【0001】
【発明の属する技術分野】
本発明は表面に微細な形状(凹凸)を有する素子、例えばマイクロレンズやマイクロプリズム等に関するものである。
【0002】
【従来の技術】
光学素子の製造方法にはガラスの研削、研摩や型を用いた精密成形、熱可塑性樹脂の射出成形やプレス成形等があり、機能やコスト、要求精度等により使い分けられている。例えば、カメラ等に使用される結像系のレンズには球面レンズとしては温度、湿度の環境変動に関して性能劣化が少なく、経済的にも有利なガラスの研削、研摩により製造され、非球面レンズに関しては、型を用いたガラスの精密成形により製造される。カメラでもファインダーに使用されるレンズは優れた結像性能を要求されない為、コスト面から樹脂の射出成形により製造される。
【0003】
また、径が30mm以上の非球面レンズや表面に微細な凹凸形状を有する光学素子では、ガラス基板の上に光エネルギー硬化型樹脂の薄層を成形し、硬化させることにより所要の表面形状を形成する方法が用いられる。大きな非球面レンズはガラスの精密成形では形状精度が悪くなり、精度を確保しようとすると成形時間が長くなりコスト高になる。微細な凹凸形状を有する光学素子もガラスでは離型時に凹凸部が破壊し製造できず、樹脂による製造が必須となるが素子全体が樹脂では、環境変動に対する性能劣化が大きく樹脂部を薄層にする上記の方法によりその影響を小さくする。
【0004】
この光エネルギー硬化型樹脂の成形においては、樹脂の硬化に伴う体積収縮が、大きいものでは7〜9%にも及ぶ為、この硬化収縮により内部応力が発生し、形状精度や離型性等様々な影響を及ぼす。この内部応力は樹脂厚はもちろん、ガラス基板厚でも変化する。
【0005】
こうした樹脂厚や基板厚に関する発明としては、特開平4−195031号公報では放射線硬化樹脂層の厚みを基体薄板部の厚さの1/3以下とすることにより熱膨張率の差による反り変形を抑制している。また、特開平4−358810や特開平8−29610号公報では基板の厚さを1000μm以下にすることにより、成形した基材を貯蔵しやすくしたり、わざと硬化収縮により湾曲させて平面の基板から曲面の成形品を得る方法が記載されている。
【0006】
【発明が解決しようとする課題】
図1に示すようなマイクロレンズを光エネルギー硬化型樹脂で成形する場合、素子を小型化する為に、ガラス基板厚を薄くすると、光エネルギー硬化型樹脂を型から離型する時ガラス基板が割れてしまうという現象が発生した。
【0007】
【課題を解決するための手段】
ガラス基板厚H1を樹脂部の最大厚H2(マイクロレンズでは平坦部の厚さと球体部の高さの和)に対して、大きくにすることにより、ガラス基板の強度が離型に必要な負荷に対して大きくなり離型時のガラス基板の割れを防ぐことができる。特にガラス基板の厚みが300μm以上になるとこの効果は大きくなるが、ある程度厚くなるとガラス基板の強度が飛躍的に大きくなる為効果は小さくなる。効果が大きいのはガラス基板厚が300μmから800μmの範囲である事が種々の検討により明らかになった。
【0008】
よって、本発明の第一は、光エネルギー硬化型樹脂を平坦なガラス基板上に型を用いて成形、硬化し、一体化した複合光学素子において、ガラス基板厚を、樹脂部の最大厚より大きくすることにより離型時のガラス基板の割れを防止する。
【0009】
また、本発明の第二は特にガラス基板厚が300μmから800μmの範囲にすることによりガラス基板の割れ防止の効果が大きくなる。
【0010】
【発明の実施の形態】
(実施形態1)
図1は本発明に関わる光学素子の一つの実施態様を示す概略図である。図1において1は成形された光エネルギー硬化型樹脂で、1aは光学機能部となる球体部、1bは平坦部であり、2は平板状のガラス基板でる。ガラス基板厚H1は500μm、樹脂部の最大厚H2は光学機能部である1aの球体部の高さ170μmと平坦部の高さ200μmの和で390μmである。この素子を10回成形したところ離型時にガラス基板の割れもなく形状精度も良好であった。
【0011】
(比較例1)
実施例1に対してガラス基板厚を300μmにして成形したところ、10回の成形において4回、離型時にガラス基板に割れが発生した。
【0012】
以上のように、ガラス基板厚を樹脂厚よりも大きくにすることにより、離型時のガラス基板割れを防ぐことが可能となる。
【0013】
(実施形態2)
図2は本発明に関わる光学素子の第二の実施態様を示す概略図である。図2において3は成形された光エネルギー硬化型樹脂で、3aは光学機能部となるプリズム部、3bは平坦部であり、4は平板状のガラス基板でる。ガラス基板厚H1は300μm、樹脂部の最大厚H2は光学機能部である3aのプリズム部の高さ220μmと平坦部の高さ60μmの和で280μmである。この素子を10回成形したところ離型時にガラス基板の割れもなく形状精度も良好であった。
【0014】
(比較例2)
実施例2に対して樹脂平坦部の高さを100μmにして成形したところ、10回の成形において2回、離型時にガラス基板に割れが発生した。
【0015】
(実施形態3)
図3は本発明に関わる光学素子の第三の実施態様を示す概略図である。図3において5は成形された光エネルギー硬化型樹脂で、5aは光学機能部となるシリンドリカルレンズ部、5bは平坦部であり、6は平板状のガラス基板でる。ガラス基板厚H1は700μm、樹脂部の最大厚H2は光学機能部である5aのシリンドリカルレンズ部の高さ500μmと平坦部の高さ150μmの和で650μmである。この素子を10回成形したところ離型時にガラス基板の割れもなく形状精度も良好であった。
【0016】
(比較例3)
実施例3に対して樹脂平坦部の高さを250μmにして成形したところ、10回の成形において2回、離型時にガラス基板に割れが発生した。
【0017】
【発明の効果】
以上説明したように、本願発明によればガラス基板上へ光エネルギー硬化型樹脂の薄層を成形し硬化させることにより所望の表面形状を形成する光学素子の製造方法において、離型時のガラス基板の割れを抑制することができる。
【図面の簡単な説明】
【図1】第1の実施例での光学素子を示す概略図。
【図2】第2の実施例での光学素子を示す概略図。
【図3】第3の実施例での光学素子を示す概略図。
【符号の説明】
1、3、5 光エネルギー硬化型樹脂樹脂
2、4、6 ガラス基板[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an element having a fine shape (unevenness) on a surface, for example, a microlens or a microprism.
[0002]
[Prior art]
Methods of manufacturing an optical element include glass grinding, polishing, precision molding using a mold, injection molding and press molding of a thermoplastic resin, and the like, which is used depending on the function, cost, required accuracy, and the like. For example, as a spherical lens, an imaging lens used for a camera or the like is manufactured by grinding and polishing glass, which has little performance degradation with respect to environmental fluctuations of temperature and humidity, and is economically advantageous. Is manufactured by precision molding of glass using a mold. Since a lens used in a viewfinder of a camera does not require excellent imaging performance, it is manufactured by injection molding of a resin from the viewpoint of cost.
[0003]
In the case of an aspherical lens having a diameter of 30 mm or more and an optical element having a fine irregular shape on the surface, a thin layer of light energy curable resin is formed on a glass substrate and cured to form a required surface shape. Is used. Large aspherical lenses have poor shape precision in precision molding of glass, and if the precision is to be ensured, the molding time is long and the cost is high. Optical elements with fine irregularities can not be manufactured because glass will break the irregularities during mold release and cannot be manufactured, and manufacturing with resin is indispensable. The above method reduces the influence.
[0004]
In the molding of this light energy curable resin, since the volume shrinkage accompanying the curing of the resin is as large as 7 to 9%, internal stress is generated by the curing shrinkage, and various factors such as shape accuracy and releasability are required. Have a significant effect. This internal stress changes not only with the thickness of the resin but also with the thickness of the glass substrate.
[0005]
Japanese Patent Application Laid-Open No. 4-195031 discloses an invention relating to such a resin thickness and a substrate thickness. Restrained. Further, in JP-A-4-358810 and JP-A-8-29610, by setting the thickness of the substrate to 1000 μm or less, the molded substrate can be easily stored, or it can be deliberately bent by curing and shrinking from a flat substrate. A method for obtaining a molded article having a curved surface is described.
[0006]
[Problems to be solved by the invention]
When a microlens as shown in FIG. 1 is molded from a light energy curing resin, the thickness of the glass substrate is reduced in order to reduce the size of the element, and the glass substrate breaks when the light energy curing resin is released from the mold. Phenomenon occurred.
[0007]
[Means for Solving the Problems]
By increasing the thickness H1 of the glass substrate with respect to the maximum thickness H2 of the resin portion (the sum of the thickness of the flat portion and the height of the spherical portion in the case of a microlens), the strength of the glass substrate is reduced to the load required for mold release. On the other hand, the glass substrate becomes large, so that cracking of the glass substrate at the time of release can be prevented. In particular, when the thickness of the glass substrate is 300 μm or more, this effect becomes large. However, when the thickness is somewhat large, the effect becomes small because the strength of the glass substrate is dramatically increased. Various studies have revealed that the effect is large when the glass substrate thickness is in the range of 300 μm to 800 μm.
[0008]
Therefore, the first aspect of the present invention is to mold a light energy-curable resin on a flat glass substrate using a mold, cure and integrate the composite optical element, and make the glass substrate thickness larger than the maximum thickness of the resin portion. By doing so, cracking of the glass substrate at the time of release can be prevented.
[0009]
In the second aspect of the present invention, in particular, when the thickness of the glass substrate is in the range of 300 μm to 800 μm, the effect of preventing cracking of the glass substrate is increased.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
(Embodiment 1)
FIG. 1 is a schematic view showing one embodiment of the optical element according to the present invention. In FIG. 1, reference numeral 1 denotes a molded light energy curable resin, 1a denotes a spherical portion serving as an optical function portion, 1b denotes a flat portion, and 2 denotes a flat glass substrate. The glass substrate thickness H1 is 500 μm, and the maximum thickness H2 of the resin portion is 390 μm, which is the sum of the height of the spherical portion of the optical function portion 1a 170 μm and the height of the flat portion 200 μm. When this element was molded ten times, the glass substrate was not cracked at the time of mold release, and the shape accuracy was good.
[0011]
(Comparative Example 1)
As compared with Example 1, the glass substrate was molded with a thickness of 300 μm. When the molding was performed ten times, cracks occurred in the glass substrate four times during mold release.
[0012]
As described above, by making the thickness of the glass substrate larger than the thickness of the resin, it is possible to prevent the glass substrate from being cracked at the time of release.
[0013]
(Embodiment 2)
FIG. 2 is a schematic view showing a second embodiment of the optical element according to the present invention. In FIG. 2, reference numeral 3 denotes a molded light energy curable resin, 3a denotes a prism portion serving as an optical function portion, 3b denotes a flat portion, and 4 denotes a flat glass substrate. The glass substrate thickness H1 is 300 μm, and the maximum thickness H2 of the resin portion is 280 μm, which is the sum of the height of the prism portion of the optical function portion 3a 220 μm and the height of the flat portion 60 μm. When this element was molded ten times, the glass substrate was not cracked at the time of mold release, and the shape accuracy was good.
[0014]
(Comparative Example 2)
When molding was performed with the height of the resin flat portion set to 100 μm in Example 2, cracks occurred in the glass substrate at the time of mold release twice in 10 moldings.
[0015]
(Embodiment 3)
FIG. 3 is a schematic view showing a third embodiment of the optical element according to the present invention. In FIG. 3, reference numeral 5 denotes a molded light energy curing resin, 5a denotes a cylindrical lens portion serving as an optical function portion, 5b denotes a flat portion, and 6 denotes a flat glass substrate. The glass substrate thickness H1 is 700 μm, and the maximum thickness H2 of the resin portion is 650 μm, which is the sum of the height of the cylindrical lens portion 5a of the optical function portion 5a of 500 μm and the height of the flat portion of 150 μm. When this element was molded ten times, the glass substrate was not cracked at the time of mold release, and the shape accuracy was good.
[0016]
(Comparative Example 3)
When molding was performed with the height of the resin flat portion set to 250 μm in Example 3, cracks occurred in the glass substrate at the time of mold release twice in 10 moldings.
[0017]
【The invention's effect】
As described above, according to the present invention, in a method of manufacturing an optical element for forming a desired surface shape by molding and curing a thin layer of a light energy curable resin on a glass substrate, Cracks can be suppressed.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an optical element according to a first embodiment.
FIG. 2 is a schematic diagram illustrating an optical element according to a second embodiment.
FIG. 3 is a schematic diagram illustrating an optical element according to a third embodiment.
[Explanation of symbols]
1, 3, 5 light energy-curable resin resin 2, 4, 6 glass substrate