[go: up one dir, main page]

JP2004186436A - Piezoelectric/electrostrictive film element - Google Patents

Piezoelectric/electrostrictive film element Download PDF

Info

Publication number
JP2004186436A
JP2004186436A JP2002351694A JP2002351694A JP2004186436A JP 2004186436 A JP2004186436 A JP 2004186436A JP 2002351694 A JP2002351694 A JP 2002351694A JP 2002351694 A JP2002351694 A JP 2002351694A JP 2004186436 A JP2004186436 A JP 2004186436A
Authority
JP
Japan
Prior art keywords
piezoelectric
ceramic substrate
electrostrictive film
lower electrode
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002351694A
Other languages
Japanese (ja)
Other versions
JP3894112B2 (en
Inventor
Nobuo Takahashi
伸夫 高橋
Hirofumi Yamaguchi
浩文 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2002351694A priority Critical patent/JP3894112B2/en
Publication of JP2004186436A publication Critical patent/JP2004186436A/en
Application granted granted Critical
Publication of JP3894112B2 publication Critical patent/JP3894112B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a piezoelectric/electrostrictive film element whose a connecting state can be much more stably obtained. <P>SOLUTION: A lower electrode 4 of a ceramics substrate 1 is continuously formed from the upper part of a thin diaphragm 3 to the upper part of a thick part 2, and an auxiliary electrode 8 is independently formed on the thick part 2 of the ceramic substrate 1. A polarized layer where components included in the ceramic substrate 1 and/or a portion of components included in a connection layer 7 constituted of an insulator formed between the lower electrode 4 and the auxiliary electrode 8 are polarized is formed between the connection layer 7 and the ceramic substrate 1, and a piezoelectric/electrostriction film 5 is formed along them. Thus, the reactivity of the substrate materials and the connection layer materials can be increased, and complete connection whose connecting status is much more stable can be obtained. Therefore, it is possible to increase the durability of elements, to prevent the fluctuation of vibration or secular change, and to continuously obtain suitable elements as an element for discriminating fluid characteristics or liquid/gas according to the detection of electric constants in vibration, an element for measuring a voice pressure, micronic weight, and acceleration or the like and an actuator element. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、圧電/電歪膜型素子に係り、中でも屈曲変位を利用するアクチュエータや、流体特性や音圧、微小重量、加速度等のセンサとして、例えばマイクロホンや粘度センサに用いられる圧電/電歪膜型素子に関する。
【0002】
【従来の技術】
圧電/電歪膜型素子は、従来よりアクチュエータや各種センサとして用いられている。出願人は、特許文献1のように、厚肉部を周縁部に持つ薄肉なダイヤフラム部を有するセラミックスからなる基板に、下部電極及び補助電極と、圧電/電歪膜と、上部電極とを順次積層させた圧電/電歪膜型素子であって、下部電極と補助電極間に、絶縁体からなる結合層を設けることにより、セラミックス基板と圧電/電歪膜とを完全結合状態とした圧電/電歪膜型素子を開発している。
【0003】
【特許文献1】
特開2002−004135号公報
【0004】
【発明が解決しようとする課題】
この圧電/電歪膜素子の製造過程では、結合層の結合状態を完全結合とするために、焼成条件を厳密に制御する必要があった。そして、微調整の手間をかけることにより、初期の電気的定数を素子個体間でバラツキが無く、電気的定数の経時変化が生じないようにしていた。
【0005】
【課題を解決するための手段】
そこで、より結合層の結合状態を完全結合とするために、請求項1に係る本発明は、厚肉部を周縁部に持つ薄肉ダイヤフラム部を有するセラミックスからなる基板に、下部電極及び補助電極と、圧電/電歪膜と、上部電極とを順次積層させるとともに、下部電極と補助電極間に、(Bi0.5Na0.5)TiOまたはこれを主成分とする材料で形成される結合層を設けた圧電/電歪膜型素子であって、
