JP2004187339A - 車載用モータの制御装置および車両用モータシステム - Google Patents
車載用モータの制御装置および車両用モータシステム Download PDFInfo
- Publication number
- JP2004187339A JP2004187339A JP2002347916A JP2002347916A JP2004187339A JP 2004187339 A JP2004187339 A JP 2004187339A JP 2002347916 A JP2002347916 A JP 2002347916A JP 2002347916 A JP2002347916 A JP 2002347916A JP 2004187339 A JP2004187339 A JP 2004187339A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- vehicle
- motor
- permanent magnet
- control device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000009467 reduction Effects 0.000 claims abstract description 8
- 238000006243 chemical reaction Methods 0.000 claims description 14
- 238000010248 power generation Methods 0.000 claims description 8
- 230000005347 demagnetization Effects 0.000 abstract description 22
- 230000007423 decrease Effects 0.000 description 15
- 229910000859 α-Fe Inorganic materials 0.000 description 9
- 230000008859 change Effects 0.000 description 8
- 239000003990 capacitor Substances 0.000 description 6
- 238000001514 detection method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 230000008878 coupling Effects 0.000 description 4
- 238000010168 coupling process Methods 0.000 description 4
- 238000005859 coupling reaction Methods 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000007858 starting material Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 230000003313 weakening effect Effects 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L15/00—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
- B60L15/02—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit
- B60L15/025—Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles characterised by the form of the current used in the control circuit using field orientation; Vector control; Direct Torque Control [DTC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L50/00—Electric propulsion with power supplied within the vehicle
- B60L50/10—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
- B60L50/16—Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2220/00—Electrical machine types; Structures or applications thereof
- B60L2220/10—Electrical machine types
- B60L2220/16—DC brushless machines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2220/00—Electrical machine types; Structures or applications thereof
- B60L2220/10—Electrical machine types
- B60L2220/18—Reluctance machines
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/64—Electric machine technologies in electromobility
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/7072—Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
【課題】ロータに配設された永久磁石の低温減磁を防止する。
【解決手段】電流制限器40は、温度検出器39が検出する温度Tmに基づいてモータジェネレータ2の永久磁石の温度Tpを推定演算し、その温度Tpが設定温度を下回って減磁する虞が生じた場合に、永久磁石の温度低下による保磁力HcJの大きさの低減割合と同等以上の割合で指令電流Ids、Iqsを低減させる。
【選択図】 図1
【解決手段】電流制限器40は、温度検出器39が検出する温度Tmに基づいてモータジェネレータ2の永久磁石の温度Tpを推定演算し、その温度Tpが設定温度を下回って減磁する虞が生じた場合に、永久磁石の温度低下による保磁力HcJの大きさの低減割合と同等以上の割合で指令電流Ids、Iqsを低減させる。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、永久磁石を有する車載用モータを、外部から回転力を得て回転する発電モードまたは自ら回転力を発生して回転する力行モードにより制御する車載用モータの制御装置およびこれを用いた車両用モータシステムに関する。
【0002】
【従来の技術】
自動車に用いられる永久磁石型ブラシレスモータについて低温減磁を防止する技術が特許文献1に開示されている。
【0003】
【特許文献1】
特開2001−136771号公報
【0004】
【発明が解決しようとする課題】
例えばハイブリッド車両は、エンジンの回転数が低く十分なトルクを出力できない場合に、効率の良いモータのアシストを受けるようになっている。また、車両が減速する時にはモータを発電機として動作させてエネルギーを回収し、交差点などで一時的に停止した時にはエンジンを止めて燃料を節約する(アイドリングストップ)。エンジンが停止していても、エアコンなどの補機は上記モータにより駆動される。
【0005】
こうしたハイブリッド車のアシスト用/発電用のモータ(モータジェネレータ)あるいはスタータジェネレータとして用いられるモータは、車両始動時または低速回転数に大きなトルクを発生させる必要がある。また、こうした車載用モータはエンジンにより連れ回されるため、特に高速回転での連れ回り時においてモータの誘起電圧を抑える必要がある。誘起電圧を抑える手段としては、ロータに設けられた永久磁石の磁束量を減らしたり、弱め界磁制御などが用いられる。
【0006】
永久磁石の材料としてフェライトを用いたモータを例に説明すると、フェライトは温度の低下に伴って保磁力が小さくなる磁気特性を有しているため、低温の環境下では永久磁石を減磁させる虞がある。特に、車両の温度環境は厳しく、しかも上述したような車載用モータは、始動時または低速時に高トルクを得るために流す大電流により一層減磁が生じ易くなっている。
【0007】
