JP2004167527A - Mold additive for continuous casting of steel - Google Patents
Mold additive for continuous casting of steel Download PDFInfo
- Publication number
- JP2004167527A JP2004167527A JP2002334892A JP2002334892A JP2004167527A JP 2004167527 A JP2004167527 A JP 2004167527A JP 2002334892 A JP2002334892 A JP 2002334892A JP 2002334892 A JP2002334892 A JP 2002334892A JP 2004167527 A JP2004167527 A JP 2004167527A
- Authority
- JP
- Japan
- Prior art keywords
- mold
- additive
- steel
- viscosity
- continuous casting
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Continuous Casting (AREA)
Abstract
【課題】流入性を確保しつつパウダー巻き込みが小さく、且つ、表面性状に優れた鋼材を製造するための鋼の連続鋳造用鋳型添加剤を提供する。
【解決手段】CaO/SiO2が0.3〜0.8の範囲にあり、1300℃における粘度(η)が10poise超50poise以下であり、凝固温度(℃)が粘度(η(poise))の関数として下記式で表される範囲内にあり、溶融温度が1200℃以下であり、かつ1400℃で溶融したのち冷却後の結晶化率が10%以下であることを特徴とする鋼の連続鋳造用鋳型添加剤。
1050(℃)−2×η≦凝固温度(℃)≦1220(℃)−2×η
さらにAlをAl2O3換算で4〜10質量%、F:3〜7質量%を含有する。AlF3:1〜6質量%を含有する。
【選択図】 なしAn object of the present invention is to provide a mold additive for continuous casting of steel for producing a steel material having low powder entrainment and excellent surface properties while ensuring inflowability.
SOLUTION: CaO / SiO 2 is in the range of 0.3 to 0.8, viscosity (η) at 1300 ° C. is more than 10 poise and 50 poise or less, and solidification temperature (° C.) is viscosity (η (poise)). Continuous casting of steel having a melting temperature of 1200 ° C. or less and a crystallization rate of 10% or less after cooling after melting at 1400 ° C. within a range represented by the following formula as a function: For mold additives.
1050 (° C) -2 × η ≦ solidification temperature (° C) ≦ 1220 (° C) -2 × η
Further, Al contains 4 to 10% by mass in terms of Al 2 O 3 and F: 3 to 7% by mass. AlF 3: containing 1-6 wt%.
[Selection diagram] None
Description
【0001】
【発明の属する技術分野】
本発明は、鋼の連続鋳造において鋳型内に添加する鋼の連続鋳造用鋳型添加剤に関するものである。
【0002】
【従来の技術】
鋼の連続鋳造においては、鋳型内に注入された溶鋼表面上に鋳型添加剤を添加する。鋳型添加剤はモールドパウダーとも呼ばれ、高温の溶鋼に加熱されて溶融し、鋳型と凝固シェルの間に流入する。鋳型添加剤は主として、鋳型内溶鋼表面の保温および酸化防止、溶鋼中から浮上した非金属介在物の吸収、鋳型と凝固シェル間に流入するスラグフィルムによる潤滑作用、このフィルムによる鋳片よりの抜熱の制御を行うことを目的とする。これによって、優れた表面性状の鋳片を得るとともに、溶融した鋳型添加剤が溶鋼中に巻き込まれにくく、正常で良好な鋳片を製造する。
【0003】
ところで、連続鋳造操業時には、操業条件の如何又はその変化による局所的な湯面変動に起因し、あるいは鋳型内に注入された溶鋼の注入流がメニスカス近傍で溶融した鋳型添加剤と溶鋼との界面を乱し、鋳型添加剤を溶鋼中に巻き込み、凝固シェルヘ付着したりする場合がある。特に高速連続鋳造においては注入流の流速が大きくなるので、鋳型添加剤を巻き込みやすくなる。巻き込まれた鋳型添加剤が鋳片に付着したままの状態で圧延を行うと、伸展されて冷延鋼板の表面欠陥の原因となるため、連続鋳造用鋳型添加剤には、鋳造中にパウダー巻き込みを起こさない性質を有することが要請される。
【0004】
高粘性の鋳型添加剤を用いることにより、鋳型内溶鋼流動によるパウダーの巻き込みを防止することができ、パウダー巻き込みに起因する欠陥発生が低減されることが知られている。特に炭素濃度が0.01質量%以下であるIF鋼(Interstitial Free鋼)は、パウダー巻き込みに起因する鋳片及び冷延鋼板の表面欠陥が発生しやすい。極低炭素鋼は鋳造時の溶鋼表面付近に生成する凝固シェル先端の爪が長くなりやすく、この爪が原因でパウダー巻き込みが発生しやすいと考えられる。
【0005】
特許文献1においては、極低炭素鋼用のモールドパウダー(鋳型添加剤)として、1300℃におけるパウダーの粘度を3poise以上とすることで、高速鋳造においてもモールドパウダーの巻き込みを防止できる点が記載されている。ただし、粘度が15poiseを超えると、鋳型と凝固シェル間隙への適切なパウダーの流入ができなくなり、鋳片と鋳型との潤滑不良を生じ、ブレークアウト等の重大の操業トラブルの原因となるとし、モールドパウダーの粘度上限を15poiseとしている。
【0006】
特許文献2においては、パウダー(鋳型添加剤)の粘性が増大することによる問題点として、パウダー消費量が減少し、鋳型の抜熱のばらつきが大きくなりかつ、スラグベアが出来やすいこと、パウダー流入が不均一となり、割れやブレークアウトが発生し易くなる等の欠点があり、鋳造速度に制限を設ける必要がある等の点を挙げている。同文献によると、鋳型内のメニスカス付近には溶鋼流速が遅い淀み部が存在し、パウダー流入不良が起きるのはこの淀み部であるとしている。そして、鋳型内の溶鋼に電磁力により外力を加えて流動を付与することにより淀み部を解消し、パウダーが高粘性であっても安定して鋳造可能であるとし、粘度が3〜25poiseのパウダーを用いて電磁攪拌で流速8〜30cm/sの流動を与えながら鋳造する方法が開示されている。
【0007】
【特許文献1】
特開平10−263767号公報
【特許文献2】
特開2000−280051号公報
【0008】
【発明が解決しようとする課題】
昨今の鋼板に対する品質要求レベルはますます高くなってきており、薄板の表面疵を防止するために、特許文献1に記載の鋳型添加剤を超える良好な品質の薄板を製造することのできる鋳型添加剤が要請されている。
【0009】
