[go: up one dir, main page]

JP2004188505A - Biped walking robot - Google Patents

Biped walking robot Download PDF

Info

Publication number
JP2004188505A
JP2004188505A JP2002355384A JP2002355384A JP2004188505A JP 2004188505 A JP2004188505 A JP 2004188505A JP 2002355384 A JP2002355384 A JP 2002355384A JP 2002355384 A JP2002355384 A JP 2002355384A JP 2004188505 A JP2004188505 A JP 2004188505A
Authority
JP
Japan
Prior art keywords
joint
vertical line
robot
articulation
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002355384A
Other languages
Japanese (ja)
Inventor
Ryuji Yokokura
竜二 横倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2002355384A priority Critical patent/JP2004188505A/en
Publication of JP2004188505A publication Critical patent/JP2004188505A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biped walking robot, which consumes only a small quantity of power in a battery, and operates for a long time. <P>SOLUTION: The biped walking robot 1 comprises an upper body 2, and two leg elements 3, which are connected with the upper body 2 by means of a waist articulation 8 and has a knee articulation 9 and an ankle articulation 10, and takes a standing attitude with the knee articulation 9 bending. The center of gravity of the whole of the robot is arranged so as to come to the position between the vertical line, which connects the ankle articulation 10 with the waist articulation 8 in the standing attitude, and the vertical line, which passes through the middle point between the vertical line connecting the ankle articulation 10 with the waist articulation 8 and the vertical line passing through the knee articulation 9. By this configuration, the driving torque of an actuator is reduced, and also the power consumption is reduced. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、膝関節を曲げた起立姿勢をとる二足歩行ロボットに関する。
【0002】
【従来の技術】
従来の二足歩行ロボットは、膝関節を曲げた起立姿勢のときに膝関節の略直上にロボット全体の重心を配置し、膝関節の負担を軽減するようにしている(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開2002−154078号公報(第6頁
【0047】−
【0049】、第2図)
【0004】
【発明が解決しようとする課題】
しかしながら、上述した従来の技術においては、膝関節の負担の軽減を目的としてロボット全体の重心を膝関節の直上に配置するため、腰関節と足首関節には大きなモーメントがかかり、これを保持および作動させるために要するロボットに搭載したバッテリの消費電力が多大となり、その結果としてロボットの歩行時間、つまり稼動時間が短くなるという問題がある。
【0005】
本発明は、上記の問題点を解決するためになされたもので、長時間の稼動が可能な二足歩行ロボットを提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明は、上記課題を解決するために、上体と、該上体に腰関節で連結し、膝関節および足首関節を有する2本の脚体とを備え、前記膝関節を曲げた起立姿勢をとる二足歩行ロボットにおいて、前記起立姿勢のときに、前記足首関節と腰関節とを結ぶ鉛直線と、該鉛直線と前記膝関節との中央鉛直線との間にロボット全体の重心を配置したことを特徴とする。
【0007】
【発明の実施の形態】
以下に、図面を参照して本発明による二足歩行ロボットの実施の形態について説明する。
図1は本発明の実施の形態を示す側面図、図2はその正面図である。
図1、図2において、1は二足歩行ロボットであり、人型のロボットである。
【0008】
2は二足歩行ロボット1の上体であり、胴体3と頭部4および一対の腕体5から構成される。
6はバッテリ等の蓄電装置であり、胴体3の内部に格納され、二足歩行ロボット1の外部から充電可能に構成されており、各部を作動させる電動モータ等のアクチュエータやそれらの制御を行うコントロールユニットの作動用の電源を供給する。
【0009】
7は脚体であり、上体の下方に一対にして設けられ、電動モータ等のアクチュエータに駆動される腰関節8によって胴体3に屈曲可能に連結する。
9は膝関節であり、脚体7の大腿部7aと下腿部7bとを屈伸可能に連結し、電動モータ等のアクチュエータにより駆動される。
10は足首関節であり、下腿部7bと足平部11とを屈曲可能に連結し、電動モータ等のアクチュエータにより駆動される。
【0010】
なお、本実施の形態の二足歩行ロボット1は、立位のときに図2に示す正面図において併設された一対の脚体7の並ぶ方向と直交する図1に示す前方向に膝関節9を曲げた起立姿勢をとっている。
この場合に上体2は、二足歩行ロボット1が立つ床面の鉛直方向に全ての部位を伸ばした状態になっている。
【0011】
上記の構成の作用について説明する。
図3は実施の形態の重心の位置関係を示す説明図、図4はその最小消費電力時の重心位置を示す説明図である。
図3において、二足歩行ロボット1の全重量による力Fが作用するロボット全体の重心Aは、二足歩行ロボット1の起立姿勢における上体2に位置し、足首関節10と腰関節8とを結ぶ鉛直線から前方向に距離S離れた位置にある。
【0012】
このとき、前方向に曲げられた膝関節9と足首関節10と腰関節8との鉛直線との距離をLとすると、脚体7に作用する全モーメントTは、腰関節8に作用するモーメントがF・Sであり、膝関節9がF(L−S)、足首関節10がF・Sであるので、
T=F・S+F(L−S)+F・S
=F(L+S) ・・・・・・・・・(1)
で表される。
【0013】
また、このときのF・Lのモーメントを保持するために必要な消費電力をWとすると、脚体7を起立姿勢に保持するための全消費電力Pは、
P=W(L+S)/L ・・・・・・・(2)
で表される。
従って、式(1)、(2)から分かるように、S=Lのとき、つまり重心Aが膝関節9の直上にあるときに、全モーメントTおよび全消費電力Pは最大となり、T=2F・L、P=2Wとなる。
【0014】
また、S=0のとき、つまり重心Aが腰関節8と足首関節10との直上にあるときに、全モーメントTおよび全消費電力Pは最小となり、T=F・L、P=Wとなって重心Aが膝関節9の直上にあるときの50%の全モーメントTおよび全消費電力Pとなる。
更に、S=L/2のとき、つまり重心Aが腰関節8と足首関節10とを結ぶ鉛直線とこの鉛直線に膝関節9から伸ばした垂線の中点を通る鉛直線(以下、中央鉛直線という。)上にあるときに、全モーメントTおよび全消費電力Pは、T=3F・L/2、P=3W/2となって重心Aが膝関節9の直上にあるときの75%の全モーメントTおよび全消費電力Pとなる。
【0015】
このことは、重心Aが腰関節8と足首関節10とを結ぶ鉛直線と中央鉛直線との間にあるとき、つまり重心Aが中央鉛直線を含む腰関節8側にあるときには、その全モーメントTおよび全消費電力Pは重心Aが膝関節9の直上にあるときの75%以下となることを示している。
すなわち、この間にロボット全体の重心Aが位置するときに、脚体7を起立姿勢として保持するためのアクチュエータの保持力および消費電力が、重心Aが膝関節9の直上にあるときの75%以下に低減されることを示しており、これに伴って歩行に要するアクチュエータの駆動トルクおよび消費電力も低減されることを示している。
【0016】
以上説明したように、本実施の形態では、二足歩行ロボットの起立姿勢において、ロボット全体の重心を腰関節と足首関節とを結ぶ鉛直線と中央鉛直線との間に配置することによって、腰関節と足首関節のアクチュエータの保持力の低減およびロボット全体としての消費電力の低減を図ることができ、アクチュエータの小型、軽量化と共に稼働時間の長時間化を可能とすることができる。
【0017】
また、二足歩行ロボットの起立姿勢においてロボット全体の重心を腰関節と足首関節とを結ぶ鉛直線の略直上に配置することによって、腰関節と足首関節のアクチュエータの保持力およびロボット全体としての消費電力の最小化を図ることができ、アクチュエータを更に小型、軽量化できると共に稼働時間を更に長時間とすることができる。
【0018】
上記の効果は、従来例と同一の蓄電装置を用いた二足歩行ロボットに本発明を適用した場合について述べたが、本発明の効果を蓄電装置の小型化に振り向けた場合は、蓄電装置の小型化によりロボット全体の重量の軽減を図ることができ、これに伴うロボット各部のアクチュエータの小型、軽量化によって更に重量の軽減効果を高めることができ、この重量の軽減と上記の重心配置によって軽量、小型であり、かつ長時間の稼動が可能な二足歩行ロボットとすることができる。
【0019】
なお、上記実施の形態例では、二足歩行ロボットに本発明を適用した場合について説明したが、本発明は二足歩行ロボットに限らず、多足ロボットにも適用することができ、多足ロボットに本発明の重心配置の考え方を適用すれば、稼働時間の長時間化や蓄電装置の小型化の効果を同様に得ることができる。
【0020】
【発明の効果】
以上述べたように、本発明は、二足歩行ロボットの起立姿勢において、ロボット全体の重心を腰関節と足首関節とを結ぶ鉛直線と中央鉛直線との間に配置することによって、腰関節と足首関節のアクチュエータの保持力の低減およびロボット全体としての消費電力の低減を図ることができ、アクチュエータの小型、軽量化と共に稼働時間の長時間化を可能とすることができるという効果が得られる。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す側面図
【図2】本発明の実施の形態を示す正面図
【図3】実施の形態の重心の位置関係を示す説明図
【図4】実施の形態の最小消費電力時の重心位置を示す説明図
【符号の説明】
1 二足歩行ロボット
2 上体
3 胴体
4 頭部
5 腕体
6 蓄電装置
7 脚体
7a 大腿部
7b 下腿部
8 腰関節
9 膝関節
10 足首関節
11 足平部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a bipedal walking robot that takes a standing posture with a knee joint bent.
[0002]
[Prior art]
In a conventional bipedal walking robot, the center of gravity of the entire robot is arranged almost directly above the knee joint when the knee joint is in an upright posture to reduce the burden on the knee joint (for example, see Patent Document 1). .).
[0003]
[Patent Document 1]
JP-A-2002-154078 (page 6 [0047]
(FIG. 2)
[0004]
[Problems to be solved by the invention]
However, in the above-described conventional technology, since the center of gravity of the entire robot is placed immediately above the knee joint for the purpose of reducing the burden on the knee joint, a large moment is applied to the waist joint and the ankle joint. There is a problem that a large amount of power is consumed by a battery mounted on the robot in order to cause the robot to walk, and as a result, the walking time of the robot, that is, the operating time is shortened.
[0005]
The present invention has been made to solve the above problems, and has as its object to provide a bipedal walking robot capable of operating for a long time.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the present invention comprises an upper body and two legs connected to the upper body by a hip joint and having a knee joint and an ankle joint, and the standing posture in which the knee joint is bent In the bipedal walking robot, in the standing posture, the center of gravity of the entire robot is arranged between a vertical line connecting the ankle joint and the waist joint and a central vertical line between the vertical line and the knee joint. It is characterized by having done.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of a bipedal walking robot according to the present invention will be described with reference to the drawings.
FIG. 1 is a side view showing an embodiment of the present invention, and FIG. 2 is a front view thereof.
1 and 2, reference numeral 1 denotes a bipedal walking robot, which is a humanoid robot.
[0008]
Reference numeral 2 denotes an upper body of the bipedal walking robot 1, which includes a body 3, a head 4, and a pair of arms 5.
Reference numeral 6 denotes a power storage device such as a battery, which is stored inside the body 3 and is configured to be rechargeable from the outside of the bipedal walking robot 1. Actuators such as an electric motor for operating each unit and a control for controlling them are provided. Provides power for operation of the unit.
[0009]
Reference numeral 7 denotes legs, which are provided as a pair below the upper body, and are flexibly connected to the body 3 by a waist joint 8 driven by an actuator such as an electric motor.
Reference numeral 9 denotes a knee joint, which connects the thigh 7a and the lower leg 7b of the leg 7 so as to be able to flex and extend, and is driven by an actuator such as an electric motor.
Reference numeral 10 denotes an ankle joint, which connects the lower leg 7b and the foot 11 in a bendable manner and is driven by an actuator such as an electric motor.
[0010]
Note that the bipedal walking robot 1 of the present embodiment has a knee joint 9 in the front direction shown in FIG. 1 which is orthogonal to the direction in which the pair of legs 7 arranged in the front view shown in FIG. He is standing upright.
In this case, the upper body 2 is in a state in which all parts are extended in the vertical direction of the floor on which the bipedal walking robot 1 stands.
[0011]
The operation of the above configuration will be described.
FIG. 3 is an explanatory view showing the positional relationship of the center of gravity of the embodiment, and FIG. 4 is an explanatory view showing the position of the center of gravity at the time of minimum power consumption.
In FIG. 3, the center of gravity A of the entire robot on which the force F due to the total weight of the bipedal walking robot 1 acts is located on the upper body 2 in the standing posture of the bipedal walking robot 1, and the ankle joint 10 and the waist joint 8 are connected to each other. It is located at a distance S away from the connecting vertical line in the forward direction.
[0012]
At this time, assuming that the distance between the vertical line of the knee joint 9, the ankle joint 10, and the hip joint 8 bent forward is L, the total moment T acting on the leg 7 is the moment acting on the hip joint 8. Is FS, the knee joint 9 is F (LS), and the ankle joint 10 is FS,
T = FS + F (LS) + FS
= F (L + S) (1)
Is represented by
[0013]
Further, assuming that the power consumption required to hold the moment of FL at this time is W, the total power consumption P for maintaining the leg 7 in the standing posture is:
P = W (L + S) / L (2)
Is represented by
Therefore, as can be seen from the equations (1) and (2), when S = L, that is, when the center of gravity A is immediately above the knee joint 9, the total moment T and the total power consumption P become maximum, and T = 2F L, P = 2W.
[0014]
Further, when S = 0, that is, when the center of gravity A is immediately above the hip joint 8 and the ankle joint 10, the total moment T and the total power consumption P are minimized, and T = FL and P = W. Thus, the total moment T and the total power consumption P of 50% when the center of gravity A is right above the knee joint 9 are obtained.
Further, when S = L / 2, that is, the center of gravity A passes through a vertical line connecting the waist joint 8 and the ankle joint 10 and a vertical line extending from the knee joint 9 to the vertical line (hereinafter, central vertical line). ), The total moment T and the total power consumption P are 75% of T = 3FL / 2, P = 3W / 2, and the center of gravity A is just above the knee joint 9. Is the total moment T and the total power consumption P.
[0015]
This means that when the center of gravity A is between the vertical line connecting the waist joint 8 and the ankle joint 10 and the center vertical line, that is, when the center of gravity A is on the side of the waist joint 8 including the central vertical line, the total moment T and the total power consumption P indicate that the center of gravity A is 75% or less of that immediately above the knee joint 9.
That is, when the center of gravity A of the entire robot is located during this time, the holding force and the power consumption of the actuator for holding the legs 7 in the standing posture are 75% or less of that when the center of gravity A is directly above the knee joint 9. This indicates that the driving torque and power consumption of the actuator required for walking are also reduced.
[0016]
As described above, in the present embodiment, in the standing posture of the bipedal walking robot, the center of gravity of the entire robot is disposed between the vertical line connecting the waist joint and the ankle joint and the central vertical line, thereby reducing the waist. The holding force of the joint and ankle joint actuators can be reduced, and the power consumption of the robot as a whole can be reduced. Therefore, the actuator can be made smaller, lighter, and the operating time can be longer.
[0017]
In addition, by placing the center of gravity of the entire robot almost directly above the vertical line connecting the waist joint and the ankle joint in the standing posture of the bipedal walking robot, the holding force of the actuator of the waist joint and the ankle joint and the consumption of the robot as a whole Power can be minimized, the actuator can be made smaller and lighter, and the operating time can be made longer.
[0018]
The above effects have been described for the case where the present invention is applied to a biped walking robot using the same power storage device as the conventional example.However, when the effects of the present invention are directed to miniaturization of the power storage device, The weight reduction of the entire robot can be achieved by miniaturization, and the effect of reducing the weight can be further enhanced by reducing the size and weight of the actuator of each part of the robot. It is possible to provide a bipedal walking robot which is small and can be operated for a long time.
[0019]
In the above embodiment, the case where the present invention is applied to a bipedal walking robot has been described. However, the present invention is not limited to a bipedal walking robot, and can be applied to a multipedal robot. If the concept of the center of gravity arrangement of the present invention is applied to the present invention, the effects of prolonged operation time and downsizing of the power storage device can be similarly obtained.
[0020]
【The invention's effect】
As described above, the present invention, in the standing posture of a bipedal walking robot, by placing the center of gravity of the entire robot between the vertical line connecting the waist joint and the ankle joint and the central vertical line, the waist joint It is possible to reduce the holding force of the actuator of the ankle joint and reduce the power consumption of the entire robot, and it is possible to reduce the size and weight of the actuator and to increase the operating time.
[Brief description of the drawings]
FIG. 1 is a side view showing an embodiment of the present invention. FIG. 2 is a front view showing an embodiment of the present invention. FIG. 3 is an explanatory view showing the positional relationship of the center of gravity of the embodiment. Explanatory diagram showing the position of the center of gravity at the time of the minimum power consumption of the form.
DESCRIPTION OF SYMBOLS 1 Biped robot 2 Upper body 3 Torso 4 Head 5 Arm 6 Power storage device 7 Leg 7a Thigh 7b Lower leg 8 Waist joint 9 Knee joint 10 Ankle joint 11 Foot part

Claims (2)

上体と、該上体に腰関節で連結し、膝関節および足首関節を有する2本の脚体とを備え、前記膝関節を曲げた起立姿勢をとる二足歩行ロボットにおいて、
前記起立姿勢のときに、前記足首関節と腰関節とを結ぶ鉛直線と、該鉛直線と前記膝関節との中央鉛直線との間にロボット全体の重心を配置したことを特徴とする二足歩行ロボット。
A biped walking robot having an upper body and two legs connected to the upper body by a waist joint and having a knee joint and an ankle joint, and taking a standing posture in which the knee joint is bent;
In the standing posture, the center of gravity of the entire robot is arranged between a vertical line connecting the ankle joint and the waist joint and a center vertical line between the vertical line and the knee joint. Walking robot.
請求項1において、
前記起立姿勢のときに、前記足首関節と腰関節との略直上にロボット全体の重心を配置したことを特徴とする二足歩行ロボット。
In claim 1,
A bipedal walking robot wherein the center of gravity of the entire robot is arranged substantially directly above the ankle joint and the waist joint in the standing posture.
JP2002355384A 2002-12-06 2002-12-06 Biped walking robot Pending JP2004188505A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002355384A JP2004188505A (en) 2002-12-06 2002-12-06 Biped walking robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002355384A JP2004188505A (en) 2002-12-06 2002-12-06 Biped walking robot

Publications (1)

Publication Number Publication Date
JP2004188505A true JP2004188505A (en) 2004-07-08

Family

ID=32756100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002355384A Pending JP2004188505A (en) 2002-12-06 2002-12-06 Biped walking robot

Country Status (1)

Country Link
JP (1) JP2004188505A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114661057A (en) * 2022-05-23 2022-06-24 武汉跨克信息技术有限公司 Intelligent bionic biped inspection robot

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114661057A (en) * 2022-05-23 2022-06-24 武汉跨克信息技术有限公司 Intelligent bionic biped inspection robot

Similar Documents

Publication Publication Date Title
JP6728297B2 (en) Anterior or posterior exoskeleton
JP4736946B2 (en) Walking aid
CN1872016B (en) Apparatus for limb assisting and control method thereof
JP4252721B2 (en) Biped robot
CN101188991B (en) Walking assistance device
AU2006236579B2 (en) Semi-powered lower extremity exoskeleton
US9687408B2 (en) Exercise support apparatus and exercise support method
US10702400B2 (en) Mechanical exoskeleton wearable apparatus, operation control method and operation control device for the same
KR101363850B1 (en) Robot for Assistance Exoskeletal Power
JP5373880B2 (en) Legged robot
CN112025681A (en) Electric waist assist exoskeleton
JP2014144037A (en) Artificial limb attaching type motion support device
CN113208868B (en) Lower limb exoskeleton based on transverse walking
CN212146417U (en) Lower limb load assisting exoskeleton capable of realizing rapid self-locking in standing state
US20160331623A1 (en) Lower extremity support tool
CN111975747A (en) Power-assisted robot
JP2004188505A (en) Biped walking robot
CN211439974U (en) Motor-driven hip and knee exoskeleton linkage device
JP2003231081A (en) Double-armed shoulder joint mechanism of a double-armed robot and double-legged hip joint mechanism of a bipedal robot
JP2001287177A (en) Movable leg for legged robot, and legged robot
KR102244673B1 (en) Driving unit of multi-joint robot
JP2016168437A (en) Exercise assisting device and exercise assisting method
CN110936358B (en) A motor-driven hip-knee exoskeleton linkage device
JP5598667B2 (en) Walking assistance device, walking assistance method, walking assistance program, etc.
CN116277124A (en) Bipedal robot and hip joint structure thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050729

A131 Notification of reasons for refusal

Effective date: 20070807

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071204