本発明は上記事情に鑑みてなされたもので、その目的は、ロータに配設された永久磁石の減磁が発生しにくい車載用モータの制御装置およびこれを用いた車両用モータシステムを提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載した車載用モータの制御装置は、車載用モータを、外部から回転力を得て回転する発電モードまたは自ら回転力を発生して回転する力行モードにより制御する車載用モータの制御装置において、車載用モータに取り付けられた温度センサと、この温度センサの出力信号に基づいて永久磁石の温度を検出する温度検出手段と、永久磁石の検出温度が所定の設定温度よりも低い場合に、永久磁石の温度低下による保磁力の大きさの低減割合と同等もしくはそれ以上の割合でコイルの通電電流を低減させる電流制限手段とを備えていることを特徴とする。
【0009】
この構成によれば、永久磁石の温度が設定温度を下回って減磁する虞が生じた場合に、予め得られている永久磁石の温度低下による保磁力の大きさの低減割合と同等以上にコイルの通電電流の上限値を低減させて永久磁石に作用する逆磁界を低減するので、永久磁石の温度が低い場合であっても減磁を確実に防止することができる。特に、発電モードと力行モードとにより駆動される車載用モータは、例えば始動時や低速時において大きなトルクを出力するため大電流の通電が行われるが、上記電流制限により減磁の発生を確実に防止できる。ここで、永久磁石の保磁力は、材料の磁化を示すJ−Hカーブの保磁力HcJで考えるものとする。
【0010】
また、請求項2に記載した車載用モータの制御装置は、車載用モータに取り付けられた温度センサと、この温度センサの出力信号に基づいて永久磁石の温度を検出する温度検出手段と、外部電源から電圧を入力しコイルに対し交流電圧を出力する電力変換手段と、外部電源と電力変換手段との間に接続された開閉手段と、この開閉手段と並列に接続された抵抗体と、永久磁石の検出温度が所定の設定温度よりも低いことを条件として開閉手段を開状態に制御する開閉制御手段とを備えていることを特徴とする。
【0011】
この構成によれば、永久磁石の検出温度が設定温度よりも低い場合に、外部電源から電力変換手段に流れる電流は抵抗体を介して流れ、その抵抗体の電圧降下だけ電力変換手段に入力される電圧が減少する。その結果、電力変換手段が出力可能な交流電圧が減少して車載用モータのコイルに流れる電流が抑制され、永久磁石の低温減磁を防止することができる。一方、永久磁石の検出温度が設定温度以上の場合には、開閉手段が閉じるため、抵抗体での電圧ロスは生じない。
【0012】
さらに、請求項3に記載した車載用モータの制御装置は、車載用モータの始動時から所定の遅延時間が経過するまでの間、コイルに流れる電流を予め設定された所定の電流値に低減する電流制限手段を備えていることを特徴とする。
【0013】
この構成によれば、車載用モータが冷却されて温度が低い状態となっていることの多い始動時から所定の遅延時間が経過するまでの期間コイル電流を低減するので、温度センサを別途設けることなく永久磁石の低温減磁を防止することができる。
【0014】
この場合、遅延時間が経過するまでの間外部電源と電力変換手段との間に接続された開閉手段を開状態とし、遅延時間が経過したことを条件として開閉手段を閉状態に切り替えると良い(請求項4)。また、抵抗体を車載用モータに取り付けることにより、抵抗体の発熱によって車載用モータひいては永久磁石モータの温度を高めることができるので、低温減磁し易い状態からいち早く脱することができる(請求項5)。
【0015】
請求項6に記載した車両用モータシステムは、車両(例えばハイブリッド車両)の動力源として用いられる車載用モータと上述した制御装置とを備えているので、車両が冬季にまたは寒冷地などで用いられる場合であっても減磁による駆動力の低下を防止することができる。
【0016】
【発明の実施の形態】
(第1の実施形態)
以下、本発明をハイブリッド車両の車両用モータシステムに適用した第1の実施形態について図1ないし図6を参照しながら説明する。
図2は、ハイブリッド車両の駆動系に係る概略的な構成を示している。エンジン1、モータジェネレータ2(車載用モータに相当)、エアコンのコンプレッサモータ3その他の補機は、軸同士がベルト4を用いた動力結合手段5により結合されている。エンジン1の軸と動力結合手段5との間には、機械的結合を継合および解除するためのクラッチ6が配置されている。エンジン1の動力出力側にはトランスミッション7が配置されており、トランスミッション7の出力側にはドライブシャフト8、ディファレンシャルギヤ9、車軸10を介して車輪11が接続されている。エンジン1を始動するスタータ12は、別に設けられている。
【0017】
車両には、上記エンジン1、モータジェネレータ2、クラッチ6、トランスミッション7などの制御を行う種々の制御ユニットが搭載されている。このうち制御ユニット13は、モータジェネレータ2の制御を行う装置で、モータジェネレータ2に接続されたインバータ14、当該インバータ14の直流側端子に接続されたDC−DCコンバータ15、これらインバータ14とDC−DCコンバータ15とを制御するECU(電子制御ユニット)16などから構成されている。
【0018】
また、車両には、36Vの電圧を有するバッテリ17と、12Vの電圧を有するバッテリ18とが搭載されている。バッテリ17はインバータ14の直流側端子に接続され、バッテリ18はDC−DCコンバータ15の出力側端子に接続されている。スタータ12は、バッテリ18から電圧供給を受けて作動するようになっており、ECU16は、バッテリ18の電圧を制御電源電圧(例えば5V)に変換する電源回路を備えている。ECU16とインバータ14、DC−DCコンバータ15との間は、制御線19により接続されている。
【0019】
この制御ユニット13は、車両発進時にモータジェネレータ2をモータとして動作させてエンジン1をアシストし(力行モード)、通常走行時には必要に応じてジェネレータとして動作させてバッテリ17、18を充電する(発電モード)。また、制御ユニット13は、車両が交差点などで一時的に停止しているアイドリングストップ時には、クラッチ6によりエンジン1の軸を動力結合手段5から切り離した状態で、コンプレッサモータ3などの補機を駆動するようになっている。
【0020】
モータジェネレータ2の回転速度は、エンジン1をアシストする場合および補機を駆動する場合には低いが(例えばエンジン1のアイドリング回転速度である800rpm程度)、エンジン1によって連れ回される場合には高い回転速度まで回される(例えばエンジン1の最高回転数8000rpm程度)。連れ回り時のモータジェネレータ2の誘起電圧がバッテリ17の電圧よりも高くなるとインバータ14やバッテリ17を壊す虞があるため、制御ユニット13は弱め界磁制御などにより誘起電圧を抑えるように制御するようになっている。
【0021】
図3および図4は、それぞれモータジェネレータ2の断面図および縦断側面図である。図3においてステータコイルは省略されている。このモータジェネレータ2は、高速回転時における永久磁石の飛散防止およびリラクタンストルクの利用の観点からIPM(Internal Permanent Magnet;永久磁石埋め込み)型のブラシレスモータとされている。
【0022】
すなわち、モータジェネレータ2は、ステータコア20aに複数相例えば三相のステータコイル20u、20v、20wが巻装されてなるステータ20と、ロータヨーク22aの内部に突極比が大きくなるようにフェライトの永久磁石21が埋め込まれてなるロータ22とを備えている。6枚の平板状の永久磁石21は、ロータヨーク22aの外周面近くに断面が6角形状をなすように軸方向に沿って埋め込まれている。
【0023】
モータジェネレータ2のハウジング23は、ほぼカップ状のモータフレーム24と、このモータフレーム24の開口部を閉塞する軸受ブラケット25とから構成されている。モータフレーム24の底壁部に設けられた軸受26と、軸受ブラケット25に設けられた軸受27とによりロータ22の回転軸28が回転可能に支持されている。また、モータフレーム24の外壁部には、サーミスタや熱電対などから構成される温度センサ29が取り付けられている。
【0024】
図1は、車両用モータシステムの構成を機能ブロックにより示したものである。制御装置30は、制御部31、上記インバータ14、上記温度センサ29および電流センサ32u、32v、32wから構成されている。ここで、インバータ14は、IGBTなどのスイッチング素子を三相ブリッジ接続してなる周知構成の電力変換手段である。また、電流センサ32u、32v、32wはホールCTにより構成されており、インバータ14からステータコイル20u、20v、20wに流れる電流を検出するようになっている。
【0025】
制御部31は、ECU16内に配設された基板上に搭載されているDSP(Digital Signal Processor )、抵抗、コンデンサなどの電子部品から構成されている。DSPに内蔵されている不揮発性メモリまたはDSPの外部に付加した不揮発性メモリには、モータジェネレータ2を力行モードまたは発電モードで駆動するための制御プログラムが書き込まれている。図1に示す制御部31のブロック構成は、この制御プログラムにより実現される機能を実体的に表したものである。以下、各ブロックの機能について説明する。