鋳型内電磁攪拌や電磁ブレーキを適用した鋳造を行うためには設備投資が必要であり、場合によっては設備制約によってこれら設備を設置できない場合もある。従って、鋳型内電磁攪拌や電磁ブレーキを適用しなくても使用可能な高粘性の鋳型添加剤が提供できれば、現状設備のままでパウダー巻き込みを防止することが可能となり、好ましい。
【0010】
鋳型内で電磁攪拌を行うことによって溶鋼流動の淀み部は解消できるものの、高粘性鋳型添加剤使用時のパウダー流入不良は淀み部以外でも発生しており、粘度が10poiseを超える鋳型添加剤を使用する場合には、電磁攪拌適用時といえどもパウダー流入不良による問題を完全に解決するには至っていない。また、パウダー流入不良を起こさない程度の粘性を有するパウダーを使用した場合、電磁攪拌による溶鋼流速の増加によってかえってパウダー巻き込みが増加することが生じた。
【0011】
本発明は上述したような問題点を解消するものであって、流入性を確保しつつパウダー巻き込みが小さく、且つ、表面性状に優れた鋼材を製造するための鋼の連続鋳造用鋳型添加剤を提供することを目的とするものである。
【0012】
【課題を解決するための手段】
即ち、本発明の要旨とするところは以下のとおりである。
(1)CaO/SiO2が0.3〜0.8の範囲にあり、1300℃における粘度(η)が10poise超50poise以下であり、凝固温度(℃)が粘度(η(poise))の関数として下記式で表される範囲内にあり、溶融温度が1200℃以下であり、かつ1400℃で溶融したのち冷却後の結晶化率が10%以下であることを特徴とする鋼の連続鋳造用鋳型添加剤。
1050(℃)−2×η≦凝固温度(℃)≦1220(℃)−2×η
(2)AlをAl2O3換算で4〜10質量%、F:3〜7質量%を含有することを特徴とする上記(1)に記載の鋼の連続鋳造用鋳型添加剤。
(3)AlF3:1〜6質量%を含有することを特徴とする上記(2)に記載の鋼の連続鋳造用鋳型添加剤。
(4)Li2O:0.5〜4質量%、Na2O:2〜5質量%を含有し、MgOが2%以下であり、溶融速度調整剤として炭素分を0.4〜3質量%添加してなることを特徴とする上記(2)又は(3)に記載の鋼の連続鋳造用鋳型添加剤。
(5)IF鋼の連続鋳造用であることを特徴とする上記(1)乃至(4)のいずれかに記載の鋼の連続鋳造用鋳型添加剤。
【0013】
【発明の実施の形態】
溶鋼中へのパウダー巻き込み防止のためには、1300℃におけるパウダー粘度が高いほど好ましい。一方、鋳型と凝固シェルの間の空間へのパウダー流入においては、水冷銅鋳型に熱を奪われるため、パウダーの温度は急速に低下する。パウダーの流入を促進するためには、パウダー温度が低下しても必要な流動性を保持している必要がある。本発明において、高粘性の鋳型潤滑剤を用いたときのパウダー流入性確保のためには、鋳型添加剤の凝固温度を低下させることが重要であることを明らかにした。一方、従来のパウダーにおいては、1300℃における粘度が高いパウダーはその組成によっては凝固温度が非常に高くなり、鋳型と凝固シェル間への流入性が悪化する。従来、高粘性の鋳型添加剤において流入性が低下していた原因はこの点にあることが明らかになった。本発明においては、鋳型添加剤の粘度を高粘度とすると同時に、凝固温度を低下させて所定の適正凝固温度とすることにより、溶鋼中へのパウダー巻き込みを防止して鋳片表面品質を向上するとともに、流入特性を向上してブレークアウト等のトラブル発生を防止することを可能にした。
【0014】
本発明の鋳型添加剤において、1300℃における粘度を10poise超50poise以下とする。図1(a)に示すように、粘度を10poise超とすることにより、パウダー巻き込みの少ない鋳造を行うことが可能になる。特に、IF鋼に代表されるようなC≦0.01質量%の極低炭素鋼においては、凝固シェル先端の爪が長いため、粘度を10poise超とすることによってはじめて良好な効果を得ることができる。また、このような極低炭素鋼は凝固シェル先端の爪が長いことにより、溶融パウダーが鋳型と凝固シェルの間に流れ込みやすく、従って高粘性の鋳型添加剤であっても良好な流入性が確保しやすい。1300℃での粘度は15poise超とするとより好ましい。一方、1300℃での粘度が50poiseを超えると、潤滑性が不良となるとともに、図1(b)に示すように溶鋼中に吹き込んだArガス等の気泡の抜け性が悪くなってピンホール等の欠陥が多くなることがあるので、上限を50poiseとする。より好ましくは、1300℃における粘度を15poise超30poise以下とする。
【0015】
鋳型添加剤の粘度測定方法として、回転円筒法を用いると好ましい。測定対象の鋳型添加剤を700℃にて60分間脱炭処理した試料を黒鉛坩堝に挿入し1400℃にて10〜15分間予備溶解した後鉄坩堝に移し、縦型管状炉(エレマ炉)に入れ、E型粘度計のローターをスラグ中に浸漬し、1300℃で30分間安定させた後、ローターを回転させ粘性抵抗によるトルクを測定し、粘度を求める。なおE型粘度計は事前に標準粘度液にて較正しておく。
【0016】
本発明の鋳型添加剤の凝固温度(℃)を、粘度(η(poise))の関数として下記式で表される範囲内とする。
1050(℃)−2×η≦凝固温度(℃)≦1220(℃)−2×η
【0017】
図2は、鋳型添加剤の粘度を横軸に、凝固温度を縦軸に取ったグラフである。上記式で表される上限および下限を、図中では右下がりの傾斜を有する2本の直線によって表示している。図中のプロットは鋳造実績を示すものであり、●は鋳造結果が良好であったもの、▲は鋳造中にブレークアウト予知信号が発せられたもの、×は鋳片に割れが発生したものである。図から明らかなように、凝固温度を上記式の上限以下とすることにより、パウダーの流入性を確保し、パウダー流入不良に起因するブレークアウトの発生を防止することができるようになる。一方、凝固温度を上記式の下限以上とすることにより、鋳片の表面欠陥、特に割れの発生を防止することができる。ここで、ブレークアウト予知信号とは、連続鋳造鋳型内に埋め込んだ温度測定用の熱電対の検出結果に基づくものであり、拘束性ブレークアウトの芽が発生したときに発せられる予知信号である。予知信号が発生すると、鋳造速度を急減速することによってブレークアウトの発生を防止している。
【0018】
凝固温度上限・下限の式が粘度(η)の関数になっており、粘度が大きくなるほど凝固温度上限、下限ともに低温側に移動する。高粘度化に伴い潤滑特性が悪化してくるので、粘度の上昇に対応して凝固温度を低下させることにより、潤滑特性を良好に保つことができるからである。
【0019】
凝固温度の測定方法としては、前述の粘度測定用縦型管状炉において、1300℃の粘度を測定後、炉の温度を1℃/minで冷却させながらローターを回転し、トルクを測定する。このときのトルクは、温度降下に従って漸次大きくなっていく。このトルクが急激に大きくなる温度を凝固温度とする。
【0020】
本発明の鋳型添加剤の溶融温度を1200℃以下とする。実機での連続鋳造を進めていく中で、溶融温度が1200℃を超える鋳型添加剤を用いると、溶融特性が悪くブレークアウト予知信号の発生頻度が高くなることが確認された。また、溶融温度が1200℃を超える鋳型添加剤では鋳造速度が変動する非定常部におけるブレークアウト予知信号の発生頻度が高くなることも確認できた。鋳型添加剤の溶融温度が1200℃を超える温度の場合には、鋳型内湯面において鋳型添加剤がスムーズに溶解せず、その結果鋳型添加剤の流入不良となって鋳片拘束が発生するためであると推定される。鋳型添加剤の溶融温度は、より好ましくは1160℃以下とする。
【0021】
溶融温度の測定方法としては、試料を粉砕し水を添加し混合後、型枠にて円柱状(10mmφ×10mmH)に成型し乾燥したものを箱形電気炉にセットし、炉温度を700℃から10℃/minの速度で昇温させたとき、円柱の高さが初期高さの1/2になる温度を溶融温度とする。
【0022】
本発明の鋳型添加剤は、1400℃で溶融したのち冷却後の結晶化率を10%以下とする。本発明の鋳型添加剤は、高粘度であるにもかかわらず鋳型と凝固シェルとの間での潤滑性を確保するため、前述の通り、溶融温度の低下を図っている。さらに、冷却時における結晶の生成を抑制し、冷却後の結晶化率を10%以下とすることにより、より一層のガラス性を確保することができ、潤滑性を向上することができる。冷却後の結晶化率は、6%以下とするとより好ましい。
【0023】
鋳型添加剤の結晶化率を測定する方法として、図3に示す測定装置を用いた方法を採用することができる。図3(a)において、脱炭した試料110gを第1の黒鉛ルツボ1から投入して第2の黒鉛ルツボ2に入れる。次いでマッフル炉3を用いて1400℃で10分間保持し、試料を溶解する。第1の黒鉛ルツボ1を上方に上げることによって溶解した試料を第2の黒鉛ルツボ2からV字型枠4に鋳込む。空冷後、V字型枠4から型抜きしたサンプル5を図3(b)(c)に示すように中央部で切断し結晶化率を評価する。結晶化率の評価にあたっては、図3(d)に示すようにサンプル5の結晶部6の厚さLcを測定し、Lcをサンプル5の高さhで割った値を%表示した値を結晶化率とする。サンプル高さhは60mmとすると好ましい。
【0024】
本発明の鋳型添加剤の組成としては、CaO/SiO2(塩基度)を0.3〜0.8の範囲とする。塩基度0.8以下という低塩基度の組成を採用することにより、1300℃での粘度10poise以上を確保することが可能になる。塩基度が0.8を超えると、たとえAl2O3を添加しても粘度を10poise以上にすることが困難になる。一方、塩基度0.3未満では粘度が50poiseを超えてしまうので、下限を0.3とする。上記塩基度範囲を採用して低塩基度化することにより、1300℃での粘度を上昇すると同時に凝固温度を下げることにも寄与している。塩基度の範囲を上記範囲とした上で、鋳型添加剤中のCaO含有量を10〜35%、SiO2含有量を30〜60%の範囲とするとより好ましい。塩基度の範囲はより好ましくは0.4〜0.75とする。
【0025】
本発明の鋳型添加剤の組成として、Al含有量をAl2O3換算で4〜10質量%とすると好ましい。Al2O3換算8%以下の範囲でAlの含有量を増大すると、鋳型添加剤の1300℃粘度を上昇させ、同時に凝固温度と溶融温度を低下させる。高粘度化して凝固温度と溶融温度を十分に低下させるため、Al2O3換算含有量下限は4%とする。一方、Al2O3換算含有量が10%を超えると凝固温度と溶融温度が逆に高くなるので、上限を10%とする。Al含有量は、より好ましくはAl2O3換算で4〜8質量%とする。
【0026】
本発明の鋳型添加剤の組成として、F含有量を3〜7質量%とすると好ましい。本発明の鋳型添加剤にFを含有させると、鋳型添加剤の凝固温度の下がりすぎを防止することができる。F含有量を3%以上とすることにより、凝固温度の下がりすぎを防止して最適な凝固温度を実現することができる。なお、Fが化合物としてどのような形態をとっている場合であってもよく、上記F含有量は全F含有量を示す。Fの添加によって凝固温度の下がりすぎを防止できる理由は、鋳型添加剤中に含まれるFがカスピダイン(3CaO・2SiO2・CaF2)という結晶を生成し、凝固温度を上昇させるからである。一方、F含有量の上限を7%とすることにより、粘度の低下しすぎを防止することができる。F含有量はより好ましくは3〜5%とする。
【0027】
本発明の鋳型添加剤はさらに、AlF3:1〜6質量%を含有することとすると好ましい。Fを含有することによって生成する上記カスピダインは、凝固温度の下がりすぎを防止する一方、冷却時に生成する結晶の生成量を増大させることにもなる。前述の通り、パウダーの潤滑性を確保するためにはパウダーのガラス性の確保が必要であり、そのためには結晶の生成量を適正化する必要がある。本発明においては、鋳型添加剤のF源としてAlF3:1〜6質量%を含有することにより、CaF2の生成を抑制しパウダーの冷却過程で一般的に生成されるカスピダインの生成量を抑制することができ、1400℃で溶融したのち冷却後の結晶化率が10%以下とする上において好適である。AlF3含有量を1%以上とするのは、結晶化率を10%以下と低位にするためであり、6%以下とするのは最低限のカスピダインの生成を確保し凝固温度を下げすぎないようにするためである。
【0028】
本発明の鋳型添加剤は、さらにLi2Oを0.5〜4質量%含有するとより好ましい。Li2Oを0.5%以上添加することにより、凝固温度を下げずに溶融温度を低下させることが可能になる。一方、Li2O含有量が4%を超えると凝固温度が低下しすぎるので上限を4%とした。Li2O含有量はさらに好ましくは0.5〜3%とする。
【0029】
本発明の鋳型添加剤は、さらにNa2Oを2〜5質量%含有するとより好ましい。Na2Oを2%以上添加すると、鋳型添加剤と溶鋼との濡れ性が良好となり、流入の均一化を図ることができる。一方、Na2O添加量が5%以下であれば、Na2O系の結晶、例えばNaAlSiO4(Nepheline)の生成を防ぐことができ、結晶化特性を均一化することができる。Na2O含有量はさらに好ましくは2〜4%とする。
【0030】
本発明の鋳型添加剤において、MgO含有量は2質量%以下とすると好ましい。MgOは不可避不純物として鋳型添加剤中に含まれている。MgOは鋳型添加剤のガラス性を増大させる成分であり、MgO含有量が増えると凝固温度が低下しすぎるので、上限を2%とすると好ましい。
【0031】
本発明の鋳型添加剤において、溶融速度調整剤として炭素分を0.4〜3質量%添加すると好ましい。本発明の鋳型添加剤が最も効果を発揮するのはIF鋼の連続鋳造に用いた場合であり、IF鋼は極低炭素鋼であって鋳型添加剤からの浸炭も問題となるので、上限を3%以下とする。一方、炭素分添加量が0.4%以上であれば鋳型添加剤の溶融特性調整が十分に行われるので、下限を0.4%とする。
【0032】
本発明の鋳型添加剤は、その50%以上がプリメルト基材より形成すると好ましい。プリメルト基材とは、鋳型添加剤の原料として一部の成分を前もって高温で溶融処理したものである。通常は1000〜1400℃に熱して溶融する。プリメルト基材は、CaO−Al2O3−SiO2をベースにNa2O、F、Li2Oなどを混合したものを上記温度で溶融し、凝固したものである。50%以上をプリメルト基材とするのは、鋳型内溶鋼湯面上において鋳型添加剤を均一に溶融させるためである。本発明の鋳型添加剤の形態は、粉末であってもあるいは顆粒状であっても良いが、好ましくは、環境及び溶鋼の保温性と被覆性に優れる中空顆粒状であることがより好ましい。
【0033】
本発明の鋳型添加剤は、IF鋼の連続鋳造用として用いると特に好ましい。IF鋼とは、C≦0.01質量%の極低炭素鋼であり、さらにTiを添加してCをTiCとして固定している。そのため固溶Cが少ないので、r値が高く深絞り性に優れ、また加工時のストレッチャーストレインによる表面欠陥の発生を防いだ薄鋼板用の鋼である。IF鋼は炭素濃度が低いので凝固シェル先端の爪が長く伸びやすく、そのためパウダー巻き込みによる品質欠陥が発生しやすいという特性を有している。従って、本発明の高粘性・適正凝固温度の鋳型添加剤を用いることによってパウダー巻き込みを低減することができ、品質改善効果が特に高いからである。また、凝固シェル先端の爪が長いため、溶融パウダーが鋳型と凝固シェルとの間に流入しやすく、高粘度の鋳型添加剤であっても流入性を良好に保持しやすいからである。
【0034】
また、Alキルド鋼の連続鋳造の場合、鋳造中に溶鋼中のAlと鋳型添加剤との反応により添加剤中のAl2O3濃度が増加して粘度の不均一な上昇を招くのに対して、IF鋼の場合にはAl2O3と共にTiO2が増加するため、比較的添加剤の粘度変化が少ないことも鋳造の安定に寄与している。
【0035】
【実施例】
転炉にて溶製した溶鋼300tonを、RHにて所定の成分濃度に調整した極低炭素鋼の溶鋼を、タンディッシュ、浸漬ノズルを介して垂直曲げ型の連続鋳造機で、厚み250mm、幅1600mmの鋳片に鋳造した。溶鋼成分範囲を表1に示す。
【0036】
【表1】
【0037】
表2に示す成分・特性を有する鋳型添加剤を準備し、連続鋳造において鋳型内に添加した。鋳造速度は表2中に示す。鋳型添加剤の溶融温度、1300℃における粘度、凝固温度、結晶化率については、前述の方法を用いて測定を行った。
【0038】
巻き込みの発生状況については、鋳片の介在物集積帯にあたる部位(表面から40〜50mm)から鋳片(1kg)を切り出して、スライム溶解法によって鉄を溶解し、介在物を抽出して評価した。介在物の個数測定にあたってはアルミナクラスターは無視し、球形のパウダー系介在物のみをカウントし、介在物個数(個/kg)を巻き込み指数とした。巻き込み指数の少なかったものが製品での表面疵発生率も低位であった。
【0039】
ピンホールについては、冷却後の鋳片の表面を観察し、ピンホールの発生個数(個/m2)をもってピンホール指数とした。縦割れについては、鋳片の表面を観察し、縦割れの有無を評価した。
【0040】
ブレークアウト発生状況については、鋳型内に埋め込んだ温度測定用の熱電対を用いたブレークアウト予知を行い、ブレークアウト予知信号が鋳造時に一度も発生しなかったものを○、一度でも発生したら×とした。
【0041】
【表2】
【0042】
本発明例No.1〜7が本発明の鋳型添加剤を用いた実施例である。いずれの鋳型添加剤も本発明範囲内の特性を有し、鋳型添加剤の成分も本発明の好ましい成分範囲を有するものである。巻き込み指数、ピンホール指数は良好であり、縦割れの発生もなく、良好な鋳片品質を実現することができた。また、鋳造中にブレークアウト予知信号が発せられることもなく、鋳型と凝固シェルとの間へのパウダー流入は良好であった。また巻き込み指数が低かったため、パウダーに起因した製品での表面スリバー疵は極めて低位であった。
【0043】
比較例No.8〜15は、鋳型添加剤の特性が本発明の範囲から外れるものである。比較例No.8、11は凝固温度、溶融温度が本発明範囲より高く、No.10は凝固温度、溶融温度、結晶化率が本発明範囲より高く、パウダー流入性が不十分なためにブレークアウト予知信号が発せられた。比較例No.13は凝固温度が本発明範囲より高く、結晶化率が本発明範囲より高く、パウダー流入性が不十分なためにブレークアウト予知信号が発せられるとともに、粘度が本発明範囲より低く、巻き込みが多かった。比較例No.9、12は粘度が本発明範囲より高く、ピンホールの発生が見られた。比較例No.14は、凝固温度が本発明範囲より低く縦割れの発生が見られるとともに、粘度が本発明範囲より低くパウダー巻き込みが多かった。比較例No.15は凝固温度が本発明範囲より低く、縦割れの発生が見られた。
【0044】
【発明の効果】
本発明は、鋼の連続鋳造において鋳型内に添加する鋼の連続鋳造用鋳型添加剤に関し、1300℃における粘度を10〜50poiseとし、凝固温度、溶融温度、結晶化率を適正化することにより、流入性を確保しつつパウダー巻き込みが小さく、且つ、表面性状に優れた鋼材を製造することができる。
【0045】
同様の巻き込みメカニズムで発生するパウダー系の内部欠陥、例えばプレス割れについても、本発明を適用することで大幅に改善することができる。
【図面の簡単な説明】
【図1】鋳型添加剤の粘度とパウダー巻き込み欠陥(a)、ピンホール欠陥(b)の発生挙動との関係を示す図である。
【図2】鋳型添加剤の粘度と凝固温度がIF鋼の鋳造結果に及ぼす影響について示す図である。
【図3】鋳型添加剤の結晶化率を測定する方法を示す図であり、(a)はマッフル炉を用いた溶解状況を示す図、(b)(c)は型抜きしたサンプルを切断する状況を示す図、(d)はサンプルの結晶部の厚さLcを測定する状況を示す図である。
【符号の説明】
1 第1の黒鉛ルツボ
2 第2の黒鉛ルツボ
3 マッフル炉
4 V字型枠
5 サンプル
6 結晶部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a mold additive for continuous casting of steel, which is added to a mold in continuous casting of steel.
[0002]
[Prior art]
In continuous casting of steel, a mold additive is added on the surface of molten steel poured into the mold. The mold additive, also called mold powder, is heated and melted by hot molten steel and flows between the mold and the solidified shell. The mold additives are mainly used to keep the surface of the molten steel in the mold and prevent oxidation, absorb non-metallic inclusions floating from the molten steel, lubricate the slag film flowing between the mold and the solidified shell, and remove the slab from the slab using this film. The purpose is to control heat. As a result, a cast slab having excellent surface properties is obtained, and the molten mold additive is less likely to be caught in the molten steel, thereby producing a normal and good cast slab.
[0003]
By the way, at the time of the continuous casting operation, the injection flow of the molten steel injected into the mold due to local fluctuations in the molten metal level due to or changes in the operating conditions, or the interface between the molten metal additive and the mold additive melted near the meniscus. In some cases, the mold additive is involved in the molten steel and adheres to the solidified shell. In particular, in high-speed continuous casting, the flow rate of the injection flow is increased, so that the mold additive is easily involved. If rolling is performed while the entrained mold additive remains attached to the slab, it will be extended and cause surface defects on the cold-rolled steel sheet. It is required to have a property that does not cause the problem.
[0004]
It is known that by using a high-viscosity mold additive, powder entrainment due to the flow of molten steel in the mold can be prevented, and the occurrence of defects due to powder entrainment is reduced. In particular, IF steel (Interstitial Free steel) having a carbon concentration of 0.01% by mass or less tends to cause surface defects of cast slabs and cold-rolled steel sheets due to powder entrainment. It is considered that the very low carbon steel tends to have a long claw at the tip of the solidified shell formed near the surface of the molten steel during casting, and that the claw is likely to cause powder entrainment.
[0005]
[0006]
In
[0007]
[Patent Document 1]
JP-A-10-263767 [Patent Document 2]
Japanese Patent Application Laid-Open No. 2000-280051
[Problems to be solved by the invention]
In recent years, the quality requirement level for steel sheets has become increasingly higher, and in order to prevent surface flaws of the thin sheets, a mold addition capable of producing a thin sheet of good quality exceeding the mold additive described in
[0009]
In order to perform casting using electromagnetic stirring or an electromagnetic brake in a mold, capital investment is required. In some cases, these equipments cannot be installed due to equipment restrictions. Therefore, if a high-viscosity mold additive that can be used without applying electromagnetic stirring or an electromagnetic brake in the mold can be provided, it is possible to prevent powder entrainment with the existing equipment, which is preferable.
[0010]
Although stagnation of molten steel flow can be eliminated by performing electromagnetic stirring in the mold, poor powder inflow when using a high-viscosity mold additive also occurs outside the stagnation, and a mold additive with a viscosity exceeding 10 poise is used. In this case, the problem caused by poor powder inflow has not yet been completely solved even when electromagnetic stirring is applied. In addition, when powder having a viscosity that does not cause poor powder inflow is used, powder entrainment rather increases due to an increase in the flow rate of molten steel due to electromagnetic stirring.
[0011]
The present invention has been made to solve the above-mentioned problems, and has a small powder entrainment while ensuring inflowability, and a mold additive for continuous casting of steel for producing a steel material having excellent surface properties. It is intended to provide.
[0012]
[Means for Solving the Problems]
That is, the gist of the present invention is as follows.
(1) CaO / SiO 2 is in the range of 0.3 to 0.8, viscosity (η) at 1300 ° C. is more than 10 poise and 50 poise or less, and solidification temperature (° C.) is a function of viscosity (η (poise)). For continuous casting of steel, wherein the melting temperature is 1200 ° C. or less, and the crystallization ratio after cooling after melting at 1400 ° C. is 10% or less. Template additive.
1050 (° C.)-2 × η ≦ solidification temperature (° C.) ≦ 1220 (° C.)-2 × η
(2) The mold additive for continuous casting of steel according to (1), wherein Al is contained in an amount of 4 to 10% by mass in terms of Al 2 O 3 and F: 3 to 7% by mass.
(3) The mold additive for continuous casting of steel according to the above (2), wherein the additive contains AlF 3 : 1 to 6% by mass.
(4) Li 2 O: 0.5 to 4% by mass, Na 2 O: 2 to 5% by mass, MgO is 2% or less, and carbon content is 0.4 to 3% by mass as a melting rate regulator. %. The additive for continuous casting of steel according to the above (2) or (3), wherein the additive is added to the steel.
(5) The mold additive for continuous casting of steel according to any one of (1) to (4), which is for continuous casting of IF steel.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
In order to prevent the powder from getting into the molten steel, the higher the powder viscosity at 1300 ° C., the better. On the other hand, when the powder flows into the space between the mold and the solidified shell, heat is deprived by the water-cooled copper mold, so that the temperature of the powder rapidly decreases. In order to promote powder inflow, it is necessary to maintain necessary fluidity even when the powder temperature decreases. In the present invention, it has been clarified that it is important to lower the solidification temperature of the mold additive in order to ensure powder inflow when a high-viscosity mold lubricant is used. On the other hand, in the conventional powder, a powder having a high viscosity at 1300 ° C. has a very high solidification temperature depending on its composition, and the flowability between the mold and the solidified shell deteriorates. Heretofore, it has been clarified that the cause of the decrease in the inflow property of the high-viscosity mold additive lies in this point. In the present invention, at the same time as increasing the viscosity of the mold additive to a high viscosity, by lowering the solidification temperature to a predetermined appropriate solidification temperature, to prevent powder entrainment into the molten steel and improve the surface quality of the slab. At the same time, it has made it possible to improve the inflow characteristics and prevent occurrence of troubles such as breakouts.
[0014]
In the mold additive of the present invention, the viscosity at 1300 ° C. is set to more than 10 poise and 50 poise or less. As shown in FIG. 1A, by setting the viscosity to be more than 10 poise, it becomes possible to perform casting with less powder entrainment. In particular, in the case of an ultra-low carbon steel of C ≦ 0.01 mass% typified by IF steel, since the claw at the tip of the solidified shell is long, a good effect can be obtained only when the viscosity exceeds 10 poise. it can. In addition, such ultra-low carbon steel has a long claw at the tip of the solidified shell, so that the molten powder easily flows between the mold and the solidified shell, so that good inflow is ensured even with a highly viscous mold additive. It's easy to do. More preferably, the viscosity at 1300 ° C. is higher than 15 poise. On the other hand, if the viscosity at 1300 ° C. exceeds 50 poise, the lubricity becomes poor and, as shown in FIG. 1 (b), the escape of bubbles such as Ar gas blown into the molten steel becomes poor, resulting in pinholes and the like. Since the number of defects may increase, the upper limit is set to 50 poise. More preferably, the viscosity at 1300 ° C. is more than 15 poise and 30 poise or less.
[0015]
It is preferable to use a rotating cylinder method as a method of measuring the viscosity of the template additive. A sample obtained by decarburizing the mold additive to be measured at 700 ° C. for 60 minutes is inserted into a graphite crucible, preliminarily melted at 1400 ° C. for 10 to 15 minutes, transferred to an iron crucible, and placed in a vertical tubular furnace (Erema furnace). Then, the rotor of the E-type viscometer is immersed in the slag and stabilized at 1300 ° C. for 30 minutes. Then, the rotor is rotated to measure the torque due to the viscous resistance, and the viscosity is obtained. The E-type viscometer is calibrated in advance with a standard viscosity liquid.
[0016]
The solidification temperature (° C.) of the mold additive of the present invention is set as a function of viscosity (η (poise)) within a range represented by the following formula.
1050 (° C.)-2 × η ≦ solidification temperature (° C.) ≦ 1220 (° C.)-2 × η
[0017]
FIG. 2 is a graph plotting the viscosity of the mold additive on the horizontal axis and the solidification temperature on the vertical axis. The upper limit and the lower limit represented by the above formulas are indicated by two straight lines having a downward slope in the figure. The plots in the figure show actual casting results, ● indicates that the casting result was good, ▲ indicates that the breakout prediction signal was issued during casting, and × indicates that the slab had cracks. is there. As is clear from the figure, by setting the solidification temperature to be equal to or lower than the upper limit of the above equation, it is possible to secure powder inflow and prevent occurrence of breakout due to poor powder inflow. On the other hand, when the solidification temperature is equal to or higher than the lower limit of the above equation, it is possible to prevent surface defects, particularly cracks, of the slab. Here, the breakout prediction signal is based on a detection result of a thermocouple for temperature measurement embedded in the continuous casting mold, and is a prediction signal generated when a bud of restrictive breakout occurs. When the prediction signal is generated, the occurrence of breakout is prevented by rapidly reducing the casting speed.
[0018]
The formula of the upper limit and the lower limit of the solidification temperature is a function of the viscosity (η). As the viscosity increases, the upper limit and the lower limit of the solidification temperature move to the lower temperature side. This is because the lubrication characteristics deteriorate as the viscosity increases, and the lubrication characteristics can be kept good by lowering the solidification temperature in response to the increase in the viscosity.
[0019]
As a method of measuring the solidification temperature, after measuring the viscosity at 1300 ° C. in the above-described vertical tube furnace for viscosity measurement, the rotor is rotated while cooling the furnace at 1 ° C./min, and the torque is measured. The torque at this time gradually increases as the temperature drops. The temperature at which this torque rapidly increases is defined as the solidification temperature.
[0020]
The melting temperature of the mold additive of the present invention is 1200 ° C. or less. In the course of continuous casting in an actual machine, it was confirmed that when a mold additive having a melting temperature exceeding 1200 ° C. was used, the melting characteristics were poor and the frequency of generating a breakout prediction signal was high. In addition, it was also confirmed that the frequency of occurrence of the breakout prediction signal in the non-stationary portion where the casting speed fluctuates increases with the mold additive having a melting temperature exceeding 1200 ° C. If the melting temperature of the mold additive exceeds 1200 ° C., the mold additive does not dissolve smoothly on the mold surface, resulting in poor flow of the mold additive and slab constraint. It is presumed that there is. The melting temperature of the mold additive is more preferably 1160 ° C or lower.
[0021]
As a method for measuring the melting temperature, a sample was crushed, water was added and mixed, then molded into a cylindrical shape (10 mmφ × 10 mmH) with a mold, dried, set in a box-type electric furnace, and the furnace temperature was set at 700 ° C. When the temperature is raised at a rate of 10 ° C./min from the initial temperature, the temperature at which the height of the cylinder becomes の of the initial height is defined as the melting temperature.
[0022]
The mold additive of the present invention has a crystallization ratio of 10% or less after melting at 1400 ° C. and then cooling. Although the mold additive of the present invention has a high viscosity, the lubricating property between the mold and the solidified shell is ensured in spite of the high viscosity. Further, by suppressing the generation of crystals during cooling and setting the crystallization ratio after cooling to 10% or less, further vitreous properties can be ensured and lubricity can be improved. The crystallization ratio after cooling is more preferably 6% or less.
[0023]
As a method for measuring the crystallization ratio of the template additive, a method using a measuring device shown in FIG. 3 can be adopted. In FIG. 3A, 110 g of the decarburized sample is put into the
[0024]
The composition of the template additive of the present invention has CaO / SiO 2 (basicity) in the range of 0.3 to 0.8. By adopting a composition having a low basicity of 0.8 or less in basicity, it becomes possible to secure a viscosity of 10 poise or more at 1300 ° C. When the basicity exceeds 0.8, it becomes difficult to increase the viscosity to 10 poise or more even when Al 2 O 3 is added. On the other hand, if the basicity is less than 0.3, the viscosity exceeds 50 poise, so the lower limit is set to 0.3. By adopting the above basicity range and lowering the basicity, the viscosity at 1300 ° C. is increased, and at the same time, the coagulation temperature is reduced. The scope of the basicity on which the above-mentioned range, the CaO content in the mold additive 10% to 35%, and more preferably a SiO 2 content in the range of 30% to 60%. The range of the basicity is more preferably 0.4 to 0.75.
[0025]
As the composition of the mold additive of the present invention, the Al content is preferably set to 4 to 10% by mass in terms of Al 2 O 3 . Increasing the Al content in the range of 8% or less in terms of Al 2 O 3 increases the viscosity of the mold additive at 1300 ° C., and at the same time lowers the solidification temperature and melting temperature. In order to increase the viscosity and sufficiently lower the solidification temperature and the melting temperature, the lower limit of the content in terms of Al 2 O 3 is set to 4%. On the other hand, when the content in terms of Al 2 O 3 exceeds 10%, the solidification temperature and the melting temperature increase conversely, so the upper limit is set to 10%. The Al content is more preferably 4 to 8% by mass in terms of Al 2 O 3 .
[0026]
As the composition of the template additive of the present invention, the F content is preferably set to 3 to 7% by mass. When F is contained in the mold additive of the present invention, the solidification temperature of the mold additive can be prevented from being excessively lowered. By setting the F content to 3% or more, it is possible to prevent the solidification temperature from excessively lowering and to realize an optimum solidification temperature. It should be noted that F may be in any form as a compound, and the above F content indicates the total F content. The reason that the addition of F can prevent the coagulation temperature from excessively lowering is that F contained in the mold additive generates crystals called cuspidyne (3CaO.2SiO 2 .CaF 2 ) and raises the coagulation temperature. On the other hand, by setting the upper limit of the F content to 7%, it is possible to prevent the viscosity from excessively decreasing. The F content is more preferably 3 to 5%.
[0027]
Mold additive of the present invention further, AlF 3: preferable to set that contain 1-6 weight%. The above-mentioned cuspidine formed by containing F prevents the solidification temperature from dropping too much, and also increases the amount of crystals formed during cooling. As described above, in order to ensure the lubricity of the powder, it is necessary to ensure the glassiness of the powder, and for that purpose, it is necessary to optimize the amount of crystals generated. In the present invention, by containing AlF 3 : 1 to 6% by mass as the F source of the template additive, the production of CaF 2 is suppressed, and the production amount of caspidyne generally produced in the process of cooling the powder is suppressed. This is suitable in that the crystallization ratio after cooling after melting at 1400 ° C. is 10% or less. The AlF 3 content is set to 1% or more to make the crystallization rate as low as 10% or less, and to 6% or less assures the minimum production of caspidyne and does not excessively lower the solidification temperature. That is to ensure.
[0028]
More preferably, the template additive of the present invention further contains 0.5 to 4% by mass of Li 2 O. Addition of 0.5% or more of Li 2 O makes it possible to lower the melting temperature without lowering the solidification temperature. On the other hand, if the Li 2 O content exceeds 4%, the solidification temperature is too low, so the upper limit was made 4%. The content of Li 2 O is more preferably 0.5 to 3%.
[0029]
More preferably, the template additive of the present invention further contains 2 to 5% by mass of Na 2 O. When Na 2 O is added in an amount of 2% or more, the wettability between the mold additive and the molten steel is improved, and the inflow can be made uniform. On the other hand, if the added amount of Na 2 O is 5% or less, generation of Na 2 O-based crystals, for example, NaAlSiO 4 (Nepheline) can be prevented, and crystallization characteristics can be made uniform. The Na 2 O content is more preferably 2 to 4%.
[0030]
In the mold additive of the present invention, the MgO content is preferably set to 2% by mass or less. MgO is contained in the template additive as an inevitable impurity. MgO is a component that increases the glassiness of the mold additive. If the content of MgO increases, the solidification temperature decreases too much. Therefore, the upper limit is preferably set to 2%.
[0031]
In the mold additive of the present invention, it is preferable to add 0.4 to 3% by mass of carbon as a melting rate modifier. The mold additive of the present invention is most effective when used for continuous casting of IF steel.IF steel is an extremely low carbon steel, and carburization from the mold additive is also a problem. 3% or less. On the other hand, if the carbon content is 0.4% or more, the melting characteristics of the mold additive are sufficiently adjusted, so the lower limit is set to 0.4%.
[0032]
Preferably, at least 50% of the mold additive of the present invention is formed from a premelt base material. The premelt base material is obtained by previously melting some components at a high temperature as a raw material of a mold additive. Usually, it is heated to 1000 to 1400 ° C. and melted.
[0033]
The mold additive of the present invention is particularly preferably used for continuous casting of IF steel. The IF steel is an ultra-low carbon steel with C ≦ 0.01 mass%, and Ti is added to fix C as TiC. Therefore, since the solid solution C is small, the r value is high and the deep drawability is excellent, and the steel for a thin steel sheet is prevented from generating surface defects due to stretcher strain during processing. IF steel has a characteristic that the claw at the tip of the solidified shell is easy to elongate due to the low carbon concentration, so that quality defects are likely to occur due to powder entrainment. Therefore, powder entrainment can be reduced by using the high viscosity and proper solidification temperature mold additive of the present invention, and the quality improvement effect is particularly high. Further, since the claw at the tip of the solidified shell is long, the molten powder easily flows between the mold and the solidified shell, so that even with a high-viscosity mold additive, good inflowability is easily maintained.
[0034]
Further, in the case of continuous casting of Al-killed steel, the reaction between Al in the molten steel and the mold additive during casting increases the concentration of Al 2 O 3 in the additive, causing an uneven increase in viscosity. In the case of IF steel, since TiO 2 increases together with Al 2 O 3 , a relatively small change in the viscosity of the additive also contributes to the stability of casting.
[0035]
【Example】
300 ton of molten steel produced in the converter, the molten steel of ultra-low carbon steel adjusted to a predetermined component concentration by RH, through a tundish, a vertical bending type continuous casting machine through an immersion nozzle, thickness 250mm, width It was cast into a 1600 mm slab. Table 1 shows the range of molten steel components.
[0036]
[Table 1]
[0037]
A mold additive having the components and characteristics shown in Table 2 was prepared and added to the mold during continuous casting. The casting speed is shown in Table 2. The melting temperature of the mold additive, the viscosity at 1300 ° C., the solidification temperature, and the crystallization ratio were measured using the methods described above.
[0038]
The occurrence of entrainment was evaluated by cutting a slab (1 kg) from a portion (40 to 50 mm from the surface) corresponding to the inclusion accumulation zone of the slab, dissolving iron by a slime melting method, and extracting inclusions. . In the measurement of the number of inclusions, alumina clusters were ignored, and only spherical powder-based inclusions were counted, and the number of inclusions (pieces / kg) was taken as the inclusion index. Those with a small entrapment index also had low surface flaw occurrence rates in the product.
[0039]
Regarding the pinholes, the surface of the cast slab after cooling was observed, and the number of pinholes generated (pieces / m 2 ) was used as the pinhole index. Regarding vertical cracks, the surface of the slab was observed to evaluate the presence or absence of vertical cracks.
[0040]
Regarding the breakout occurrence situation, breakout prediction using a thermocouple for temperature measurement embedded in the mold was performed, and when the breakout prediction signal did not occur at the time of casting, it was evaluated as ○. did.
[0041]
[Table 2]
[0042]
Invention Example No. Examples 1 to 7 are examples using the template additive of the present invention. All of the mold additives have properties within the scope of the present invention, and the components of the mold additives also have the preferred component ranges of the present invention. The entanglement index and the pinhole index were good, and no vertical cracks occurred, and good cast slab quality could be realized. Also, no breakout prediction signal was issued during casting, and the powder flow between the mold and the solidified shell was good. Further, since the entrapment index was low, the surface sliver flaws on the product caused by the powder were extremely low.
[0043]
Comparative Example No. Nos. 8 to 15 are those in which the properties of the template additive fall outside the scope of the present invention. Comparative Example No. Nos. 8 and 11 have solidification temperatures and melting temperatures higher than the range of the present invention. In No. 10, a solidification temperature, a melting temperature, and a crystallization ratio were higher than those of the present invention, and a breakout prediction signal was issued because powder inflow was insufficient. Comparative Example No. No. 13 has a solidification temperature higher than the range of the present invention, a crystallization ratio higher than the range of the present invention, and a breakout prediction signal is issued due to insufficient powder inflow, and the viscosity is lower than the range of the present invention and the entrapment is high. Was. Comparative Example No. In Nos. 9 and 12, the viscosity was higher than the range of the present invention, and generation of pinholes was observed. Comparative Example No. In No. 14, the solidification temperature was lower than the range of the present invention, and the occurrence of vertical cracks was observed, and the viscosity was lower than the range of the present invention. Comparative Example No. In No. 15, the solidification temperature was lower than the range of the present invention, and generation of vertical cracks was observed.
[0044]
【The invention's effect】
The present invention relates to a mold additive for continuous casting of steel to be added to a mold in continuous casting of steel, by setting the viscosity at 1300 ° C. to 10 to 50 poise, optimizing the solidification temperature, melting temperature, and crystallization rate, It is possible to manufacture a steel material having small powder entrainment and excellent surface properties while ensuring the inflow property.
[0045]
By applying the present invention, powder-type internal defects, such as press cracks, generated by the same entrainment mechanism can be significantly improved.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the viscosity of a mold additive and the occurrence behavior of a powder entrainment defect (a) and a pinhole defect (b).
FIG. 2 is a diagram showing the effect of the viscosity of a mold additive and the solidification temperature on the casting result of IF steel.
3A and 3B are diagrams showing a method for measuring the crystallization ratio of a mold additive, in which FIG. 3A shows a dissolution state using a muffle furnace, and FIGS. FIG. 3D is a diagram illustrating a situation where a thickness Lc of a crystal part of a sample is measured.
[Explanation of symbols]
REFERENCE SIGNS
Claims (5)
1050(℃)−2×η≦凝固温度(℃)≦1220(℃)−2×ηCaO / SiO 2 is in the range of 0.3 to 0.8, viscosity (η) at 1300 ° C. is more than 10 poise and 50 poise or less, and solidification temperature (° C.) is a function of viscosity (η (poise)) as follows: Wherein the melting temperature is 1200 ° C. or lower, and the crystallization ratio after cooling after melting at 1400 ° C. is 10% or lower, wherein the mold additive for continuous casting of steel is not more than 10%. .
1050 (° C) -2 × η ≦ solidification temperature (° C) ≦ 1220 (° C) -2 × η
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002334892A JP4010929B2 (en) | 2002-11-19 | 2002-11-19 | Mold additive for continuous casting of steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002334892A JP4010929B2 (en) | 2002-11-19 | 2002-11-19 | Mold additive for continuous casting of steel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004167527A true JP2004167527A (en) | 2004-06-17 |
JP4010929B2 JP4010929B2 (en) | 2007-11-21 |
Family
ID=32699161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002334892A Expired - Fee Related JP4010929B2 (en) | 2002-11-19 | 2002-11-19 | Mold additive for continuous casting of steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4010929B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006110568A (en) * | 2004-10-12 | 2006-04-27 | Sanyo Special Steel Co Ltd | Mold powder for continuous casting of high aluminum steel and method of continuous casting of high aluminum steel |
JP2008207187A (en) * | 2007-02-23 | 2008-09-11 | Nippon Yakin Kogyo Co Ltd | Continuous casting powder for Ni-Cu alloy and continuous casting method |
JP2008290087A (en) * | 2007-05-22 | 2008-12-04 | Sanyo Special Steel Co Ltd | Mold powder for continuous casting of high carbon steel |
JP2009090317A (en) * | 2007-10-09 | 2009-04-30 | Kobe Steel Ltd | Continuous casting method for steel having characteristic in elevation of molten metal surface level |
KR20130070667A (en) * | 2011-12-15 | 2013-06-28 | 주식회사 포스코 | Continuous casting method of steel with high al content by using hybrid operation of liquid and solid mold flux |
JP2013151022A (en) * | 2011-12-28 | 2013-08-08 | Jfe Steel Corp | Continuous casting method for round cast slab |
JP2014193475A (en) * | 2013-03-29 | 2014-10-09 | Jfe Steel Corp | Continuous casting method of round billet |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101371959B1 (en) * | 2011-11-15 | 2014-03-10 | 주식회사 포스코 | Mold flux for casting TWIP with high Al content and method for producing TWIP using the same |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60191645A (en) * | 1984-03-09 | 1985-09-30 | Nippon Steel Corp | Molten metal surface protective agent for continuous casting of molten steel |
JPH04138857A (en) * | 1990-09-29 | 1992-05-13 | Kobe Steel Ltd | Flux for continuous casting |
JPH07204810A (en) * | 1994-01-24 | 1995-08-08 | Nippon Steel Corp | Continuous casting method and mold lubricant for continuous casting |
JPH08197214A (en) * | 1995-01-18 | 1996-08-06 | Nippon Steel Corp | Powder for continuous casting of steel |
JPH10263767A (en) * | 1997-03-21 | 1998-10-06 | Kawasaki Steel Corp | Continuous casting method of ultra low carbon steel and mold powder for continuous casting |
JP2000158107A (en) * | 1998-11-30 | 2000-06-13 | Shinagawa Refract Co Ltd | Mold powder for open casting |
WO2000033992A1 (en) * | 1998-12-08 | 2000-06-15 | Shinagawa Refractories Co., Ltd. | Molding powder for continuous casting of steel and method for continuous casting of steel |
JP2000280051A (en) * | 1999-01-29 | 2000-10-10 | Nippon Steel Corp | Continuous casting method of steel with excellent cleanliness |
-
2002
- 2002-11-19 JP JP2002334892A patent/JP4010929B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60191645A (en) * | 1984-03-09 | 1985-09-30 | Nippon Steel Corp | Molten metal surface protective agent for continuous casting of molten steel |
JPH04138857A (en) * | 1990-09-29 | 1992-05-13 | Kobe Steel Ltd | Flux for continuous casting |
JPH07204810A (en) * | 1994-01-24 | 1995-08-08 | Nippon Steel Corp | Continuous casting method and mold lubricant for continuous casting |
JPH08197214A (en) * | 1995-01-18 | 1996-08-06 | Nippon Steel Corp | Powder for continuous casting of steel |
JPH10263767A (en) * | 1997-03-21 | 1998-10-06 | Kawasaki Steel Corp | Continuous casting method of ultra low carbon steel and mold powder for continuous casting |
JP2000158107A (en) * | 1998-11-30 | 2000-06-13 | Shinagawa Refract Co Ltd | Mold powder for open casting |
WO2000033992A1 (en) * | 1998-12-08 | 2000-06-15 | Shinagawa Refractories Co., Ltd. | Molding powder for continuous casting of steel and method for continuous casting of steel |
JP2000280051A (en) * | 1999-01-29 | 2000-10-10 | Nippon Steel Corp | Continuous casting method of steel with excellent cleanliness |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006110568A (en) * | 2004-10-12 | 2006-04-27 | Sanyo Special Steel Co Ltd | Mold powder for continuous casting of high aluminum steel and method of continuous casting of high aluminum steel |
JP2008207187A (en) * | 2007-02-23 | 2008-09-11 | Nippon Yakin Kogyo Co Ltd | Continuous casting powder for Ni-Cu alloy and continuous casting method |
JP2008290087A (en) * | 2007-05-22 | 2008-12-04 | Sanyo Special Steel Co Ltd | Mold powder for continuous casting of high carbon steel |
JP2009090317A (en) * | 2007-10-09 | 2009-04-30 | Kobe Steel Ltd | Continuous casting method for steel having characteristic in elevation of molten metal surface level |
KR20130070667A (en) * | 2011-12-15 | 2013-06-28 | 주식회사 포스코 | Continuous casting method of steel with high al content by using hybrid operation of liquid and solid mold flux |
KR101940989B1 (en) * | 2011-12-15 | 2019-04-11 | 주식회사 포스코 | Continuous casting method of steel with high Al content by using hybrid operation of liquid and solid mold flux |
JP2013151022A (en) * | 2011-12-28 | 2013-08-08 | Jfe Steel Corp | Continuous casting method for round cast slab |
JP2014193475A (en) * | 2013-03-29 | 2014-10-09 | Jfe Steel Corp | Continuous casting method of round billet |
Also Published As
Publication number | Publication date |
---|---|
JP4010929B2 (en) | 2007-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4903622B2 (en) | Mold powder for continuous casting of steel and continuous casting method | |
CN102712036B (en) | Mould powder for continuous casting of steel | |
JP4010929B2 (en) | Mold additive for continuous casting of steel | |
JP4430638B2 (en) | Mold powder for continuous casting of high aluminum steel | |
KR101247459B1 (en) | Mold flux for continuously casting steel and method of continuously casting steel using the same | |
JP4276419B2 (en) | Powder for continuous casting of steel | |
JP3141187B2 (en) | Powder for continuous casting of steel | |
JP3256147B2 (en) | Mold flux for continuous casting of steel | |
JP4527693B2 (en) | Continuous casting method of high Al steel slab | |
KR960000325B1 (en) | Continuous casting mold flux with high crystallinity | |
JP2675376B2 (en) | High speed continuous casting of steel | |
JP5929744B2 (en) | Continuous casting method for round slabs | |
JP3806364B2 (en) | Mold powder for continuous casting of steel and continuous casting method | |
JPS646859B2 (en) | ||
JP5447234B2 (en) | Powder for continuous casting and method for continuous casting of steel using the same | |
JP3500894B2 (en) | Continuous casting of steel | |
JP3256148B2 (en) | Continuous casting method of steel with large shrinkage during solidification process | |
JP3532097B2 (en) | Manufacturing method of continuous cast slab with excellent cleanliness | |
JP4451798B2 (en) | Continuous casting method | |
JP5693420B2 (en) | Continuous casting method | |
JP2025096032A (en) | Mold powder for continuous casting of free-cutting steel and method for continuous casting of free-cutting steel | |
JP2005305456A (en) | Powder for continuous casting of steel and method for continuous casting of steel using the same | |
KR100232298B1 (en) | Flux for continuous casting of stainless steel | |
JPH10249500A (en) | Powder for continuous casting of steel and continuous casting method of steel using the same | |
JP2005211924A (en) | Steel continuous casting method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20041110 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20061016 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061024 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061218 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070605 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070803 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070828 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20070904 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4010929 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100914 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110914 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110914 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120914 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130914 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130914 Year of fee payment: 6 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130914 Year of fee payment: 6 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130914 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |