材料が好適に用いられる。ガラス−セラミック材料にはガラス粉末及びセラミック粉末が含まれ、ガラス粉末は30〜100重量部含まれており、ガラス粉末を除く材料がセラミック粉末となる。   The first insulating layers 1a to 1f are made of a first inorganic composition, and the second insulating layers 1g to 1k are made of a second inorganic composition. The materials of these inorganic compositions are, for example, 800 ° C to 1200 ° C. A glass-ceramic material that can be fired at a relatively low temperature is preferably used. The glass-ceramic material includes glass powder and ceramic powder. The glass powder includes 30 to 100 parts by weight, and the material excluding glass powder is ceramic powder.

本実施形態においては、例えば、第1絶縁層をガラス粉末が85重量部、第2絶縁層はガラス粉末を55重量部の組成から成る材料により製作した。   In the present embodiment, for example, the first insulating layer is made of a material having a composition of 85 parts by weight of glass powder, and the second insulating layer is made of a material having a composition of 55 parts by weight of glass powder.

ガラス粉末の具体的な組成としては、例えば、必須成分として、SiO2を20〜70重量部、Al23を0.5〜30重量部、MgOを3〜60重量部、また任意成分として、CaOを0〜35重量部、BaOを0〜35重量部、SrOを0〜35重量部、B23を0〜20重量部、ZnOを0〜30重量部、TiO2を0〜10重量部、Na2Oを0〜3重量部、Li2Oを0〜5重量部含むものが挙げられる。 As a specific composition of the glass powder, for example, as essential components, 20 to 70 parts by weight of SiO 2 , 0.5 to 30 parts by weight of Al 2 O 3 , 3 to 60 parts by weight of MgO, and as an optional component , 0 to 35 parts by weight of CaO, 0 to 35 parts by weight 0 to 35 parts by weight, the SrO and BaO, B 2 O 3 0 to 20 parts by weight, 0 to 30 parts by weight of ZnO, the TiO 2 0 parts, 0-3 parts by weight of Na 2 O, include those containing 0-5 parts by weight of Li 2 O.

セラミック粉末としては、Al23、SiO2、MgTiO3、CaZrO3、CaTiO3、Mg2SiO4、BaTi49、ZrTiO4、SrTiO3、BaTiO3、TiO2から選ばれる1種以上が挙げられる。 As the ceramic powder, at least one selected from Al 2 O 3 , SiO 2 , MgTiO 3 , CaZrO 3 , CaTiO 3 , Mg 2 SiO 4 , BaTi 4 O 9 , ZrTiO 4 , SrTiO 3 , BaTiO 3 , and TiO 2 No.

上記組成のガラス粉末とセラミック粉末との組み合わせによれば、1000℃以下での低温焼結が可能となるとともに、導体層として、銀(融点960℃)、銅(融点1083℃)、金(融点1063℃)などの低抵抗導体を用いて形成することが可能となり、低損失な回路を作成できる。また、誘電率の制御も可能であり、高誘電率化による回路の小型化、低損失化、あるいは、低誘電率化による高速伝送化に適している。しかも、上記の範囲で種々組成を制御することによって、焼成収縮挙動を容易に制御、変更することができる。   According to the combination of the glass powder and the ceramic powder having the above composition, sintering at a low temperature of 1000 ° C. or less is possible, and silver (melting point: 960 ° C.), copper (melting point: 1083 ° C.), gold (melting point: 1063 ° C.), and a low-loss circuit can be formed. Further, the dielectric constant can be controlled, which is suitable for miniaturization and low loss of the circuit by increasing the dielectric constant, or high-speed transmission by decreasing the dielectric constant. In addition, by controlling various compositions within the above range, the firing shrinkage behavior can be easily controlled and changed.

尚、配線導体2やビアホール導体3は銀、銅、金のいずれか一種を含む導電材料からから成り、その厚みは例えば5〜25μmに設定される。   Note that the wiring conductor 2 and the via-hole conductor 3 are made of a conductive material containing any one of silver, copper, and gold, and the thickness is set to, for example, 5 to 25 μm.

また、ビアホール導体3の直径は任意に設定することができ、ビアホール導体3が埋設される絶縁層の厚みが10〜300μmの場合、ビアホール導体3の直径は例えば50〜300μmに設定される。   The diameter of the via-hole conductor 3 can be set arbitrarily. When the thickness of the insulating layer in which the via-hole conductor 3 is embedded is 10 to 300 μm, the diameter of the via-hole conductor 3 is set to, for example, 50 to 300 μm.

次に上述した多層配線基板の製造方法について、図を用いて説明する。   Next, a method for manufacturing the above-described multilayer wiring board will be described with reference to the drawings.

(工程A)
図2に示す1a〜1fは、第1の無機組成物から成る第1絶縁層であり、1g〜1kは、第2の無機組成物から成る第2絶縁層である。これらの絶縁層は、例えば上述したガラス粉末とセラミック粉末とを組み合わせた粉末に、有機バインダと有機溶剤及び必要に応じて可塑剤とを混合してスラリー化し、このスラリーを用いてドクターブレード法などによりテープ成形を行い、所定寸法に切断することによって得られるセラミックグリーンシートである。このとき、第1絶縁層1a〜1fは、第2絶縁層1g〜1kに比して厚みが薄く形成されており、第1絶縁層1a〜1fの各々の厚みは、例えば2〜150μmに設定され、第2絶縁層1g〜1kの各々の厚みは、例えば10〜300μmに設定される。
(Step A)
1a to 1f shown in FIG. 2 are first insulating layers made of a first inorganic composition, and 1g to 1k are second insulating layers made of a second inorganic composition. These insulating layers are, for example, mixed with an organic binder, an organic solvent and, if necessary, a plasticizer into powder obtained by combining the above-described glass powder and ceramic powder, and slurried. This is a ceramic green sheet obtained by forming a tape by using the above method and cutting it into a predetermined size. At this time, the first insulating layers 1a to 1f are formed thinner than the second insulating layers 1g to 1k, and the thickness of each of the first insulating layers 1a to 1f is set to, for example, 2 to 150 μm. The thickness of each of the second insulating layers 1g to 1k is set, for example, to 10 to 300 μm.

次に、第1絶縁層と第2絶縁層とを貼り合わせ、得られたシートにパンチングなどによって貫通孔を形成し、その貫通孔内に導体ペーストを充填してビアホール導体3を形成し、シートの主面には導体ペーストをスクリーン印刷法などによって被着させて配線導体2を形成する。   Next, the first insulating layer and the second insulating layer are bonded to each other, a through hole is formed in the obtained sheet by punching or the like, and a conductive paste is filled in the through hole to form a via-hole conductor 3. A conductor paste is applied to the main surface of the substrate by a screen printing method or the like to form the wiring conductor 2.

本実施形態においては、例えば、第1の無機組成物はガラス粉末が、SOを40重量部、Alを2重量部、MgOを15重量部、CaOを1重量部、BaOを15重量部、Bを20重量部、ZnOを1重量部、TiOを0.5重量部、NaOを0.5重量部、LiOを5重量部と、セラミック粉末が、MgTiOを15重量部の組成から成り、また第2の無機組成物はガラス粉末が、SOを40重量部、Alを2重量部、MgOを15重量部、CaOを1重量部、BaOを15重量部、BOを20重量部、ZnOを1重量部、TiOを0.5重量部、NaOを0.5重量部、LiOを5重量部、セラミック粉末が、Alを45重量部含む材料から成っている。これらの無機組成物に、有機バインダとしてアクリルバインダ、有機溶剤としてトルエンを添加してなるスラリーを調整し、それぞれ第1絶縁層、第2絶縁層となるセラミックグリーンシートを形成した。そして、配線導体とビアホール導体の材料は、例えば、銀粉末に、有機バインダとしてエチルセルロース、有機溶剤として2−2−4−トリメチル−3−3−ペンタジオールモノイソブチレートを添加して成るペーストを用いた。 In the present embodiment, for example, as the first inorganic composition, the glass powder is 40 parts by weight of SO 2 , 2 parts by weight of Al 2 O 3 , 15 parts by weight of MgO, 1 part by weight of CaO, and 15 parts by weight of BaO. Parts by weight, 20 parts by weight of B 2 O 3 , 1 part by weight of ZnO, 0.5 parts by weight of TiO 2 , 0.5 parts by weight of Na 2 O, 5 parts by weight of Li 2 O, and the ceramic powder, comprises MgTiO 3 and the composition of 15 parts by weight, and the second inorganic composition is a glass powder, a SO 2 40 parts by weight, Al 2 O 3 and 2 parts by weight, 15 parts by weight of MgO, 1 part by weight of CaO , BaO 15 parts by weight, BO 3 20 parts by weight, ZnO 1 part by weight, TiO 2 0.5 parts by weight, Na 2 O 0.5 parts by weight, Li 2 O 5 parts by weight, and ceramic powder , Al 2 O 3 of 45 parts by weight. A slurry obtained by adding an acrylic binder as an organic binder and toluene as an organic solvent to these inorganic compositions was prepared to form ceramic green sheets to be a first insulating layer and a second insulating layer, respectively. The material of the wiring conductor and the via-hole conductor is, for example, a paste obtained by adding ethyl cellulose as an organic binder and 2-2-4-trimethyl-3--3-pentadiol monoisobutyrate as an organic solvent to silver powder. Using.

このようにして得られた各シートを、所定の積層順序に応じて積層して積層体を形成する。   The sheets thus obtained are laminated in a predetermined lamination order to form a laminate.

(工程B)
次に、得られた積層体を、第2絶縁層の収縮開始温度よりも低く、且つ第1絶縁層の収縮開始温度より高い第1の温度領域で加熱することにより、前記第1絶縁層1a〜1fをその面方向に比して厚み方向に大きく収縮させている。しかる後、前記積層体を、第2絶縁層の収縮開始温度よりも高い第2の温度領域で加熱することにより、前記第2絶縁層1g〜1kをその面方向に比して厚み方向に大きく収縮させて、第1及び第2絶縁層を焼結させている。即ち、第1絶縁層1a〜1fが収縮する際、第1絶縁層1a〜1fの面方向への収縮が未焼結状態の第2絶縁層1g〜1kの剛性により抑制され、また、第2絶縁層1g〜1kが収縮する際、第2絶縁層1g〜1kの面方向への収縮が第1絶縁層1a〜1fの剛性により抑制されることにより、結果として、面方向の収縮を抑制させることとなり、多層回路基板の反りの発生を抑え、寸法精度を高くすることができる。
(Step B)
Next, the obtained laminate is heated in a first temperature region lower than the shrinkage start temperature of the second insulating layer and higher than the shrinkage start temperature of the first insulating layer, whereby the first insulating layer 1a is heated. To 1f is largely contracted in the thickness direction as compared with the surface direction. Thereafter, the laminate is heated in a second temperature range higher than the shrinkage start temperature of the second insulating layer, so that the second insulating layers 1g to 1k are larger in the thickness direction than in the plane direction. By shrinking, the first and second insulating layers are sintered. That is, when the first insulating layers 1a to 1f shrink, the shrinkage of the first insulating layers 1a to 1f in the plane direction is suppressed by the rigidity of the unsintered second insulating layers 1g to 1k. When the insulating layers 1g to 1k shrink, the shrinkage of the second insulating layers 1g to 1k in the plane direction is suppressed by the rigidity of the first insulating layers 1a to 1f. As a result, the shrinkage in the plane direction is suppressed. As a result, warpage of the multilayer circuit board can be suppressed, and dimensional accuracy can be increased.

本実施形態においては、第1絶縁層は収縮開始温度が690℃、第2絶縁層は収縮開始温度が783℃となる無機組成物により形成しており、この結果、前記積層体の焼成収縮が終了した時の面方向の線収縮率が3%と小さく、反りや変形の少ない多層回路基板を得ることができた。   In the present embodiment, the first insulating layer is formed of an inorganic composition having a shrinkage start temperature of 690 ° C., and the second insulating layer is formed of an inorganic composition having a shrinkage start temperature of 783 ° C. As a result, the firing shrinkage of the laminate is reduced. The linear shrinkage in the plane direction at the time of completion is as small as 3%, and a multilayer circuit board with less warpage and deformation can be obtained.

焼成における体積収縮については、前記工程Bにおいて第2絶縁層1g〜1kが収縮を開始するまでの間に、前記第1絶縁層1a〜1fは、その全収縮量に対し90%に相当する体積収縮が完了していることが望ましく、更に望ましくは95%以上完了していることである。   Regarding the volume shrinkage in firing, the first insulating layers 1a to 1f have a volume equivalent to 90% of the total shrinkage before the second insulating layers 1g to 1k start shrinking in the step B. It is desirable that the shrinkage be completed, more preferably 95% or more.

ここで収縮の開始とは、無機組成物の焼結に伴う収縮が開始されることを意味している。絶縁層に含まれる有機バインダーは加熱により分解、除去され、この際、0〜1%程度の収縮が発生することがあるが、これはバインダの除去に伴うものであり、無機組成物の焼結による実質的な収縮とは別のものである。脱バインダ温度は使用するバインダにより異なるが、アクリルあるいはメタクリルバインダでは500℃、ブチラールバインダでは600℃程度までに終了する。焼成における収縮開始温度については、その温度の差が10℃以上であることが望ましく、更に望ましくは20℃以上である。このような工程Bを経て積層体は焼成収縮が終了するが、本発明において、この焼成収縮の終了とは、全体積収縮が99%以上進行した時点を意味する。   Here, the start of shrinkage means that shrinkage accompanying sintering of the inorganic composition is started. The organic binder contained in the insulating layer is decomposed and removed by heating, and at this time, shrinkage of about 0 to 1% may occur. This is accompanied by the removal of the binder, and the sintering of the inorganic composition is performed. Is different from the substantial contraction by Although the binder removal temperature varies depending on the binder used, it ends up to about 500 ° C. for an acrylic or methacrylic binder and about 600 ° C. for a butyral binder. As for the shrinkage initiation temperature in firing, the difference between the temperatures is preferably 10 ° C. or more, more preferably 20 ° C. or more. Although the firing shrinkage of the laminate is completed through the process B, in the present invention, the end of the firing shrinkage means a time point at which the total volume shrinkage has progressed by 99% or more.

また、前記積層体において、熱の印加に伴い前記第1絶縁層よりも高温で収縮を開始する第2の無機組成物からなる第2絶縁層は、前記第1絶縁層よりも厚みを厚くしている。即ち、前記第1絶縁層1a〜1fの厚みは、前記第2絶縁層1g〜1kの厚みよりも薄くしている。これにより、低い収縮開始温度の第1絶縁層は、その収縮による応力が小さいので、高い収縮開始温度の第2絶縁層によって面方向への収縮がより効果的に抑制されることとなる。   Further, in the laminate, the second insulating layer made of the second inorganic composition, which starts shrinking at a higher temperature than the first insulating layer with the application of heat, is thicker than the first insulating layer. ing. That is, the thickness of the first insulating layers 1a to 1f is smaller than the thickness of the second insulating layers 1g to 1k. As a result, the stress caused by the contraction of the first insulating layer having a low shrinkage start temperature is small, so that the shrinkage in the surface direction is more effectively suppressed by the second insulating layer having a high shrinkage start temperature.

また、前記工程Aにおける第1絶縁層1a〜1fの厚みが第2絶縁層の厚みの50%以下に設定されていることにより、低い収縮開始温度の絶縁層が収縮するときの面方向への抑制がよりいっそう効果的に働くこととなる。   Further, since the thickness of the first insulating layers 1a to 1f in the step A is set to 50% or less of the thickness of the second insulating layer, the thickness of the insulating layer having a low shrinkage onset temperature in the plane direction when shrinking is reduced. The suppression will work even more effectively.

更に、前記第1絶縁層1a〜1fが積層体の最上層及び最下層を構成している。従って、収縮開始温度の低い第1絶縁層1a、1fの厚みが薄いことにより、収縮の抑制作用が働きにくい最表面についても、面方向への収縮を抑制することになるので、変形や層間剥離が発生しにくくなる。   Further, the first insulating layers 1a to 1f constitute the uppermost layer and the lowermost layer of the laminate. Accordingly, since the thickness of the first insulating layers 1a and 1f having a low shrinkage start temperature is small, the shrinkage in the surface direction is suppressed even on the outermost surface where the effect of suppressing shrinkage does not work. Is less likely to occur.

また、前記積層体の一主面に電子部品素子の搭載部が設けられた場合においても、端部等に変形が発生しにくいことにより、搭載可能な領域を広く確保することができる。   Further, even when the mounting portion of the electronic component element is provided on one main surface of the laminate, deformation is unlikely to occur at an end or the like, so that a wide mounting area can be secured.

そして、絶縁層の収縮開始温度に差があっても、焼結の完成する温度は第1絶縁層、第2絶縁層共に同一でも構わないので、低温での焼結が可能となり、前記積層体の内部に、融点の低い金属である、銀、銅、金のいずれか一種を含む導電材料から成るビアホール導体及び配線導体を配置させることが可能となり、回路の導体抵抗値の低い多層回路基板を得ることができる。   Then, even if there is a difference in the shrinkage initiation temperature of the insulating layer, the temperature at which sintering is completed may be the same for both the first insulating layer and the second insulating layer. Inside, it is possible to arrange a via-hole conductor and a wiring conductor made of a conductive material containing one of silver, copper, and gold, which are metals having a low melting point, and to form a multilayer circuit board having a low circuit conductor resistance value. Obtainable.

尚、本発明は上述の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内で種々の変更、改良等が可能である。   Note that the present invention is not limited to the above-described embodiment, and various changes, improvements, and the like can be made without departing from the gist of the present invention.

例えば上述の実施形態では、第1絶縁層1a〜1fの形成にセラミックグリーンシートを用い、これを第2絶縁層の形成に用いられるセラミックグリーンシートと貼り合わせて使用するようにしたが、これに代えて、第1絶縁層1a〜1fの形成にペースト状になした第1の無機組成物を用い、これを第2絶縁層の形成に用いられるセラミックグリーンシートの主面に、印刷等で塗布して直接形成するようにしても良い。この場合、厚みの薄い第1絶縁層がペーストの塗布等によって比較的簡単に形成されるようになり、厚みの薄い第1絶縁層をセラミックグリーンシート等で構成する場合に比し第1絶縁層を形成する際の作業性が良好となり、多層回路基板の生産性を向上させることができる利点もある。   For example, in the above-described embodiment, the ceramic green sheets are used for forming the first insulating layers 1a to 1f and bonded to the ceramic green sheets used for forming the second insulating layer. Instead, the first inorganic composition in the form of paste is used for forming the first insulating layers 1a to 1f, and this is applied to the main surface of the ceramic green sheet used for forming the second insulating layer by printing or the like. Alternatively, it may be formed directly. In this case, the first insulating layer having a small thickness can be formed relatively easily by applying a paste or the like, and the first insulating layer can be formed as compared with a case where the first insulating layer having a small thickness is formed of a ceramic green sheet or the like. Has an advantage that the workability in forming the substrate is improved and the productivity of the multilayer circuit board can be improved.

また、上述の実施形態において、積層体を第1の温度領域及び第2の温度領域で加熱する際、積層体上にその上面全体を覆うことができる大きさの重石を載せておくようにすれば、重石の加重によって多層回路基板の変形や層間剥離をより有効に防止することができる。   In the above-described embodiment, when the laminate is heated in the first temperature region and the second temperature region, a weight that is large enough to cover the entire upper surface of the laminate is placed on the laminate. For example, deformation of the multilayer circuit board and delamination can be more effectively prevented by the weight of the weight.

更に、上述の実施形態においては、第1絶縁層と第2絶縁層とを交互に積層して積層体を形成するようにしたが、これに代えて、複数の第1絶縁層や複数の第2絶縁層を厚み方向に連続して積層することにより積層体を形成するようにしても構わない。   Further, in the above-described embodiment, the stacked body is formed by alternately stacking the first insulating layers and the second insulating layers. Alternatively, a plurality of first insulating layers and a plurality of first insulating layers may be formed. A laminate may be formed by continuously laminating two insulating layers in the thickness direction.

また更に、上述の実施形態においては、第1絶縁層と第2絶縁層とを交互に積層することで第1、第2絶縁層を積層体の厚み方向にほぼ均一に分布させるようにしたが、例えば、配線導体等の分布にかかるバランスを良好に保つために、第1、第2絶縁層を積層体の厚み方向にある程度、不均一に分布させるようにしても構わない。例えば、第1、第2絶縁層が積層体の厚み方向に偏って分布している場合、第2絶縁層が積層体の厚み方向下部領域に数多く分布するように積層体を上下方向に位置設定して焼成すれば、焼成工程中、積層体の中心部付近が上方へ突出する形に変形したとしても、該突出部は積層体全体より受ける自重によって焼成が完了するまでの間に徐々に下降し、最終的には外形がほぼ平坦な多層回路基板が得られる。   Furthermore, in the above-described embodiment, the first and second insulating layers are alternately stacked to distribute the first and second insulating layers substantially uniformly in the thickness direction of the stacked body. For example, the first and second insulating layers may be distributed to some extent non-uniformly in the thickness direction of the laminate in order to maintain a good balance of the distribution of the wiring conductors and the like. For example, when the first and second insulating layers are distributed unevenly in the thickness direction of the laminate, the laminate is vertically positioned so that the second insulating layer is distributed in a large number in the lower region in the thickness direction of the laminate. If firing is performed during the firing step, even if the vicinity of the center of the laminate is deformed so as to protrude upward, the protruding portion is gradually lowered by the own weight received from the entire laminate until firing is completed. Finally, a multilayer circuit board having a substantially flat outer shape is obtained.

更にまた、本実施形態においては、配線導体等の形成に用いる導体ペーストとして、無機成分が全て銀粉末からなるものを使用するようにしたが、これにガラスフリット等の添加材を所定量添加して用いても良いことは言うまでもない。例えば、銀粉末の含有率が99.9%以上の場合、第1絶縁層が収縮開始する温度よりも低い温度(650℃以下)から収縮を開始するため、先に収縮開始した配線導体は第1絶縁層及び第2絶縁層の収縮による圧縮効果により緻密性が高められ、回路の導体抵抗値を低くすることができる。このような導体ペーストは固形分率は、例えば、90%〜99.9%の範囲に設定しておくのが好ましく、これによって配線導体の緻密性を向上させることができる。   Furthermore, in the present embodiment, as the conductor paste used for forming the wiring conductors and the like, an inorganic component composed entirely of silver powder is used, but a predetermined amount of an additive such as glass frit is added thereto. Needless to say, it may be used. For example, when the content of the silver powder is 99.9% or more, the first insulating layer starts shrinking at a temperature lower than the temperature at which shrinkage starts (650 ° C. or less). The compactness is increased by the compression effect due to the contraction of the first insulating layer and the second insulating layer, and the conductor resistance of the circuit can be reduced. It is preferable that the solid content of such a conductor paste is set, for example, in a range of 90% to 99.9%, whereby the denseness of the wiring conductor can be improved.

更にまた、本発明における積層体の最上層及び最下層とは、上述の実施形態では示していないが、積層体の主面側に露出する層のことを意味するものであり、例えば、一方主面に形成したキャビティの底面部に露出する層をも含むものである。   Furthermore, the uppermost layer and the lowermost layer of the laminate according to the present invention, which are not shown in the above embodiments, mean the layers exposed on the main surface side of the laminate, for example, It also includes a layer exposed on the bottom surface of the cavity formed on the surface.

また更に、焼成収縮が終了した後、配線導体の表面にメッキ処理等の表面処理を行っても良く、本発明においては、低温の焼成でも緻密に焼結した多層回路基板が得られるので、メッキ液等が積層体に浸食することが少なく、表面処理の工程を効率化することができる。   Further, after the firing shrinkage is completed, the surface of the wiring conductor may be subjected to a surface treatment such as a plating process. In the present invention, a multilayer circuit board which is densely sintered even at a low temperature firing can be obtained. The liquid and the like are less likely to erode the laminate, and the efficiency of the surface treatment process can be increased.

更にまた、本発明の製造方法は、複数個の多層回路基板を切り出すことができる複数個取り用の母基板を製作する場合にも適用可能である。このような複数個取り用母基板は、多層回路基板と1対1に対応する複数個の基板領域を有し、隣合う基板領域間の境界に沿って切断し、複数個の多層回路基板に分割することによって複数個の多層回路基板を同時に得る複数個取りの手法に用いられるものであり、このような複数個取り用の母基板に本発明を適用した場合、ダイシングラインが積層体の焼成に伴う変形等によって設計上の位置よりずれたり、歪んでしまうといった不都合は殆どないことから、母基板を正確に切断することができ、寸法精度の高い多層回路基板を得ることができる利点もある。   Furthermore, the manufacturing method of the present invention is also applicable to the case of manufacturing a motherboard for taking out a plurality of multilayer circuit boards, which can be cut out. Such a motherboard for taking a plurality of substrates has a plurality of substrate regions corresponding to the multilayer circuit substrate in a one-to-one relationship, and cuts along boundaries between adjacent substrate regions to form a plurality of multilayer circuit substrates. This method is used in a method of obtaining a plurality of multilayer circuit boards at the same time by dividing, and when the present invention is applied to such a mother board for obtaining a plurality of pieces, a dicing line is used for firing a laminate. There is almost no inconvenience such as displacement or distortion from the designed position due to deformation or the like, so that there is also an advantage that the mother board can be cut accurately and a multilayer circuit board with high dimensional accuracy can be obtained. .

また更に、上述した実施形態の多層回路基板上にチップ状のコンデンサやIC等の電子部品素子を実装したり、更に多層回路基板上の電子部品素子を樹脂材等で被覆するようにしても良いことは言うまでもない。   Furthermore, electronic component elements such as chip capacitors and ICs may be mounted on the multilayer circuit board of the above-described embodiment, or electronic component elements on the multilayer circuit board may be covered with a resin material or the like. Needless to say.

本発明の一実施形態に係る多層回路基板の断面図である。1 is a cross-sectional view of a multilayer circuit board according to one embodiment of the present invention. 本発明の一実施形態に係る多層回路基板の製造工程を説明する図である。It is a figure explaining a manufacturing process of a multilayer circuit board concerning one embodiment of the present invention. 従来の多層回路基板の製造工程を説明する図である。It is a figure explaining the manufacturing process of the conventional multilayer circuit board. 従来の多層回路基板の断面図である。It is sectional drawing of the conventional multilayer circuit board.

符号の説明Explanation of reference numerals

1・・・多層回路基板
1a〜1f・・・第1絶縁層
1g〜1k・・・第2絶縁層
2・・・配線導体
3・・・ビアホール導体
DESCRIPTION OF SYMBOLS 1 ... Multilayer circuit board 1a-1f ... 1st insulating layer 1g-1k ... 2nd insulating layer 2 ... Wiring conductor 3 ... Via hole conductor

Claims (9)

第1の無機組成物から成る複数の第1絶縁層と、該第1絶縁層よりも厚みが厚く、熱の印加に伴い前記第1絶縁層よりも高温で収縮を開始する第2の無機組成物からなる複数の第2絶縁層とを積層して積層体を形成する工程Aと、
前記積層体を、第2絶縁層の収縮開始温度よりも低く、且つ第1絶縁層の収縮開始温度より高い第1の温度領域で加熱することにより、前記第1絶縁層をその面方向に比して厚み方向に大きく収縮させ、しかる後、前記積層体を、第2絶縁層の収縮開始温度よりも高い第2の温度領域で加熱することにより、前記第2絶縁層をその面方向に比して厚み方向に大きく収縮させて、第1及び第2絶縁層を焼結させる工程Bとを含む多層回路基板の製造方法。
A plurality of first insulating layers made of a first inorganic composition, and a second inorganic composition which is thicker than the first insulating layer and starts to shrink at a higher temperature than the first insulating layer with the application of heat. A step A of forming a laminate by laminating a plurality of second insulating layers made of a material;
By heating the laminate in a first temperature region lower than the shrinkage start temperature of the second insulating layer and higher than the shrinkage start temperature of the first insulating layer, the first insulating layer can be heated in a plane direction. Then, the laminate is heated in a second temperature range higher than the shrinkage start temperature of the second insulating layer, so that the second insulating layer is reduced in the surface direction. B) sintering the first and second insulating layers by largely shrinking in the thickness direction to sinter the first and second insulating layers.
前記工程Aにおける第1絶縁層の厚みが第2絶縁層の厚みの50%以下に設定されていることを特徴とする請求項1に記載の多層回路基板の製造方法。 2. The method according to claim 1, wherein the thickness of the first insulating layer in the step A is set to 50% or less of the thickness of the second insulating layer. 前記第1絶縁層が前記積層体の最上層及び最下層を構成していることを特徴とする請求項1または請求項2に記載の多層回路基板の製造方法。 3. The method according to claim 1, wherein the first insulating layer forms an uppermost layer and a lowermost layer of the multilayer body. 4. 前記積層体の一主面に電子部品素子の搭載部が設けられることを特徴とする請求項3に記載の多層回路基板の製造方法。 The method for manufacturing a multilayer circuit board according to claim 3, wherein a mounting portion for an electronic component element is provided on one main surface of the laminate. 前記積層体の内部に、銀、銅、金(のいずれか一種を含む)(から選ばれた一種あるいは数種の)導電材料から成るビアホール導体及び配線導体が配置されることを特徴とする請求項1乃至4のいずれかに記載の多層回路基板の製造方法。 A via-hole conductor and a wiring conductor made of a conductive material (one or several kinds selected from (including any one of) silver, copper, and gold) are disposed inside the laminate. Item 5. The method for manufacturing a multilayer circuit board according to any one of Items 1 to 4. 前記工程Bにおいて第2絶縁層が収縮を開始するまでの間に、前記第1絶縁層は、その全収縮量に対し90%に相当する体積収縮が完了していることを特徴とする請求項1乃至5のいずれかに記載の多層配線基板の製造方法。 The volume contraction corresponding to 90% of the total contraction amount of the first insulating layer is completed before the second insulating layer starts contracting in the step B. 6. The method for manufacturing a multilayer wiring board according to any one of 1 to 5. 前記第2絶縁層はセラミックグリーンシートにより形成され、前記第1絶縁層は第2絶縁層の主面に対する無機組成物ペーストの塗布により形成されることを特徴とする請求項1乃至請求項6のいずれかに記載の多層回路基板の製造方法。 7. The method according to claim 1, wherein the second insulating layer is formed of a ceramic green sheet, and the first insulating layer is formed by applying an inorganic composition paste to a main surface of the second insulating layer. A method for manufacturing the multilayer circuit board according to any one of the above. 前記工程Bにおいて第1絶縁層が収縮する際、第1絶縁層の面方向への収縮が未焼結状態の第2絶縁層の剛性により抑制され、また、第2絶縁層が収縮する際、第2絶縁層の面方向への収縮が第1絶縁層の剛性により抑制されることを特徴とする請求項1乃至請求項7のいずれかに記載の多層回路基板の製造方法。 When the first insulating layer shrinks in the step B, the shrinkage in the plane direction of the first insulating layer is suppressed by the rigidity of the unsintered second insulating layer, and when the second insulating layer shrinks, The method according to any one of claims 1 to 7, wherein shrinkage of the second insulating layer in a plane direction is suppressed by rigidity of the first insulating layer. 前記工程Aにおける積層体が矩形状を成しており、前記工程Bにおける熱の印加に伴い前記第1絶縁層及び第2絶縁層が、前記積層体の一辺及び該一辺と直交する他辺と平行な方向に比し前記積層体の積層方向に3倍以上大きく収縮することを特徴とする請求項1乃至請求項8のいずれかに記載の多層回路基板の製造方法。 The laminate in the step A has a rectangular shape, and the first insulating layer and the second insulating layer are in contact with one side of the laminate and the other side orthogonal to the one side with the application of heat in the step B. 9. The method for manufacturing a multilayer circuit board according to claim 1, wherein the shrinkage is at least three times greater in the stacking direction of the stacked body than in the parallel direction.
JP2003407890A 2002-12-05 2003-12-05 Method for manufacturing multilayer circuit board Pending JP2004200679A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003407890A JP2004200679A (en) 2002-12-05 2003-12-05 Method for manufacturing multilayer circuit board

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002354298 2002-12-05
JP2003407890A JP2004200679A (en) 2002-12-05 2003-12-05 Method for manufacturing multilayer circuit board

Publications (1)

Publication Number Publication Date
JP2004200679A true JP2004200679A (en) 2004-07-15

Family

ID=32775077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003407890A Pending JP2004200679A (en) 2002-12-05 2003-12-05 Method for manufacturing multilayer circuit board

Country Status (1)

Country Link
JP (1) JP2004200679A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004415A1 (en) * 2005-07-01 2007-01-11 Murata Manufacturing Co., Ltd. Multilayer ceramic substrate, process for producing the same and composite green sheet for production of multilayer ceramic substrate
WO2007004414A1 (en) * 2005-07-01 2007-01-11 Murata Manufacturing Co., Ltd. Multilayer ceramic substrate, process for producing the same and composite green sheet for production of multilayer ceramic substrate
JP2008117815A (en) * 2006-10-31 2008-05-22 Kyocera Corp Glass ceramic circuit board and manufacturing method thereof
JP2009010141A (en) * 2007-06-27 2009-01-15 Kyocera Corp Ceramic multilayer substrate
US7605101B2 (en) 2006-03-28 2009-10-20 Kyocera Corporation Laminate, ceramic substrate and method for making the ceramic substrate

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007004415A1 (en) * 2005-07-01 2007-01-11 Murata Manufacturing Co., Ltd. Multilayer ceramic substrate, process for producing the same and composite green sheet for production of multilayer ceramic substrate
WO2007004414A1 (en) * 2005-07-01 2007-01-11 Murata Manufacturing Co., Ltd. Multilayer ceramic substrate, process for producing the same and composite green sheet for production of multilayer ceramic substrate
US7781065B2 (en) 2005-07-01 2010-08-24 Murata Manufacturing Co., Ltd. Multilayer ceramic substrate, method for making the same, and composite green sheet for making multilayer ceramic substrate
US7781066B2 (en) 2005-07-01 2010-08-24 Murata Manufacturing Co., Ltd. Multilayer ceramic substrate, method for producing same, and composite green sheet for forming multilayer ceramic substrate
US7605101B2 (en) 2006-03-28 2009-10-20 Kyocera Corporation Laminate, ceramic substrate and method for making the ceramic substrate
JP2008117815A (en) * 2006-10-31 2008-05-22 Kyocera Corp Glass ceramic circuit board and manufacturing method thereof
JP2009010141A (en) * 2007-06-27 2009-01-15 Kyocera Corp Ceramic multilayer substrate

Similar Documents

Publication Publication Date Title
JP4788544B2 (en) Multilayer ceramic substrate and manufacturing method thereof
KR20080060184A (en) Multilayer ceramic substrate
JP2004200679A (en) Method for manufacturing multilayer circuit board
WO2007004414A1 (en) Multilayer ceramic substrate, process for producing the same and composite green sheet for production of multilayer ceramic substrate
JP2008109063A (en) Ceramic multilayer substrate
JP5015550B2 (en) Glass ceramic circuit board and manufacturing method thereof
JP4261949B2 (en) Ceramic multilayer substrate
JP4077752B2 (en) Large substrate for multiple acquisition
JP2008186909A (en) Ceramic multilayer substrate
JP2008135523A (en) Multilayer substrate and manufacturing method thereof
JP2004235374A (en) Substrate with built-in capacitor and chip capacitor
JP4069772B2 (en) Multilayer circuit board manufacturing method
JP4167517B2 (en) Multilayer circuit board manufacturing method
JP2006013354A (en) Multilayer circuit board manufacturing method
JP2007201276A (en) Wiring board
JP2004304150A (en) Multilayer circuit board and method of manufacturing the same
JP4869005B2 (en) Multilayer substrate manufacturing method
JP2007173857A (en) Multilayer substrate and manufacturing method thereof
JP2005191316A (en) Multilayer circuit board and manufacturing method thereof
JP4658465B2 (en) Glass ceramic multilayer wiring board with built-in capacitor
JP2002368421A (en) Multilayer ceramic board and method for manufacturing the same
JPH11340634A (en) Laminated body and method for manufacturing the same
JP2006270083A (en) Collective substrate and manufacturing method thereof
JP2008186908A (en) Multilayer circuit board manufacturing method
JP6336841B2 (en) Wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061117

A131 Notification of reasons for refusal

Effective date: 20090414

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Effective date: 20090811

Free format text: JAPANESE INTERMEDIATE CODE: A02