【0026】
制御部31は、センサレスベクトル制御方式による制御装置で、回転座標変換と相変換とを同時に行うための3相−2相座標変換器33と2相−3相座標変換器34とを備えている。A/D変換器35は、電流センサ32u、32v、32wから出力される電圧信号を入力してディジタル値に変換し、検出電流Iu、Iv、Iwを得るものである。上記3相−2相座標変換器33は、これら固定子座標系における3相の検出電流Iu、Iv、Iwから回転子座標系(dq座標系)における2相の検出電流Id、Iqを演算するようになっている。
【0027】
推定器36は、検出電流Id、Iqと後述する指令電圧Vdr、Vqrとに基づいて、ロータ22の回転角度θと回転速度ωとを推定演算するようになっている。このうち検出回転角度θは、上述した3相−2相座標変換器33と2相−3相座標変換器34に与えられている。
【0028】
制御部31には、車両に搭載された他の制御ユニット(図示せず)からモータジェネレータ2の指令回転速度ωrが与えられるようになっている。速度制御器37は、減算器38によって演算された指令回転速度ωrと検出回転速度ωとの回転速度偏差Δωを入力し、例えばPI演算などを行うことにより指令電流Idr、Iqrを算出するものである。
【0029】
一方、温度検出器39(温度検出手段に相当)は、温度センサ29から出力される温度信号を入力し、温度センサ29の非線形性などを補償することにより、ディジタル値である検出温度Tmを得るものである。この検出温度Tmは、モータフレーム24の外壁部の温度であるが、永久磁石21に近似した温度変化傾向を示すものである。
【0030】
電流制限器40(電流制限手段に相当)は、検出温度Tmに基づいて低減すべき補正電流Idc、Iqcを演算する電流補正器41と、上記指令電流Idr、Iqrからそれぞれ補正電流Idc、Iqcを減算して補正後の指令電流Ids、Iqsを得る減算器42、43とから構成されている。
【0031】
減算器44、45は、それぞれ指令電流Ids、Iqsから検出電流Id、Iqを減算して電流偏差ΔId、ΔIqを算出し、電流制御器46は、それら電流偏差ΔId、ΔIqを入力し、例えばPI演算などを行うことにより指令電圧Vdr、Vqrを算出するものである。上記2相−3相座標変換器34は、これら回転子座標系における2相の指令電圧Vdr、Vqrから固定子座標系における3相の指令電圧Vur、Vvr、Vwrを演算するようになっている。また、PWM波形形成器47は、これら指令電圧Vur、Vvr、Vwrと三角波などの搬送波信号とを比較し、インバータ14を構成するIGBTのゲートに与える駆動信号Sup、Svp、Swp、Sun、Svn、Swnを生成するようになっている。
【0032】
次に、本実施形態の作用について図5および図6も参照しながら説明する。
図5は、永久磁石21の構成材料であるフェライトのB−Hカーブ(実線)とJ−Hカーブ(破線)の一例を示している。それぞれ4本の曲線が描かれているが、永久磁石21の温度が−60℃、−20℃、+20℃、+60℃の場合におけるデータである。B−Hカーブは、永久磁石21の外部に現れる特性を示すものであり、J−Hカーブは、永久磁石21内部の(つまり永久磁石21固有の)磁化の強さを示すものである。
【0033】
一般的に、フェライト磁石の温度係数ΔBr/Br/ΔTは−0.18%/K程度であり、保磁力HcJの温度係数は+0.3〜+0.5%/K程度である。本実施形態における永久磁石21は、保磁力の温度係数などの磁気特性を改善したものであって、その残留磁束密度Brの温度係数ΔBr/Br/ΔTは−0.18%/Kであり、保磁力HcJの温度係数は+0.18%/Kである。温度低下に伴って保磁力HcJの大きさは減少する。
【0034】
図6は、フェライト磁石のB−Hカーブの温度変化を概略的に示したものである。この図6に示すように、温度低下にともなって保磁力HcJの大きさは減少するため、減磁しやすくなっている。フェライト磁石が低温の時にモータに大電流を流し大きな逆磁界をかけると減磁する虞がある。
【0035】
本実施形態において、不揮発性メモリには、モータフレーム24の外壁部の温度Tmと永久磁石21の温度Tpとの関係を示す相関データが書き込まれており、電流補正器41は、温度検出器39が検出する温度Tmと上記相関データとに基づいて、永久磁石21の温度Tpを推定演算する。
【0036】
図5および図6に示すように、温度変化に伴う屈曲点の変化は保磁力HcJの変化となって現れるため、電流補正器41は、温度低下による保磁力HcJの大きさの低減割合と同等もしくはそれ以上(本実施形態では+0.18%/K)の割合で指令電流Ids、Iqsを低減制御する。温度低下による保磁力HcJの大きさの低減割合のデータ(+0.18%/K)は、予め不揮発性メモリに書き込まれている。
【0037】
また、図6に示すように、減磁は永久磁石21の温度Tpが大きくなると発生しにくくなるため、電流制限器40は、温度Tpが予め定めた設定温度以下となった場合にだけ上記電流制限制御を行う。
【0038】
以上説明したように、本実施形態によれば、永久磁石21の温度Tpが設定温度を下回って減磁する虞が生じた場合に、永久磁石21の保磁力HcJの大きさの低減割合と同等以上に指令電流Ids、Iqsすなわちステータコイル20u、20v、20wの通電電流を低減させるので、永久磁石21の低温減磁を確実に防止することができる。特に、車両発進時にエンジン1をアシストするようにモータジェネレータ2が力行モードで動作する場合、大きなトルクを出力するために大電流の通電が行われるが、上記電流制限制御により減磁の発生を確実に防止できる。また、車両が冬季にまたは寒冷地などで用いられる場合であっても、減磁により駆動力が低下することを防止することができ、車両用モータシステムの信頼性を高めることができる。
【0039】
さらに、上記電流制限制御により、車両の環境温度が低くバッテリ17の能力が低下し易い場合ほどモータジェネレータ2の駆動電流が下がるため、バッテリ17を酷使することがなくなり、車両における電源全体としての安定性を図ることができる。
【0040】
(第2の実施形態)
次に、本発明の第2の実施形態について図7を参照しながら説明する。
図7は、モータジェネレータ2を制御する制御装置48の構成を機能ブロックにより示したものであり、図1と同一構成部分には同一符号を付して示している。バッテリ17からインバータ14に至る電源線49p、49nのうち一方の電源線49nにはスイッチ回路50(開閉手段に相当)が接続されており、そのスイッチ回路50と並列に抵抗体51が接続されている。この抵抗体51は、モータジェネレータ2のモータフレーム24の外壁部であって、温度センサ29から極力離れた位置にアルミ製のカバーを用いてネジ止めされている。モータジェネレータ2は、ホールICなどから構成される位置センサ52u、52v、52wを備えている。
【0041】
制御部53は、電圧制御によりモータジェネレータ2の速度制御を行うもので、電圧制御器54、PWM波形形成器47、温度検出器39および開閉制御器55を備えている。このうち電圧制御器54は、位置センサ52u、52v、52wから出力される位置信号Hu、Hv、Hwを入力して転流タイミングを得るとともに、これら位置信号Hu、Hv、Hwから回転速度ωを検出し、指令回転速度ωrと検出回転速度ωとの減算結果である回転速度偏差ΔωをPI演算することにより直接的に指令電圧Vur、Vvr、Vwrを生成し、PWM波形形成器47に出力するようになっている。
【0042】
開閉制御器55(開閉制御手段に相当)は、温度検出器39から得た検出温度Tmに基づいて、第1の実施形態と同様にして永久磁石21の温度Tpを推定演算する。ステータコイル20u、20v、20wに流れる最大電流は、バッテリ17の最大電圧、モータジェネレータ2の定数、電圧制御器54が出力する指令電圧Vur、Vvr、Vwrなどによりほぼ決まっている。開閉制御器55は、永久磁石21の温度Tpが、上記最大電流により永久磁石21に生じる逆磁界により減磁が発生する虞が生じる温度(設定温度に相当)よりも低下している時にスイッチ回路50を開く。
【0043】
スイッチ回路50が開状態になると、抵抗体51に電圧降下が生じてインバータ14の入力電圧が低減し、これに応じてインバータ14の出力電圧も低減する。その結果、モータジェネレータ2のステータコイル20u、20v、20wに流れる電流が減少して上記逆磁界の大きさが低減され、減磁の発生を防止することができる。また、抵抗体51が発熱してモータジェネレータ2を加熱するため、モータジェネレータ2内の永久磁石21の温度上昇が早まり、減磁し易い低温状態からいち早く脱することができるとともに、抵抗体51への通電による電力損失を極力低減することができる。