前記セラミックス基板と前記結合層との間に、前記セラミックス基板に含まれる成分及び/または前記結合層に含まれる成分の一部が偏在する偏在層を、1〜5μmの厚みで形成したことを特徴とする圧電/電歪膜型素子である。
これにより、基板材料及び/又は結合層材料との反応性が高まり、結合状態がより安定的に完全結合が得られた。
ここで、セラミックス基板に含まれる成分及び/または結合層に含まれる成分の一部が偏在する偏在層とは、セラミックス基板に含まれる成分の一部が、結合層に偏在している場合、結合層に含まれる成分の一部が、セラミックス基板に偏在している場合、及び前記2つの場合が連続的に若しくは接触して形成されている場合をいう。
また、偏在層の厚みは、1μm以上、5μm以下であることが好ましい。1μm未満では、セラミックス基板と結合層とで完全な結合状態が得られず、結果として素子全体の耐久性が低いものとなってしまい、5μmを越えると、結合層の上部にある圧電膜に悪影響を及ぼし、時間経過により初期の素子性能が得られなくなるからである。
【0006】
また、請求項2に係る本発明は、前記セラミックス基板は、ジルコニアを主成分とする材料で形成されると共に、前記結合層は、(Bi0.5Na0.5)TiOまたはこれを主成分とする材料に、SiO、Y、アルカリ土類金属酸化物又は希土類金属酸化物から選ばれた少なくとも 1種類が添加されてなる材料で形成された請求項1記載の圧電/電歪膜型素子である。
これにより、SiOはガラス成分を形成して結合力が高くなり、添加量も微量であるため、セラミックス基板や圧電/電歪膜に悪影響を及ぼすことはない。一方、基板材料がジルコニアを主成分とするので、ジルコニアに固溶しやすいY、アルカリ土類金属酸化物又は希土類金属酸化物の成分は結合力を高めることができる。なお、アルカリ土類金属酸化物は、基板材料がアルミナの場合、アルミナと反応してスピネル形化合物を形成して結合力を高める。
なお、SiO、Y、アルカリ土類金属酸化物又は希土類金属酸化物の各添加量は、酸化物換算で0.05wt%から0.3wt%であることが好ましい。0.05wt%より小さい場合は、結合力を向上させる効果が無く、0.3wt%より多い場合は、基板材料や圧電電歪膜材料に変質を引き起こし、素子特性の変化や素子の強度を低下させるからである。
【0007】
【発明の実施の形態】
図1には、本発明の圧電/電歪膜型素子の実施形態が、(a)平面と(b)A−A線での縦断面と(c)結合層部分の拡大図とで示されている。かかる圧電/電歪膜型素子は、薄肉のダイヤフラム部3と厚肉部2からなるセラミックス基板1の上に、下部電極4及び補助電極8と、圧電/電歪膜5と、上部電極6とが、通常の膜形成法によって順次積層されてなる一体構造で形成されている。下部電極4と補助電極8との間は、絶縁体からなる結合層7により、圧電/電歪膜5とセラミックス基板1とが完全結合状態で結合され、セラミックス基板1と結合層7との間には、セラミックス基板1に含まれる成分及び/または結合層7に含まれる成分の一部が偏在する偏在層7Aが、1〜5μmの厚みで形成されている。
【0008】
セラミックス基板1の材質としては、耐熱性、化学的安定性、絶縁性を有する材質が好ましい。これは、後述するように下部電極4、圧電/電歪膜5、上部電極6を一体化する際に、熱処理する場合があること、センサ素子としての圧電/電歪膜型素子が液体の特性をセンシングする場合、その液体が導電性や、腐食性を有する場合があるためである。
かかる観点から使用できるセラミックスとしては、安定化された酸化ジルコニウム、酸化アルミニウム、酸化マグネシウム、ムライト、窒化アルミニウム、窒化珪素及びガラス等を例示することができる。これらの内、安定化された酸化ジルコニウムは薄肉ダイヤフラム部3を薄く形成した場合にも機械的強度を高く保てること、靭性に優れることなどから、好適に使用することができる。
【0009】
セラミックス基板1の薄肉ダイヤフラム部3の厚さとしては、圧電/電歪膜の振動を妨げないために、一般に50μm以下、好ましくは30μm以下、さらに好ましくは15μm以下とされる。また、薄肉ダイヤフラム部の表面形状としては、長方形、正方形、三角形、楕円形、真円形等いかなる形状もとりうるが、励起される共振モードを単純化させる必要のあるセンサ素子の応用では、長方形や真円形が必要に応じて選択される。
【0010】
下部電極4は、セラミックス基板1の一方の端から、薄肉ダイヤフラム部3上の、圧電/電歪膜5が形成されるべき大きさと同等に形成されているが、より小さい又はより大きいどちらであっても所定の大きさで形成されればよい。下部電極4の一方の端は、リード用端子として用いられる。一方、補助電極8は、セラミックス基板1の下部電極4とは反対側の端部から、薄肉ダイヤフラム3の上となる所定の位置まで延設されている。補助電極8の一方の端部は、リード用端子として用いられる。
【0011】
下部電極4及び補助電極8は、異なる材質でも、同一の材質でもよく、セラミックス基板1と圧電/電歪膜5とのいずれとも接合性のよい導電性材料が用いられる。具体的には、白金、パラジウム、ロジウム、銀、あるいはこれらの合金を主成分とする電極材料が好適に用いられ、特に、圧電/電歪膜を形成する際に焼結のための熱処理が行われる場合には、白金、及びこれを主成分とする合金が好適に用いられる。
【0012】
下部電極4と補助電極8の形成には、公知の各種の膜形成手法が用いられる。具体的には、イオンビーム、スパッタリング、真空蒸着、CVD、イオンプレーティング、メッキ等の薄膜形成手法や、スクリーン印刷、スプレー、ディッピング等の厚膜形成手法が適宜選択されるが、その中でも特にスパッタリング法及びスクリーン印刷法が好適に選択される。
【0013】
そして、圧電/電歪膜5の形成に先立ち、下部電極4と補助電極8間で、完全結合状態とするための絶縁体からなる結合層7が形成される。絶縁体からなる結合層7としては、(Bi0.5Na0.5)TiOまたはこれを主成分とする材料、例えば(1−x)(Bi0.5Na0.5)TiO−xKNbO(xはモル分率で0.08≦x≦0.5)などに、SiO、Y、アルカリ土類金属酸化物又は希土類金属酸化物から選ばれた少なくとも 1種類が添加されてなる材料が好適である。これらの系の場合は、NaやKが遊離し、膜の絶縁性を損なわないようにするために、NaやKを化学量論組成よりも減じた組成とすることが好ましい。たとえばモル比で、1.01≦Bi/Na≦1.08であり、且つ0.92≦(Bi+Na)/Ti≦0.98の範囲にあることが好ましい。また、この範囲にあることにより、圧電膜の異相の生成を抑制できるとともに、素子の特性発現に最適な粒径とすることができる。
結合層7は、酸化ビスマス 酒石酸水素ナトリウム 酸化チタン、酸化ニオブ酒石酸水素カリウムを原料とし、更に添加物成分の酸化物や炭酸塩等を結合層の所定の組成になるように秤量し、エタノール中で、2φのジルコニア玉石を用い、ボールミルで16時間混合した。得られた泥漿を乾燥後、900℃2時間大気中で仮焼し、さらにエタノール中で、2φのジルコニア玉石を用い、ボールミルで粉砕した。粉砕時間は、粉砕後の粉末の比表面積が5〜10m/gになるよう選択される。ここで、5m/gより小さい場合には、粉末の活性が低いために、ジルコニアとの反応が進まず偏在層が形成されない。10m/gより大きい場合には、活性が高すぎ、粉末同士の凝集が生じるため、偏在層が均一に形成できない。
得られた粉末は、バインダー成分としてポリビニルブチラールやエチルセルロースを用い、溶剤としてテルピネオールやブチルカルビトールを加え、トリロールミルで混練し、印刷用ペーストとされる。
【0014】
さらに、圧電/電歪膜5が、後述の(Bi0.5Na0.5)TiOまたはこれを主成分とする材料、または(1−x)(Bi0.5Na0.5)TiO−xKNbO(xはモル分率で0≦x≦0.06)またはこれを主成分とする材料で構成される場合には、(1−x)(Bi0.5Na0.5)TiO−xKNbO(xはモル分率で0.08≦x≦0.5)を主成分とする材料で構成された結合層7が、圧電/電歪膜5とセラミックス基板1の双方との密着性が高く、熱処理の際の圧電/電歪膜5及びセラミックス基板1への悪影響を抑制できることから、より好適に用いられる。すなわち、結合層7を(1−x)(Bi0.5Na0.5)TiO−xKNbO(xはモル分率で0.08≦x≦0.5)とすることで、圧電/電歪膜5と同様の成分を有することから、圧電/電歪膜5との密着性が高くなる。また、ガラスを用いた場合に生じ易い異種元素の拡散による問題が少なく、KNbOを多く含むことから、セラミックス基板との反応性が高く強固な結合が可能となる。また、(1−x)(Bi0.5Na0.5)TiO−xKNbO(xはモル分率で0.08≦x≦0.5)は、圧電特性をほとんど示さないので、使用時に下部電極4と補助電極8に生じる電界に対し、振動や変位及び応力を発生しないため、安定した素子特性を得ることができる。
【0015】
これらの結合層7の形成には、通常の厚膜手法が用いられ、特にスタンピング法、スクリーン印刷法、あるいは形成すべき部分の大きさが数十μm〜数100μm程度の場合にはインクジェット法が好適に用いられる。また、結合層7の熱処理が必要な場合には、次の圧電/電歪膜5の形成前に熱処理されてもよいし、圧電/電歪膜5の形成後同時に熱処理されてもよい。
【0016】
圧電/電歪膜5は、下部電極4、補助電極8及び結合層7に跨るようにして、また、下部電極4を覆う大きさで形成されている。圧電/電歪膜の材料としては、圧電/電歪効果を示す材料であればいずれの材料でもよく、このような材料として、ジルコン酸鉛、チタン酸鉛、チタン酸ジルコン酸鉛(PZT)等の鉛系セラミック圧電/電歪材料や、チタン酸バリウム及びこれを主成分とするチタバリ系セラミック強誘電体や、ポリ弗化ビニリデン(PVDF)に代表される高分子圧電体、あるいは(Bi0.5Na0.5)TiOに代表されるBi系セラミック圧電体、Bi層状セラミックを挙げることができる。もちろん、圧電/電歪特性を改善した、これらの混合物や、固溶体及び、これらに添加物を添加せしめたものが用いられうることは言うまでもない。PZT系圧電体は、圧電特性が高く、高感度検出が可能なセンサの材料として好適に用いられる。また、特に、チタン酸鉛、ジルコン酸鉛、マグネシウムニオブ酸鉛、ニッケルニオブ酸鉛から選ばれた少なくとも1種以上を主成分とする材料で構成されることが、セラミックス基板を構成する材料との反応性が低く、熱処理中の成分の偏析が起き難く、組成を保つための処理が良好に行われ得、目的とする組成、結晶構造が得られやすいことから、より好適に用いられる。
【0017】
また、下部電極4及び補助電極8に白金または白金を主成分とする合金が用いられる場合には、これらとの接合性がより高く、素子の特性ばらつきを少なくし、高い信頼性が得られることから、圧電/電歪材料には(Bi0.5Na0.5)TiOまたはこれを主成分とする材料が好適に用いられる。これらの中でも、特に、(1−x)(Bi0.5Na0.5)TiO−xKNbO(xはモル分率で0≦x≦0.06)またはこれを主成分とする材料が、比較的高い圧電特性を有することから、より好適に用いられる。
【0018】
このような圧電/電歪材料は、圧電/電歪膜5として、下部電極4と補助電極8と同様に公知の各種膜形成法により形成される。中でも、低コストの観点からスクリーン印刷が好適に用いられる。
【0019】
これにより形成された圧電/電歪膜5は必要に応じて熱処理され、下部電極4、補助電極8及び結合層7と、一体化される。本発明にあっては、素子の特性ばらつきを抑え、信頼性を高くするために、圧電/電歪膜5と下部電極4及び補助電極8、結合層7の接合性を強固にする必要があるため、(Bi0.5Na0.5)TiOまたはこれを主成分とする材料、特に、(1−x)(Bi0.5Na0.5)TiO−xKNbO(xはモル分率で0≦x≦0.06)またはこれを主成分とする材料を用い、900℃から1400℃好ましくは1000℃から1300℃の温度で熱処理されることが好ましい。PZT系材料を用いた場合にも同様である。この際、高温時に圧電/電歪膜5が不安定にならないように、圧電/電歪材料の蒸発源とともに雰囲気制御を行いながら熱処理することが好ましい。
そして、この熱処理後に、セラミックス基板1と結合層7との間に、セラミックス基板1に含まれる成分及び/または結合層7に含まれる成分の一部が偏在する偏在層7Aを、図1(c)のように1〜5μmの厚みで形成することができる。
【0020】
さらに、このようにして形成された圧電/電歪膜5の上に、上部電極6が、圧電/電歪膜5から補助電極8にまで跨って連続的に形成されている。なお、上部電極6の大きさは、下部電極4及び補助電極8より大きい大きさであってもよいし、同じ大きさでも、又はより小さくてもよい。
この上部電極6の材質としては、圧電/電歪膜5との接合性の高い導電性材料が用いられ、下部電極4及び補助電極8と同様の膜形成法により形成される。
さらに、上部電極6は、膜形成後必要に応じて熱処理され、圧電/電歪膜5及び補助電極8と接合され、一体構造とされる。このような熱処理がかならずしも必要でないことは下部電極4と同様である。
【0021】
なお、下部電極4、結合層7、圧電/電歪膜5、上部電極6が熱処理により接合される場合には、それぞれを形成の都度熱処理してもよいし、それぞれを順次膜形成後、同時に熱処理してもよい。熱処理する際、良好な接合性や構成元素の拡散による変質を抑制するために、熱処理温度が適切に選ばれるのは言うまでもない。また、焼成したセラミックス基板1に、下部電極4等を積層しているが、焼成前のセラミックス基板1に、下部電極4及び結合層7等を積層して焼成することも可能である。これにより、セラミックス基板に含まれる成分の一部が、結合層に偏在している場合と、結合層に含まれる成分の一部が、セラミックス基板に偏在している場合とが連続的に若しくは接触して偏在層を形成することができる。
さらに、図1では空洞部10に貫通孔9を形成しているが、素子が流体に接触する空洞部10以下の構造は、蓋部の無い単純なキャビティ構造等、どのような構造でもよく、限定しない。
【0022】
【実施例】
素子に対し、オフセット+5V、10Vp−p、周波数1kHzの正弦波を、温度40℃、湿度85%の環境条件で印加し、240時間後の故障率を測定した。
【0023】
【表1】

Figure 2004186436
【0024】
基板材料がジルコニアを主成分とし、結合層添加物がSiOの場合は、添加量を調整し偏在層の厚みが1μm以上、5μm以下であると、300時間後の素子の故障率を低減することできる。
また、基板材料がジルコニアを主成分とし、結合層添加物がY、アルカリ土類金属酸化物であるCaO、希土類金属酸化物であるLaの各場合も、添加量0.1wt%で偏在層の厚みが2μmであると、300時間後の素子の故障率は充分に低減されている。
更に、SiOとYとを添加量0.1wt%ずつ混合した結合層添加物であっても、300時間後の素子の故障率は充分に低減されている。
また、SiO、Y、アルカリ土類金属酸化物又は希土類金属酸化物の各添加量がは、酸化物換算で0.05wt%から0.3wt%であることが好ましい。0.05wt%より小さい場合は、結合力を向上させる効果が無く、0.3wt%より多い場合、基板材料や圧電電歪幕材料に変質を引き起こし、素子特性の変化や素子の強度を低下させる。
【0025】
【発明の効果】
本発明による圧電/電歪膜型素子にあっては、基板材料と結合層材料との反応性が高まり、セラミックス基板と圧電/電歪膜との結合状態がより安定的な完全結合となる。よって、素子としての耐久性が高まり、振動のばらつきや経時変化が無く、振動における電気的定数の検知により流体特性や液体/気体を判別する素子、あるいは音圧や微小重量、加速度等の測定素子、さらにはアクチュエータ素子として、好適な素子が継続的に得られることとなる。
【図面の簡単な説明】
【図1】本発明のセンサ用圧電/電歪膜型素子の実施形態を示す説明図である。
【符号の説明】
1・・セラミックス基板、2・・厚肉部、3・・薄肉ダイヤフラム部、4・・下部電極、5・・圧電/電歪膜、6・・上部電極、7・・結合層、7A・・偏在層、8・・補助電極、9・・貫通孔、10・・空洞部。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a piezoelectric / electrostrictive film element, and more particularly to a piezoelectric / electrostrictive device used for a microphone or a viscosity sensor, for example, as an actuator utilizing a bending displacement or as a sensor for fluid characteristics, sound pressure, minute weight, acceleration, etc. The present invention relates to a film-type element.
[0002]
[Prior art]
A piezoelectric / electrostrictive film type element has been conventionally used as an actuator or various sensors. As disclosed in Patent Document 1, the applicant sequentially arranges a lower electrode and an auxiliary electrode, a piezoelectric / electrostrictive film, and an upper electrode on a substrate made of ceramics having a thin diaphragm portion having a thick portion at a peripheral portion. A piezoelectric / electrostrictive film type element in which a ceramic substrate and a piezoelectric / electrostrictive film are completely bonded by providing a bonding layer made of an insulator between a lower electrode and an auxiliary electrode. We are developing electrostrictive film type devices.
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-004135
[Problems to be solved by the invention]
In the manufacturing process of the piezoelectric / electrostrictive film element, the firing conditions had to be strictly controlled in order to make the bonding state of the bonding layer complete. By taking the time and effort of fine adjustment, the initial electric constant is not varied among the individual elements, and the electric constant does not change with time.
[0005]
[Means for Solving the Problems]
Therefore, in order to make the bonding state of the bonding layer more complete, the present invention according to claim 1 has a lower electrode and an auxiliary electrode formed on a substrate made of ceramics having a thin diaphragm portion having a thicker portion at a peripheral portion. A piezoelectric / electrostrictive film and an upper electrode are sequentially laminated, and a bond formed of (Bi 0.5 Na 0.5 ) TiO 3 or a material mainly containing the same is provided between the lower electrode and the auxiliary electrode. A piezoelectric / electrostrictive film type element provided with a layer,
An uneven distribution layer in which a component contained in the ceramic substrate and / or a part of a component contained in the coupling layer is locally distributed is formed with a thickness of 1 to 5 μm between the ceramic substrate and the bonding layer. This is a piezoelectric / electrostrictive film element.
Thereby, the reactivity with the substrate material and / or the bonding layer material was increased, and the bonding state was more stably obtained, and complete bonding was obtained.
Here, the unevenly distributed layer in which a component contained in the ceramic substrate and / or a part of the component included in the bonding layer is unevenly distributed is defined as a case where a part of the component included in the ceramic substrate is unevenly distributed in the bonding layer. This refers to a case where some of the components contained in the layer are unevenly distributed on the ceramic substrate, and a case where the two cases are formed continuously or in contact with each other.
Further, the thickness of the unevenly distributed layer is preferably 1 μm or more and 5 μm or less. If the thickness is less than 1 μm, a perfect bonding state cannot be obtained between the ceramic substrate and the bonding layer. As a result, the durability of the entire device is low. If the thickness exceeds 5 μm, the piezoelectric film on the bonding layer is adversely affected. This causes the initial device performance to be lost over time.
[0006]
According to a second aspect of the present invention, the ceramic substrate is made of a material containing zirconia as a main component, and the bonding layer is made of (Bi 0.5 Na 0.5 ) TiO 3 or 2. The piezoelectric / electrode according to claim 1, wherein the piezoelectric / electrode is formed by adding at least one kind selected from the group consisting of SiO 2 , Y 2 O 3 , an alkaline earth metal oxide and a rare earth metal oxide to a material as a component. This is a strained film element.
As a result, SiO 2 forms a glass component to increase the bonding force, and the addition amount is small, so that it does not adversely affect the ceramic substrate or the piezoelectric / electrostrictive film. On the other hand, since the substrate material is mainly composed of zirconia, components of Y 2 O 3 , an alkaline earth metal oxide or a rare earth metal oxide which are easily dissolved in zirconia can increase the bonding force. When the substrate material is alumina, the alkaline earth metal oxide reacts with alumina to form a spinel-type compound to increase the bonding force.
The addition amount of SiO 2 , Y 2 O 3 , alkaline earth metal oxide or rare earth metal oxide is preferably 0.05 wt% to 0.3 wt% in terms of oxide. When the content is less than 0.05 wt%, there is no effect of improving the bonding force, and when the content is more than 0.3 wt%, the material of the substrate or the piezoelectric electrostrictive film is deteriorated, thereby changing the element characteristics and decreasing the element strength. It is because they do.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an embodiment of a piezoelectric / electrostrictive film element according to the present invention in (a) a plane, (b) a vertical section along line AA, and (c) an enlarged view of a coupling layer portion. ing. Such a piezoelectric / electrostrictive film type element has a lower electrode 4, an auxiliary electrode 8, a piezoelectric / electrostrictive film 5, an upper electrode 6 on a ceramic substrate 1 having a thin diaphragm portion 3 and a thicker portion 2. Are formed in an integrated structure which is sequentially laminated by a normal film forming method. Between the lower electrode 4 and the auxiliary electrode 8, the piezoelectric / electrostrictive film 5 and the ceramic substrate 1 are bonded in a completely bonded state by a bonding layer 7 made of an insulator, and between the ceramic substrate 1 and the bonding layer 7. Has a localized layer 7A having a thickness of 1 to 5 μm, in which components contained in the ceramic substrate 1 and / or components contained in the bonding layer 7 are partially distributed.
[0008]
As a material of the ceramic substrate 1, a material having heat resistance, chemical stability, and insulating properties is preferable. This is because the lower electrode 4, the piezoelectric / electrostrictive film 5, and the upper electrode 6 may be heat-treated when integrated, as described later. This is because when sensing liquid, the liquid may have conductivity or corrosiveness.
Examples of ceramics that can be used from this viewpoint include stabilized zirconium oxide, aluminum oxide, magnesium oxide, mullite, aluminum nitride, silicon nitride, and glass. Of these, stabilized zirconium oxide can be suitably used because it can maintain high mechanical strength and is excellent in toughness even when the thin diaphragm portion 3 is formed thin.
[0009]
The thickness of the thin diaphragm portion 3 of the ceramic substrate 1 is generally 50 μm or less, preferably 30 μm or less, more preferably 15 μm or less so as not to hinder the vibration of the piezoelectric / electrostrictive film. In addition, the surface shape of the thin diaphragm portion may be any shape such as a rectangle, square, triangle, ellipse, and true circle. A circle is selected as needed.
[0010]
The lower electrode 4 is formed from one end of the ceramic substrate 1 so as to have a size on the thin diaphragm portion 3 on which the piezoelectric / electrostrictive film 5 is to be formed, but is smaller or larger. It may be formed in a predetermined size. One end of the lower electrode 4 is used as a lead terminal. On the other hand, the auxiliary electrode 8 extends from the end of the ceramic substrate 1 opposite to the lower electrode 4 to a predetermined position above the thin diaphragm 3. One end of the auxiliary electrode 8 is used as a lead terminal.
[0011]
The lower electrode 4 and the auxiliary electrode 8 may be different materials or the same material, and a conductive material having good bonding properties to both the ceramic substrate 1 and the piezoelectric / electrostrictive film 5 is used. Specifically, an electrode material containing platinum, palladium, rhodium, silver, or an alloy thereof as a main component is preferably used. In particular, when forming a piezoelectric / electrostrictive film, heat treatment for sintering is performed. In this case, platinum and an alloy containing the same as a main component are preferably used.
[0012]
Various known film forming techniques are used for forming the lower electrode 4 and the auxiliary electrode 8. Specifically, a thin film forming technique such as ion beam, sputtering, vacuum deposition, CVD, ion plating, and plating, and a thick film forming technique such as screen printing, spraying, and dipping are appropriately selected. Method and screen printing method are suitably selected.
[0013]
Prior to the formation of the piezoelectric / electrostrictive film 5, a coupling layer 7 made of an insulator for forming a complete coupling state is formed between the lower electrode 4 and the auxiliary electrode 8. As the bonding layer 7 made of an insulator, (Bi 0.5 Na 0.5 ) TiO 3 or a material containing this as a main component, for example, (1-x) (Bi 0.5 Na 0.5 ) TiO 3 − At least one selected from SiO 2 , Y 2 O 3 , alkaline earth metal oxide or rare earth metal oxide is added to xKNbO 3 (x is 0.08 ≦ x ≦ 0.5 in mole fraction) or the like. Preferred materials are preferred. In the case of these systems, it is preferable to use a composition in which Na or K is smaller than the stoichiometric composition in order to prevent Na and K from being released and impairing the insulating property of the film. For example, it is preferable that the molar ratio satisfies 1.01 ≦ Bi / Na ≦ 1.08 and 0.92 ≦ (Bi + Na) /Ti≦0.98. Further, by being in this range, generation of a different phase of the piezoelectric film can be suppressed, and the particle size can be set to be optimal for expressing the characteristics of the element.
The bonding layer 7 is made of bismuth oxide sodium hydrogen tartrate, titanium oxide and potassium niobium oxide tartrate, and oxides and carbonates of additive components are weighed so as to have a predetermined composition of the bonding layer. Using a 2φ zirconia cobblestone, they were mixed in a ball mill for 16 hours. The obtained slurry was dried, calcined in the air at 900 ° C. for 2 hours, and further pulverized in ethanol with a ball mill using 2φ zirconia balls. The pulverization time is selected so that the specific surface area of the powder after pulverization is 5 to 10 m 2 / g. Here, if it is less than 5 m 2 / g, the activity of the powder is low, so that the reaction with zirconia does not proceed and the uneven distribution layer is not formed. If it is more than 10 m 2 / g, the activity is too high and the powders agglomerate, so that the uneven distribution layer cannot be formed uniformly.
The obtained powder is prepared by using polyvinyl butyral or ethyl cellulose as a binder component, adding terpineol or butyl carbitol as a solvent, and kneading with a triroll mill to obtain a printing paste.
[0014]
Further, the piezoelectric / electrostrictive film 5 is made of (Bi 0.5 Na 0.5 ) TiO 3 described later or a material containing this as a main component, or (1-x) (Bi 0.5 Na 0.5 ) TiO 3. 3- xKNbO 3 (x is 0 ≦ x ≦ 0.06 in mole fraction) or (1-x) (Bi 0.5 Na 0.5 ) when composed of a material containing this as a main component. The bonding layer 7 made of a material mainly composed of TiO 3 -xKNbO 3 (x is 0.08 ≦ x ≦ 0.5 in a mole fraction) is used as a bonding layer for both the piezoelectric / electrostrictive film 5 and the ceramic substrate 1. Is more preferably used since it has high adhesion and can suppress adverse effects on the piezoelectric / electrostrictive film 5 and the ceramic substrate 1 during heat treatment. That is, the bonding layer 7 (1-x) (Bi 0.5 Na 0.5) TiO 3 -xKNbO 3 (x is 0.08 ≦ x ≦ 0.5 in mole fraction) With the piezoelectric / Since it has the same components as the electrostrictive film 5, the adhesion to the piezoelectric / electrostrictive film 5 is enhanced. In addition, there is little problem due to the diffusion of a different element which is likely to occur when glass is used, and since it contains a large amount of KNbO 3 , it has high reactivity with a ceramic substrate and can be firmly bonded. Further, (1-x) (Bi 0.5 Na 0.5 ) TiO 3 —xKNbO 3 (x is a mole fraction of 0.08 ≦ x ≦ 0.5) has almost no piezoelectric characteristics, and is used. Oscillation, displacement and stress are not generated with respect to the electric field generated at the time of the lower electrode 4 and the auxiliary electrode 8, so that stable element characteristics can be obtained.
[0015]
An ordinary thick film method is used for forming these bonding layers 7, and particularly, a stamping method, a screen printing method, or an ink jet method when the size of a portion to be formed is about several tens μm to several hundred μm. It is preferably used. When heat treatment of the bonding layer 7 is necessary, the heat treatment may be performed before the next piezoelectric / electrostrictive film 5 is formed, or may be simultaneously performed after the formation of the piezoelectric / electrostrictive film 5.
[0016]
The piezoelectric / electrostrictive film 5 is formed so as to straddle the lower electrode 4, the auxiliary electrode 8 and the coupling layer 7, and to have a size to cover the lower electrode 4. As the material for the piezoelectric / electrostrictive film, any material may be used as long as it exhibits a piezoelectric / electrostrictive effect. Such materials include lead zirconate, lead titanate, and lead zirconate titanate (PZT). Lead-based ceramic piezoelectric / electrostrictive materials, barium titanate and ferroelectric ceramics containing titanium as a main component, polymer piezoelectrics represented by polyvinylidene fluoride (PVDF), or (Bi . 5 Na 0.5 ) TiO 3 , a Bi-based ceramic piezoelectric material, and a Bi layered ceramic. Of course, it is needless to say that a mixture of these, a solid solution having improved piezoelectric / electrostrictive characteristics, and a material to which an additive is added can be used. The PZT-based piezoelectric material has high piezoelectric characteristics and is suitably used as a material for a sensor capable of high-sensitivity detection. Further, in particular, it is preferable that the ceramic substrate be made of a material mainly containing at least one selected from the group consisting of lead titanate, lead zirconate, lead magnesium niobate and lead nickel niobate. It is more preferably used because it has low reactivity, is unlikely to cause segregation of components during heat treatment, can be favorably treated to maintain the composition, and can easily obtain the desired composition and crystal structure.
[0017]
Further, when platinum or an alloy containing platinum as a main component is used for the lower electrode 4 and the auxiliary electrode 8, the bondability with the platinum and the alloy is reduced, the characteristic variation of the element is reduced, and high reliability is obtained. Therefore, (Bi 0.5 Na 0.5 ) TiO 3 or a material containing this as a main component is preferably used as the piezoelectric / electrostrictive material. Among these, in particular, is a material to be (1-x) (Bi 0.5 Na 0.5) TiO 3 -xKNbO 3 (x is 0 ≦ x ≦ 0.06 in molar fraction) or mainly of this Since it has relatively high piezoelectric characteristics, it is more preferably used.
[0018]
Such a piezoelectric / electrostrictive material is formed as the piezoelectric / electrostrictive film 5 by a known various film forming method similarly to the lower electrode 4 and the auxiliary electrode 8. Among them, screen printing is preferably used from the viewpoint of low cost.
[0019]
The thus formed piezoelectric / electrostrictive film 5 is heat-treated as necessary, and is integrated with the lower electrode 4, the auxiliary electrode 8, and the coupling layer 7. In the present invention, it is necessary to strengthen the bonding properties between the piezoelectric / electrostrictive film 5, the lower electrode 4, the auxiliary electrode 8, and the coupling layer 7 in order to suppress the characteristic variation of the element and increase the reliability. Therefore, (Bi 0.5 Na 0.5 ) TiO 3 or a material containing this as a main component, in particular, (1-x) (Bi 0.5 Na 0.5 ) TiO 3 -xKNbO 3 (x is a mole fraction) It is preferable that a heat treatment is performed at a temperature of 900 ° C. to 1400 ° C., preferably 1000 ° C. to 1300 ° C. using a material having a ratio of 0 ≦ x ≦ 0.06) or a main component thereof. The same applies to the case where a PZT-based material is used. At this time, it is preferable to perform the heat treatment while controlling the atmosphere together with the evaporation source of the piezoelectric / electrostrictive material so that the piezoelectric / electrostrictive film 5 does not become unstable at a high temperature.
After the heat treatment, the unevenly distributed layer 7A, in which the components contained in the ceramic substrate 1 and / or the components included in the bonding layer 7 are partially unevenly distributed, is formed between the ceramic substrate 1 and the bonding layer 7 as shown in FIG. ) Can be formed with a thickness of 1 to 5 μm.
[0020]
Further, on the piezoelectric / electrostrictive film 5 thus formed, the upper electrode 6 is continuously formed from the piezoelectric / electrostrictive film 5 to the auxiliary electrode 8. Note that the size of the upper electrode 6 may be larger than the lower electrode 4 and the auxiliary electrode 8, or may be the same size or smaller.
As a material of the upper electrode 6, a conductive material having a high bonding property with the piezoelectric / electrostrictive film 5 is used, and is formed by the same film forming method as the lower electrode 4 and the auxiliary electrode 8.
Further, the upper electrode 6 is heat-treated as necessary after the film is formed, and is joined to the piezoelectric / electrostrictive film 5 and the auxiliary electrode 8 to form an integral structure. As in the case of the lower electrode 4, such a heat treatment is not necessarily required.
[0021]
When the lower electrode 4, the bonding layer 7, the piezoelectric / electrostrictive film 5, and the upper electrode 6 are joined by heat treatment, they may be heat-treated each time they are formed, or they may be formed sequentially and then simultaneously. Heat treatment may be performed. When performing the heat treatment, it is needless to say that the heat treatment temperature is appropriately selected in order to suppress the deterioration due to the good bonding property and the diffusion of the constituent elements. Although the lower electrode 4 and the like are laminated on the fired ceramic substrate 1, the lower electrode 4 and the bonding layer 7 and the like may be laminated and fired on the ceramic substrate 1 before firing. As a result, the case where some of the components contained in the ceramic substrate are unevenly distributed in the bonding layer and the case where some of the components contained in the bonding layer are unevenly distributed in the ceramic substrate are continuously or in contact with each other. Thus, the unevenly distributed layer can be formed.
Further, in FIG. 1, the through hole 9 is formed in the cavity 10, but the structure below the cavity 10 in which the element contacts the fluid may be any structure such as a simple cavity structure without a lid, Not limited.
[0022]
【Example】
A sine wave having an offset of +5 V, 10 Vp-p, and a frequency of 1 kHz was applied to the device under environmental conditions of a temperature of 40 ° C. and a humidity of 85%, and the failure rate after 240 hours was measured.
[0023]
[Table 1]
Figure 2004186436
[0024]
When the substrate material is zirconia as a main component and the bonding layer additive is SiO 2 , the addition amount is adjusted, and if the thickness of the uneven distribution layer is 1 μm or more and 5 μm or less, the failure rate of the element after 300 hours is reduced. I can do it.
Also, in each case where the substrate material is zirconia as a main component, and the additive for the bonding layer is Y 2 O 3 , CaO which is an alkaline earth metal oxide, and La 2 O 3 which is a rare earth metal oxide, the addition amount is 0. When the thickness of the unevenly distributed layer is 1 μm and the thickness of the uneven distribution layer is 2 μm, the failure rate of the device after 300 hours is sufficiently reduced.
Further, even with a bonding layer additive in which SiO 2 and Y 2 O 3 are added in an amount of 0.1 wt%, the failure rate of the device after 300 hours is sufficiently reduced.
Further, the addition amount of SiO 2 , Y 2 O 3 , alkaline earth metal oxide or rare earth metal oxide is preferably 0.05 wt% to 0.3 wt% in terms of oxide. When the content is less than 0.05 wt%, there is no effect of improving the bonding force, and when the content is more than 0.3 wt%, the material of the substrate or the piezoelectric electrostrictive curtain is deteriorated, and the characteristics of the device are changed and the strength of the device is reduced. .
[0025]
【The invention's effect】
In the piezoelectric / electrostrictive film element according to the present invention, the reactivity between the substrate material and the bonding layer material is increased, and the bonding state between the ceramic substrate and the piezoelectric / electrostrictive film is more stable and complete. Therefore, the durability of the element is increased, there is no variation in vibration and no change with time, and an element for determining a fluid characteristic or a liquid / gas by detecting an electric constant in vibration, or a measuring element for sound pressure, minute weight, acceleration, etc. Further, a suitable element can be continuously obtained as an actuator element.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing an embodiment of a piezoelectric / electrostrictive film element for a sensor according to the present invention.
[Explanation of symbols]
1 Ceramic substrate, 2 thick part, 3 thin diaphragm part, 4 lower electrode, 5 piezoelectric / electrostrictive film, 6 upper electrode, 7 bonding layer, 7A Unevenly distributed layer, 8 auxiliary electrodes, 9 through-holes, 10 cavities.

Claims (2)

厚肉部を周縁部に持つ薄肉ダイヤフラム部を有するセラミックスからなる基板に、下部電極及び補助電極と、圧電/電歪膜と、上部電極とを順次積層させるとともに、下部電極と補助電極間に、(Bi0.5Na0.5)TiOまたはこれを主成分とする材料で形成される結合層を設けた圧電/電歪膜型素子であって、
前記セラミックス基板と前記結合層との間に、前記セラミックス基板に含まれる成分及び/または前記結合層に含まれる成分の一部が偏在する偏在層を、1〜5μmの厚みで形成したことを特徴とする圧電/電歪膜型素子。
A lower electrode and an auxiliary electrode, a piezoelectric / electrostrictive film, and an upper electrode are sequentially laminated on a substrate made of ceramics having a thin diaphragm portion having a thicker portion at a peripheral portion. A piezoelectric / electrostrictive film element provided with a bonding layer formed of (Bi 0.5 Na 0.5 ) TiO 3 or a material containing the same as a main component,
An uneven distribution layer in which a component contained in the ceramic substrate and / or a part of a component contained in the coupling layer is locally distributed is formed with a thickness of 1 to 5 μm between the ceramic substrate and the bonding layer. Piezoelectric / electrostrictive film type element.
前記セラミックス基板は、ジルコニアを主成分とする材料で形成されると共に、前記結合層は、(Bi0.5Na0.5)TiOまたはこれを主成分とする材料に、SiO、Y、アルカリ土類金属酸化物又は希土類金属酸化物から選ばれた少なくとも 1種類が添加されてなる材料で形成された請求項1記載の圧電/電歪膜型素子。The ceramic substrate is formed of a material mainly composed of zirconia, and the bonding layer is made of (Bi 0.5 Na 0.5 ) TiO 3 or a material mainly composed of SiO 2 , Y 2. O 3, the piezoelectric / electrostrictive film element according to claim 1, wherein the at least one selected from alkaline earth metal oxides or rare earth metal oxide is formed of a material formed by adding.
JP2002351694A 2002-12-03 2002-12-03 Piezoelectric / electrostrictive membrane element Expired - Fee Related JP3894112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002351694A JP3894112B2 (en) 2002-12-03 2002-12-03 Piezoelectric / electrostrictive membrane element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002351694A JP3894112B2 (en) 2002-12-03 2002-12-03 Piezoelectric / electrostrictive membrane element

Publications (2)

Publication Number Publication Date
JP2004186436A true JP2004186436A (en) 2004-07-02
JP3894112B2 JP3894112B2 (en) 2007-03-14

Family

ID=32753535

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002351694A Expired - Fee Related JP3894112B2 (en) 2002-12-03 2002-12-03 Piezoelectric / electrostrictive membrane element

Country Status (1)

Country Link
JP (1) JP3894112B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007001063A1 (en) * 2005-06-29 2007-01-04 Ngk Insulators, Ltd. Piezoelectric/electrostriction film type element
WO2008004701A1 (en) * 2006-07-04 2008-01-10 Ngk Insulators, Ltd. Piezoelectric film sensor
WO2008004700A1 (en) * 2006-07-04 2008-01-10 Ngk Insulators, Ltd. Piezoelectric film sensor
JP2008111765A (en) * 2006-10-31 2008-05-15 Ngk Insulators Ltd Piezoelectric/electrostrictive membrane sensor
JP2008113522A (en) * 2006-10-31 2008-05-15 Ngk Insulators Ltd Piezoelectric/electrostrictive film type sensor
JP2008120665A (en) * 2006-11-15 2008-05-29 Ngk Insulators Ltd Piezoelectric/electrostrictive material, piezoelectric/electrostrictive article and piezoelectric/electrostrictive element
JP2011518757A (en) * 2008-04-30 2011-06-30 エプコス アクチエンゲゼルシャフト Ceramic material, method for producing ceramic material, and component made of ceramic material
JP2011201741A (en) * 2010-03-26 2011-10-13 Ngk Insulators Ltd Piezoelectric/electrostrictive ceramic, method for producing piezoelectric/electrostrictive ceramic, piezoelectric/electrostrictive element, and method for manufacturing piezoelectric/electrostrictive element
EP2037251A4 (en) * 2006-07-04 2012-10-24 Ngk Insulators Ltd Piezoelectric/electrostrictive film type sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101306472B1 (en) * 2009-12-16 2013-09-09 울산대학교 산학협력단 Lead-free piezoelectric ceramic composition

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7427820B2 (en) 2005-06-29 2008-09-23 Ngk Insulators, Ltd. Piezoelectric/electrostrictive film element
WO2007001063A1 (en) * 2005-06-29 2007-01-04 Ngk Insulators, Ltd. Piezoelectric/electrostriction film type element
JP5004797B2 (en) * 2005-06-29 2012-08-22 日本碍子株式会社 Piezoelectric / electrostrictive membrane element
EP2037252A4 (en) * 2006-07-04 2012-10-24 Ngk Insulators Ltd Piezoelectric film sensor
US7714480B2 (en) 2006-07-04 2010-05-11 Ngk Insulators, Ltd. Piezoelectric/electrostrictive membrane sensor
US7876023B2 (en) 2006-07-04 2011-01-25 Ngk Insulators, Ltd. Piezoelectric/electrostrictive membrane sensor
WO2008004700A1 (en) * 2006-07-04 2008-01-10 Ngk Insulators, Ltd. Piezoelectric film sensor
WO2008004701A1 (en) * 2006-07-04 2008-01-10 Ngk Insulators, Ltd. Piezoelectric film sensor
EP2042851A4 (en) * 2006-07-04 2012-10-24 Ngk Insulators Ltd Piezoelectric film sensor
EP2037251A4 (en) * 2006-07-04 2012-10-24 Ngk Insulators Ltd Piezoelectric/electrostrictive film type sensor
JP2008113522A (en) * 2006-10-31 2008-05-15 Ngk Insulators Ltd Piezoelectric/electrostrictive film type sensor
JP2008111765A (en) * 2006-10-31 2008-05-15 Ngk Insulators Ltd Piezoelectric/electrostrictive membrane sensor
JP2008120665A (en) * 2006-11-15 2008-05-29 Ngk Insulators Ltd Piezoelectric/electrostrictive material, piezoelectric/electrostrictive article and piezoelectric/electrostrictive element
JP2011518757A (en) * 2008-04-30 2011-06-30 エプコス アクチエンゲゼルシャフト Ceramic material, method for producing ceramic material, and component made of ceramic material
US8786167B2 (en) 2008-04-30 2014-07-22 Epcos Ag Ceramic material, method for the production of the ceramic material and component comprising the ceramic material
JP2011201741A (en) * 2010-03-26 2011-10-13 Ngk Insulators Ltd Piezoelectric/electrostrictive ceramic, method for producing piezoelectric/electrostrictive ceramic, piezoelectric/electrostrictive element, and method for manufacturing piezoelectric/electrostrictive element

Also Published As

Publication number Publication date
JP3894112B2 (en) 2007-03-14

Similar Documents

Publication Publication Date Title
JP2665106B2 (en) Piezoelectric / electrostrictive film element
JP3120260B2 (en) Piezoelectric / electrostrictive film type element
JP3320596B2 (en) Piezoelectric / electrostrictive film element and method of manufacturing the same
JPH06260694A (en) Piezoelectric/electrostrictive film type element
JP2693291B2 (en) Piezoelectric / electrostrictive actuator
JP3465675B2 (en) Piezoelectric / electrostrictive film type element
WO2003061023A1 (en) Piezoelectric/ electrostrictive device and its production method
JP4980905B2 (en) Method for manufacturing piezoelectric / electrostrictive element
EP1659643B1 (en) Piezoelectric/Electrostrictive device
JP3894112B2 (en) Piezoelectric / electrostrictive membrane element
CN102844900A (en) Inkjet head, method for forming image using inkjet head, angular velocity sensor, method for determining angular velocity using angular velocity sensor, piezoelectric power generating element, and power generation method using piezoelectric power gen
JP3126212B2 (en) Piezoelectric / electrostrictive film type element
JP3482101B2 (en) Piezoelectric film type element
JP2004363489A (en) Piezoelectric/electrostrictive element, manufacturing method thereof, piezoelectric/electrostrictive device, and manufacturing method thereof
JP2002314157A (en) Wiring circuit board and manufacturing method thereof
JP3999473B2 (en) Integral piezoelectric / electrostrictive membrane element having excellent durability and method for manufacturing the same
JP3009945B2 (en) Piezoelectric / electrostrictive film type element
JPH07131086A (en) Piezoelectric film type element, processing method thereof and driving method thereof
JP3272004B2 (en) Piezoelectric / electrostrictive film type element
JP4067491B2 (en) Method for manufacturing piezoelectric / electrostrictive device
JP4756013B2 (en) Piezoelectric / electrostrictive device
JP4551061B2 (en) Piezoelectric displacement element and piezoelectric actuator
JP4842523B2 (en) Wiring board
JP4562756B2 (en) Piezoelectric / electrostrictive device
JP3480561B2 (en) Piezoelectric / electrostrictive element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040831

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees