[go: up one dir, main page]

JP2004180422A - PWM rectifier - Google Patents

PWM rectifier Download PDF

Info

Publication number
JP2004180422A
JP2004180422A JP2002343663A JP2002343663A JP2004180422A JP 2004180422 A JP2004180422 A JP 2004180422A JP 2002343663 A JP2002343663 A JP 2002343663A JP 2002343663 A JP2002343663 A JP 2002343663A JP 2004180422 A JP2004180422 A JP 2004180422A
Authority
JP
Japan
Prior art keywords
phase
diode
series
circuit
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002343663A
Other languages
Japanese (ja)
Inventor
Masateru Igarashi
征輝 五十嵐
Jiro Toyosaki
次郎 豊崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP2002343663A priority Critical patent/JP2004180422A/en
Publication of JP2004180422A publication Critical patent/JP2004180422A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Rectifiers (AREA)

Abstract

【課題】交流入力フィルタ小型化でき,装置が小型化−低価格できる。
【解決手段】三相交流電源から全波整流電圧より低い直流電圧を作り出す降圧形PWM整流装置において,逆阻止機能を有する半導体スイッチを直列接続した半導体スイッチ直列回路2個と、ダイオードを直列接続した相アームダイオード直列回路1個とを並列接続してブリッジ回路を構成し、該相アームダイオード直列回路の各々のダイオードと並列にリアクトルとコンデンサとの直列回路を各々のコンデンサ同士が直接接続構成となる向きに接続し、2個の半導体スイッチ直列回路の直列接続点に各々三相交流電源の各一相の端子を、ダイオード直列回路の直列接続点に三相交流電源の残りの一相の端子を,各々接続し、直流出力となる前記各々のコンデンサ電圧を個別に制御する。
【選択図】 図1
An AC input filter can be reduced in size, and the device can be reduced in size and cost.
In a step-down PWM rectifier that generates a DC voltage lower than a full-wave rectified voltage from a three-phase AC power supply, two semiconductor switch series circuits in which semiconductor switches having a reverse blocking function are connected in series, and a diode are connected in series. A single phase arm diode series circuit is connected in parallel to form a bridge circuit, and a series circuit of a reactor and a capacitor is connected in parallel with each diode of the phase arm diode series circuit, and each capacitor is directly connected to each other. Direction, and connect each one-phase terminal of the three-phase AC power supply to the series connection point of the two semiconductor switch series circuits, and connect the remaining one-phase terminal of the three-phase AC power supply to the series connection point of the diode series circuit. , Respectively, and individually controls the respective capacitor voltages that become DC outputs.
[Selection diagram] Fig. 1

Description

【0001】
【発明の属する技術分野】
この発明は,三相交流電源から全波整流電圧より低い降圧された直流電圧を得るPWM整流装置の回路構成技術に関し,特に2分割された直流出力電圧を個別に制御でき,さらに入力電流を高力率に制御できるPWM整流回路に関する。
【0002】
【従来の技術】
整流回路の直流電圧を2分割してインバータに供給する回路構成として、図4に示す3レベルインバータ回路が知られている。
本回路は,文献「ベクトル制御に適した中性点クランプ電圧型インバータの電流制御法」(著者:阿部 慶一,小笠原 悟司,赤木 康文,難波江 章)(平成元年電気学会産業応用部門全国大会,113,pp.469〜472)に記されている。
三相交流電源100の交流電源端子1〜3にはダイオード9〜14で構成さらた整流器が,整流器の直流出力間にはコンデンサ15と16とからなるコンデンサ直列回路が,コンデンサ直列回路の直流出力7,48,8間にはIGBTとダイオードの逆並列回路で構成された半導体スイッチ17〜28とダイオード29〜34で構成された3レベルインバータが,3レベルインバータの交流出力端子4〜6にはモータ35が、各々接続されている。整流器と3レベルインバータの回路は一般的に知られている回路であるので詳細な説明は省略する。
【0003】
この回路は,三相の交流を整流器で整流し、コンデンサ15と16に2分割された直流電圧を得る直流電源に変換し,その直流電源から3レベルインバータで任意の周波数と電圧値の交流を得る回路である。
3レベルインバータの場合,コンデンサ15とコンデンサ16の出力電力が不平衡になるといった問題がある。例えば,コンデンサ15→半導体スイッチ17→半導体スイッチ18→交流出力端子4→モータ35→交流出力端子5→半導体スイッチ23→ダイオード32→直流端子48→コンデンサ15の経路などではコンデンサ15の電荷のみを放電するが,この電荷量とコンデンサ16を放電する例えば,コンデンサ16→ダイオード29→半導体スイッチ18→交流出力端子4→モータ35→交流出力端子5→半導体スイッチ23→半導体スイッチ24→直流端子8→コンデンサ16の経路などではコンデンサ16の電荷のみを放電するため、放電電荷量を平衡させないと,コンデンサ15とコンデンサ16の電圧が不平衡となる。コンデンサ電圧が不平衡となると出力電圧が不平衡となり,所定の出力電圧値が得られないことや,IGBTなどの半導体素子に過電圧が印加され素子が破壊するなどの問題が発生する。
【0004】
このため,3レベルインバータの制御にコンデンサ電圧を平衡させる制御を追加してコンデンサ15とコンデンサ16の電圧値を平衡させる制御方式が用いられている。しかし,この制御は出力周波数に対して平均値的に行われるのが一般的で,急加減速などで負荷が急変する汎用インバータなどの装置では直流電圧が変動して,出力電圧変動が発生してしまう。
この対策のため,コンデンサ電圧を個別に制御する半導体スイッチ素子を追加した従来の回路例を図5に示す。また,図5の回路は,直流出力電圧を低い電圧から制御できるように降圧チョッパを付加している。この回路は,交流を直流電源に変換するPWM整流器の部分を示している。交流電源端子1〜3にはダイオード9〜14で構成された整流器が,整流器の出力にはIGBT36,リアクトル37,ダイオード41,ダイオード42およびリアクトル38で構成された降圧チョッパが,コンデンサ15と並列に、負荷101と、ダイオード43とIGBT39で構成された昇圧チョッパが,コンデンサ16と並列に、負荷102と、ダイオード44とIGBT40で構成された昇圧チョッパが,交流電源端子1〜3には星型結線されたコンデンサ45〜47が、各々接続されている。
【0005】
この回路は,整流器で変換された直流電圧をIGBT36がオンしているときには,IGBT36→リアクトル37→ダイオード43→コンデンサ15→コンデンサ16→ダイオード44→リアクトル38→整流器の経路でコンデンサ15,16,リアクトル37,38に電力を供給する。次にIGBT36をオフすると,リアクトル37,38に蓄積されているエネルギーは,リアクトル37→ダイオード43→コンデンサ15→コンデンサ16→ダイオード44→リアクトル38→ダイオード42→ダイオード41の経路でコンデンサ15,16に放出される。
コンデンサ15の電圧がコンデンサ16の電圧より大きくなったときは,IGBT39をオンすることにより,リアクトル37の電流はIGBT39の経路に転流し,コンデンサ15への充電経路はなくなり,コンデンサ16のみが充電される。また,コンデンサ16の電圧がコンデンサ15の電圧より大きくなったときは,IGBT40をオンすることにより,リアクトル38の電流はIGBT40の経路に転流し,コンデンサ16への充電経路はなくなり,コンデンサ15のみが充電される。このような制御を追加することにより,コンデンサ15と16の電圧はは等しい値に保たれる。
【0006】
しかし,このような回路の場合,3相交流電源から流れる入力電流はダイオード整流器の入力電流で120°期間通流した電流となり,高調波電流を大きく含んだ電流となる。一般的にこれらの電源装置の交流入力電流は,IEC61000−3−2の規格を満足しなければならず、大きな入力フィルタが必要になり,装置が大型化し高価になるという問題がある。
図6に入力電流の高調波電流を低減するたの従来の回路例を示す。
この回路は,文献「正弦波入力電流形コンバータ」(著者:上田 茂田,本部 光幸,植田 明照,松田 靖夫)(電気学会電力変換研究会資料,SPC−84−81,pp.61−70,昭和59年)に記されている回路である。
図6の回路には図5の回路と同一部分は同一番号を記して説明は省略する。図6の回路は,図5の回路におけるIGBT36を省略し,整流器のダイオード9〜14をダイオードとIGBTを直列接続した構成の逆阻止形IGBTスイッチ48〜53に置換えた構成である。
【0007】
この回路において,図7に示すように,リアクトル37,38の電流は,逆阻止形IGBTスイッチ48(または51)と逆阻止形IGBTスイッチ52(または49)がオンしているとき交流電源端子1−2間(U−V間)から、逆阻止形IGBTスイッチ48(または51)と逆阻止形IGBTスイッチ53(または50)がオンしているとき交流電源端子3−1間(W−U間)から、同様に逆阻止形IGBTスイッチ49(または52)と逆阻止形IGBTスイッチ53(または50)をオンしているとき交流電源端子2−3間(V−W間)から、それぞれ交流電流を流す。逆阻止IGBT48〜53がオフしているときは,リアクトル37,38の電流はダイオード41,42を通る経路で環流する。
【0008】
このような回路構成とすることにより,入力電流の高調波電流が低減され、入力フィルタを小形化できる。
しかし,この回路の場合,逆阻止形IGBTスイッチやIGBTが8個必要となり,ゲート駆動回路やゲート駆動電源などが個別に必要となり装置が高価となる課題がある。
【0009】
【発明が解決しようとする課題】
三相交流電源からコンデンサを直列に接続した中性点付の直流電源を得る降圧形整流器の場合,図5に示す従来の実施例では,交流入力電流の高調波が大きく,大きな入力フィルタが必要になり,装置が大型化し高価になるといった課題がある。また,図6に示す従来の実施例は,逆阻止形IGBTスイッチやIGBTが8個必要となり,ゲート駆動回路やゲート駆動電源などが個別に必要となり装置が高価となる課題がある。本発明は、これらの課題を解決するための新しい回路方式を提供することを目的とする。
【0010】
【課題を解決するための手段】
前記課題を解決するための第1の手段は、三相交流電源から全波整流電圧より低い直流電圧を作り出す降圧形PWM整流装置において,逆阻止機能を有する半導体スイッチを直列接続した半導体スイッチ直列回路2個と、ダイオードを直列接続した相アームダイオード直列回路1個とを並列接続してブリッジ回路を構成し、該相アームダイオード直列回路の各々のダイオードと並列にリアクトルとコンデンサとの直列回路を各々のコンデンサ同士が直接接続構成となる向きに接続し、2個の半導体スイッチ直列回路の直列接続点に各々三相交流電源の各一相の端子を、ダイオード直列回路の直列接続点に三相交流電源の残りの一相の端子を,各々接続し、直流出力となる前記各々のコンデンサ電圧を個別に制御する。
【0011】
第2の手段は、三相交流電源から全波整流電圧より低い直流電圧を作り出す降圧形PWM整流装置において,ダイオード2個を直列接続したダイオード直列回路を半導体スイッチと逆並列に接続し,該半導体スイッチの正極と第1のダイオードのカソードを,該半導体スイッチの負極と第2のダイオードのアノードを、各々接続して構成した相アーム交流スイッチ回路2個と,ダイオード2個を直列接続した相アームダイオード直列回路1個とを並列接続してブリッジ回路を構成し、該相アームダイオード直列回路の各々のダイオードと並列にリアクトルとコンデンサの直列回路を各々のコンデンサ同士が直接接続構成となる向きに接続し、前記2個の相アーム交流スイッチ回路の各々のダイオード直列回路のダイオード直列接続点に各々三相交流電源の各一相の端子を、前記相アームダイオード直列回路の直列接続点に三相交流電源の残りの一相の端子を,各々接続し、直流出力となる前記各々のコンデンサ電圧を個別に制御する。
【0012】
第3の手段は、三相交流電源から全波整流電圧より低い直流電圧を作り出す降圧形PWM整流装置において,ダイオード2個を直列接続したダイオード直列回路を半導体スイッチと逆並列に接続し,該半導体スイッチの正極と第1のダイオードのカソードを,該半導体スイッチの負極と第2のダイオードのアノードを、各々接続して構成した相アーム交流スイッチ回路3個と,ダイオード2個を直列接続した相アームダイオード直列回路1個とを並列接続してブリッジ回路を構成し、該相アームダイオード直列回路の各々のダイオードと並列にリアクトルとコンデンサの直列回路を各々のコンデンサ同士が直接接続構成となる向きに接続し、前記3個の相アーム交流スイッチ回路の各々のダイオード直列回路のダイオード直列接続点に各々三相交流電源の各一相の端子を、前記相アームダイオード直列回路の直列接続点と三相交流電源の中性点との間に交流スイッチを,各々接続し、直流出力となる前記各々のコンデンサ電圧を個別に制御する。
【0013】
【発明の実施の形態】
図1に本発明の請求項1から3に基づいた実施例を示す。この回路構成は,図6の回路から,逆阻止形IGBTスイッチ49と52,IGBT39と40,ダイオード43と44を省略し,交流電源端子2とコンデンサ15と16の直列接続点とを接続した構成である。この回路構成において,リアクトル37の電流は,逆阻止形IGBTスイッチ48がオンのときは,交流電源端子1→逆阻止形IGBTスイッチ48→リアクトル37→コンデンサ15→交流電源端子2の経路でコンデンサ15を充電する。逆阻止形IGBTスイッチ50がオンのときは,交流電源端子3→逆阻止形IGBTスイッチ50→リアクトル37→コンデンサ15→交流電源端子2の経路でコンデンサ15に電荷を充電する。
リアクトル38の電流は,逆阻止形IGBTスイッチ51がオンのときは,交流電源端子2→コンデンサ16→リアクトル38→逆阻止形IGBTスイッチ51→交流電源端子1の経路でコンデンサ16を充電する。逆阻止形IGBTスイッチ53がオンのときは,交流電源端子2→コンデンサ16→リアクトル38→逆阻止形IGBTスイッチ53→交流電源端子3の経路でコンデンサ16を充電する。逆阻止形IGBTスイッチ48,50がオフのときはリアクトル37の電流はダイオード41を通る経路に環流する。逆阻止形IGBTスイッチ51,53がオフのときはリアクトル38の電流はダイオード42を通る経路に環流する。
従って,交流電源相電圧VUO(交流電源端子1とコンデンサ45〜47の接続点(中性点)間電圧)が正の時は逆阻止形IGBTスイッチ48をオンし,交流電源相電圧VUO(端子1とコンデンサ45〜47の接続点(中性点)間電圧)が負の時は逆阻止形IGBTスイッチ51をオンすることにより,交流電源端子1(U相)からの電流は図7と同様に高力率の電流とすることが出来る。交流電源相電圧Vw(交流電源端子3とコンデンサ45〜47の接続点(中性点)間電圧)が正の時は逆阻止形IGBTスイッチ50をオンし,交流電源相電圧VWO(交流電源端子3とコンデンサ45〜47の接続点(中性点)間電圧)が負の時は逆阻止形IGBTスイッチ53をオンすることにより,交流電源端子3(W相)からの電流は図7と同様に高力率の電流とすることができる。
また,交流電源端子2(V相)の電流は交流電源端子1(U相)と交流電源端子3(W相)の差電流となり,図7と同様に高力率の電流とすることができる。
従って,コンデンサ15の電圧は,逆阻止形IGBTスイッチ50と48のオンオフ比を変えることにより、またコンデンサ16の電圧は逆阻止形IGBTスイッチ51と53のオンオフ比を変えることにより、それぞれ個別に調整できる。このような制御により、入力電流の高調波電流は小さくなり、交流入力部のフィルタ(コンデンサ45〜47)を小形化できる。
以上の説明からわかるように、この回路構成の場合,逆阻止形IGBTスイッチ4個で直流出力である2個のコンデンサ電圧を個別に制御できる高力率のPWM整流器を構成できる。
また、図1では逆阻止形IGBTスイッチとして、請求項2のダイオードとIGBTの直列回路で示したが、請求項3に示した逆阻止機能を兼ね備えた逆素子IGBTを適用でき、この適用により直列のダイオードが不要となり、損失の低減と部品点数の削減が達成され、装置を一層小形化できる。
【0014】
図2に本発明の請求項4に基づいた実施例を示す。ダイオード54と56を直列接続したダイオード直列回路をIGBT57と逆並列に接続し,IGBT57のコレクタとダイオード58のカソードを,IGBT57のエミッタとダイオード59のアノードを、各々接続して構成した第1の相アーム交流スイッチ回路と,ダイオード70と71を直列接続したダイオード直列回路をIGBT72と逆並列に接続し,IGBT72のコレクタとダイオード73のカソードを,IGBT72のエミッタとダイオード74のアノードを、各々接続して構成した第2の相アーム交流スイッチ回路と、ダイオード41と42を直列接続した相アームダイオード直列回路とを並列接続してブリッジ回路を構成し、該相アームダイオード直列回路のダイオード41と並列にリアクトル37とコンデンサ15との直列回路を、ダイオード42と並列にリアクトル38とコンデンサ16との直列回路を、コンデンサ15と16がダイオード41と42との直列接続点に接続される方向に、前記第1の相アーム交流スイッチ回路のダイオード54と56のダイオード直列接続点に三相交流電源端子1を、前記第2の相アーム交流スイッチ回路のダイオード70と71とのダイオード直列接続点に三相交流電源端子3を、前記相アームダイオード直列回路のダイオード41と42との直列接続点に三相交流電源端子2を,各々接続し、交流電源端子1にフィルタコンデンサ45を、交流電源端子2にフィルタコンデンサ46を、交流電源端子3にフィルタコンデンサ47を、各々接続した構成である。
【0015】
この回路構成における動作は以下のようになる。交流電源端子1と2間の電圧が正のときは,IGBT57をオンすることにより交流電源端子1→ダイオード54→IGBT57→ダイオード59→リアクトル37→コンデンサ15→交流電源端子2の経路で電流が流れ、コンデンサ15の電圧を制御することができる。交流電源端子1と2間が負のときは,IGBT57をオンすることにより交流電源端子2→コンデンサ16→リアクトル38→ダイオード58→IGBT57→ダイオード56の経路で電流が流れ、コンデンサ16の電圧を制御することができる。
交流電源端子2と3間の電圧が負のときは,IGBT72をオンすることにより交流電源端子3→ダイオード70→IGBT72→ダイオード74→リアクトル37→コンデンサ15→交流電源端子2の経路で電流が流れ、コンデンサ15の電圧を制御することができる。交流電源端子2と3間の電圧が正のときは,IGBT72をオンすることにより交流電源端子2→コンデンサ16→リアクトル38→ダイオード73→IGBT72→ダイオード71の経路で電流が流れ、コンデンサ16の電圧を制御することができる。
【0016】
IGBT57,ダイオード54,56,58,59で構成された回路をACスイッチ75とし,IGBT72,ダイオード70,71,73,74で構成された回路をACスイッチ78とすると、この回路は,交流電源端子1と交流電源端子3の線間電圧でコンデンサ15と16の直列回路を充電することができる。交流電源端子1と3間の電圧が正のときは,交流電源端子1→ACスイッチ75→リアクトル37→コンデンサ15→コンデンサ16→リアクトル38→ACスイッチ78→交流電源端子3の経路で充電でき,交流電源端子1と3間の電圧が負のときは,交流電源端子3→ACスイッチ78→リアクトル37→コンデンサ15→コンデンサ16→リアクトル38→ACスイッチ75→交流端子1の経路で充電できる。
【0017】
図3に本発明の請求項5に基づいた実施例を示す。図2の回路との相違点は,ACスイッチを4個用い,3個のACスイッチ75〜77の入力を各々交流電源端子1〜3に接続し,ダイオード59,64,69のカソードをリアクトル37に,ダイオード58,63,68のアノードをリアクトル38に,ACスイッチ78の一方の入力をコンデンサ45〜47の接続点(中性点)に,ダイオード73と74を短絡しコンデンサ15と16の直列接続点に各々接続した点である。
このような回路構成における動作を以下に説明する。交流電源端子1と3間の電圧が正のときは、交流電源端子1→ACスイッチ75→リアクトル37→コンデンサ15→コンデンサ16→リアクトル38→ACスイッチ77→交流電源端子3の経路で,交流電源端子1と3間の電圧が負のときは、交流電源端子3→ACスイッチ77→リアクトル37→コンデンサ15→コンデンサ16→リアクトル38→ACスイッチ75→交流電源端子1の経路で、各々コンデンサ15と16を充電する。
交流電源端子1と2間の電圧が正のときは、交流電源端子1→ACスイッチ75→リアクトル37→コンデンサ15→コンデンサ16→リアクトル38→ACスイッチ76→交流電源端子2の経路で,交流電源端子1と2間の電圧が負のときは、交流電源端子2→ACスイッチ76→リアクトル37→コンデンサ15→コンデンサ16→リアクトル38→ACスイッチ75→交流電源端子1の経路で、各々コンデンサ15と16を充電する。
交流電源端子2と3間の電圧が正のときは,交流端子2→ACスイッチ76→リアクトル37→コンデンサ15→コンデンサ16→リアクトル38→ACスイッチ77→交流電源端子3の経路で,交流電源端子2と3間の電圧が負のときは,交流電源端子3→ACスイッチ77→リアクトル37→コンデンサ15→コンデンサ16→リアクトル38→ACスイッチ76→交流電源端子2の経路で、各々コンデンサ15と16を充電する。このように,三相交流電源の線間電圧でコンデンサ15と16の直列回路を充電することができる。
また,ACスイッチ78をオンすることにより,コンデンサ15,16の電圧を個別に制御することができる。例えばコンデンサ15のみに充電する場合,U相電圧Vuo(端子1とコンデンサ45〜47の接続点(中性点)間の電圧)を利用する場合には,ACスイッチ75と78をオンすることにより,交流電源端子1→ACスイッチ75→リアクトル37→コンデンサ15→ACスイッチ78の経路でコンデンサ15のみ充電することができる。
コンデンサ16のみを充電するとき場合は,例えば相電圧Vuo(端子1とコンデンサ45〜47の接続点(中性点)間の電圧)を利用する場合には,ACスイッチ75と78をオンすることにより,交流電源中性点(コンデンサ45〜47の接続点)→ACスイッチ78→コンデンサ16→リアクトル38→ACスイッチ75の経路でコンデンサ16のみ充電することができる。V相,W相の相電圧を用いても同様にコンデンサ15,16を充電することができる。
ここで、ACスイッチ78はダイオード70,71,73,74とIGBT72を用いた回路構成を示しているが、請求項6に示すように逆阻止機能を兼ね備えた逆阻止IGBTを逆並列接続して構成することができ、その結果、部品点数の削減と通電損失の低減が図られ、装置が一層小形化される。
【0018】
【発明の効果】
従来の回路では,直流出力となる直列コンデンサの電圧を個別に制御して,高力率の入力電流を得るためには,入力フィルタが大型化したり,IGBTなどの能動素子が8個必要で,装置が大形化し,高価になるなどの課題があった。しかし,本発明を適用した回路を用いることにより,使用する能動素子の数は、請求項1〜3の実施例では4個、請求項4の実施例では2個、請求項5の実施例では4個、請求項6の実施例では5個に削減でき,また高力率の入力電流とすることができるため,入力フィルタを小形化でき、装置が小形・低価格になるという効果が得られる。
【図面の簡単な説明】
【図1】請求項1〜3に基づいた本発明の実施例を示す回路図である。
【図2】請求項4に基づいた本発明の実施例を示す回路図である。
【図3】請求項5に基づいた本発明の実施例を示す回路図である。
【図4】3レベルインバータを用いた従来例を示す回路図である。。
【図5】整流器とチョッパ回路を用いた従来例を示す回路図である。
【図6】逆阻止形IGBTスイッチを用いた従来例を示す回路図である。
【図7】図6の回路動作を説明するための動作波形図である。
【符号の説明】
1,2,3・・・交流電源端子 4,5,6・・・交流出力端子
7,8,48・・・直流端子
9〜14,29〜34,41〜44・・・ダイオード
54,56,58〜61,63〜66,68〜7173,74・・・ダイオード
15,16,45〜47・・・コンデンサ 17〜28・・・半導体スイッチ
35・・・モータ
36,39,40,57,62,67,72・・・IGBT
37,38・・・リアクトル 48〜53・・・逆阻止形IGBTスイッチ
75〜78・・・ACスイッチ
100・・・交流電源 101,102・・・負荷
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a circuit configuration technology of a PWM rectifier that obtains a stepped-down DC voltage lower than a full-wave rectified voltage from a three-phase AC power supply, and in particular, can separately control a DC output voltage divided into two, and further increase an input current. The present invention relates to a PWM rectifier circuit that can be controlled to a power factor.
[0002]
[Prior art]
As a circuit configuration in which a DC voltage of a rectifier circuit is divided into two and supplied to an inverter, a three-level inverter circuit shown in FIG. 4 is known.
This circuit is described in the document "Current control method of neutral point clamped voltage inverter suitable for vector control" (Author: Keiichi Abe, Satoshi Ogasawara, Yasufumi Akagi, Akira Nambae) (Heisei 1 , 113, pp. 469-472).
A rectifier composed of diodes 9 to 14 is provided at the AC power supply terminals 1 to 3 of the three-phase AC power supply 100, and a capacitor series circuit including capacitors 15 and 16 is provided between the DC outputs of the rectifier. Between 7, 48 and 8, three-level inverters composed of semiconductor switches 17 to 28 and diodes 29 to 34 composed of an anti-parallel circuit of IGBTs and diodes, and AC output terminals 4 to 6 of the three-level inverters Motors 35 are respectively connected. Since the circuit of the rectifier and the three-level inverter is a generally known circuit, a detailed description is omitted.
[0003]
This circuit rectifies a three-phase alternating current with a rectifier, converts it into a DC power source that obtains a DC voltage divided into two by capacitors 15 and 16, and converts the AC power of an arbitrary frequency and voltage value from the DC power source with a three-level inverter. It is a circuit to get.
In the case of a three-level inverter, there is a problem that the output powers of the capacitors 15 and 16 become unbalanced. For example, only the charge of the capacitor 15 is discharged in the path of the capacitor 15, the semiconductor switch 17, the semiconductor switch 18, the AC output terminal 4, the motor 35, the AC output terminal 5, the semiconductor switch 23, the diode 32, the DC terminal 48, and the capacitor 15. However, this charge and the capacitor 16 are discharged. For example, the capacitor 16 → the diode 29 → the semiconductor switch 18 → the AC output terminal 4 → the motor 35 → the AC output terminal 5 → the semiconductor switch 23 → the semiconductor switch 24 → the DC terminal 8 → the capacitor In the path 16 and the like, only the charge of the capacitor 16 is discharged. Therefore, unless the amount of the discharged charge is balanced, the voltages of the capacitor 15 and the capacitor 16 become unbalanced. If the capacitor voltage becomes unbalanced, the output voltage becomes unbalanced, causing problems such as the inability to obtain a predetermined output voltage value and the destruction of the semiconductor device such as an IGBT due to an overvoltage applied to the device.
[0004]
For this reason, a control method is used in which control for balancing the capacitor voltage is added to the control of the three-level inverter to balance the voltage values of the capacitors 15 and 16. However, this control is generally performed as an average value with respect to the output frequency, and in a device such as a general-purpose inverter in which the load changes suddenly due to sudden acceleration / deceleration, the DC voltage fluctuates and the output voltage fluctuates. Would.
FIG. 5 shows an example of a conventional circuit in which a semiconductor switch element for individually controlling the capacitor voltage is added as a countermeasure for this. The circuit of FIG. 5 further includes a step-down chopper so that the DC output voltage can be controlled from a low voltage. This circuit shows a part of a PWM rectifier that converts an alternating current into a direct current. A rectifier composed of diodes 9 to 14 is provided at the AC power supply terminals 1 to 3, and a buck chopper composed of an IGBT 36, a reactor 37, a diode 41, a diode 42 and a reactor 38 is provided at an output of the rectifier in parallel with the capacitor 15. , A load 101, a boost chopper formed of a diode 43 and an IGBT 39, a load chopper formed of a diode 44 and an IGBT 40 in parallel with the capacitor 16, and a star connection to the AC power supply terminals 1 to 3. The connected capacitors 45 to 47 are respectively connected.
[0005]
When the IGBT 36 is turned on, the DC voltage converted by the rectifier is turned on by the IGBT 36 → reactor 37 → diode 43 → capacitor 15 → capacitor 16 → diode 44 → reactor 38 → capacitors 15, 16 and the reactor on the rectifier path. Power is supplied to 37 and 38. Next, when the IGBT 36 is turned off, the energy stored in the reactors 37 and 38 is transferred to the capacitors 15 and 16 through the route of the reactor 37 → the diode 43 → the capacitor 15 → the capacitor 16 → the diode 44 → the reactor 38 → the diode 42 → the diode 41. Released.
When the voltage of the capacitor 15 becomes larger than the voltage of the capacitor 16, by turning on the IGBT 39, the current of the reactor 37 is diverted to the path of the IGBT 39, and the charging path to the capacitor 15 disappears, and only the capacitor 16 is charged. You. Further, when the voltage of the capacitor 16 becomes larger than the voltage of the capacitor 15, the IGBT 40 is turned on, so that the current of the reactor 38 is diverted to the path of the IGBT 40, and the charging path to the capacitor 16 is eliminated, and only the capacitor 15 is connected. Charged. By adding such control, the voltages of the capacitors 15 and 16 are kept equal.
[0006]
However, in the case of such a circuit, the input current flowing from the three-phase AC power supply is a current flowing through the diode rectifier for a period of 120 ° with respect to the input current, and is a current containing a large amount of harmonic current. In general, the AC input current of these power supply devices must satisfy the standard of IEC61000-3-2, and a large input filter is required, which causes a problem that the device becomes large and expensive.
FIG. 6 shows an example of a conventional circuit for reducing a harmonic current of an input current.
This circuit is described in the document "Sine Wave Input Current Source Converter" (author: Shigeta Ueda, Mitsuyuki Motobu, Akiteru Ueda, Yasuo Matsuda) (Institute of Electrical Engineers of Japan, SPC-84-81, pp. 61-70, Showa) 59).
In the circuit of FIG. 6, the same parts as those of the circuit of FIG. The circuit of FIG. 6 has a configuration in which the IGBT 36 in the circuit of FIG. 5 is omitted, and the diodes 9 to 14 of the rectifier are replaced with reverse blocking IGBT switches 48 to 53 having a configuration in which a diode and an IGBT are connected in series.
[0007]
In this circuit, as shown in FIG. 7, the current of the reactors 37 and 38 is supplied to the AC power supply terminal 1 when the reverse blocking IGBT switch 48 (or 51) and the reverse blocking IGBT switch 52 (or 49) are turned on. When the reverse blocking IGBT switch 48 (or 51) and the reverse blocking IGBT switch 53 (or 50) are turned on, between the AC power supply terminals 3-1 (between W and U). ), Similarly, when the reverse blocking IGBT switch 49 (or 52) and the reverse blocking IGBT switch 53 (or 50) are turned on, the AC current flows between the AC power supply terminals 2-3 (between V and W). Flow. When the reverse blocking IGBTs 48 to 53 are off, the current of the reactors 37 and 38 circulates in a path passing through the diodes 41 and 42.
[0008]
With such a circuit configuration, the harmonic current of the input current is reduced, and the size of the input filter can be reduced.
However, in the case of this circuit, eight reverse-blocking IGBT switches and IGBTs are required, and a gate drive circuit, a gate drive power supply, and the like are separately required, and there is a problem that the device becomes expensive.
[0009]
[Problems to be solved by the invention]
In the case of a step-down rectifier for obtaining a DC power supply having a neutral point from a three-phase AC power supply in which capacitors are connected in series, in the conventional embodiment shown in FIG. 5, the harmonics of the AC input current are large and a large input filter is required. However, there is a problem that the device becomes large and expensive. Further, the conventional embodiment shown in FIG. 6 requires eight reverse-blocking IGBT switches and IGBTs, and separately requires a gate drive circuit, a gate drive power supply, and the like, so that the device becomes expensive. An object of the present invention is to provide a new circuit system for solving these problems.
[0010]
[Means for Solving the Problems]
A first means for solving the above problem is a step-down type PWM rectifier which generates a DC voltage lower than a full-wave rectified voltage from a three-phase AC power supply, in which a semiconductor switch series circuit having a semiconductor switch having a reverse blocking function connected in series. A bridge circuit is formed by connecting two diodes in series and one phase arm diode series circuit in which diodes are connected in series, and a series circuit of a reactor and a capacitor is connected in parallel with each diode of the phase arm diode series circuit. Are connected in the direction in which the capacitors are directly connected to each other, and each one-phase terminal of the three-phase AC power supply is connected to the series connection point of the two semiconductor switch series circuits, and the three-phase AC is connected to the series connection point of the diode series circuit. The remaining one-phase terminals of the power supply are connected to each other, and the respective capacitor voltages serving as DC outputs are individually controlled.
[0011]
The second means is a step-down type PWM rectifier that generates a DC voltage lower than a full-wave rectified voltage from a three-phase AC power supply, by connecting a diode series circuit in which two diodes are connected in series in antiparallel with a semiconductor switch, A phase arm in which two switches are connected in series, and a phase arm in which two diodes are connected in series, and a positive electrode of the switch and a cathode of the first diode are connected, and a negative electrode of the semiconductor switch and an anode of the second diode are connected. A single diode series circuit is connected in parallel to form a bridge circuit, and a series circuit of a reactor and a capacitor is connected in parallel with each diode of the phase arm diode series circuit in such a direction that each capacitor is directly connected to each other. And three at each diode series connection point of each diode series circuit of the two phase arm AC switch circuits. Each one-phase terminal of the AC power supply is connected to a series connection point of the phase arm diode series circuit, and the remaining one-phase terminal of the three-phase AC power supply is connected to each. Control.
[0012]
The third means is a step-down type PWM rectifier that generates a DC voltage lower than a full-wave rectified voltage from a three-phase AC power supply, by connecting a diode series circuit in which two diodes are connected in series in antiparallel with a semiconductor switch, Three phase arm AC switch circuits each having a positive electrode of a switch and a cathode of a first diode connected to each other and a negative electrode of the semiconductor switch and an anode of a second diode, and a phase arm having two diodes connected in series; A single diode series circuit is connected in parallel to form a bridge circuit, and a series circuit of a reactor and a capacitor is connected in parallel with each diode of the phase arm diode series circuit in such a direction that each capacitor is directly connected to each other. And three at each diode series connection point of each of the diode series circuits of the three phase arm AC switch circuits. An AC switch is connected between each one-phase terminal of the AC power supply and a series connection point of the phase arm diode series circuit and a neutral point of the three-phase AC power supply, and each of the capacitor voltages serving as a DC output is connected. Are individually controlled.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an embodiment according to claims 1 to 3 of the present invention. This circuit configuration differs from the circuit of FIG. 6 in that the reverse blocking IGBT switches 49 and 52, the IGBTs 39 and 40, the diodes 43 and 44 are omitted, and the AC power supply terminal 2 is connected to the series connection point of the capacitors 15 and 16. It is. In this circuit configuration, when the reverse blocking IGBT switch 48 is on, the current of the reactor 37 is supplied to the capacitor 15 through the path of the AC power supply terminal 1 → the reverse blocking IGBT switch 48 → the reactor 37 → the capacitor 15 → the AC power supply terminal 2. To charge. When the reverse blocking IGBT switch 50 is turned on, the capacitor 15 is charged with electric charge through the path of the AC power supply terminal 3 → the reverse blocking IGBT switch 50 → the reactor 37 → the capacitor 15 → the AC power supply terminal 2.
When the reverse blocking IGBT switch 51 is turned on, the current of the reactor 38 charges the capacitor 16 through the path of the AC power supply terminal 2 → the capacitor 16 → the reactor 38 → the reverse blocking IGBT switch 51 → the AC power supply terminal 1. When the reverse blocking IGBT switch 53 is on, the capacitor 16 is charged through the path of the AC power supply terminal 2 → the capacitor 16 → the reactor 38 → the reverse blocking IGBT switch 53 → the AC power supply terminal 3. When the reverse blocking IGBT switches 48 and 50 are off, the current of the reactor 37 circulates in a path passing through the diode 41. When the reverse blocking IGBT switches 51 and 53 are off, the current of the reactor 38 flows back to the path passing through the diode 42.
Therefore, when the AC power supply phase voltage V UO (the voltage between the connection points (neutral points) between the AC power supply terminal 1 and the capacitors 45 to 47) is positive, the reverse blocking IGBT switch 48 is turned on, and the AC power supply phase voltage V UO When the (voltage between the connection point (neutral point) between the terminal 1 and the capacitors 45 to 47) is negative, the reverse blocking IGBT switch 51 is turned on, so that the current from the AC power supply terminal 1 (U phase) is reduced as shown in FIG. In the same manner as the above, a current having a high power factor can be obtained. When the AC power supply phase voltage Vw O (voltage between the connection points (neutral points) between the AC power supply terminal 3 and the capacitors 45 to 47) is positive, the reverse blocking IGBT switch 50 is turned on, and the AC power supply phase voltage V WO (AC When the voltage between the connection points (neutral points) between the power supply terminal 3 and the capacitors 45 to 47 (negative point) is negative, the reverse blocking IGBT switch 53 is turned on, so that the current from the AC power supply terminal 3 (W phase) is reduced as shown in FIG. In the same manner as the above, a current having a high power factor can be obtained.
Further, the current of the AC power supply terminal 2 (V phase) is a difference current between the AC power supply terminal 1 (U phase) and the AC power supply terminal 3 (W phase), and can be a high power factor current as in FIG. .
Accordingly, the voltage of the capacitor 15 is individually adjusted by changing the on / off ratio of the reverse blocking IGBT switches 50 and 48, and the voltage of the capacitor 16 is individually adjusted by changing the on / off ratio of the reverse blocking IGBT switches 51 and 53. it can. By such control, the harmonic current of the input current is reduced, and the filters (capacitors 45 to 47) of the AC input section can be downsized.
As can be understood from the above description, in the case of this circuit configuration, a high power factor PWM rectifier that can individually control two capacitor voltages, which are DC outputs, with four reverse blocking IGBT switches can be configured.
Also, in FIG. 1, the reverse blocking IGBT switch is shown by the series circuit of the diode and the IGBT according to claim 2, but the reverse element IGBT having the reverse blocking function according to claim 3 can be applied. The diode is unnecessary, the loss and the number of parts are reduced, and the device can be further downsized.
[0014]
FIG. 2 shows an embodiment according to claim 4 of the present invention. A first phase in which a diode series circuit in which diodes 54 and 56 are connected in series is connected in anti-parallel with the IGBT 57, and the collector of the IGBT 57 and the cathode of the diode 58 are connected, and the emitter of the IGBT 57 and the anode of the diode 59 are connected. An arm AC switch circuit and a diode series circuit in which diodes 70 and 71 are connected in series are connected in anti-parallel with the IGBT 72, and the collector of the IGBT 72 and the cathode of the diode 73 are connected to the emitter of the IGBT 72 and the anode of the diode 74, respectively. A bridge circuit is formed by connecting the configured second phase arm AC switch circuit and a phase arm diode series circuit in which diodes 41 and 42 are connected in series to form a bridge circuit, and a reactor is connected in parallel with the diode 41 of the phase arm diode series circuit. 37 and capacitor 15 The first phase arm AC switch circuit is connected in series with the series circuit of the reactor 38 and the capacitor 16 in parallel with the diode 42 in the direction in which the capacitors 15 and 16 are connected to the series connection point of the diodes 41 and 42. The three-phase AC power supply terminal 1 is connected to the diode series connection point of the diodes 54 and 56, and the three-phase AC power supply terminal 3 is connected to the diode series connection point of the diodes 70 and 71 of the second phase arm AC switch circuit. The three-phase AC power supply terminal 2 is connected to the series connection point of the diodes 41 and 42 of the arm diode series circuit, respectively, the filter capacitor 45 is connected to the AC power supply terminal 1, the filter capacitor 46 is connected to the AC power supply terminal 2, and the AC power supply terminal is connected. 3 is connected to a filter capacitor 47.
[0015]
The operation in this circuit configuration is as follows. When the voltage between the AC power supply terminals 1 and 2 is positive, turning on the IGBT 57 causes a current to flow through the path of the AC power supply terminal 1 → diode 54 → IGBT 57 → diode 59 → reactor 37 → capacitor 15 → AC power supply terminal 2. , The voltage of the capacitor 15 can be controlled. When the voltage between the AC power supply terminals 1 and 2 is negative, turning on the IGBT 57 causes a current to flow through the path of the AC power supply terminal 2 → capacitor 16 → reactor 38 → diode 58 → IGBT 57 → diode 56 to control the voltage of the capacitor 16. can do.
When the voltage between the AC power supply terminals 2 and 3 is negative, turning on the IGBT 72 causes a current to flow through the path of the AC power supply terminal 3 → the diode 70 → the IGBT 72 → the diode 74 → the reactor 37 → the capacitor 15 → the AC power supply terminal 2. , The voltage of the capacitor 15 can be controlled. When the voltage between the AC power supply terminals 2 and 3 is positive, turning on the IGBT 72 causes a current to flow through the path of the AC power supply terminal 2 → capacitor 16 → reactor 38 → diode 73 → IGBT 72 → diode 71, and the voltage of the capacitor 16 Can be controlled.
[0016]
If a circuit composed of the IGBT 57 and the diodes 54, 56, 58, and 59 is an AC switch 75, and a circuit composed of the IGBT 72 and the diodes 70, 71, 73, and 74 is an AC switch 78, this circuit is an AC power supply terminal. The series circuit of the capacitors 15 and 16 can be charged with the line voltage between the AC power supply terminal 1 and the AC power supply terminal 3. When the voltage between the AC power supply terminals 1 and 3 is positive, it can be charged in the route of the AC power supply terminal 1 → AC switch 75 → reactor 37 → capacitor 15 → capacitor 16 → reactor 38 → AC switch 78 → AC power supply terminal 3. When the voltage between the AC power supply terminals 1 and 3 is negative, charging can be performed through the path of the AC power supply terminal 3 → AC switch 78 → reactor 37 → capacitor 15 → capacitor 16 → reactor 38 → AC switch 75 → AC terminal 1.
[0017]
FIG. 3 shows an embodiment according to claim 5 of the present invention. The difference from the circuit of FIG. 2 is that four AC switches are used, the inputs of three AC switches 75 to 77 are respectively connected to AC power supply terminals 1 to 3, and the cathodes of diodes 59, 64 and 69 are connected to reactor 37. The anodes of the diodes 58, 63 and 68 are connected to the reactor 38, one input of the AC switch 78 is connected to the connection point (neutral point) of the capacitors 45 to 47, the diodes 73 and 74 are short-circuited, and the capacitors 15 and 16 are connected in series. The points connected to the connection points.
The operation in such a circuit configuration will be described below. When the voltage between the AC power supply terminals 1 and 3 is positive, the AC power supply terminal 1 → AC switch 75 → reactor 37 → capacitor 15 → capacitor 16 → reactor 38 → AC switch 77 → AC power supply terminal 3 When the voltage between terminals 1 and 3 is negative, AC power supply terminal 3 → AC switch 77 → reactor 37 → capacitor 15 → capacitor 16 → reactor 38 → AC switch 75 → AC power supply terminal 1 Charge 16
When the voltage between the AC power supply terminals 1 and 2 is positive, the AC power supply terminal 1 → AC switch 75 → reactor 37 → capacitor 15 → capacitor 16 → reactor 38 → AC switch 76 → AC power supply terminal 2 When the voltage between the terminals 1 and 2 is negative, the AC power supply terminal 2 → AC switch 76 → reactor 37 → capacitor 15 → capacitor 16 → reactor 38 → AC switch 75 → AC power supply terminal 1 Charge 16
When the voltage between the AC power supply terminals 2 and 3 is positive, the AC power supply terminal 3 is connected to the AC power supply terminal 3 via the AC switch 76 → the reactor 37 → the capacitor 15 → the capacitor 16 → the reactor 38 → the AC switch 77 → the AC power supply terminal 3. When the voltage between 2 and 3 is negative, the capacitors 15 and 16 are routed through the path of the AC power supply terminal 3 → AC switch 77 → reactor 37 → capacitor 15 → capacitor 16 → reactor 38 → AC switch 76 → AC power supply terminal 2 respectively. To charge. Thus, the series circuit of the capacitors 15 and 16 can be charged with the line voltage of the three-phase AC power supply.
By turning on the AC switch 78, the voltages of the capacitors 15, 16 can be individually controlled. For example, when charging only the capacitor 15, when using the U-phase voltage Vuo (voltage between the connection point (neutral point) of the terminal 1 and the capacitors 45 to 47), the AC switches 75 and 78 are turned on. , Only the capacitor 15 can be charged through the path of the AC power supply terminal 1 → the AC switch 75 → the reactor 37 → the capacitor 15 → the AC switch 78.
When charging only the capacitor 16, for example, when using the phase voltage Vuo (voltage between the connection point (neutral point) of the terminal 1 and the capacitors 45 to 47), the AC switches 75 and 78 are turned on. As a result, only the capacitor 16 can be charged through the path of the AC power supply neutral point (connection point of the capacitors 45 to 47) → AC switch 78 → capacitor 16 → reactor 38 → AC switch 75. The capacitors 15 and 16 can be similarly charged by using the V-phase and W-phase phase voltages.
Here, the AC switch 78 has a circuit configuration using the diodes 70, 71, 73, 74 and the IGBT 72. As shown in claim 6, a reverse blocking IGBT having a reverse blocking function is connected in anti-parallel. As a result, the number of components can be reduced, the power loss can be reduced, and the device can be further downsized.
[0018]
【The invention's effect】
In a conventional circuit, in order to individually control the voltage of a series capacitor that becomes a DC output and obtain an input current with a high power factor, an input filter becomes large and eight active elements such as IGBTs are required. There have been problems such as an increase in the size of the device and an increase in cost. However, by using the circuit to which the present invention is applied, the number of active elements used is four in the first to third embodiments, two in the fourth embodiment, and two in the fifth embodiment. In the embodiment of the present invention, the number of filters can be reduced to four, and the number of filters can be reduced to five, and the input current can have a high power factor. Therefore, the size of the input filter can be reduced and the device can be reduced in size and cost. .
[Brief description of the drawings]
FIG. 1 is a circuit diagram showing an embodiment of the present invention based on claims 1 to 3;
FIG. 2 is a circuit diagram showing an embodiment of the present invention based on claim 4.
FIG. 3 is a circuit diagram showing an embodiment of the present invention based on claim 5;
FIG. 4 is a circuit diagram showing a conventional example using a three-level inverter. .
FIG. 5 is a circuit diagram showing a conventional example using a rectifier and a chopper circuit.
FIG. 6 is a circuit diagram showing a conventional example using a reverse blocking IGBT switch.
FIG. 7 is an operation waveform diagram for explaining the operation of the circuit in FIG. 6;
[Explanation of symbols]
1, 2, 3 ... AC power supply terminals 4, 5, 6 ... AC output terminals 7, 8, 48 ... DC terminals 9 to 14, 29 to 34, 41 to 44 ... Diodes 54, 56 , 58 to 61, 63 to 66, 68 to 7173, 74 ... diodes 15, 16, 45 to 47 ... capacitors 17 to 28 ... semiconductor switches 35 ... motors 36, 39, 40, 57, 62, 67, 72 ... IGBT
37, 38: reactor 48 to 53: reverse blocking IGBT switch 75 to 78: AC switch 100: AC power supply 101, 102: load

Claims (6)

三相交流電源から全波整流電圧より低い直流電圧を作り出す降圧形PWM整流装置において,逆阻止機能を有する半導体スイッチを直列接続した半導体スイッチ直列回路2個と、ダイオードを直列接続した相アームダイオード直列回路1個とを並列接続してブリッジ回路を構成し、該相アームダイオード直列回路の各々のダイオードと並列にリアクトルとコンデンサとの直列回路を各々のコンデンサ同士が直接接続構成となる向きに接続し、2個の半導体スイッチ直列回路の直列接続点に各々三相交流電源の各一相の端子を、ダイオード直列回路の直列接続点に三相交流電源の残りの一相の端子を,各々接続し、直流出力となる前記各々のコンデンサ電圧を個別に制御することを特徴とする降圧形PWM整流装置。In a step-down PWM rectifier that generates a DC voltage lower than a full-wave rectified voltage from a three-phase AC power supply, two semiconductor switch series circuits in which semiconductor switches having a reverse blocking function are connected in series, and a phase arm diode series in which diodes are connected in series One circuit is connected in parallel to form a bridge circuit, and a series circuit of a reactor and a capacitor is connected in parallel with each diode of the phase arm diode series circuit in such a direction that each capacitor is directly connected. The one-phase terminal of the three-phase AC power supply is connected to the series connection point of the two semiconductor switch series circuits, and the remaining one-phase terminal of the three-phase AC power supply is connected to the series connection point of the diode series circuit. A step-down type PWM rectifier, wherein each of the capacitor voltages serving as a DC output is individually controlled. 請求項1に示す逆阻止機能を有する半導体スイッチとして、ダイオードとIGBTの直列回路を用いたことを特徴とする請求項1に記載の降圧形PWM整流装置。The step-down PWM rectifier according to claim 1, wherein a series circuit of a diode and an IGBT is used as the semiconductor switch having the reverse blocking function according to claim 1. 請求項1に示す逆阻止機能を有する半導体スイッチとして、逆阻止形IGBTを用いたことを特徴とする請求項1に記載の降圧形PWM整流装置。2. The step-down PWM rectifier according to claim 1, wherein a reverse blocking IGBT is used as the semiconductor switch having the reverse blocking function. 三相交流電源から全波整流電圧より低い直流電圧を作り出す降圧形PWM整流装置において,ダイオード2個を直列接続したダイオード直列回路を半導体スイッチと逆並列に接続し,該半導体スイッチの正極と第1のダイオードのカソードを,該半導体スイッチの負極と第2のダイオードのアノードを、各々接続して構成した相アーム交流スイッチ回路2個と,ダイオード2個を直列接続した相アームダイオード直列回路1個とを並列接続してブリッジ回路を構成し、該相アームダイオード直列回路の各々のダイオードと並列にリアクトルとコンデンサの直列回路を各々のコンデンサ同士が直接接続構成となる向きに接続し、前記2個の相アーム交流スイッチ回路の各々のダイオード直列回路のダイオード直列接続点に各々三相交流電源の各一相の端子を、前記相アームダイオード直列回路の直列接続点に三相交流電源の残りの一相の端子を,各々接続し、直流出力となる前記各々のコンデンサ電圧を個別に制御することを特徴とする降圧形PWM整流装置。In a step-down PWM rectifier that generates a DC voltage lower than a full-wave rectified voltage from a three-phase AC power supply, a diode series circuit in which two diodes are connected in series is connected in antiparallel with a semiconductor switch, and the positive electrode of the semiconductor switch and the first A phase arm AC switch circuit composed of a cathode of the diode, a negative electrode of the semiconductor switch and an anode of a second diode connected to each other, and a phase arm diode series circuit composed of two diodes connected in series. Are connected in parallel to form a bridge circuit, and a series circuit of a reactor and a capacitor is connected in parallel with each diode of the phase arm diode series circuit in a direction in which the respective capacitors are directly connected to each other. Each of the three-phase AC power supply is connected to the diode series connection point of each diode series circuit of the phase arm AC switch circuit. A phase terminal is connected to each of the remaining one-phase terminals of the three-phase AC power supply at a series connection point of the phase arm diode series circuit, and each of the capacitor voltages serving as a DC output is individually controlled. Step-down PWM rectifier. 三相交流電源から全波整流電圧より低い直流電圧を作り出す降圧形PWM整流装置において,ダイオード2個を直列接続したダイオード直列回路を半導体スイッチと逆並列に接続し,該半導体スイッチの正極と第1のダイオードのカソードを,該半導体スイッチの負極と第2のダイオードのアノードを、各々接続して構成した相アーム交流スイッチ回路3個と,ダイオード2個を直列接続した相アームダイオード直列回路1個とを並列接続してブリッジ回路を構成し、該相アームダイオード直列回路の各々のダイオードと並列にリアクトルとコンデンサの直列回路を各々のコンデンサ同士が直接接続構成となる向きに接続し、前記3個の相アーム交流スイッチ回路の各々のダイオード直列回路のダイオード直列接続点に各々三相交流電源の各一相の端子を、前記相アームダイオード直列回路の直列接続点と三相交流電源の中性点との間に交流スイッチを,各々接続し、直流出力となる前記各々のコンデンサ電圧を個別に制御することを特徴とする降圧形PWM整流装置。In a step-down PWM rectifier that generates a DC voltage lower than a full-wave rectified voltage from a three-phase AC power supply, a diode series circuit in which two diodes are connected in series is connected in antiparallel with a semiconductor switch, and the positive electrode of the semiconductor switch and the first A phase arm AC switch circuit composed of a cathode of the diode, a negative electrode of the semiconductor switch and an anode of the second diode connected to each other, and a phase arm diode series circuit composed of two diodes connected in series. Are connected in parallel to form a bridge circuit, and a series circuit of a reactor and a capacitor is connected in parallel with each diode of the phase arm diode series circuit in a direction in which the respective capacitors are directly connected to each other. Each of the three-phase AC power supply is connected to the diode series connection point of each diode series circuit of the phase arm AC switch circuit. An AC switch is connected between a phase terminal and a series connection point of the phase arm diode series circuit and a neutral point of a three-phase AC power supply, and individually controls the respective capacitor voltages that become DC outputs. A step-down type PWM rectifier, comprising: 請求項5に記載の相アームダイオード直列回路の直列接続点と三相交流電源の中性点との間に接続される交流スイッチとして、逆阻止形IGBTの逆並列接続回路を用いたことを特徴とする請求項5に記載の降圧形PWM整流装置。A reverse blocking IGBT reverse parallel connection circuit is used as an AC switch connected between a series connection point of the phase arm diode series circuit according to claim 5 and a neutral point of the three-phase AC power supply. The step-down PWM rectifier according to claim 5, wherein
JP2002343663A 2002-11-27 2002-11-27 PWM rectifier Pending JP2004180422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002343663A JP2004180422A (en) 2002-11-27 2002-11-27 PWM rectifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002343663A JP2004180422A (en) 2002-11-27 2002-11-27 PWM rectifier

Publications (1)

Publication Number Publication Date
JP2004180422A true JP2004180422A (en) 2004-06-24

Family

ID=32705395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002343663A Pending JP2004180422A (en) 2002-11-27 2002-11-27 PWM rectifier

Country Status (1)

Country Link
JP (1) JP2004180422A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8605472B2 (en) 2011-10-12 2013-12-10 Thermo King Corporation Buck-boost rectifier, refrigeration system including a buck-boost rectifier, and method of providing power to a refrigeration unit via a buck-boost rectifier
US9628003B2 (en) 2013-10-18 2017-04-18 Mitsubishi Electric Corporation Direct current power supply device, motor driving device, air conditioner, and refrigerator
US9692289B2 (en) 2013-06-25 2017-06-27 Mitsubishi Electric Corporation DC power-supply device and refrigeration-cycle application device including the same
US9800077B2 (en) 2013-11-26 2017-10-24 Mitsubishi Electric Corporation DC power-supply device and refrigeration-cycle application device including the same
US9816737B2 (en) 2013-10-29 2017-11-14 Mitsubishi Electric Corporation DC power-supply device and refrigeration cycle device
US9960703B2 (en) 2013-09-06 2018-05-01 Mitsubishi Electric Corporation DC power-supply device and refrigeration-cycle application device including the same
CN108540002A (en) * 2018-06-12 2018-09-14 大连重工机电设备成套有限公司 A kind of high-power rectifying device and direct current change poles system
CN111431418A (en) * 2019-01-09 2020-07-17 发那科株式会社 Power supply device
CN111431394A (en) * 2020-04-17 2020-07-17 广东工业大学 Novel step-down single-phase three-level bridgeless PFC converter system
CN111669047A (en) * 2019-03-05 2020-09-15 发那科株式会社 Power Units and Power Systems
CN113972824A (en) * 2020-07-22 2022-01-25 广东美的制冷设备有限公司 Totem-pole PFC circuit, control method, circuit board and air conditioner
CN115776243A (en) * 2021-09-08 2023-03-10 天津诺尔电气有限公司 A new type of active rectification circuit and power supply device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8605472B2 (en) 2011-10-12 2013-12-10 Thermo King Corporation Buck-boost rectifier, refrigeration system including a buck-boost rectifier, and method of providing power to a refrigeration unit via a buck-boost rectifier
US9692289B2 (en) 2013-06-25 2017-06-27 Mitsubishi Electric Corporation DC power-supply device and refrigeration-cycle application device including the same
US9960703B2 (en) 2013-09-06 2018-05-01 Mitsubishi Electric Corporation DC power-supply device and refrigeration-cycle application device including the same
US9628003B2 (en) 2013-10-18 2017-04-18 Mitsubishi Electric Corporation Direct current power supply device, motor driving device, air conditioner, and refrigerator
US9816737B2 (en) 2013-10-29 2017-11-14 Mitsubishi Electric Corporation DC power-supply device and refrigeration cycle device
US9800077B2 (en) 2013-11-26 2017-10-24 Mitsubishi Electric Corporation DC power-supply device and refrigeration-cycle application device including the same
CN108540002A (en) * 2018-06-12 2018-09-14 大连重工机电设备成套有限公司 A kind of high-power rectifying device and direct current change poles system
CN108540002B (en) * 2018-06-12 2024-02-02 大连重工机电设备成套有限公司 High-power rectifying device and direct-current pole-changing system
CN111431418A (en) * 2019-01-09 2020-07-17 发那科株式会社 Power supply device
JP2020114060A (en) * 2019-01-09 2020-07-27 ファナック株式会社 Power supply device
CN111669047A (en) * 2019-03-05 2020-09-15 发那科株式会社 Power Units and Power Systems
CN111431394A (en) * 2020-04-17 2020-07-17 广东工业大学 Novel step-down single-phase three-level bridgeless PFC converter system
CN113972824A (en) * 2020-07-22 2022-01-25 广东美的制冷设备有限公司 Totem-pole PFC circuit, control method, circuit board and air conditioner
CN113972824B (en) * 2020-07-22 2023-12-15 广东美的制冷设备有限公司 Totem pole PFC circuit, control method, circuit board and air conditioner
CN115776243A (en) * 2021-09-08 2023-03-10 天津诺尔电气有限公司 A new type of active rectification circuit and power supply device

Similar Documents

Publication Publication Date Title
CN109842287B (en) PFC circuit compatible with single-phase and three-phase alternating-current input and control method thereof
JP6227041B2 (en) Multi-level inverter
JP3249380B2 (en) Power converter
JP2954333B2 (en) AC motor variable speed system
US9325252B2 (en) Multilevel converter systems and sinusoidal pulse width modulation methods
US9520800B2 (en) Multilevel converter systems and methods with reduced common mode voltage
US8649196B2 (en) Power converting apparatus with an output voltage that is the sum of voltages generated by individual inverters
JP5400961B2 (en) Power converter
CN103782500B (en) Power-converting device
JP2004007941A (en) Power conversion device
JP5682459B2 (en) 5-level conversion circuit
JP2004180422A (en) PWM rectifier
JP5362657B2 (en) Power converter
Itoh et al. A novel five-level three-phase PWM rectifier with reduced switch count
Mukherjee et al. A minimum switch five-level unidirectional rectifier without any voltage balancing and pre-charging circuitry
Baksi et al. Minimum switch count nine-level inverter with low voltage stress for photovoltaics application
JP5734083B2 (en) Power converter
Dwivedi et al. A novel three-level dual-output active neutral-point clamped (anpc) converter
JP5400956B2 (en) Power converter
CN108450057B (en) Control device for power conversion device
JPH04334977A (en) Power converter
Bhanuchandar et al. Modulated model predictive current control technique for three phase five level switched capacitor based ANPC grid connected inverter with front end-multilevel boost converter
JP5400955B2 (en) Power converter
JP7054816B2 (en) Power converter
WO2025090346A1 (en) Power factor correction architecture