【0044】
なお、電源線49pにもスイッチ回路50を接続し、そのスイッチ回路50と並列に抵抗体51を接続しても良い。また、抵抗体51を複数直列に接続可能な構成とし、永久磁石21の温度Tpが低いほど直列接続数を増やすように接続制御しても良い。
【0045】
(第3の実施形態)
次に、本発明の第3の実施形態について図8を参照しながら説明する。
図8は、モータジェネレータ2を制御する制御装置56の構成を機能ブロックにより示したものであり、図1、図7と同一構成部分には同一符号を付して示している。本実施形態は、上述した第1、第2の実施形態と異なり、モータジェネレータ2に温度センサは付加されていない。インバータ14を駆動制御するベクトル制御部57は、図1に示した制御部31から温度検出器39と電流制限器40とを除いた構成となっている。
【0046】
バッテリ17からインバータ14に至る電源線58pには電源スイッチ59が接続されており、この電源スイッチ59とインバータ14との間に電流制限回路60(電流制限手段に相当)が接続されている。この電流制限回路60は、電源線58nに介在するNチャネル型MOSFET61(開閉手段に相当)、タイマ回路62およびMOSFET61に並列に接続された抵抗体51から構成されている。ここで、タイマ回路62は、電源線58p、58n間に直列に接続された抵抗63、64と、抵抗64と並列に接続されたコンデンサ65およびツェナーダイオード66とからなるCR積分回路の構成を有している。なお、抵抗体51は、第2の実施形態と同様にしてモータジェネレータ2のモータフレーム24に取り付けられている。
【0047】
次に、この制御装置56の動作について説明する。
車両発進時などにおいてモータジェネレータ2を力行モードで駆動する必要が生じると、エンジン1とモータジェネレータ2とを統合的に制御する制御ユニット(図示せず)が電源スイッチ59をオンするとともに、ベクトル制御部57に指令回転速度ωrを与える。電源スイッチ59がオンすると、抵抗63を介してコンデンサ65が徐々に充電される。
【0048】
コンデンサ65の端子電圧がMOSFET61のしきい値電圧Vthよりも低い間はMOSFET61がオフ状態を保持し、抵抗体51に電圧降下が生じてインバータ14の入力電圧が低減し、これに応じてインバータ14の出力電圧および出力電流も低減する。そして、タイマ回路62の遅延時間が経過してコンデンサ65の端子電圧がMOSFET61のしきい値電圧Vth以上になると、MOSFET61がオフからオンに転じるため、以後は抵抗体51での電圧損失は生じない。
【0049】
例えば暫く放置してあった車両の運転を開始するような場合、モータジェネレータ2の永久磁石21の温度は周囲温度にまで低下していることが多い。本実施形態によれば、このような温度の低い状態となる電源スイッチ59のオン時において、永久磁石21が減磁しにくい温度にまで上昇するのに対応した遅延時間が経過するまでの間インバータ14の出力電流を低減できるので、逆磁界の大きさを抑えて減磁の発生を防止することができる。また、温度センサを必要としないので、従来から用いているモータジェネレータ2をそのまま使用することができる。さらに、電源投入時において、インバータ14の入力部に設けられたコンデンサへの突入電流を抑制する効果もある。
【0050】
(その他の実施形態)
なお、本発明は上記し且つ図面に示す各実施形態に限定されるものではなく、例えば以下のように変形または拡張が可能である。
温度センサ29は、モータジェネレータ2のハウジング23の内部に設けても良い。また、温度センサ29は1つに限らず複数設けても良い。この場合、永久磁石21の温度と同じ温度になる位置に設けることが最も好ましいが、永久磁石21の温度変化と近似する温度変化を示す位置に設けても良い。
【0051】
第1、第3の実施形態において、第2の実施形態と同様にしてモータジェネレータ2に位置センサ52u、52v、52wを設けても良い。また、モータジェネレータ2のロータは、表面に永久磁石を設けた構造であっても良い。また、第2の実施形態において、電流センサ32u、32v、32wを設け、ベクトル制御を行う構成としても良い。さらに、第3の実施形態において、DSPに内蔵されているタイマ機能を用いて、遅延時間を生成するように構成しても良い。
【0052】
【発明の効果】
以上の説明から明らかなように、本発明の車載用モータの制御装置は、車載用モータの永久磁石の検出温度が所定の設定温度よりも低い場合に、永久磁石の温度低下による保磁力の大きさの低減割合と同等もしくはそれ以上の割合でステータコイルの通電電流を低減するので、永久磁石に作用する逆磁界が低減され、低温減磁を確実に防止することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態を示す車両用モータシステムの機能ブロック図
【図2】ハイブリッド車両の駆動系に係る概略的な構成を示す図
【図3】モータジェネレータの断面図
【図4】モータジェネレータの縦断側面図
【図5】フェライトのB−HカーブとJ−Hカーブを示す図
【図6】フェライトのB−Hカーブの温度変化を示す図
【図7】本発明の第2の実施形態を示す図1相当図
【図8】本発明の第3の実施形態を示す図1相当図
【符号の説明】
2はモータジェネレータ(車載用モータ)、14はインバータ(電力変換手段)、20はステータ、20u、20v、20wはステータコイル(コイル)、21は永久磁石、22はロータ、29は温度センサ、30、48、56は制御装置、39は温度検出器(温度検出手段)、40は電流制限器(電流制限手段)、50はスイッチ回路(開閉手段)、51は抵抗体、55は開閉制御器(開閉制御手段)、60は電流制限回路(電流制限手段)、61はMOSFET(開閉手段)、62はタイマ回路(開閉制御手段)である。
【発明の属する技術分野】
本発明は、永久磁石を有する車載用モータを、外部から回転力を得て回転する発電モードまたは自ら回転力を発生して回転する力行モードにより制御する車載用モータの制御装置およびこれを用いた車両用モータシステムに関する。
【0002】
【従来の技術】
自動車に用いられる永久磁石型ブラシレスモータについて低温減磁を防止する技術が特許文献1に開示されている。
【0003】
【特許文献1】
特開2001−136771号公報
【0004】
【発明が解決しようとする課題】
例えばハイブリッド車両は、エンジンの回転数が低く十分なトルクを出力できない場合に、効率の良いモータのアシストを受けるようになっている。また、車両が減速する時にはモータを発電機として動作させてエネルギーを回収し、交差点などで一時的に停止した時にはエンジンを止めて燃料を節約する(アイドリングストップ)。エンジンが停止していても、エアコンなどの補機は上記モータにより駆動される。
【0005】
こうしたハイブリッド車のアシスト用/発電用のモータ(モータジェネレータ)あるいはスタータジェネレータとして用いられるモータは、車両始動時または低速回転数に大きなトルクを発生させる必要がある。また、こうした車載用モータはエンジンにより連れ回されるため、特に高速回転での連れ回り時においてモータの誘起電圧を抑える必要がある。誘起電圧を抑える手段としては、ロータに設けられた永久磁石の磁束量を減らしたり、弱め界磁制御などが用いられる。
【0006】
永久磁石の材料としてフェライトを用いたモータを例に説明すると、フェライトは温度の低下に伴って保磁力が小さくなる磁気特性を有しているため、低温の環境下では永久磁石を減磁させる虞がある。特に、車両の温度環境は厳しく、しかも上述したような車載用モータは、始動時または低速時に高トルクを得るために流す大電流により一層減磁が生じ易くなっている。
【0007】
本発明は上記事情に鑑みてなされたもので、その目的は、ロータに配設された永久磁石の減磁が発生しにくい車載用モータの制御装置およびこれを用いた車両用モータシステムを提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するため、請求項1に記載した車載用モータの制御装置は、車載用モータを、外部から回転力を得て回転する発電モードまたは自ら回転力を発生して回転する力行モードにより制御する車載用モータの制御装置において、車載用モータに取り付けられた温度センサと、この温度センサの出力信号に基づいて永久磁石の温度を検出する温度検出手段と、永久磁石の検出温度が所定の設定温度よりも低い場合に、永久磁石の温度低下による保磁力の大きさの低減割合と同等もしくはそれ以上の割合でコイルの通電電流を低減させる電流制限手段とを備えていることを特徴とする。
【0009】
この構成によれば、永久磁石の温度が設定温度を下回って減磁する虞が生じた場合に、予め得られている永久磁石の温度低下による保磁力の大きさの低減割合と同等以上にコイルの通電電流の上限値を低減させて永久磁石に作用する逆磁界を低減するので、永久磁石の温度が低い場合であっても減磁を確実に防止することができる。特に、発電モードと力行モードとにより駆動される車載用モータは、例えば始動時や低速時において大きなトルクを出力するため大電流の通電が行われるが、上記電流制限により減磁の発生を確実に防止できる。ここで、永久磁石の保磁力は、材料の磁化を示すJ−Hカーブの保磁力HcJで考えるものとする。
【0010】
また、請求項2に記載した車載用モータの制御装置は、車載用モータに取り付けられた温度センサと、この温度センサの出力信号に基づいて永久磁石の温度を検出する温度検出手段と、外部電源から電圧を入力しコイルに対し交流電圧を出力する電力変換手段と、外部電源と電力変換手段との間に接続された開閉手段と、この開閉手段と並列に接続された抵抗体と、永久磁石の検出温度が所定の設定温度よりも低いことを条件として開閉手段を開状態に制御する開閉制御手段とを備えていることを特徴とする。
【0011】
この構成によれば、永久磁石の検出温度が設定温度よりも低い場合に、外部電源から電力変換手段に流れる電流は抵抗体を介して流れ、その抵抗体の電圧降下だけ電力変換手段に入力される電圧が減少する。その結果、電力変換手段が出力可能な交流電圧が減少して車載用モータのコイルに流れる電流が抑制され、永久磁石の低温減磁を防止することができる。一方、永久磁石の検出温度が設定温度以上の場合には、開閉手段が閉じるため、抵抗体での電圧ロスは生じない。
【0012】
さらに、請求項3に記載した車載用モータの制御装置は、車載用モータの始動時から所定の遅延時間が経過するまでの間、コイルに流れる電流を予め設定された所定の電流値に低減する電流制限手段を備えていることを特徴とする。
【0013】
この構成によれば、車載用モータが冷却されて温度が低い状態となっていることの多い始動時から所定の遅延時間が経過するまでの期間コイル電流を低減するので、温度センサを別途設けることなく永久磁石の低温減磁を防止することができる。
【0014】
この場合、遅延時間が経過するまでの間外部電源と電力変換手段との間に接続された開閉手段を開状態とし、遅延時間が経過したことを条件として開閉手段を閉状態に切り替えると良い(請求項4)。また、抵抗体を車載用モータに取り付けることにより、抵抗体の発熱によって車載用モータひいては永久磁石モータの温度を高めることができるので、低温減磁し易い状態からいち早く脱することができる(請求項5)。
【0015】
請求項6に記載した車両用モータシステムは、車両(例えばハイブリッド車両)の動力源として用いられる車載用モータと上述した制御装置とを備えているので、車両が冬季にまたは寒冷地などで用いられる場合であっても減磁による駆動力の低下を防止することができる。
【0016】
【発明の実施の形態】
(第1の実施形態)
以下、本発明をハイブリッド車両の車両用モータシステムに適用した第1の実施形態について図1ないし図6を参照しながら説明する。
図2は、ハイブリッド車両の駆動系に係る概略的な構成を示している。エンジン1、モータジェネレータ2(車載用モータに相当)、エアコンのコンプレッサモータ3その他の補機は、軸同士がベルト4を用いた動力結合手段5により結合されている。エンジン1の軸と動力結合手段5との間には、機械的結合を継合および解除するためのクラッチ6が配置されている。エンジン1の動力出力側にはトランスミッション7が配置されており、トランスミッション7の出力側にはドライブシャフト8、ディファレンシャルギヤ9、車軸10を介して車輪11が接続されている。エンジン1を始動するスタータ12は、別に設けられている。
【0017】
車両には、上記エンジン1、モータジェネレータ2、クラッチ6、トランスミッション7などの制御を行う種々の制御ユニットが搭載されている。このうち制御ユニット13は、モータジェネレータ2の制御を行う装置で、モータジェネレータ2に接続されたインバータ14、当該インバータ14の直流側端子に接続されたDC−DCコンバータ15、これらインバータ14とDC−DCコンバータ15とを制御するECU(電子制御ユニット)16などから構成されている。
【0018】
また、車両には、36Vの電圧を有するバッテリ17と、12Vの電圧を有するバッテリ18とが搭載されている。バッテリ17はインバータ14の直流側端子に接続され、バッテリ18はDC−DCコンバータ15の出力側端子に接続されている。スタータ12は、バッテリ18から電圧供給を受けて作動するようになっており、ECU16は、バッテリ18の電圧を制御電源電圧(例えば5V)に変換する電源回路を備えている。ECU16とインバータ14、DC−DCコンバータ15との間は、制御線19により接続されている。
【0019】
この制御ユニット13は、車両発進時にモータジェネレータ2をモータとして動作させてエンジン1をアシストし(力行モード)、通常走行時には必要に応じてジェネレータとして動作させてバッテリ17、18を充電する(発電モード)。また、制御ユニット13は、車両が交差点などで一時的に停止しているアイドリングストップ時には、クラッチ6によりエンジン1の軸を動力結合手段5から切り離した状態で、コンプレッサモータ3などの補機を駆動するようになっている。
【0020】
モータジェネレータ2の回転速度は、エンジン1をアシストする場合および補機を駆動する場合には低いが(例えばエンジン1のアイドリング回転速度である800rpm程度)、エンジン1によって連れ回される場合には高い回転速度まで回される(例えばエンジン1の最高回転数8000rpm程度)。連れ回り時のモータジェネレータ2の誘起電圧がバッテリ17の電圧よりも高くなるとインバータ14やバッテリ17を壊す虞があるため、制御ユニット13は弱め界磁制御などにより誘起電圧を抑えるように制御するようになっている。
【0021】
図3および図4は、それぞれモータジェネレータ2の断面図および縦断側面図である。図3においてステータコイルは省略されている。このモータジェネレータ2は、高速回転時における永久磁石の飛散防止およびリラクタンストルクの利用の観点からIPM(Internal Permanent Magnet;永久磁石埋め込み)型のブラシレスモータとされている。
【0022】
すなわち、モータジェネレータ2は、ステータコア20aに複数相例えば三相のステータコイル20u、20v、20wが巻装されてなるステータ20と、ロータヨーク22aの内部に突極比が大きくなるようにフェライトの永久磁石21が埋め込まれてなるロータ22とを備えている。6枚の平板状の永久磁石21は、ロータヨーク22aの外周面近くに断面が6角形状をなすように軸方向に沿って埋め込まれている。
【0023】
モータジェネレータ2のハウジング23は、ほぼカップ状のモータフレーム24と、このモータフレーム24の開口部を閉塞する軸受ブラケット25とから構成されている。モータフレーム24の底壁部に設けられた軸受26と、軸受ブラケット25に設けられた軸受27とによりロータ22の回転軸28が回転可能に支持されている。また、モータフレーム24の外壁部には、サーミスタや熱電対などから構成される温度センサ29が取り付けられている。
【0024】
図1は、車両用モータシステムの構成を機能ブロックにより示したものである。制御装置30は、制御部31、上記インバータ14、上記温度センサ29および電流センサ32u、32v、32wから構成されている。ここで、インバータ14は、IGBTなどのスイッチング素子を三相ブリッジ接続してなる周知構成の電力変換手段である。また、電流センサ32u、32v、32wはホールCTにより構成されており、インバータ14からステータコイル20u、20v、20wに流れる電流を検出するようになっている。
【0025】
制御部31は、ECU16内に配設された基板上に搭載されているDSP(Digital Signal Processor )、抵抗、コンデンサなどの電子部品から構成されている。DSPに内蔵されている不揮発性メモリまたはDSPの外部に付加した不揮発性メモリには、モータジェネレータ2を力行モードまたは発電モードで駆動するための制御プログラムが書き込まれている。図1に示す制御部31のブロック構成は、この制御プログラムにより実現される機能を実体的に表したものである。以下、各ブロックの機能について説明する。
【0026】
制御部31は、センサレスベクトル制御方式による制御装置で、回転座標変換と相変換とを同時に行うための3相−2相座標変換器33と2相−3相座標変換器34とを備えている。A/D変換器35は、電流センサ32u、32v、32wから出力される電圧信号を入力してディジタル値に変換し、検出電流Iu、Iv、Iwを得るものである。上記3相−2相座標変換器33は、これら固定子座標系における3相の検出電流Iu、Iv、Iwから回転子座標系(dq座標系)における2相の検出電流Id、Iqを演算するようになっている。
【0027】
推定器36は、検出電流Id、Iqと後述する指令電圧Vdr、Vqrとに基づいて、ロータ22の回転角度θと回転速度ωとを推定演算するようになっている。このうち検出回転角度θは、上述した3相−2相座標変換器33と2相−3相座標変換器34に与えられている。
【0028】
制御部31には、車両に搭載された他の制御ユニット(図示せず)からモータジェネレータ2の指令回転速度ωrが与えられるようになっている。速度制御器37は、減算器38によって演算された指令回転速度ωrと検出回転速度ωとの回転速度偏差Δωを入力し、例えばPI演算などを行うことにより指令電流Idr、Iqrを算出するものである。
【0029】
一方、温度検出器39(温度検出手段に相当)は、温度センサ29から出力される温度信号を入力し、温度センサ29の非線形性などを補償することにより、ディジタル値である検出温度Tmを得るものである。この検出温度Tmは、モータフレーム24の外壁部の温度であるが、永久磁石21に近似した温度変化傾向を示すものである。
【0030】
電流制限器40(電流制限手段に相当)は、検出温度Tmに基づいて低減すべき補正電流Idc、Iqcを演算する電流補正器41と、上記指令電流Idr、Iqrからそれぞれ補正電流Idc、Iqcを減算して補正後の指令電流Ids、Iqsを得る減算器42、43とから構成されている。
【0031】
減算器44、45は、それぞれ指令電流Ids、Iqsから検出電流Id、Iqを減算して電流偏差ΔId、ΔIqを算出し、電流制御器46は、それら電流偏差ΔId、ΔIqを入力し、例えばPI演算などを行うことにより指令電圧Vdr、Vqrを算出するものである。上記2相−3相座標変換器34は、これら回転子座標系における2相の指令電圧Vdr、Vqrから固定子座標系における3相の指令電圧Vur、Vvr、Vwrを演算するようになっている。また、PWM波形形成器47は、これら指令電圧Vur、Vvr、Vwrと三角波などの搬送波信号とを比較し、インバータ14を構成するIGBTのゲートに与える駆動信号Sup、Svp、Swp、Sun、Svn、Swnを生成するようになっている。
【0032】
次に、本実施形態の作用について図5および図6も参照しながら説明する。
図5は、永久磁石21の構成材料であるフェライトのB−Hカーブ(実線)とJ−Hカーブ(破線)の一例を示している。それぞれ4本の曲線が描かれているが、永久磁石21の温度が−60℃、−20℃、+20℃、+60℃の場合におけるデータである。B−Hカーブは、永久磁石21の外部に現れる特性を示すものであり、J−Hカーブは、永久磁石21内部の(つまり永久磁石21固有の)磁化の強さを示すものである。
【0033】
一般的に、フェライト磁石の温度係数ΔBr/Br/ΔTは−0.18%/K程度であり、保磁力HcJの温度係数は+0.3〜+0.5%/K程度である。本実施形態における永久磁石21は、保磁力の温度係数などの磁気特性を改善したものであって、その残留磁束密度Brの温度係数ΔBr/Br/ΔTは−0.18%/Kであり、保磁力HcJの温度係数は+0.18%/Kである。温度低下に伴って保磁力HcJの大きさは減少する。
【0034】
図6は、フェライト磁石のB−Hカーブの温度変化を概略的に示したものである。この図6に示すように、温度低下にともなって保磁力HcJの大きさは減少するため、減磁しやすくなっている。フェライト磁石が低温の時にモータに大電流を流し大きな逆磁界をかけると減磁する虞がある。
【0035】
本実施形態において、不揮発性メモリには、モータフレーム24の外壁部の温度Tmと永久磁石21の温度Tpとの関係を示す相関データが書き込まれており、電流補正器41は、温度検出器39が検出する温度Tmと上記相関データとに基づいて、永久磁石21の温度Tpを推定演算する。
【0036】
図5および図6に示すように、温度変化に伴う屈曲点の変化は保磁力HcJの変化となって現れるため、電流補正器41は、温度低下による保磁力HcJの大きさの低減割合と同等もしくはそれ以上(本実施形態では+0.18%/K)の割合で指令電流Ids、Iqsを低減制御する。温度低下による保磁力HcJの大きさの低減割合のデータ(+0.18%/K)は、予め不揮発性メモリに書き込まれている。
【0037】
また、図6に示すように、減磁は永久磁石21の温度Tpが大きくなると発生しにくくなるため、電流制限器40は、温度Tpが予め定めた設定温度以下となった場合にだけ上記電流制限制御を行う。
【0038】
以上説明したように、本実施形態によれば、永久磁石21の温度Tpが設定温度を下回って減磁する虞が生じた場合に、永久磁石21の保磁力HcJの大きさの低減割合と同等以上に指令電流Ids、Iqsすなわちステータコイル20u、20v、20wの通電電流を低減させるので、永久磁石21の低温減磁を確実に防止することができる。特に、車両発進時にエンジン1をアシストするようにモータジェネレータ2が力行モードで動作する場合、大きなトルクを出力するために大電流の通電が行われるが、上記電流制限制御により減磁の発生を確実に防止できる。また、車両が冬季にまたは寒冷地などで用いられる場合であっても、減磁により駆動力が低下することを防止することができ、車両用モータシステムの信頼性を高めることができる。
【0039】
さらに、上記電流制限制御により、車両の環境温度が低くバッテリ17の能力が低下し易い場合ほどモータジェネレータ2の駆動電流が下がるため、バッテリ17を酷使することがなくなり、車両における電源全体としての安定性を図ることができる。
【0040】
(第2の実施形態)
次に、本発明の第2の実施形態について図7を参照しながら説明する。
図7は、モータジェネレータ2を制御する制御装置48の構成を機能ブロックにより示したものであり、図1と同一構成部分には同一符号を付して示している。バッテリ17からインバータ14に至る電源線49p、49nのうち一方の電源線49nにはスイッチ回路50(開閉手段に相当)が接続されており、そのスイッチ回路50と並列に抵抗体51が接続されている。この抵抗体51は、モータジェネレータ2のモータフレーム24の外壁部であって、温度センサ29から極力離れた位置にアルミ製のカバーを用いてネジ止めされている。モータジェネレータ2は、ホールICなどから構成される位置センサ52u、52v、52wを備えている。
【0041】
制御部53は、電圧制御によりモータジェネレータ2の速度制御を行うもので、電圧制御器54、PWM波形形成器47、温度検出器39および開閉制御器55を備えている。このうち電圧制御器54は、位置センサ52u、52v、52wから出力される位置信号Hu、Hv、Hwを入力して転流タイミングを得るとともに、これら位置信号Hu、Hv、Hwから回転速度ωを検出し、指令回転速度ωrと検出回転速度ωとの減算結果である回転速度偏差ΔωをPI演算することにより直接的に指令電圧Vur、Vvr、Vwrを生成し、PWM波形形成器47に出力するようになっている。
【0042】
開閉制御器55(開閉制御手段に相当)は、温度検出器39から得た検出温度Tmに基づいて、第1の実施形態と同様にして永久磁石21の温度Tpを推定演算する。ステータコイル20u、20v、20wに流れる最大電流は、バッテリ17の最大電圧、モータジェネレータ2の定数、電圧制御器54が出力する指令電圧Vur、Vvr、Vwrなどによりほぼ決まっている。開閉制御器55は、永久磁石21の温度Tpが、上記最大電流により永久磁石21に生じる逆磁界により減磁が発生する虞が生じる温度(設定温度に相当)よりも低下している時にスイッチ回路50を開く。
【0043】
スイッチ回路50が開状態になると、抵抗体51に電圧降下が生じてインバータ14の入力電圧が低減し、これに応じてインバータ14の出力電圧も低減する。その結果、モータジェネレータ2のステータコイル20u、20v、20wに流れる電流が減少して上記逆磁界の大きさが低減され、減磁の発生を防止することができる。また、抵抗体51が発熱してモータジェネレータ2を加熱するため、モータジェネレータ2内の永久磁石21の温度上昇が早まり、減磁し易い低温状態からいち早く脱することができるとともに、抵抗体51への通電による電力損失を極力低減することができる。
【0044】
なお、電源線49pにもスイッチ回路50を接続し、そのスイッチ回路50と並列に抵抗体51を接続しても良い。また、抵抗体51を複数直列に接続可能な構成とし、永久磁石21の温度Tpが低いほど直列接続数を増やすように接続制御しても良い。
【0045】
(第3の実施形態)
次に、本発明の第3の実施形態について図8を参照しながら説明する。
図8は、モータジェネレータ2を制御する制御装置56の構成を機能ブロックにより示したものであり、図1、図7と同一構成部分には同一符号を付して示している。本実施形態は、上述した第1、第2の実施形態と異なり、モータジェネレータ2に温度センサは付加されていない。インバータ14を駆動制御するベクトル制御部57は、図1に示した制御部31から温度検出器39と電流制限器40とを除いた構成となっている。
【0046】
バッテリ17からインバータ14に至る電源線58pには電源スイッチ59が接続されており、この電源スイッチ59とインバータ14との間に電流制限回路60(電流制限手段に相当)が接続されている。この電流制限回路60は、電源線58nに介在するNチャネル型MOSFET61(開閉手段に相当)、タイマ回路62およびMOSFET61に並列に接続された抵抗体51から構成されている。ここで、タイマ回路62は、電源線58p、58n間に直列に接続された抵抗63、64と、抵抗64と並列に接続されたコンデンサ65およびツェナーダイオード66とからなるCR積分回路の構成を有している。なお、抵抗体51は、第2の実施形態と同様にしてモータジェネレータ2のモータフレーム24に取り付けられている。
【0047】
次に、この制御装置56の動作について説明する。
車両発進時などにおいてモータジェネレータ2を力行モードで駆動する必要が生じると、エンジン1とモータジェネレータ2とを統合的に制御する制御ユニット(図示せず)が電源スイッチ59をオンするとともに、ベクトル制御部57に指令回転速度ωrを与える。電源スイッチ59がオンすると、抵抗63を介してコンデンサ65が徐々に充電される。
【0048】
コンデンサ65の端子電圧がMOSFET61のしきい値電圧Vthよりも低い間はMOSFET61がオフ状態を保持し、抵抗体51に電圧降下が生じてインバータ14の入力電圧が低減し、これに応じてインバータ14の出力電圧および出力電流も低減する。そして、タイマ回路62の遅延時間が経過してコンデンサ65の端子電圧がMOSFET61のしきい値電圧Vth以上になると、MOSFET61がオフからオンに転じるため、以後は抵抗体51での電圧損失は生じない。
【0049】
例えば暫く放置してあった車両の運転を開始するような場合、モータジェネレータ2の永久磁石21の温度は周囲温度にまで低下していることが多い。本実施形態によれば、このような温度の低い状態となる電源スイッチ59のオン時において、永久磁石21が減磁しにくい温度にまで上昇するのに対応した遅延時間が経過するまでの間インバータ14の出力電流を低減できるので、逆磁界の大きさを抑えて減磁の発生を防止することができる。また、温度センサを必要としないので、従来から用いているモータジェネレータ2をそのまま使用することができる。さらに、電源投入時において、インバータ14の入力部に設けられたコンデンサへの突入電流を抑制する効果もある。
【0050】
(その他の実施形態)
なお、本発明は上記し且つ図面に示す各実施形態に限定されるものではなく、例えば以下のように変形または拡張が可能である。
温度センサ29は、モータジェネレータ2のハウジング23の内部に設けても良い。また、温度センサ29は1つに限らず複数設けても良い。この場合、永久磁石21の温度と同じ温度になる位置に設けることが最も好ましいが、永久磁石21の温度変化と近似する温度変化を示す位置に設けても良い。
【0051】
第1、第3の実施形態において、第2の実施形態と同様にしてモータジェネレータ2に位置センサ52u、52v、52wを設けても良い。また、モータジェネレータ2のロータは、表面に永久磁石を設けた構造であっても良い。また、第2の実施形態において、電流センサ32u、32v、32wを設け、ベクトル制御を行う構成としても良い。さらに、第3の実施形態において、DSPに内蔵されているタイマ機能を用いて、遅延時間を生成するように構成しても良い。
【0052】
【発明の効果】
以上の説明から明らかなように、本発明の車載用モータの制御装置は、車載用モータの永久磁石の検出温度が所定の設定温度よりも低い場合に、永久磁石の温度低下による保磁力の大きさの低減割合と同等もしくはそれ以上の割合でステータコイルの通電電流を低減するので、永久磁石に作用する逆磁界が低減され、低温減磁を確実に防止することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態を示す車両用モータシステムの機能ブロック図
【図2】ハイブリッド車両の駆動系に係る概略的な構成を示す図
【図3】モータジェネレータの断面図
【図4】モータジェネレータの縦断側面図
【図5】フェライトのB−HカーブとJ−Hカーブを示す図
【図6】フェライトのB−Hカーブの温度変化を示す図
【図7】本発明の第2の実施形態を示す図1相当図
【図8】本発明の第3の実施形態を示す図1相当図
【符号の説明】
2はモータジェネレータ(車載用モータ)、14はインバータ(電力変換手段)、20はステータ、20u、20v、20wはステータコイル(コイル)、21は永久磁石、22はロータ、29は温度センサ、30、48、56は制御装置、39は温度検出器(温度検出手段)、40は電流制限器(電流制限手段)、50はスイッチ回路(開閉手段)、51は抵抗体、55は開閉制御器(開閉制御手段)、60は電流制限回路(電流制限手段)、61はMOSFET(開閉手段)、62はタイマ回路(開閉制御手段)である。
Claims (6)
- コイルが巻装されたステータと表面または内部に永久磁石を設けたロータとを有する車載用モータを、外部から回転力を得て回転する発電モードまたは自ら回転力を発生して回転する力行モードにより制御する車載用モータの制御装置において、
前記車載用モータに取り付けられた温度センサと、
この温度センサの出力信号に基づいて前記永久磁石の温度を検出する温度検出手段と、
前記永久磁石の検出温度が所定の設定温度よりも低い場合に、前記永久磁石の温度低下による保磁力の大きさの低減割合と同等もしくはそれ以上の割合で前記コイルの通電電流を低減させる電流制限手段とを備えていることを特徴とする車載用モータの制御装置。 - コイルが巻装されたステータと表面または内部に永久磁石を設けたロータとを有する車載用モータを、外部から回転力を得て回転する発電モードまたは自ら回転力を発生して回転する力行モードにより制御する車載用モータの制御装置において、
前記車載用モータに取り付けられた温度センサと、
この温度センサの出力信号に基づいて前記永久磁石の温度を検出する温度検出手段と、
外部電源から電圧を入力し前記コイルに対し交流電圧を出力する電力変換手段と、
前記外部電源と前記電力変換手段との間に接続された開閉手段と、
この開閉手段と並列に接続された抵抗体と、
前記永久磁石の検出温度が所定の設定温度よりも低いことを条件として前記開閉手段を開状態に制御する開閉制御手段とを備えていることを特徴とする車載用モータの制御装置。 - コイルが巻装されたステータと表面または内部に永久磁石を設けたロータとを有する車載用モータを、外部から回転力を得て回転する発電モードまたは自ら回転力を発生して回転する力行モードにより制御する車載用モータの制御装置において、
前記車載用モータの始動時から所定の遅延時間が経過するまでの間、前記コイルに流れる電流を予め設定された所定の電流値に低減する電流制限手段を備えていることを特徴とする車載用モータの制御装置。 - 外部電源から電圧を入力し前記コイルに対し交流電圧を出力する電力変換手段を備え、
前記電流制限手段は、
前記外部電源と前記電力変換手段との間に接続された開閉手段と、
この開閉手段と並列に接続された抵抗体と、
前記遅延時間が経過するまでの間前記開閉手段を開状態とし、前記遅延時間が経過したことを条件として前記開閉手段を閉状態に切り替える開閉制御手段とから構成されていることを特徴とする請求項3記載の車載用モータの制御装置。 - 前記抵抗体は前記車載用モータに取り付けられていることを特徴とする請求項2または4記載の車載用モータの制御装置。
- コイルが巻装されたステータと表面または内部に永久磁石を設けたロータとを有し車両の動力源として用いられる車載用モータと、
請求項1ないし5の何れかに記載した車載用モータの制御装置とを備えて構成されていることを特徴とする車両用モータシステム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002347916A JP2004187339A (ja) | 2002-11-29 | 2002-11-29 | 車載用モータの制御装置および車両用モータシステム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002347916A JP2004187339A (ja) | 2002-11-29 | 2002-11-29 | 車載用モータの制御装置および車両用モータシステム |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004187339A true JP2004187339A (ja) | 2004-07-02 |
Family
ID=32750970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002347916A Pending JP2004187339A (ja) | 2002-11-29 | 2002-11-29 | 車載用モータの制御装置および車両用モータシステム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004187339A (ja) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007037299A (ja) * | 2005-07-27 | 2007-02-08 | Toshiba Corp | ベクトル制御インバータ装置 |
JP2008182843A (ja) * | 2007-01-25 | 2008-08-07 | Hitachi Ltd | モータ制御装置 |
JP2009185915A (ja) * | 2008-02-06 | 2009-08-20 | Hitachi Car Eng Co Ltd | 電動オイルポンプ用モータ制御装置 |
JP2010119282A (ja) * | 2008-10-17 | 2010-05-27 | Denso Corp | 熱マネージメントシステム |
JP2012116257A (ja) * | 2010-11-30 | 2012-06-21 | Hitachi Automotive Systems Ltd | パワーステアリング装置 |
JP2013056605A (ja) * | 2011-09-08 | 2013-03-28 | Mitsubishi Motors Corp | ハイブリッド電気自動車の制御装置 |
JP2014230434A (ja) * | 2013-05-24 | 2014-12-08 | 日産自動車株式会社 | モータ制御装置 |
KR101550751B1 (ko) * | 2012-03-19 | 2015-09-08 | 히타치 어플라이언스 가부시키가이샤 | 모터 제어 장치, 이를 이용한 모터 구동 장치, 압축기, 냉동 장치, 공기 조화기, 및 모터 제어 방법 |
JP2016052248A (ja) * | 2014-08-29 | 2016-04-11 | ゼネラル・エレクトリック・カンパニイ | 電気機械の磁石管理 |
KR20170068673A (ko) * | 2015-12-09 | 2017-06-20 | 현대모비스 주식회사 | 마일드 하이브리드 차량에서의 인버터 제어 방법 |
KR101830829B1 (ko) * | 2015-09-09 | 2018-04-05 | 인하대학교 산학협력단 | 전기 자동차를 위한 고성능 약계자 제어 장치 |
JP2020110024A (ja) * | 2019-01-07 | 2020-07-16 | 株式会社ミツバ | 電動モータ、電動モータ制御装置および電動モータ制御方法 |
-
2002
- 2002-11-29 JP JP2002347916A patent/JP2004187339A/ja active Pending
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007037299A (ja) * | 2005-07-27 | 2007-02-08 | Toshiba Corp | ベクトル制御インバータ装置 |
JP2008182843A (ja) * | 2007-01-25 | 2008-08-07 | Hitachi Ltd | モータ制御装置 |
JP2009185915A (ja) * | 2008-02-06 | 2009-08-20 | Hitachi Car Eng Co Ltd | 電動オイルポンプ用モータ制御装置 |
JP2010119282A (ja) * | 2008-10-17 | 2010-05-27 | Denso Corp | 熱マネージメントシステム |
JP2012116257A (ja) * | 2010-11-30 | 2012-06-21 | Hitachi Automotive Systems Ltd | パワーステアリング装置 |
US9688133B2 (en) | 2011-09-08 | 2017-06-27 | Mitsubishi Jidosha Kogyo Kabushiki Kaisha | Control apparatus for hybrid electric vehicle |
JP2013056605A (ja) * | 2011-09-08 | 2013-03-28 | Mitsubishi Motors Corp | ハイブリッド電気自動車の制御装置 |
KR101550751B1 (ko) * | 2012-03-19 | 2015-09-08 | 히타치 어플라이언스 가부시키가이샤 | 모터 제어 장치, 이를 이용한 모터 구동 장치, 압축기, 냉동 장치, 공기 조화기, 및 모터 제어 방법 |
JP2014230434A (ja) * | 2013-05-24 | 2014-12-08 | 日産自動車株式会社 | モータ制御装置 |
JP2016052248A (ja) * | 2014-08-29 | 2016-04-11 | ゼネラル・エレクトリック・カンパニイ | 電気機械の磁石管理 |
JP7130351B2 (ja) | 2014-08-29 | 2022-09-05 | ゼネラル・エレクトリック・カンパニイ | 電気機械の磁石管理 |
KR101830829B1 (ko) * | 2015-09-09 | 2018-04-05 | 인하대학교 산학협력단 | 전기 자동차를 위한 고성능 약계자 제어 장치 |
KR20170068673A (ko) * | 2015-12-09 | 2017-06-20 | 현대모비스 주식회사 | 마일드 하이브리드 차량에서의 인버터 제어 방법 |
KR102448628B1 (ko) | 2015-12-09 | 2022-09-29 | 현대모비스 주식회사 | 마일드 하이브리드 차량에서의 인버터 제어 방법 |
JP2020110024A (ja) * | 2019-01-07 | 2020-07-16 | 株式会社ミツバ | 電動モータ、電動モータ制御装置および電動モータ制御方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6316467B2 (ja) | ワイパ装置 | |
CN100574082C (zh) | 内部永久磁体电机的启动和重新启动 | |
US7615948B2 (en) | Controller for motor and control method for motor | |
US6236172B1 (en) | Driving system for electric vehicle | |
JP4350676B2 (ja) | ハイブリッド車両の制御装置 | |
JP6921687B2 (ja) | ワイパ装置 | |
US9071111B2 (en) | Blower apparatus and method for controlling blower apparatus in vehicle | |
WO2021049248A1 (ja) | モータ制御装置、機電一体ユニット、および電動車両システム | |
US20070222405A1 (en) | Controller for motor | |
WO2013061412A1 (ja) | 電動車両の制御装置 | |
JP2004187339A (ja) | 車載用モータの制御装置および車両用モータシステム | |
JP4974988B2 (ja) | 界磁巻線式同期発電電動機 | |
JP2012186917A (ja) | モータ制御装置及びモータ制御方法 | |
JP2014204451A (ja) | 車両用発電電動機の制御装置およびその方法 | |
WO2016052233A1 (ja) | 電気自動車の制御装置 | |
JP2004215318A (ja) | 電動駆動制御装置、電動駆動制御方法及びそのプログラム | |
WO2006052744A2 (en) | Position-sensorless control of interior permanent magnet machines | |
JP6870577B2 (ja) | 回転電機の制御装置 | |
JP3301360B2 (ja) | モータ制御装置および方法 | |
JP2007089248A (ja) | 電動機の駆動装置 | |
JP3985550B2 (ja) | 電動車両駆動制御装置、電動車両駆動制御方法及びそのプログラム | |
JP2004320861A (ja) | 車両用3相電動発電機の制御装置 | |
JP2006304462A (ja) | モータ駆動システム及び永久磁石モータ制御方法 | |
JP7694300B2 (ja) | 電動機制御装置 | |
JP2008236892A (ja) | ブラシレスモータの制御装置 |