JP2004182643A - METHOD FOR MANUFACTURING alpha-HYDROXYCARBOXYLATE - Google Patents
METHOD FOR MANUFACTURING alpha-HYDROXYCARBOXYLATE Download PDFInfo
- Publication number
- JP2004182643A JP2004182643A JP2002350987A JP2002350987A JP2004182643A JP 2004182643 A JP2004182643 A JP 2004182643A JP 2002350987 A JP2002350987 A JP 2002350987A JP 2002350987 A JP2002350987 A JP 2002350987A JP 2004182643 A JP2004182643 A JP 2004182643A
- Authority
- JP
- Japan
- Prior art keywords
- reaction
- alcohol
- acid ester
- hydroxycarboxylic acid
- catalyst
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 20
- 238000000034 method Methods 0.000 title abstract description 27
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims abstract description 63
- 150000000180 1,2-diols Chemical class 0.000 claims abstract description 29
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 21
- 239000001301 oxygen Substances 0.000 claims abstract description 21
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 21
- 238000006243 chemical reaction Methods 0.000 claims description 77
- 238000004821 distillation Methods 0.000 claims description 39
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 20
- 238000004064 recycling Methods 0.000 claims description 4
- 239000012295 chemical reaction liquid Substances 0.000 abstract description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 49
- 239000003054 catalyst Substances 0.000 description 37
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 33
- 239000002994 raw material Substances 0.000 description 24
- 239000000243 solution Substances 0.000 description 24
- 239000007789 gas Substances 0.000 description 19
- 238000009835 boiling Methods 0.000 description 16
- 239000010931 gold Substances 0.000 description 15
- 238000007086 side reaction Methods 0.000 description 13
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical class OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 12
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 12
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 12
- 229910052737 gold Inorganic materials 0.000 description 12
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 12
- JVTAAEKCZFNVCJ-UHFFFAOYSA-M Lactate Chemical compound CC(O)C([O-])=O JVTAAEKCZFNVCJ-UHFFFAOYSA-M 0.000 description 11
- -1 glycolic acid ester Chemical class 0.000 description 10
- 239000002245 particle Substances 0.000 description 10
- 239000007788 liquid Substances 0.000 description 9
- 125000004432 carbon atom Chemical group C* 0.000 description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 6
- 229910000510 noble metal Inorganic materials 0.000 description 6
- 238000012856 packing Methods 0.000 description 5
- WBVXRNIPAILLQM-UHFFFAOYSA-N 2-hydroxyethyl 2-hydroxyacetate Chemical compound OCCOC(=O)CO WBVXRNIPAILLQM-UHFFFAOYSA-N 0.000 description 4
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 4
- 229910010413 TiO 2 Inorganic materials 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 125000001931 aliphatic group Chemical group 0.000 description 4
- 239000006227 byproduct Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 125000004185 ester group Chemical group 0.000 description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000010992 reflux Methods 0.000 description 4
- 150000005846 sugar alcohols Polymers 0.000 description 4
- 238000005809 transesterification reaction Methods 0.000 description 4
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 3
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910003082 TiO2-SiO2 Inorganic materials 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000000975 co-precipitation Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 229910052809 inorganic oxide Inorganic materials 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Natural products OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 229920000954 Polyglycolide Polymers 0.000 description 2
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000003377 acid catalyst Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- 238000000998 batch distillation Methods 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 229910001882 dioxygen Inorganic materials 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- LEQAOMBKQFMDFZ-UHFFFAOYSA-N glyoxal Chemical compound O=CC=O LEQAOMBKQFMDFZ-UHFFFAOYSA-N 0.000 description 2
- 239000002638 heterogeneous catalyst Substances 0.000 description 2
- 239000011964 heteropoly acid Substances 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 238000004811 liquid chromatography Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- 150000002736 metal compounds Chemical class 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000006709 oxidative esterification reaction Methods 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 230000035484 reaction time Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 229910052711 selenium Inorganic materials 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 239000010457 zeolite Substances 0.000 description 2
- POILWHVDKZOXJZ-ARJAWSKDSA-M (z)-4-oxopent-2-en-2-olate Chemical compound C\C([O-])=C\C(C)=O POILWHVDKZOXJZ-ARJAWSKDSA-M 0.000 description 1
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- 229940015975 1,2-hexanediol Drugs 0.000 description 1
- BYDRTKVGBRTTIT-UHFFFAOYSA-N 2-methylprop-2-en-1-ol Chemical compound CC(=C)CO BYDRTKVGBRTTIT-UHFFFAOYSA-N 0.000 description 1
- SSZWWUDQMAHNAQ-UHFFFAOYSA-N 3-chloropropane-1,2-diol Chemical compound OCC(O)CCl SSZWWUDQMAHNAQ-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 239000004386 Erythritol Substances 0.000 description 1
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- ACIAHEMYLLBZOI-ZZXKWVIFSA-N Unsaturated alcohol Chemical compound CC\C(CO)=C/C ACIAHEMYLLBZOI-ZZXKWVIFSA-N 0.000 description 1
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 238000006136 alcoholysis reaction Methods 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 235000019445 benzyl alcohol Nutrition 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- BMRWNKZVCUKKSR-UHFFFAOYSA-N butane-1,2-diol Chemical compound CCC(O)CO BMRWNKZVCUKKSR-UHFFFAOYSA-N 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000012459 cleaning agent Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 1
- 235000019414 erythritol Nutrition 0.000 description 1
- 229940009714 erythritol Drugs 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 238000010574 gas phase reaction Methods 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 229960005150 glycerol Drugs 0.000 description 1
- 229940015043 glyoxal Drugs 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- FHKSXSQHXQEMOK-UHFFFAOYSA-N hexane-1,2-diol Chemical compound CCCCC(O)CO FHKSXSQHXQEMOK-UHFFFAOYSA-N 0.000 description 1
- 239000002815 homogeneous catalyst Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 230000003100 immobilizing effect Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000002262 irrigation Effects 0.000 description 1
- 238000003973 irrigation Methods 0.000 description 1
- 229910052745 lead Inorganic materials 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229910052699 polonium Inorganic materials 0.000 description 1
- 239000004633 polyglycolic acid Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- 239000008262 pumice Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 238000001577 simple distillation Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 229960002920 sorbitol Drugs 0.000 description 1
- 235000010356 sorbitol Nutrition 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 229910052716 thallium Inorganic materials 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000000811 xylitol Substances 0.000 description 1
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 description 1
- 235000010447 xylitol Nutrition 0.000 description 1
- 229960002675 xylitol Drugs 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Landscapes
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、α−ヒドロキシカルボン酸エステルの製造法に関する。グリコール酸エステル等のα−ヒドロキシカルボン酸エステルは、例えば、ポリグリコール酸等の各種の合成樹脂の原料として利用され、またボイラー等の洗浄剤、エッチング剤等として、工業的に有用な化合物である。
【0002】
【従来の技術】
グリコール酸エステル等のα−ヒドロキシカルボン酸エステルの製造方法としては、これまでに様々な方法が開発されている。ヘテロポリ酸の存在下にホルムアルデヒドと一酸化炭素からポリグリコリドを合成して加アルコール分解する方法(例えば、特許文献1参照)、ホルムアルデヒドと一酸化炭素からグリコール酸を合成し、引き続きアルコールによりエステル化を行う方法(例えば、特許文献2参照)、触媒の存在下にグリオキサールとアルコールの酸化的エステル化を行う方法(例えば、特許文献3参照)、シュウ酸ジエステルを水素化する方法(例えば、特許文献4参照)等が、製造方法として知られている。
【0003】
これらの製法に対し、本願出願人はアルコールの酸化的エステル化反応による方法(例えば、未公開特許文献1参照)を開発した。この方法は、酸素の存在下において、1,2−ジオールとアルコールを反応させることによりα−ヒドロキシカルボン酸エステルを製造する方法である。この製造方法によれば、より効率的にα−ヒドロキシカルボン酸エステルを製造することが可能となる。
【0004】
【特許文献1】
特開平6−228045号(特許請求の範囲)
【特許文献2】
大韓民国公告特許第9511114号
【特許文献3】
特開平8−104665号(特許請求の範囲)
【特許文献4】
特開平6−135895号(特許請求の範囲)
【未公開特許文献1】
特願平2002−204748号(特許請求の範囲)
【0005】
【発明が解決しようとする課題】
しかし、従来技術ではα−ヒドロキシカルボン酸エステルの合成から精製に至るまでを一貫して効率的に製造するには不十分であり、より効率的にα−ヒドロキシカルボン酸エステルを製造する方法が求められていた。
【0006】
本発明は、α−ヒドロキシカルボン酸エステルをより効率よく製造できる方法を提供するものである。
【0007】
【課題を解決するための手段】
本願発明者等は、上記の目的を達成すべく鋭意検討した結果、反応工程と蒸留工程を最適に組み合わせることにより、より効率よくα−ヒドロキシカルボン酸エステルを製造できることを見いだし、本発明を完成させるに至った。
【0008】
即ち本発明は、(i)1,2−ジオール同士又は(ii)1,2−ジオールとアルコールを酸素の存在下反応させて、α−ヒドロキシカルボン酸エステルを得る反応工程と、反応工程で得られた反応液を圧力13〜80000Pa、塔底温度が30〜250℃の条件で蒸留してα−ヒドロキシカルボン酸エステルを得る蒸留工程を含むα−ヒドロキシカルボン酸エステルの製造法に関する。
【0009】
また本発明は、(i)1,2−ジオール同士又は(ii)1,2−ジオールとアルコールを酸素の存在下反応させて、α−ヒドロキシカルボン酸エステルを得る反応工程、反応工程で得られた反応液を圧力13〜80000Pa、塔底温度が30〜250℃の条件で蒸留してα−ヒドロキシカルボン酸エステルを得る蒸留工程と反応工程で得られた反応液に含まれる未反応のアルコールを回収して、水の含有量が0〜20質量%のアルコールを反応工程へリサイクルする工程を含むα−ヒドロキシカルボン酸エステルの製造法に関する
【0010】
【発明の実施の形態】
以下、本発明にかかるα−ヒドロキシカルボン酸エステルの製造方法について詳細に説明する。
【0011】
▲1▼原料
本発明におけるα−ヒドロキシカルボン酸エステルの合成は、原料として(i)1,2−ジオール同士又は(ii)1,2−ジオールとアルコールを酸素の存在下反応させることにより実施される。1,2−ジオールは、1位と2位に水酸基を有する限り特に限定されず、例えば、3価以上の多価アルコールであってもよい。上記1,2−ジオールの具体例としては、例えば、エチレングリコール、1,2−プロピレングリコール、1,2−ブタンジオール、1,2−ヘキサンジオール等の炭素数2〜10程度の脂肪族1,2−ジオール;グリセリン、エリスリトール、キシリトール、ソルビトール等の1位と2位に水酸基を有する炭素数3〜10程度の脂肪族多価アルコール等の他、これら1,2−ジオールの誘導体等が挙げられる。1,2−ジオールの誘導体としては、例えば3−クロロ−1,2−プロパンジオール等のハロゲンを含有する炭素数2〜10程度の脂肪族1,2−ジオール;2−フェニル−1,2−エタンジオール等の芳香環を有する炭素数2〜10程度の脂肪族1,2−ジオール等が挙げられる。1,2−ジオールとしては、炭素数2〜6程度の脂肪族ジオールを好適に用いることができ、エチレングリコールが最も好適に使用できる。これら1,2−ジオールは、1種又は2種以上で用いることができる。
【0012】
原料のアルコールとしては1,2ジオール以外のアルコールであればよく、分子内に水酸基を有していればよくその種類は特に限定されるものではなく、1価アルコールであってもよく、2価以上の多価アルコールであってもよい。アルコールの具体例としては、メタノール、エタノール、1−プロパノール、2−プロパノール、1−ブタノール、1−ヘキサノール、1−オクタノール等の炭素数1〜10程度の脂肪族アルコール;1,3−ブタンジオール、1,4−ブタンジオール等の炭素数2〜10程度の脂肪族多価アルコール;アリルアルコール、メタリルアルコール等の炭素数3〜10程度の脂肪族不飽和アルコール;ベンジルアルコール等の芳香環を有するアルコール等が挙げられる。これらの中でも1級アルコールが好ましく、メタノール、エタノール、1−プロパノール、1−ブタノール等の炭素数1〜4の脂肪族1級アルコールを好適に使用でき、メタノール、エタノール、1−プロパノール、1−ブタノール等の1価アルコールが特に好ましい。アルコールは1種又は2種以上で用いることができる。
【0013】
本発明の製造方法では、1,2−ジオールとアルコールの種類は、目的とするエステルの種類等に応じて、適宜選択すればよい。例えば1,2−ジオールとしてエチレングリコール、アルコールとしてメタノール、エタノール、1−プロパノール、1−ブタノール等を用いた場合、それらアルコールのグリコール酸エステルを製造することができる。あるいは、1,2−ジオールだけを用い、かつ、その1,2−ジオールがエチレングリコールである場合には、グリコール酸2−ヒドロキシエチルを製造することができる。
【0014】
1,2−ジオールとアルコールを原料とする場合、その反応割合は特に限定されないが、1,2−ジオールに対するアルコールのモル比は、通常1:1〜50程度であり、1:2〜20程度がより好ましい。上記範囲内とすることにより、より効率的にα−ヒドロキシカルボン酸エステルを製造することが可能となる。
【0015】
▲2▼触媒
上記反応は、触媒の存在下で実施してもよい。上記反応で触媒を用いる場合の触媒の種類は、特に限定されるものではないが、活性成分である金属が担体に担持された触媒、即ち担持型金属触媒を用いるのが好ましい。
【0016】
活性成分である金属は、特に制限されないが、好ましくは貴金属であり、例えば、金、パラジウム、ルテニウム、ロジウム、イリジウム、白金等を例示することができ、これらの中でも、金、パラジウム、ルテニウム等がより好ましく、特に金が好ましい。
【0017】
本反応で用いることができる触媒は、上記の貴金属を必須成分として含み、更に貴金属以外にも、周期表(「化学分析便覧改訂5版」丸善(2001年))の第4周期から第6周期の2B族、3B族、4B族、5B族及び6B族並びに第4周期の8族からなる群より選択される少なくとも1種の元素(以下、これらの元素を「第二元素」ということがある。)を含む触媒が挙げられる。第二元素の具体例としては、例えばZn、Cd、Hg等の2B族;Ga、In、Tl等の3B族;Ge、Se、Pb等の4B族;As、Sb、Bi等の5B族;Se、Te、Po等の6B族;Fe、Co、Ni等の8族等を例示することができる。
【0018】
本反応で触媒を用いる場合には、例えば金からなる微粒子及び/又は周期表第4から第6周期の2B族、3B族、4B族、5B族、6B族及び第4周期の8族の少なくとも1種の第二元素と金からなる微粒子が担体状に担持されている触媒を好適に用いることができる。
【0019】
活性成分である金属は、上記貴金属を単独で含んでいてもよく、2種以上を含んでいてもよい。2種以上の貴金属を含む場合には、効果が得られる限り、一部又は全部が合金、金属間化合物等を形成していてもよい。
【0020】
また活性成分である金属が、貴金属と第二元素とを含む場合には、効果が得られる限り、一部又は全部が合金、金属間化合物等を形成していてもよい。
【0021】
活性成分である金属微粒子の粒子径は、所定の触媒活性が得られる限り限定的ではないが、平均粒子径は、通常10nm以下程度、好ましくは6nm以下程度、より好ましくは5nm以下程度、特に好ましくは1〜5nm程度である。
【0022】
担体としては、従来から触媒担体として用いられているものを使用することができ、特に限定されない。例えば、市販品を使用することもできる。また公知の製法によって得られるものも使用できる。例えば、金属酸化物(シリカ、アルミナ、チタニア、ジルコニア、マグネシア等)、複合金属酸化物(シリカ・アルミナ、チタニア・シリカ、シリカ・マグネシア等)、ゼオライト(ZSM−5、ベータ等)、メソポーラスシリケート(MCM−41等)等の無機酸化物;天然鉱物(粘土、珪藻土、軽石等);炭素材料(活性炭、黒鉛等)の各種担体を挙げることができ、これらの中では無機酸化物が好ましい。
【0023】
上記触媒の製造方法は、上記のような担持体が得られる限りその制限はない。例えば、所望の金属及びその化合物の少なくとも1種を含む担体を熱処理することによって得ることができる。金属の化合物は、水酸化物、塩化物、カルボン酸塩、硝酸塩、アルコキサイド、アセチルアセトナート塩等のいずれであってもよい。
【0024】
具体的には、例えば金微粒子を担持する場合は、金微粒子を担体上に固定化できる方法であれば特に限定されない。担持方法自体は、例えば共沈法、析出沈澱法、含浸法、気相蒸着法等の公知の方法を利用できるが、共沈法、析出沈澱法等を好適に使用でき、特に析出沈澱法が好ましい。析出沈澱法により触媒を製造する場合、例えば金を含む水溶性化合物の水溶液と無機酸化物担体を混合した後、回収された固形分を焼成することによって触媒を得ることができる。
【0025】
▲3▼α−ヒドロキシカルボン酸エステルの反応工程
上記反応は、液相反応、気相反応等のいずれであってもよいが、液相反応が好ましい。酸素としては分子状酸素を用いるのが好ましい。酸素(酸素ガス)は、窒素ガス、アルゴンガス、ヘリウムガス、二酸化炭素ガス等の不活性ガスで希釈されていてもよい。また空気等の酸素含有ガスを用いることもできる。酸素含有ガスの反応系への供給方法は特に限定されず、公知の方法を採用できる。酸素含有ガスは液中に供給してもよいし、気相部に供給してもよい。
【0026】
反応形態としては連続式、回分式、半回分式のいずれであってもよく、特に限定されるものではない。触媒は固定床、流動床、懸濁床等のいずれの形態であってもよい。
【0027】
反応形式について具体例を列挙する。触媒を固定床で使用する場合は、例えば(i)反応器に触媒を固定しておき、そこに酸素含有ガスを溶解させた原料を連続的に供給し、抜き出した反応液に再度酸素含有ガスを溶解させて反応器へ循環させる外部循環型反応器。(ii)管型の反応器に触媒を固定し、原料と酸素含有ガスを連続的に供給する管型反応器。酸素含有ガスは分割して、反応器入り口、中間部と複数箇所に供給することで反応効率を向上させることができる。(iii)塔型の反応器に触媒を充填し、原料と酸素含有ガスを連続的に供給する灌液充填塔式反応器。ガスを連続相にし、液を分散相とすることで反応効率を向上させることができる。
【0028】
触媒を懸濁床や流動床で使用する場合は、例えば(iv)槽型の反応器に原料と触媒を仕込み、酸素含有ガスを連続的に供給しながら反応させる槽型反応器。原料と触媒は初期に一括で仕込む回分式で反応してもよいし、原料の一部を反応途中で連続的にあるいは一時的に供給する半回分式で反応してもよい。また原料と酸素含有ガスを連続的に供給しながら、反応液とガスを連続的に抜き出す連続式で反応させてもよい。連続的に反応させる場合には、反応器は直列に複数個連結して反応させる連続槽型反応器を用いることで反応効率を向上させることができる。(v)中に仕切りを設けた塔型の反応器を用い、塔の上部から原料と触媒を連続的に供給し、塔の下部から酸素含有ガスを連続的に供給し、両者を向流で接触させて反応する縦型の連続槽型反応器。反応液は、そのまま抜き出してもよいし、再度反応器へ供給してもよい。(vi)塔型の反応器の下部から原料と酸素含有ガスを連続的に供給する気泡塔型反応器等を例示できる。
【0029】
触媒を用いる場合の使用量は、原料である1,2−ジオールやアルコールの種類、触媒の種類、反応条件等に応じて適宜決定すればよいが、通常1,2−ジオール1モルに対して1〜100g程度、好ましくは2〜60g程度である。
【0030】
反応時間は特に限定されるのもではなく、設定した条件により異なるが、通常は反応時間又は滞留時間(反応器内滞留液量/液供給量)として0.5〜20時間程度、好ましくは1〜10時間程度とすればよい。
【0031】
反応温度、反応圧力等の諸条件は、原料である1,2−ジオールやアルコールの種類、触媒の種類等によって適宜決定すればよい。反応温度は通常0〜200℃程度、好ましくは50〜180℃程度とすればよい。この範囲内の温度に設定することにより、一層効率的に反応を進行させることができる。反応圧力は、減圧、常圧又は加圧のいずれであってもよいが、通常は0.05〜10MPa(ゲージ圧)程度、特に0.1〜5MPa程度の範囲が好適である。
【0032】
また、例えば原料として1,2ジオールであるエチレングリコールのみを用いた場合、グリコール酸2−ヒドロキシエチルが生成する。この反応液にアルコールを添加し、グリコール酸2−ヒドロキシエチルとアルコールのエステル交換を行うことで、該アルコールのグリコール酸エステルを製造することができる。この方法によれば、アルコール由来の副生成物を削減できる、反応器を小さくできる等の利点がある。勿論エチレングリコール以外の1,2−ジオールを用いても、同様の反応を実施することができる。
【0033】
またエステル交換の際には、触媒を用いてもよい。触媒としては、酸;塩基;チタン、鉛、スズ等の金属化合物等が挙げられるが、中でも酸が好ましい。酸触媒としては、例えば具体的には、塩酸、硝酸、硫酸、リン酸、ヘテロポリ酸、p−トルエンスルホン酸、酢酸等の均一系触媒;酸性イオン交換樹脂、ゼオライト、粘土等の不均一系触媒が挙げられ、中でも分離のしやすさから、不均一系触媒が好ましい。
【0034】
エステル交換の反応条件は、アルコール/グリコール酸2−ヒドロキシエチルのモル比が1以上が好ましく、2以上がより好ましい。反応温度は、30〜200℃の範囲が好ましい。
【0035】
▲4▼α−ヒドロキシカルボン酸エステルの蒸留工程
上記反応で得られた反応液中には、目的生成物であるα−ヒドロキシカルボン酸エステルの他にも、未反応の1,2−ジオールやアルコール、副生する水等が含まれるため、上記反応液から蒸留によってα−ヒドロキシカルボン酸エステルを精製することができる。
【0036】
上記反応液をそのまま蒸留してもよいし、他の工程を行ってから蒸留を行ってもよい。他の工程とは、例えば触媒等の固形物を分離する分離工程、軽沸点成分を除去する蒸発工程、反応液中の副生成物を有効成分に変換するための反応工程や蒸留を安定に行うために反応液の組成を調整する蒸留前処理工程等が挙げられる。
【0037】
反応液に、α−ヒドロキシカルボン酸エステルよりも軽沸点成分(水、アルコール等)と高沸点成分(エチレングリコール等)が含まれる場合、蒸留で精製を行う際には蒸留塔の数は、特に限定されない。2本の蒸留塔を用いて、1塔目で軽沸点成分を除去した後、2塔目でα−ヒドロキシカルボン酸エステルを留出させてもよいし、1塔目で高沸点成分を除去した後、2塔目で軽沸点成分を留去し、α−ヒドロキシカルボン酸エステルを塔底から抜き出してもよい。また1本の蒸留塔を用いて、α−ヒドロキシカルボン酸エステルを塔の中段からサイドカットにより抜き出してもよい。
【0038】
また反応液中の軽沸点成分の割合が多いときは、蒸留前にフラッシュや蒸発等の操作を行って、軽沸点成分の量を低減してから蒸留してもよい。
【0039】
蒸留方法は、単蒸留や多段式の蒸留塔を用いた精留が可能であるが、精留を行うことが好ましい。また蒸留方式はバッチ式、連続式いずれも好適に実施できる。
【0040】
多段式の蒸留塔を用いる場合、その蒸留塔の段数は特に限定されるものではないが、塔頂(最上段)と塔底(最下段)とを除いた段数が2段以上であることが好ましい。このような蒸留塔としては、例えば、ラシヒリング、ポールリング、インタロックスサドル、ディクソンパッキング、マクマホンパッキング、スルーザーパッキング等の充填物が充填された充填塔;泡鐘トレイ、シーブトレイ、バルブトレイ等のトレイ(棚段)を使用した棚段塔等、一般に用いられている蒸留塔が使用できる。また、棚段と充填物層とを併せ持つ複合式の蒸留塔も用いることができる。さらに、複数の多段式蒸留塔を組み合わせて用いてもよい。尚、上記の段数とは、棚段塔においては棚段の数を示し、充填塔においては理論段数を示す。
【0041】
また、蒸留塔内での副反応を抑制するために、反応液の蒸留塔内での熱履歴をできるだけ少なくすることが好ましい。液を加熱するための装置としては、液膜式リボイラのような熱履歴を小さくできる装置が好ましい。
【0042】
α−ヒドロキシカルボン酸エステルは、分子内に水酸基とエステル基を有しており、反応性の高い化合物であり、反応や蒸留の際に加熱されることによって、容易に副反応を起こす。例えば、α−ヒドロキシカルボン酸エステル分子同士がエステル交換反応を行い、α−ヒドロキシカルボン酸エステル分子が複数個エステル結合でつながったオリゴマーを形成する場合がある。またα−ヒドロキシカルボン酸エステルのエステル基−C(=O)OR(但し、Rは有機残基)に対応するアルコールR−OH以外のアルコールが共存する場合、該アルコールとエステル交換反応を起こし、異なるエステル基を有するα−ヒドロキシカルボン酸エステルを生成する場合もある。さらに、水が共存する際には、α−ヒドロキシカルボン酸エステルが加水分解してα−ヒドロキシカルボン酸が生成する。これらの副反応により、いずれの場合も所望のα−ヒドロキシカルボン酸エステルが減少することになる。さらに水の存在下で加水分解により生成するα−ヒドロキシカルボン酸はカルボン酸であるため、上記副反応の酸触媒として作用し、上記副反応がさらに促進されることになる。特に本発明の反応工程において、α−ヒドロキシカルボン酸エステル1モルに対して、2モルの水が副生するため、反応液を蒸留する際、加水分解が非常に起きやすく、従って上記のような副反応が非常に起こりやすい。
【0043】
また、上記副反応は、いずれもα−ヒドロキシカルボン酸エステルのエステル基−C(=O)OR(但し、Rは有機残基)に対応するアルコールR−OHが遊離する反応でありる。従って該アルコールがα−ヒドロキシカルボン酸エステルよりも軽沸点成分である場合、蒸留工程において該アルコールが優先的に留去されると、その結果副反応の平衡がずれ、さらに副反応が進行する。
【0044】
本発明では、α−ヒドロキシカルボン酸エステルを蒸留する際の蒸留塔における操作圧力、塔底温度が純度、収率良く、着色の少ない製品を得るために重要である。蒸留塔内での副反応を抑制するために、圧力13〜80000Paの範囲で蒸留することで、副反応を抑制することができる。また塔底温度は、30〜250℃で蒸留することで副反応を抑制することができる。
【0045】
また、蒸留塔の塔頂における還流比は限定的ではないが、好ましくは0.1〜100、より好ましくは0.3〜50とすればよい。その他の操作条件は、公知の蒸留条件に従えばよい。
【0046】
▲5▼未反応原料のリサイクル
α−ヒドロキシカルボン酸エステルの合成において、原料の転化率が100%に未達の際には、未反応の原料を回収して反応工程にリサイクルしてもよい。未反応原料のアルコールは、グリコール酸エステルの蒸留の際、軽沸点成分として水等の副生成物と共に留去される。そのアルコールを反応工程の原料としてリサイクルすることで、効率的にα−ヒドロキシカルボン酸エステルを製造することができる。
【0047】
その際、回収してリサイクルするアルコールは、水の含有量が0〜20質量%の範囲に制御すること好ましい。アルコール中の水の含有量は、蒸留等によって制御することができる。水の含有量が20質量%を超えたアルコールを反応の用いると、反応中に生成したα−ヒドロキシカルボン酸エステルが加水分解し、α−ヒドロキシカルボン酸エステルの収率が低下する恐れがある。
【0048】
一般的には、リサイクルされたアルコールに新しいアルコールを添加して反応原料とするが、その際にリサイクルされたアルコールと新しいアルコールを混合した原料アルコール中の水の量が、アルコールに対して20質量%以下になるように、リサイクルされるアルコール中の水の量を調整することが好ましい。より好ましくは15質量%以下である。水の量が20質量%を超えた場合、反応中に生成したα−ヒドロキシカルボン酸エステルが加水分解し、α−ヒドロキシカルボン酸エステルの収率が低下する恐れがある。
【0049】
【実施例】
以下、実施例により、本発明をさらに具体的に説明するが、本発明はこれらにより何ら限定されるものではない。
【0050】
参考例(Au/TiO2−SiO2触媒の調製)
共沈法により調製されたTiO2−SiO2(モル比TiO2/SiO2=5/95 、焼成温度600℃、50〜250メッシュ)を担体として用いた。
【0051】
濃度20mmol/lのテトラクロロ金酸40Lを65〜75℃の範囲で0.5N水酸化ナトリウム溶液を用いてpH7に調節した。この水溶液に上記TiO2−SiO2担体1kgを攪拌下に投入し、温度65〜70℃に保ちながら1時間攪拌を続けた。その後、静置して上澄み液を除去し、残った金固定化物にイオン交換水20Lを加えて室温で5分間攪拌した後、上澄み液を除去するという洗浄工程を3回繰り返した。最後に濾過により得られた金固定化物を、110℃で8時間乾燥し、さらに空気中400℃で3時間焼成することにより、TiO2−SiO2担体上に金が担持された触媒(Au/TiO2−SiO2)を得た。
【0052】
この触媒における金の担体に対する担持量は5.4質量%であった。また、金粒子の粒子径を観察したところ、ほとんど全て6nm以下の粒径で高分散しており、2〜3nm付近に極大を持つ狭い粒子径分布を持ち、平均粒子径は6nm以下であった。
【0053】
実施例1 α−ヒドロキシカルボン酸エステルの製造(グリコール酸メチルの製造)
参考例で得られたAu/TiO2−SiO2触媒を用いて、グリコール酸メチルの合成を行った。回転式攪拌機及びコンデンサを備えた100Lの反応器に、エチレングリコール9.6kg、メタノール50.0kg及び参考例の触媒4.3kgを仕込み、窒素で0.7MPaまで加圧した。その後内温を120℃まで昇温し、圧力が1MPaになるように調整した。圧力を1MPaに保ったまま、空気を2.5Nm3/hrの流量で液中に吹き込み、120℃で8時間反応を行った。
【0054】
反応終了後、冷却して反応液を抜き出し、触媒を濾過した後反応液をガスクロマトグラフィー、液クロマトグラフィー及びカールフィッシャー水分計で分析した。反応液中にはグリコール酸メチル7.5kg、エチレングリコール3.5kg、メタノール43.2kg、水4.9kg、グリコール酸0.7kg含まれており、エチレングリコールの転化率は63.5モル%、エチレングリコール基準のグリコール酸メチルの収率は53.8モル%であった。
【0055】
上記反応液を回転式薄膜蒸発器にかけ、軽沸点成分の除去を行った。ジャケット温度140℃、圧力533hpaで軽沸点成分を除去した。得られた軽沸カット液の組成は、グリコール酸メチル47.0質量%、メタノール26.0質量%、水17.0質量%、エチレングリコール7.0質量%、グリコール酸2.6質量%であった。
【0056】
得られた軽沸カット液3050gを、住友/スルザーラボパッキングを高さ90cmに充填した蒸留塔を備えた、3Lのガラス製フラスコに仕込み、バッチ蒸留を行った。まず還流比0.5、塔頂圧力133hPaにて軽沸成分であるメタノールと水を除去した。その後、還流比1、塔頂圧力13hPaにてグリコール酸メチルを含む留分を抜き出した。その時の塔頂温度は46〜47℃であった。得られたグリコール酸メチルを含む留分を分析したところ、グリコール酸メチル98.9質量%、メタノール0.10質量%、水0.31質量%が含まれていた。
【0057】
実施例2
実施例1の回転式薄膜蒸発器で留出した軽沸点成分と、グリコール酸メチルを蒸留したときの初留を合わせたものを塔底に仕込み、15段のオルダーショウ式蒸留塔でバッチ蒸留を行った。還流比1で運転を行い、塔頂からメタノール97質量%、水3質量%の留分を得た。
【0058】
回転式攪拌機及びコンデンサを備えた500mLのオートクレーブに、エチレングリコール24.1g、上記蒸留で得られた留分127.8g及び参考例の触媒18.0gを仕込み、窒素で0.7MPaまで加圧した。その後内温を120℃まで昇温し、圧力が1MPaになるように調整した。圧力を1MPaに保ったまま、酸素8容量%、窒素92容量%ならなる混合ガスを毎分1ノルマルLの流量で液中に吹き込み、120℃で4時間反応を行った。
【0059】
反応終了後、冷却して反応液を抜き出し、触媒を濾過した後反応液をガスクロマトグラフィー及び液クロマトグラフィーで分析した。反応液中にはグリコール酸メチル19.9g、エチレングリコール3.9g、メタノール114.2gが含まれており、エチレングリコールの転化率は83.7モル%、エチレングリコール基準のグリコール酸メチルの収率は56.9モル%であった。
【0060】
【発明の効果】
本発明のα−ヒドロキシカルボン酸エステルの製造方法によって、反応性が高く副反応を起こしやすいα−ヒドロキシカルボン酸エステルを収率よく、効率的に製造することができる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing an α-hydroxycarboxylic acid ester. Α-Hydroxycarboxylic acid esters such as glycolic acid esters are used as raw materials for various synthetic resins such as polyglycolic acid, and are industrially useful compounds as cleaning agents for boilers, etching agents, and the like. .
[0002]
[Prior art]
As a method for producing an α-hydroxycarboxylic acid ester such as a glycolic acid ester, various methods have been developed so far. A method of synthesizing polyglycolide from formaldehyde and carbon monoxide in the presence of a heteropolyacid and subjecting it to alcoholysis (for example, see Patent Document 1), synthesizing glycolic acid from formaldehyde and carbon monoxide, and subsequently performing esterification with an alcohol (See, for example, Patent Document 2), a method of performing oxidative esterification of glyoxal and alcohol in the presence of a catalyst (for example, see Patent Document 3), and a method of hydrogenating oxalic acid diester (for example, Patent Document 4) Is known as a manufacturing method.
[0003]
In response to these production methods, the present applicant has developed a method based on an oxidative esterification reaction of alcohol (for example, refer to Unpublished Patent Document 1). This method is a method for producing an α-hydroxycarboxylic acid ester by reacting a 1,2-diol with an alcohol in the presence of oxygen. According to this production method, it becomes possible to produce the α-hydroxycarboxylic acid ester more efficiently.
[0004]
[Patent Document 1]
JP-A-6-228045 (Claims)
[Patent Document 2]
Republic of Korea Public Patent No. 9511114
[Patent Document 3]
JP-A-8-104665 (Claims)
[Patent Document 4]
JP-A-6-135895 (Claims)
[Undisclosed patent document 1]
Japanese Patent Application No. 2002-204748 (Claims)
[0005]
[Problems to be solved by the invention]
However, the prior art is insufficient for consistently and efficiently producing α-hydroxycarboxylic acid ester from synthesis to purification, and a method for more efficiently producing α-hydroxycarboxylic acid ester is required. Had been.
[0006]
The present invention provides a method capable of producing an α-hydroxycarboxylic acid ester more efficiently.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to achieve the above object, and as a result, have found that by optimally combining a reaction step and a distillation step, an α-hydroxycarboxylic acid ester can be produced more efficiently, thereby completing the present invention. Reached.
[0008]
That is, the present invention provides a reaction step of obtaining an α-hydroxycarboxylic acid ester by reacting (i) 1,2-diols or (ii) a 1,2-diol with an alcohol in the presence of oxygen, and a reaction step. The present invention relates to a method for producing an α-hydroxycarboxylic acid ester comprising a distillation step of distilling the obtained reaction solution at a pressure of 13 to 80000 Pa and a tower bottom temperature of 30 to 250 ° C. to obtain an α-hydroxycarboxylic acid ester.
[0009]
Further, the present invention can be obtained by a reaction step of reacting (i) 1,2-diols or (ii) a 1,2-diol with an alcohol in the presence of oxygen to obtain an α-hydroxycarboxylic acid ester, and a reaction step. The unreacted alcohol contained in the reaction solution obtained in the reaction step obtained by distilling the reaction solution obtained at a pressure of 13 to 80000 Pa and a column bottom temperature of 30 to 250 ° C. to obtain an α-hydroxycarboxylic acid ester is removed. The present invention relates to a method for producing an α-hydroxycarboxylic acid ester comprising a step of recovering and recycling an alcohol having a water content of 0 to 20% by mass to a reaction step.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the method for producing the α-hydroxycarboxylic acid ester according to the present invention will be described in detail.
[0011]
(1) Raw materials
The synthesis of the α-hydroxycarboxylic acid ester in the present invention is carried out by reacting (i) 1,2-diols or (ii) 1,2-diol with an alcohol in the presence of oxygen as a raw material. The 1,2-diol is not particularly limited as long as it has a hydroxyl group at the 1-position and the 2-position, and may be a trihydric or higher polyhydric alcohol, for example. Specific examples of the 1,2-diol include, for example, aliphatic 1,2-carbondiols such as ethylene glycol, 1,2-propylene glycol, 1,2-butanediol, and 1,2-hexanediol. 2-diols; aliphatic polyhydric alcohols having about 1 to 10 carbon atoms, such as glycerin, erythritol, xylitol, and sorbitol, having a hydroxyl group at the 1- and 2-positions; and derivatives of these 1,2-diols. . Examples of the derivative of 1,2-diol include aliphatic 1,2-diol having about 2 to 10 carbon atoms containing halogen such as 3-chloro-1,2-propanediol; 2-phenyl-1,2- An aliphatic 1,2-diol having about 2 to 10 carbon atoms and having an aromatic ring, such as ethanediol, may be used. As the 1,2-diol, an aliphatic diol having about 2 to 6 carbon atoms can be suitably used, and ethylene glycol can be most preferably used. These 1,2-diols can be used alone or in combination of two or more.
[0012]
The alcohol used as the raw material may be any alcohol other than 1,2 diol, as long as it has a hydroxyl group in the molecule. The type thereof is not particularly limited, and may be a monohydric alcohol or a dihydric alcohol. The above polyhydric alcohols may be used. Specific examples of the alcohol include aliphatic alcohols having about 1 to 10 carbon atoms such as methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 1-hexanol, and 1-octanol; 1,3-butanediol; Aliphatic polyhydric alcohol having about 2 to 10 carbon atoms such as 1,4-butanediol; aliphatic unsaturated alcohol having about 3 to 10 carbon atoms such as allyl alcohol and methallyl alcohol; having an aromatic ring such as benzyl alcohol; Alcohol and the like. Of these, primary alcohols are preferable, and aliphatic primary alcohols having 1 to 4 carbon atoms such as methanol, ethanol, 1-propanol and 1-butanol can be suitably used. Methanol, ethanol, 1-propanol and 1-butanol Are particularly preferred. One or more alcohols can be used.
[0013]
In the production method of the present invention, the types of the 1,2-diol and the alcohol may be appropriately selected according to the type of the target ester and the like. For example, when ethylene glycol is used as the 1,2-diol and methanol, ethanol, 1-propanol, 1-butanol, or the like is used as the alcohol, a glycolic acid ester of the alcohol can be produced. Alternatively, when only 1,2-diol is used and the 1,2-diol is ethylene glycol, 2-hydroxyethyl glycolate can be produced.
[0014]
When 1,2-diol and alcohol are used as raw materials, the reaction ratio is not particularly limited, but the molar ratio of alcohol to 1,2-diol is usually about 1: 1 to 50, and about 1: 2 to 20. Is more preferred. When the content is within the above range, the α-hydroxycarboxylic acid ester can be produced more efficiently.
[0015]
(2) Catalyst
The above reaction may be performed in the presence of a catalyst. When a catalyst is used in the above reaction, the type of the catalyst is not particularly limited, but it is preferable to use a catalyst in which a metal as an active component is supported on a carrier, that is, a supported metal catalyst.
[0016]
The metal that is the active ingredient is not particularly limited, but is preferably a noble metal, for example, gold, palladium, ruthenium, rhodium, iridium, platinum and the like, among which gold, palladium, ruthenium and the like can be exemplified. More preferred, especially gold is preferred.
[0017]
The catalyst that can be used in this reaction contains the above-mentioned noble metal as an essential component, and further contains, in addition to the noble metal, the fourth to sixth cycles of the periodic table (“Chemical Analysis Handbook Revised 5th Edition” Maruzen (2001)). At least one element selected from the group consisting of Group 2B, Group 3B, Group 4B, Group 5B and Group 6B, and Group 8 of the fourth period (hereinafter, these elements may be referred to as "second elements" )). Specific examples of the second element include, for example, Group 2B such as Zn, Cd, and Hg; Group 3B such as Ga, In, and Tl; Group 4B such as Ge, Se, and Pb; Group 5B such as As, Sb, and Bi; Group 6B such as Se, Te, and Po; Group 8 such as Fe, Co, and Ni can be exemplified.
[0018]
When a catalyst is used in this reaction, for example, fine particles of gold and / or at least one of the 2B group, 3B group, 4B group, 5B group, 6B group and the 8th group of the fourth period of the fourth to sixth periods of the periodic table are used. A catalyst in which fine particles composed of one kind of second element and gold are supported on a carrier can be suitably used.
[0019]
The metal which is the active ingredient may contain the above-mentioned noble metal alone, or may contain two or more kinds. When two or more noble metals are contained, some or all of them may form an alloy, an intermetallic compound or the like as long as the effect is obtained.
[0020]
When the metal as the active component contains a noble metal and a second element, some or all of them may form an alloy, an intermetallic compound, or the like as long as the effect is obtained.
[0021]
The particle diameter of the metal fine particles as the active ingredient is not limited as long as a predetermined catalytic activity is obtained, but the average particle diameter is usually about 10 nm or less, preferably about 6 nm or less, more preferably about 5 nm or less, and particularly preferably. Is about 1 to 5 nm.
[0022]
As the carrier, those conventionally used as catalyst carriers can be used, and are not particularly limited. For example, a commercially available product can be used. Further, those obtained by a known production method can also be used. For example, metal oxides (silica, alumina, titania, zirconia, magnesia, etc.), composite metal oxides (silica-alumina, titania-silica, silica-magnesia, etc.), zeolites (ZSM-5, beta, etc.), mesoporous silicates ( Inorganic oxides such as MCM-41, etc .; natural minerals (clay, diatomaceous earth, pumice, etc.); and various carriers of carbon materials (activated carbon, graphite, etc.), among which inorganic oxides are preferred.
[0023]
The method for producing the catalyst is not limited as long as the above-mentioned carrier is obtained. For example, it can be obtained by heat-treating a carrier containing at least one of a desired metal and a compound thereof. The metal compound may be any of hydroxide, chloride, carboxylate, nitrate, alkoxide, acetylacetonate and the like.
[0024]
Specifically, for example, when gold particles are supported, the method is not particularly limited as long as the method is capable of immobilizing the gold particles on a carrier. As the loading method itself, for example, known methods such as a coprecipitation method, a precipitation method, an impregnation method, a vapor deposition method and the like can be used, but a coprecipitation method, a precipitation method and the like can be preferably used, and particularly the precipitation method is preferred. preferable. When a catalyst is produced by a precipitation method, for example, an aqueous solution of a water-soluble compound containing gold and an inorganic oxide carrier are mixed, and the recovered solid is calcined to obtain the catalyst.
[0025]
(3) Reaction process of α-hydroxycarboxylic acid ester
The above reaction may be any of a liquid phase reaction and a gas phase reaction, but a liquid phase reaction is preferred. It is preferable to use molecular oxygen as oxygen. Oxygen (oxygen gas) may be diluted with an inert gas such as nitrogen gas, argon gas, helium gas, or carbon dioxide gas. Further, an oxygen-containing gas such as air can be used. The method for supplying the oxygen-containing gas to the reaction system is not particularly limited, and a known method can be employed. The oxygen-containing gas may be supplied in the liquid or may be supplied to the gas phase.
[0026]
The reaction mode may be any of a continuous system, a batch system, and a semi-batch system, and is not particularly limited. The catalyst may be in any form of a fixed bed, a fluidized bed, a suspension bed and the like.
[0027]
Specific examples of the reaction format are listed. When the catalyst is used in a fixed bed, for example, (i) the catalyst is fixed in the reactor, the raw material in which the oxygen-containing gas is dissolved is continuously supplied thereto, and the oxygen-containing gas is again added to the extracted reaction solution. External circulation type reactor which dissolves and circulates to the reactor. (Ii) A tubular reactor in which a catalyst is fixed in a tubular reactor and a raw material and an oxygen-containing gas are continuously supplied. The reaction efficiency can be improved by dividing the oxygen-containing gas and supplying it to the reactor inlet, the intermediate portion, and a plurality of locations. (Iii) An irrigation packed tower reactor in which a catalyst is packed in a tower reactor and a raw material and an oxygen-containing gas are continuously supplied. The reaction efficiency can be improved by making the gas a continuous phase and making the liquid a dispersed phase.
[0028]
When the catalyst is used in a suspension bed or a fluidized bed, for example, (iv) a tank-type reactor in which a raw material and a catalyst are charged into a tank-type reactor and reacted while continuously supplying an oxygen-containing gas. The raw material and the catalyst may be reacted in a batch system in which the raw materials are initially charged together, or may be reacted in a semi-batch system in which a part of the raw material is continuously or temporarily supplied during the reaction. Alternatively, the reaction may be performed in a continuous manner in which the reaction solution and the gas are continuously extracted while continuously supplying the raw material and the oxygen-containing gas. In the case where the reaction is performed continuously, the reaction efficiency can be improved by using a continuous tank reactor in which a plurality of reactors are connected in series and reacted. (V) Using a tower-type reactor provided with a partition therein, the raw material and the catalyst are continuously supplied from the upper part of the column, the oxygen-containing gas is continuously supplied from the lower part of the column, and both are counter-currently supplied. A vertical, continuous tank reactor that reacts upon contact. The reaction liquid may be withdrawn as it is or may be supplied to the reactor again. (Vi) A bubble column reactor or the like that continuously supplies a raw material and an oxygen-containing gas from the lower portion of the column reactor can be exemplified.
[0029]
The amount used when a catalyst is used may be appropriately determined according to the type of the raw material 1,2-diol or alcohol, the type of the catalyst, the reaction conditions, and the like. It is about 1 to 100 g, preferably about 2 to 60 g.
[0030]
The reaction time is not particularly limited and varies depending on the set conditions. However, the reaction time or the residence time (the amount of liquid retained in the reactor / the amount of liquid supplied) is usually about 0.5 to 20 hours, and preferably 1 to 20 hours. It may be set to about 10 hours.
[0031]
Various conditions such as the reaction temperature and the reaction pressure may be appropriately determined depending on the type of the raw material 1,2-diol or alcohol, the type of the catalyst, and the like. The reaction temperature is usually about 0 to 200 ° C, preferably about 50 to 180 ° C. By setting the temperature within this range, the reaction can proceed more efficiently. The reaction pressure may be any of reduced pressure, normal pressure or pressurized pressure, but is usually preferably about 0.05 to 10 MPa (gauge pressure), particularly preferably about 0.1 to 5 MPa.
[0032]
Further, for example, when only 1,2-diol ethylene glycol is used as a raw material, 2-hydroxyethyl glycolate is generated. By adding an alcohol to the reaction solution and performing transesterification of 2-hydroxyethyl glycolate and the alcohol, a glycolic acid ester of the alcohol can be produced. According to this method, there are advantages such as a reduction in alcohol-derived by-products and a reduction in size of the reactor. Of course, the same reaction can be carried out using 1,2-diols other than ethylene glycol.
[0033]
At the time of transesterification, a catalyst may be used. Examples of the catalyst include an acid; a base; and a metal compound such as titanium, lead, and tin. Among them, an acid is preferable. Specific examples of the acid catalyst include a homogeneous catalyst such as hydrochloric acid, nitric acid, sulfuric acid, phosphoric acid, heteropolyacid, p-toluenesulfonic acid, and acetic acid; a heterogeneous catalyst such as acidic ion exchange resin, zeolite, and clay. Among them, a heterogeneous catalyst is preferable because of easy separation.
[0034]
Regarding the transesterification reaction conditions, the molar ratio of alcohol / 2-hydroxyethyl glycolate is preferably 1 or more, more preferably 2 or more. The reaction temperature is preferably in the range of 30 to 200C.
[0035]
(4) α-Hydroxycarboxylic acid ester distillation step
Since the reaction solution obtained by the above reaction contains unreacted 1,2-diol and alcohol, by-product water and the like in addition to the target product α-hydroxycarboxylic acid ester, The α-hydroxycarboxylic acid ester can be purified from the reaction solution by distillation.
[0036]
The reaction solution may be distilled as it is, or distillation may be performed after performing another step. Other steps include, for example, a separation step of separating solids such as a catalyst, an evaporation step of removing a low-boiling component, a reaction step of converting a by-product in a reaction solution into an active ingredient, and a stable distillation. For this purpose, a distillation pretreatment step of adjusting the composition of the reaction solution and the like can be mentioned.
[0037]
When the reaction solution contains a component having a lighter boiling point (such as water or alcohol) and a component having a higher boiling point (such as ethylene glycol) than the α-hydroxycarboxylic acid ester, when performing purification by distillation, the number of distillation columns is particularly large. Not limited. After removing the light-boiling components in the first column using two distillation columns, the α-hydroxycarboxylic acid ester may be distilled in the second column, or the high-boiling components may be removed in the first column. Thereafter, the low boiling point component may be distilled off in the second column, and the α-hydroxycarboxylic acid ester may be extracted from the bottom of the column. Further, the α-hydroxycarboxylic acid ester may be extracted from the middle stage of the column by side cutting using one distillation column.
[0038]
When the proportion of the light-boiling component in the reaction solution is large, flashing or evaporation may be performed before distillation to reduce the amount of the light-boiling component before distillation.
[0039]
As the distillation method, rectification using a simple distillation or a multistage distillation column is possible, but rectification is preferably performed. Further, the distillation system can be suitably carried out in either a batch system or a continuous system.
[0040]
When a multi-stage distillation column is used, the number of stages of the distillation column is not particularly limited, but the number of stages excluding the top (top) and the bottom (bottom) may be two or more. preferable. As such a distillation column, for example, a packed column filled with packing materials such as Raschig ring, pole ring, interlock saddle, Dickson packing, McMahon packing, and sludge packing; trays such as bubble bell tray, sieve tray, and valve tray A commonly used distillation column such as a plate column using (plate plate) can be used. Further, a combined distillation column having both a tray and a packed bed can also be used. Further, a plurality of multi-stage distillation columns may be used in combination. The above-mentioned number of plates indicates the number of plates in a tray column, and indicates the number of theoretical plates in a packed tower.
[0041]
In addition, in order to suppress a side reaction in the distillation column, it is preferable to minimize the heat history of the reaction solution in the distillation column. As a device for heating the liquid, a device capable of reducing the heat history, such as a liquid film reboiler, is preferable.
[0042]
The α-hydroxycarboxylic acid ester has a hydroxyl group and an ester group in the molecule, is a highly reactive compound, and easily causes a side reaction when heated during the reaction or distillation. For example, α-hydroxycarboxylic acid ester molecules may undergo an ester exchange reaction to form an oligomer in which a plurality of α-hydroxycarboxylic acid ester molecules are connected by an ester bond. When an alcohol other than the alcohol R-OH corresponding to the ester group —C (= O) OR (where R is an organic residue) of the α-hydroxycarboxylic acid ester is present, a transesterification reaction occurs with the alcohol, In some cases, α-hydroxycarboxylic acid esters having different ester groups are produced. Further, when water coexists, α-hydroxycarboxylic acid ester is hydrolyzed to generate α-hydroxycarboxylic acid. These side reactions result in a decrease in the desired α-hydroxycarboxylic acid ester in each case. Further, since the α-hydroxycarboxylic acid generated by hydrolysis in the presence of water is a carboxylic acid, it acts as an acid catalyst for the side reaction, and the side reaction is further promoted. Particularly, in the reaction step of the present invention, since 2 mol of water is by-produced with respect to 1 mol of the α-hydroxycarboxylic acid ester, hydrolysis is very likely to occur when distilling the reaction solution, and therefore, Side reactions are very likely.
[0043]
In addition, any of the above side reactions is a reaction in which the alcohol R-OH corresponding to the ester group -C (= O) OR (where R is an organic residue) of the α-hydroxycarboxylic acid ester is released. Therefore, when the alcohol is a component having a lighter boiling point than that of the α-hydroxycarboxylic acid ester, if the alcohol is preferentially distilled off in the distillation step, the equilibrium of the side reaction is shifted, and the side reaction further proceeds.
[0044]
In the present invention, the operation pressure and the bottom temperature in the distillation column when distilling the α-hydroxycarboxylic acid ester are important for obtaining a product with good purity, good yield and little coloring. In order to suppress a side reaction in the distillation column, the side reaction can be suppressed by performing distillation at a pressure of 13 to 80000 Pa. In addition, by performing distillation at a column bottom temperature of 30 to 250 ° C., side reactions can be suppressed.
[0045]
The reflux ratio at the top of the distillation column is not limited, but is preferably 0.1 to 100, and more preferably 0.3 to 50. Other operating conditions may be in accordance with known distillation conditions.
[0046]
5) Recycling of unreacted raw materials
In the synthesis of the α-hydroxycarboxylic acid ester, when the conversion of the raw material has not reached 100%, the unreacted raw material may be recovered and recycled to the reaction step. The unreacted raw material alcohol is distilled off as a light-boiling component together with by-products such as water during the distillation of the glycolic acid ester. By recycling the alcohol as a raw material in the reaction step, an α-hydroxycarboxylic acid ester can be efficiently produced.
[0047]
At this time, the alcohol to be collected and recycled preferably has a water content controlled in the range of 0 to 20% by mass. The content of water in the alcohol can be controlled by distillation or the like. When an alcohol having a water content of more than 20% by mass is used in the reaction, the α-hydroxycarboxylic acid ester generated during the reaction may be hydrolyzed, and the yield of α-hydroxycarboxylic acid ester may be reduced.
[0048]
In general, new alcohol is added to recycled alcohol as a reaction raw material. At that time, the amount of water in the raw alcohol obtained by mixing the recycled alcohol and the new alcohol is 20 mass% of the alcohol. It is preferable to adjust the amount of water in the recycled alcohol so as to be less than or equal to%. It is more preferably at most 15% by mass. If the amount of water exceeds 20% by mass, the α-hydroxycarboxylic acid ester generated during the reaction may be hydrolyzed, and the yield of α-hydroxycarboxylic acid ester may be reduced.
[0049]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto.
[0050]
Reference Example (Preparation of Au / TiO2-SiO2 catalyst)
TiO 2 —SiO 2 (molar ratio TiO 2 / SiO 2 = 5/95, firing temperature 600 ° C., 50-250 mesh) prepared by a coprecipitation method was used as a carrier.
[0051]
40 L of tetrachloroauric acid having a concentration of 20 mmol / l was adjusted to pH 7 using a 0.5 N sodium hydroxide solution in the range of 65 to 75 ° C. 1 kg of the TiO2-SiO2 carrier was added to this aqueous solution with stirring, and stirring was continued for 1 hour while maintaining the temperature at 65 to 70C. Thereafter, a washing step of removing the supernatant by removing the supernatant, adding 20 L of ion-exchanged water to the remaining immobilized gold, stirring at room temperature for 5 minutes, and removing the supernatant was repeated three times. Finally, the gold-immobilized product obtained by filtration was dried at 110 ° C. for 8 hours, and further calcined in air at 400 ° C. for 3 hours to obtain a catalyst (Au / TiO 2 −) having gold supported on a TiO 2 —SiO 2 support. SiO2) was obtained.
[0052]
The amount of gold supported on the carrier in this catalyst was 5.4% by mass. When the particle diameter of the gold particles was observed, almost all particles were highly dispersed with a particle diameter of 6 nm or less, had a narrow particle diameter distribution having a maximum around 2-3 nm, and had an average particle diameter of 6 nm or less. .
[0053]
Example 1 Production of α-hydroxycarboxylic acid ester (production of methyl glycolate)
Methyl glycolate was synthesized using the Au / TiO2-SiO2 catalyst obtained in Reference Example. Into a 100 L reactor equipped with a rotary stirrer and a condenser, 9.6 kg of ethylene glycol, 50.0 kg of methanol and 4.3 kg of the catalyst of Reference Example were charged and pressurized to 0.7 MPa with nitrogen. Thereafter, the internal temperature was raised to 120 ° C., and the pressure was adjusted to 1 MPa. While maintaining the pressure at 1 MPa, air was blown into the liquid at a flow rate of 2.5 Nm 3 / hr, and the reaction was carried out at 120 ° C. for 8 hours.
[0054]
After completion of the reaction, the reaction solution was cooled and extracted, and the catalyst was filtered. After that, the reaction solution was analyzed by gas chromatography, liquid chromatography and Karl Fischer moisture meter. The reaction solution contained 7.5 kg of methyl glycolate, 3.5 kg of ethylene glycol, 43.2 kg of methanol, 4.9 kg of water, and 0.7 kg of glycolic acid. The conversion of ethylene glycol was 63.5 mol%, The yield of methyl glycolate based on ethylene glycol was 53.8 mol%.
[0055]
The reaction solution was applied to a rotary thin film evaporator to remove light boiling components. The low boiling point component was removed at a jacket temperature of 140 ° C. and a pressure of 533 hpa. The composition of the resulting low boiling cut solution was 47.0% by mass of methyl glycolate, 26.0% by mass of methanol, 17.0% by mass of water, 7.0% by mass of ethylene glycol, and 2.6% by mass of glycolic acid. there were.
[0056]
3050 g of the obtained light boiling cut liquid was charged into a 3 L glass flask equipped with a distillation column filled with Sumitomo / Sulzer Lab Packing to a height of 90 cm, and subjected to batch distillation. First, at a reflux ratio of 0.5 and a top pressure of 133 hPa, methanol and water, which are light boiling components, were removed. Thereafter, a fraction containing methyl glycolate was withdrawn at a reflux ratio of 1 and an overhead pressure of 13 hPa. The top temperature at that time was 46 to 47 ° C. Analysis of the obtained fraction containing methyl glycolate contained 98.9% by mass of methyl glycolate, 0.10% by mass of methanol, and 0.31% by mass of water.
[0057]
Example 2
A mixture of the light-boiling components distilled off in the rotary thin-film evaporator of Example 1 and the initial distillation obtained by distilling methyl glycolate was added to the bottom of the column, and batch distillation was performed in a 15-stage Oldershaw distillation column. Was. The operation was performed at a reflux ratio of 1, and a fraction of 97% by mass of methanol and 3% by mass of water was obtained from the top of the column.
[0058]
In a 500 mL autoclave equipped with a rotary stirrer and a condenser, 24.1 g of ethylene glycol, 127.8 g of the fraction obtained by the above distillation, and 18.0 g of the catalyst of Reference Example were charged, and pressurized to 0.7 MPa with nitrogen. . Thereafter, the internal temperature was raised to 120 ° C., and the pressure was adjusted to 1 MPa. While maintaining the pressure at 1 MPa, a mixed gas consisting of 8% by volume of oxygen and 92% by volume of nitrogen was blown into the liquid at a flow rate of 1 normal L per minute, and the reaction was carried out at 120 ° C. for 4 hours.
[0059]
After completion of the reaction, the reaction solution was cooled and extracted, and the catalyst was filtered. After that, the reaction solution was analyzed by gas chromatography and liquid chromatography. The reaction solution contained 19.9 g of methyl glycolate, 3.9 g of ethylene glycol, and 114.2 g of methanol. The conversion of ethylene glycol was 83.7 mol%, and the yield of methyl glycolate based on ethylene glycol was 83.7 mol%. Was 56.9 mol%.
[0060]
【The invention's effect】
According to the method for producing an α-hydroxycarboxylic acid ester of the present invention, an α-hydroxycarboxylic acid ester having high reactivity and easily causing a side reaction can be efficiently produced with good yield.
Claims (2)
工程1:(i)1,2−ジオール同士又は(ii)1,2−ジオールとアルコールを酸素の存在下反応させて、α−ヒドロキシカルボン酸エステルを得る反応工程、
工程2:工程1で得られた反応液を圧力13〜80000Pa、かつ、塔底温度が30〜250℃の条件で蒸留してα−ヒドロキシカルボン酸エステルを得る蒸留工程。A method for producing an α-hydroxycarboxylic acid ester comprising the following steps.
Step 1: (i) a reaction step of reacting 1,2-diols with each other or (ii) reacting a 1,2-diol with an alcohol in the presence of oxygen to obtain an α-hydroxycarboxylic acid ester;
Step 2: A distillation step of distilling the reaction solution obtained in Step 1 under the conditions of a pressure of 13 to 80000 Pa and a tower bottom temperature of 30 to 250 ° C. to obtain an α-hydroxycarboxylic acid ester.
工程3:工程1で得られた反応液に含まれる未反応のアルコールを回収し、水の含有量が0〜20質量%のアルコールを工程1へリサイクルする工程。The method for producing an α-hydroxycarboxylic acid ester according to claim 1, further comprising the following steps.
Step 3: a step of collecting unreacted alcohol contained in the reaction solution obtained in Step 1 and recycling the alcohol having a water content of 0 to 20% by mass to Step 1.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002350987A JP3763076B2 (en) | 2002-12-03 | 2002-12-03 | Method for producing α-hydroxycarboxylic acid ester |
TW092127989A TWI262186B (en) | 2002-10-09 | 2003-10-08 | Method for producing alpha-hydroxycarboxylic ester |
US10/680,919 US7122698B2 (en) | 2002-10-09 | 2003-10-08 | Method for producing α-hydroxycarboxylate |
AU2003271135A AU2003271135A1 (en) | 2002-12-03 | 2003-10-09 | PROCESS FOR PRODUCING Alpha-HYDROXYCARBOXYLIC ESTER |
PCT/JP2003/012934 WO2004050600A1 (en) | 2002-12-03 | 2003-10-09 | PROCESS FOR PRODUCING α-HYDROXYCARBOXYLIC ESTER |
KR1020057009921A KR100718954B1 (en) | 2002-12-03 | 2003-10-09 | Process for producing ?-hydroxycarboxylic ester |
CN 200380105106 CN1720218A (en) | 2002-12-03 | 2003-10-09 | Process for producing alpha-hydroxycarboxylic ester |
EP03751394A EP1571139A4 (en) | 2002-12-03 | 2003-10-09 | PROCESS FOR PRODUCING a-HYDROXYCARBOXYLIC ESTER |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002350987A JP3763076B2 (en) | 2002-12-03 | 2002-12-03 | Method for producing α-hydroxycarboxylic acid ester |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004182643A true JP2004182643A (en) | 2004-07-02 |
JP3763076B2 JP3763076B2 (en) | 2006-04-05 |
Family
ID=32753022
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002350987A Expired - Fee Related JP3763076B2 (en) | 2002-10-09 | 2002-12-03 | Method for producing α-hydroxycarboxylic acid ester |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP3763076B2 (en) |
CN (1) | CN1720218A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117304030A (en) * | 2023-11-27 | 2023-12-29 | 太原理工大学 | Technology for synthesizing high-purity methyl glycolate by glycol oxidation esterification method in one step |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101349106B1 (en) * | 2013-08-20 | 2014-01-08 | 에스케이종합화학 주식회사 | Method for preparing glycol ester using reactive distillation |
CN103936584B (en) * | 2014-04-28 | 2015-09-30 | 江苏诚信药业有限公司 | One prepares hydroxy ester process modification system |
CN108558666A (en) * | 2018-05-14 | 2018-09-21 | 沈阳化工大学 | A kind of solid acid catalyst alkali modification synthesis dimerization methyl glycollate method |
CN111763308B (en) * | 2020-06-11 | 2022-05-13 | 江苏金聚合金材料有限公司 | Method for catalyzing polymerization of methyl glycolate to generate polyglycolic acid by using acid catalyst |
CN112156731A (en) * | 2020-09-08 | 2021-01-01 | 南京延长反应技术研究院有限公司 | Reinforced micro-interface preparation system and method for polyglycolic acid |
CN112058184A (en) * | 2020-09-08 | 2020-12-11 | 南京延长反应技术研究院有限公司 | Preparation system and method of polyglycolic acid |
CN112062943A (en) * | 2020-09-08 | 2020-12-11 | 南京延长反应技术研究院有限公司 | Micro-interface preparation system and method for polyglycolic acid |
CN114011405B (en) * | 2021-11-22 | 2023-03-28 | 中国科学院大连化学物理研究所 | Preparation method of composite oxide supported catalyst and application of composite oxide supported catalyst in preparation of methyl glycolate from ethylene glycol |
-
2002
- 2002-12-03 JP JP2002350987A patent/JP3763076B2/en not_active Expired - Fee Related
-
2003
- 2003-10-09 CN CN 200380105106 patent/CN1720218A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117304030A (en) * | 2023-11-27 | 2023-12-29 | 太原理工大学 | Technology for synthesizing high-purity methyl glycolate by glycol oxidation esterification method in one step |
Also Published As
Publication number | Publication date |
---|---|
JP3763076B2 (en) | 2006-04-05 |
CN1720218A (en) | 2006-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5124366B2 (en) | Process for producing 1,6-hexanediol having a purity exceeding 99% | |
US7838707B2 (en) | Process for the preparation of a tetraalkylcyclobutane-1,3-diol using an ruthenium-promoted cobalt-based catalyst | |
US7122698B2 (en) | Method for producing α-hydroxycarboxylate | |
JP2017518296A (en) | Process for the purification of methyl acetate mixtures | |
TW201605777A (en) | Improved catalytic performance in processes for preparing acetic acid | |
JP4929402B2 (en) | Method for producing 3-methyl-cyclopentadecenones, method for producing R / S-muscone and method for producing optically active muscone | |
JP3763076B2 (en) | Method for producing α-hydroxycarboxylic acid ester | |
JP2004131411A (en) | Method for purifying glycolic acid ester and method for producing glycolic acid ester | |
JP2007512383A (en) | Method for producing hexanediol-1,6 | |
JP2002060367A (en) | Method for producing 2-vinylcyclododecanone | |
KR101659171B1 (en) | Method of direct conversion to trans-1,4-cyclohexanedimethanol | |
JP3959993B2 (en) | Method for producing 1,4-butanediol | |
JP2004182645A (en) | Method for manufacturing glycolic ester | |
JP2004203743A (en) | Method for stabilizing glycolic acid ester and stabilized composition | |
JP2004182644A (en) | Method for utilizing bottom liquid in glycolic ester distillation column | |
JP2004043386A (en) | METHOD FOR PRODUCING alpha-HYDROXYCARBOXYLIC ACID | |
JP2004131408A (en) | Method for purifying glycolate ester and method for producing glycolate ester | |
JP3995313B2 (en) | Process for producing 1,2-butanediol and 1,4-butanediol | |
KR100718954B1 (en) | Process for producing ?-hydroxycarboxylic ester | |
JP2004131410A (en) | METHOD FOR PRODUCING alpha-HYDROXY CARBOXYLATE | |
JP2004131409A (en) | METHOD FOR PRODUCING alpha-HYDROXY CARBOXYLATE AND METHOD FOR PURIFING alpha-HYDROXY CARBOXYLATE | |
JPH11335319A (en) | Production of alfa-hydroxycarboxylic acid | |
JP3995312B2 (en) | Process for simultaneous production of 1,2-butanediol and 1,4-butanediol | |
JP2004115426A (en) | METHOD FOR PRODUCING alpha-OXOCARBOXYLIC ACID ESTER AND alpha-OXOCARBOXYLIC ACID | |
JP2003503469A (en) | Method for producing hexanediol |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20050614 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050715 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20050715 |
|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20050823 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A132 Effective date: 20050831 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20051028 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20051221 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060104 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100127 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100127 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110127 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120127 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130127 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130127 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140127 Year of fee payment: 8 |
|
LAPS | Cancellation because of no payment of annual fees |