JP2004163231A - Area type flow meter - Google Patents
Area type flow meter Download PDFInfo
- Publication number
- JP2004163231A JP2004163231A JP2002328792A JP2002328792A JP2004163231A JP 2004163231 A JP2004163231 A JP 2004163231A JP 2002328792 A JP2002328792 A JP 2002328792A JP 2002328792 A JP2002328792 A JP 2002328792A JP 2004163231 A JP2004163231 A JP 2004163231A
- Authority
- JP
- Japan
- Prior art keywords
- pressure receiving
- fluid
- passage
- pressure
- receiving body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012530 fluid Substances 0.000 claims abstract description 44
- 238000011144 upstream manufacturing Methods 0.000 claims abstract description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 14
- 230000002093 peripheral effect Effects 0.000 claims description 6
- 238000005452 bending Methods 0.000 claims description 3
- 238000002955 isolation Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 abstract 1
- 238000005259 measurement Methods 0.000 description 7
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 239000013013 elastic material Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910000623 nickel–chromium alloy Inorganic materials 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/05—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
- G01F1/20—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
- G01F1/22—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow by variable-area meters, e.g. rotameters
- G01F1/26—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow by variable-area meters, e.g. rotameters of the valve type
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Volume Flow (AREA)
Abstract
【課題】流路の有効断面積を設定する受圧体の作動方向を流体の流過方向と平行に位置づけると共に、受圧体の作動量を歪ゲージで検出して、流量を測定可能とした面積式流量計を提供せんとするものである。
【解決手段】配管方向と平行に伸びる通路を軸方向に貫設した本体と、下流方向に径が増大する円錐型のコーンを備え本体内に軸方向に移動自在に配置された受圧体と、該受圧体に一端を張設して受圧体を上流方向に付勢している弾性手段と、該弾性手段の他端が張設され受圧体の軸方向の移動により撓められるビームと、該ビームの撓みを検出する歪みゲージとからなり、円錐形のコーンに付加される流体圧により下流方向に移動する受圧体が、弾性手段の弾発力と流体圧が均衡して静止した位置によって定まる通路とコーンとで画成される流路の有効断面積をビームの撓み量で検出して流量を測定するようにしたことを特徴とする。
【選択図】 図1An area type in which an operation direction of a pressure receiving member for setting an effective cross-sectional area of a flow path is positioned parallel to a flowing direction of a fluid, and an operation amount of the pressure receiving member is detected by a strain gauge to measure a flow rate. It does not provide a flow meter.
A body having a passage extending in a direction parallel to a pipe direction in an axial direction, a pressure receiving member including a conical cone having a diameter increasing in a downstream direction and movably arranged in the body in an axial direction, An elastic means for extending one end of the pressure receiving body to urge the pressure receiving body in the upstream direction; a beam having the other end of the elastic means extended and bent by the axial movement of the pressure receiving body; It consists of a strain gauge that detects the deflection of the beam, and the pressure receiving body that moves downstream due to the fluid pressure applied to the conical cone is determined by the stationary position where the elastic force of the elastic means and the fluid pressure are balanced The flow rate is measured by detecting the effective cross-sectional area of the flow path defined by the passage and the cone by the amount of deflection of the beam.
[Selection diagram] Fig. 1
Description
【0001】
【発明の属する分野】
この発明は、気体、液体等の流体の流量を、流体圧を受ける受圧体とバランスする流路の有効断面積によって測定するようにした面積式流量計に関する。
【0002】
【従来の技術】
従来、圧力を有する蒸気や空気のような気体、或いは水や油のような液体の流量の測定は、流体が流過している管路の上流側と下流側の二カ所の圧力の差を測定して流量を計測する差圧式流量計が、公知であり広く実用化されており、例えば特開2000−283810号公報にその一例が開示されている。かかる差圧式流量計は、メーターの上流と下流にそれぞれタップ穴を開けて差圧を測るようになっている。すなわち、差圧を管の一点で計測することになるため、管内に喰い込んだガスケットや上流側の不適切な配管によって発生する乱流が、計測点近傍の流速や流体の状態に悪影響を与え、正確な差圧の測定を困難にする問題があった。
【0003】
又、流体の流路内に圧力で作動する受圧部材を配置し、該受圧部材を圧力に均衡して移動させて流路の有効断面積を変動させて有効断面積に相当する流量を計測するようにした面積式流量計も提案されており、例えば特開平5−79869号公報、特開2000−46602号公報等に開示されている。しかしながら、従来の面積式流量計は、通常受圧部材がフロートから構成されており、該フロートが圧力を受けて上昇した位置を計測して流量を測定する構造であるため、フロートの上昇のために垂直方向に延びる管体を必要とする。このため、流量計は高さのある構造となり、配管への広い取付スペースを要し、作業性が悪くなっている。又、流体の管路とフロートを収納する管体が直交しているため、流体の流れが乱れやすく正確な測定を困難としている。
【0004】
【特許文献1】
特開2000−283810号公報
【特許文献2】
特開平5−79869号公報
【特許文献3】
特開2000−46602号公報
【0005】
【発明が解決しようとする課題】
この発明は、従来の面積式流量計にみられた問題点を解消し、流路の有効断面積を設定する受圧体の作動方向を流体の流過方向と平行に位置づけると共に、受圧体の作動量を歪ゲージで検出して、流量を測定可能とした面積式流量計を提供せんとするものである。
【0006】
【課題を解決するための手段】
上記課題を解決するためにこの発明が採った手段は、配管方向と平行に伸びる通路を軸方向に貫設した本体と、下流方向に径が増大する円錐型のコーンを備え本体内に軸方向に移動自在に配置された受圧体と、該受圧体に一端を張設して受圧体を上流方向に付勢している弾性手段と、該弾性手段の他端が張設され受圧体の軸方向の移動により撓められるビームと、該ビームの撓みを検出する歪みゲージとからなり、円錐形のコーンに付加される流体圧により下流方向に移動する受圧体が、弾性手段の弾発力と流体圧が均衡して静止した位置によって定まる通路とコーンとで画成される流路の有効断面積をビームの撓み量で検出して流量を測定するようにしたことを特徴とする。
【0007】
ビームの歪みセンサー部の外周部を隔離手段で被覆して流体から隔離するようにしたことを特徴とし、隔離手段を含むビームの外周部に本体内に連通するポケット空間を画成し、該ポケット空間内にドレン水を貯めるようにしたことを特徴とする。
【0008】
本体内の通路に対して直交する方向に伸び出す外筒体の一端を本体に連結し、該外筒体内にビームを配設すると共に、外筒体の他端に表示部ケーシングを設けたことを特徴とし、本体が、配管フランジ間に狭持されるウェハー構造に形成されていることを特徴とする。
【0009】
【発明の実施の形態】
この発明の好ましい実施の形態を、以下に詳細に説明する。図1、2を参照して、この発明は、下流方向に内径が減少する通路(2)を軸方向に貫設した本体(1)と、該本体(1)内に軸方向に移動自在に配置された下流方向に径が増大する円錐型のコーン(4)を備えた受圧体(3)と、該受圧体(3)に一端を張設して上流方向に付勢している弾性手段(5)と、該弾性手段(5)の他端が張設され受圧体(3)の軸方向の移動により撓められるビーム(6)と、該ビーム(6)の撓みを検出する歪みゲージのセンサー部(7)とからなり、流路(8)を流過する流体の圧力を受けて受圧体(3)が下流方向に移動するとき、その移動を弾性手段(5)を介してビーム(6)に伝達してビーム(6)を撓ませ、該ビーム(6)の撓み量を歪みゲージで検出して、流体の流量を計測するようにしたことを特徴とする。円錐形のコーン(4)に付加される流体圧により受圧体(3)は下流方向に移動し、弾性手段の弾発力と流体圧が均衡したとき受圧体(3)は静止する。受圧体(3)が静止した位置によって定まる通路(2)とコーン(4)とで画成される流路の有効断面積と流量とは比例関係にあるので、その位置をビームの撓み量で検出して流量を求めることが出来る。
【0010】
図示のように、本体(1)の通路(2)と配管の流路(8)とは平行に位置する構造であり、従来の面積式流量計のように直交した状態にないため、取付スペースを小さくすることが出来、流れ方向が変わらないため乱流の発生等の不都合を極力少なくすることが出来る。すなわち、通路(2)は、配管の流体が流過する方向と平行に形成され、この通路と軸線を同一にして平行に受圧体に移動方向が設けられている。従って、通路を流下する流体の流れが乱される可能性が減少し、通路抵抗による流体の乱れや圧力損失を少なくすることが可能となり、正確な測定を行うことが出来る。尚、通路(2)は、図示のような円錐形状に限定されるものではなく、円筒形状の通路としても良いことは勿論である。
【0011】
流体の圧力を受ける円錐形のコーン(4)の形状と弾性手段(5)の弾発力は、流体圧に均衡して受圧体が静止する位置を設定するものであるため、コーン(4)は精密な円錐形状に形成され、弾性手段は弾発力の経年変化が極めて小さくかつ耐久性の高い弾性材料で形成される。特にコーン(4)の形状は、流量との関係がリニアになるように精密加工され流体圧と高精度にバランスするように設計されている。又、弾性材料をスプリングで形成する場合、ガスタービンやロケットエンジン部品として航空宇宙分野で広く使われているニッケルクロム合金が、耐久性、耐食性、耐ヘタリ性に優れており、好ましい。
【0012】
又、ビーム(6)はその下部において、固定部(9)で本体(1)に固定してビーム(6)の撓みを計測し得るようにしてあるが、この固定部(9)より上部をドレン水が貯まるポケット空間(10)に形成すると共に、歪みゲージのセンサー部(7)を、ベローズ等の隔離手段(11)によりドレン水及び流体から隔離して、センサー部(7)を流体の温度、圧力、性状等から保護するようにしたことを特徴とする。ビーム(6)は、流体の流過方向に対して直交する方向に伸び出しており、前述したように、その周囲にドレン水を貯めるために本体(1)から垂直方向下方に位置づけられる。
【0013】
【実施例】
図2〜4を参照して、この発明にかかる流量計の本体(1)は、配管(12)のフランジ(13)の間に挟み込んで通しボルト(14)で締め付けて固定されるウェハータイプの構造を有しており、中心に下流方向に向かって内径が減少する円錐形状の通路(2)が上流から下流に貫通して形成される。この本体(1)の通路(2)は、図1,4に示すように配管(12)の流路(8)と同一軸線方向に位置している。本体(1)から垂直方向下方に外筒体(15)が伸び出しており、外筒体(15)の上端は本体(1)内に接続され、下端には表示部ケーシング(16)が連結されている。本体(1)の通路(2)の中央部には固定筒体(18)が、等間隔に配置された3本の固定板(17)で本体(1)に固定され、該固定筒体(18)の後端に先端を装着したガイド筒体(19)が本体(1)の軸線上を下流方向に伸び出している。固定筒体(18)の先端は、エンドプラグ(20)で閉止されている。ガイド筒体(19)の外周には、受圧体であるスライド筒体(3)が軸方向にスライド自在に案内されており、スライド筒体(3)のスライド距離を確保するために所定の長さを有している。
【0014】
スライド筒体(3)の上流方向先端部には、下流方向に向って外径が増大する円錐形状のコーン(4)が一体に形成される。コーン(4)の先端部は、ガイド筒体(19)の鍔部(21)に当接自在であり、当接によりスライド筒体(3)の上流方向への移動が制限される。スライド筒体(3)の上流方向への移動が停止された位置において、図4に示すようにコーン(4)の最大径部が前記通路(2)の最小径部である下流方向端部に当接し、通路(2)とコーン(4)との間の有効断面積をゼロにしている。コーン(4)に付加される流体圧によりスライド筒体(3)が下流方向に移動するに従って、通路(2)とコーン(4)との間の有効断面積が拡大して行く。ガイド筒体(19)の下流端部には、ストッパーシャフト(22)が固着されており、スライド筒体(3)の下流方向への最大の移動量を限定している。すなわち、スライド筒体(3)は鍔部(21)とストッパーシャフト(22)との間において、ガイド筒体(19)に沿って軸方向に移動可能とされている。ストッパーシャフト(22)により、スライド筒体(3)の最大移動量が規制されているので、過大流量や蒸気ハンマー或いはウォーターハンマーによる機器の損傷を防止することが出来る。
【0015】
ガイド筒体(19)内には、弾性手段であるスプリング(5)が収納される。スプリング(5)の上流方向先端は、ビーム(6)の上端に結合されており、下流方向後端はスライド筒体(3)の下流端部に固着されたスプリングアジャスター(23)に結合されている。スプリングアジャスター(23)は、ロックナット(24)により軸方向に移動可能であり、スプリング(5)の弾発力を調節して、流量の計測範囲を変更可能としている。スプリング(5)は、耐久性、耐食性、耐ヘタリ性を考慮して、これらの性質に優れたガスタービンやロケットエンジン部品として航空宇宙分野で広く使われているニッケルクロム合金で形成されているが、更に前記ストッパーシャフト(22)によってバネの伸び代を制限して、保護するようになっている。
【0016】
通路(2)を流過する流体の圧力を受けてスライド筒体(3)が下流方向に移動する。スライド筒体(3)の下流方向に移動に伴って、スプリング(5)が引き延ばされ、通路(2)とコーン(4)との有効断面積によって決まる流体の圧力とスプリングの弾発力がバランスした位置でスライド筒体(3)は静止する。スライド筒体(3)の移動によるスプリング(5)の延伸は、その先端に結合されたビーム(6)を下流方向に揺動させ、撓ませる。ビーム(6)はその下端において固定部(9)で固定支持されており、ビーム(6)の撓みは歪みゲージセンサー(7)で検出される。検出されたビーム(6)の撓み量は、歪みゲージで計測され流量が算出される。スプリング(5)を固定筒体(18)とガイド筒体(19)内に収納することにより、流体に含まれる汚れや固形物からスプリング(5)を保護し、円滑な作動を補償している。
【0017】
ビーム(6)の歪みゲージセンサー(7)が取り付けられた部分の外周部には隔離手段(11)であるベローズが取り付けられ、歪みゲージセンサー(7)を被覆して、ドレン水及び流体から隔離して、センサー部を流体の温度、圧力、性状等から保護している。更に、前記ビーム(6)の下端を支持する支点(25)の位置において、ポケット筒体(27)の下端が密封性を確保しつつ取り付けられており、ビーム(6)及びベローズ(11)の外周部にポケット空間(10)を画成して、該ポケット空間(10)にドレン水を満たして、通路内の流体が直接歪みゲージセンサー(7)に接触しないようにして、流過する流体の温度や圧力から保護している。ポケット筒体(25)の上端は開放され、通路(2)内に連通しており、ドレン水の流入を許容している。歪みゲージセンサー(7)を、ベローズ(11)とポケット空間(10)内のドレン水とで通路(2)内の流体から遮断し、隔離するようにしてあるので、ゲージセンサー(7)の周辺温度を配管内の流体温度に比べて大幅に低減することが出来、流体が高温高圧であってもメーターの性能を損なうことなく使用することが出来る。
【0018】
(26)は、ドレンホールであり、本体の一次側に発生したドレン水を二次側に排出するための孔である。ドレン水が通路とコーンとの間を通過するとフラッシュして振動の原因となるためドレンホール(26)から流出させる。(27)は、ビーム(6)の内部に収納された温度・圧力センサーであり、センサーからの検出値に基づいて表示部ケーシング(16)内に配設された電子部に保存されたデータから流体の密度を表示することが出来るようになっている。又、流体の密度の変化により、密度補正された質量及びエネルギー流量若しくは質量或いはエネルギー流量を提供することが出来る。
【0019】
【発明の効果】
この発明によれば、受圧体に生じる水力を弾性手段を介してビームの撓みに変換して計測するようにしてあるので、水力を計測手段とした差圧計で、キャリブレイションにより推力と流量の関係を正確に把握することが出来、広い計測範囲を有する流量計を提供することが出来る。ビームの撓みを検出する歪みセンサーをベローズ等の隔離手段で被覆して隔離すると共に、その外方にドレン水を貯めて、周辺温度を流体温度に比べて大幅に低減し、高温高圧の流体でも性能を維持しつつ測定をすることが出来る。
【図面の簡単な説明】
【図1】この発明の流量計を概略的に説明する説明図
【図2】配管への接続状態を示す全体図
【図3】側面図
【図4】断面図
【図5】一部を切り欠いだ斜視図
【符号の説明】
(1)本体
(2)通路
(3)受圧体
(4)コーン
(5)弾性手段
(6)ビーム
(7)センサー部
(8)流路
(9)固定部
(10)ポケット空間
(11)隔離手段
(12)配管
(13)フランジ
(14)通しボルト
(15)外筒体
(16)表示部ケーシング
(17)固定板
(18)固定筒体
(19)ガイド筒体
(20)エンドプラグ
(21)鍔部
(22)ストッパーシャフト
(23)スプリングアジャスター
(24)ロックナット
(25)ポケット筒体
(26)小孔
(27)温度・圧力センサー[0001]
[Field of the Invention]
The present invention relates to an area-type flowmeter that measures the flow rate of a fluid such as a gas or a liquid based on the effective cross-sectional area of a flow path that balances a pressure receiving body that receives fluid pressure.
[0002]
[Prior art]
Conventionally, the measurement of the flow rate of a gas such as steam or air having a pressure, or the flow rate of a liquid such as water or oil is performed by measuring the difference between the pressures at two points on the upstream side and the downstream side of the pipe through which the fluid flows. 2. Description of the Related Art A differential pressure type flow meter for measuring and measuring a flow rate is known and widely used, and one example thereof is disclosed in Japanese Patent Application Laid-Open No. 2000-283810. Such a differential pressure type flow meter is configured to measure a differential pressure by making tapped holes respectively upstream and downstream of the meter. That is, since the differential pressure is measured at one point of the pipe, the turbulence generated by the gasket biting into the pipe or inappropriate piping on the upstream side adversely affects the flow velocity and fluid state near the measurement point. However, there is a problem that it is difficult to accurately measure the differential pressure.
[0003]
In addition, a pressure receiving member that operates by pressure is arranged in the fluid flow path, and the pressure receiving member is moved in balance with the pressure to change the effective cross-sectional area of the flow path and measure a flow rate corresponding to the effective cross-sectional area. Such an area type flowmeter has also been proposed, and is disclosed in, for example, JP-A-5-79869, JP-A-2000-46602, and the like. However, the conventional area type flow meter usually has a structure in which the pressure receiving member is formed of a float, and the flow rate is measured by measuring a position at which the float has risen under pressure, so that the float is raised. Requires a vertically extending tube. For this reason, the flow meter has a tall structure, requires a large mounting space for piping, and has a poor workability. Further, since the fluid conduit and the tube housing the float are orthogonal to each other, the flow of the fluid is easily disturbed, making accurate measurement difficult.
[0004]
[Patent Document 1]
JP 2000-283810 A [Patent Document 2]
JP-A-5-79869 [Patent Document 3]
JP 2000-46602 A [0005]
[Problems to be solved by the invention]
The present invention solves the problems seen in the conventional area type flowmeter, and positions the operating direction of the pressure receiving member that sets the effective cross-sectional area of the flow path in parallel with the direction in which the fluid flows, and operates the pressure receiving member. An object of the present invention is to provide an area type flow meter capable of measuring a flow rate by detecting a quantity with a strain gauge.
[0006]
[Means for Solving the Problems]
Means taken by the present invention to solve the above-mentioned problem is that a main body having a passage extending in parallel with the pipe direction in the axial direction and a conical cone having a diameter increasing in the downstream direction are provided in the main body in the axial direction. A pressure receiving member movably disposed on the pressure receiving member, elastic means for extending one end of the pressure receiving element to urge the pressure receiving element in the upstream direction, and a shaft of the pressure receiving element having the other end of the elastic means extended. A beam that is bent by the movement in the direction, and a strain gauge that detects the bending of the beam, the pressure receiving body that moves in the downstream direction by the fluid pressure applied to the conical cone has the elastic force of the elastic means and The flow rate is measured by detecting the effective cross-sectional area of the flow path defined by the passage and the cone determined by the position where the fluid pressure is balanced and stationary, based on the deflection of the beam.
[0007]
An outer peripheral portion of the beam distortion sensor portion is covered with an isolating means to isolate it from a fluid, and a pocket space communicating with the inside of the main body is defined at an outer peripheral portion of the beam including the isolating means, Drain water is stored in the space.
[0008]
One end of an outer cylindrical body extending in a direction perpendicular to a passage in the main body is connected to the main body, a beam is disposed in the outer cylindrical body, and a display casing is provided at the other end of the outer cylindrical body. The main body is formed in a wafer structure sandwiched between pipe flanges.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Preferred embodiments of the present invention will be described in detail below. With reference to FIGS. 1 and 2, the present invention provides a main body (1) having a passage (2) whose inner diameter decreases in the downstream direction, and an axially movable passage in the main body (1). A pressure receiving body (3) provided with a conical cone (4) having a diameter increasing in the downstream direction, and elastic means extending at one end of the pressure receiving body (3) to bias the pressure receiving body in the upstream direction. (5) a beam (6) which has the other end of the elastic means (5) stretched and is bent by the axial movement of the pressure receiving body (3); and a strain gauge for detecting bending of the beam (6). When the pressure receiving body (3) moves downstream due to the pressure of the fluid flowing through the flow path (8), the movement is transmitted to the beam through the elastic means (5). The beam (6) is transmitted to (6) to bend, the amount of deflection of the beam (6) is detected by a strain gauge, and the flow rate of the fluid is measured. And wherein the door. The pressure receiver (3) moves downstream by the fluid pressure applied to the conical cone (4), and stops when the elastic force of the elastic means and the fluid pressure are balanced. Since the effective sectional area and the flow rate of the flow path defined by the passage (2) and the cone (4) determined by the position where the pressure receiving body (3) is stationary are in a proportional relationship, the position is determined by the amount of deflection of the beam. The flow rate can be obtained by detection.
[0010]
As shown in the drawing, the passage (2) of the main body (1) and the flow path (8) of the pipe are located parallel to each other, and are not orthogonal to each other as in a conventional area type flow meter. Can be reduced, and since the flow direction does not change, inconveniences such as generation of turbulence can be minimized. That is, the passage (2) is formed in parallel with the direction in which the fluid in the pipe flows, and the direction of movement of the pressure receiving body is provided in parallel with the passage and the axis. Accordingly, the possibility that the flow of the fluid flowing down the passage is disturbed is reduced, the disturbance of the fluid and the pressure loss due to the passage resistance can be reduced, and accurate measurement can be performed. The passage (2) is not limited to a conical shape as shown in the figure, but may be a cylindrical passage.
[0011]
The shape of the conical cone (4) receiving the pressure of the fluid and the resilience of the elastic means (5) balance the fluid pressure and set the position where the pressure receiving member stops, so that the cone (4) Is formed in a precise conical shape, and the elastic means is made of a highly durable elastic material with extremely small resilience over time. In particular, the shape of the cone (4) is precision machined so that the relationship with the flow rate is linear, and is designed to balance with the fluid pressure with high accuracy. In the case where the elastic material is formed by a spring, a nickel-chromium alloy widely used in the aerospace field as a gas turbine or rocket engine component is excellent in durability, corrosion resistance, and settling resistance, and thus is preferable.
[0012]
The lower part of the beam (6) is fixed to the main body (1) by a fixing part (9) so that the deflection of the beam (6) can be measured. It is formed in a pocket space (10) for storing drain water, and the sensor section (7) of the strain gauge is isolated from drain water and fluid by an isolating means (11) such as a bellows, so that the sensor section (7) is formed of fluid. It is characterized in that it is protected from temperature, pressure, properties and the like. The beam (6) extends in a direction perpendicular to the direction of flow of the fluid and is positioned vertically below the body (1) to store drain water therearound as described above.
[0013]
【Example】
2 to 4, a main body (1) of a flow meter according to the present invention is of a wafer type which is sandwiched between flanges (13) of pipes (12) and fixed by being tightened with through bolts (14). A conical passage (2) having a structure and having an inner diameter decreasing toward the downstream in the center is formed penetrating from upstream to downstream. The passage (2) of the main body (1) is located in the same axial direction as the passage (8) of the pipe (12) as shown in FIGS. An outer cylindrical body (15) extends vertically downward from the main body (1), and an upper end of the outer cylindrical body (15) is connected to the inside of the main body (1), and a display unit casing (16) is connected to a lower end. Have been. At the center of the passage (2) of the main body (1), a fixed cylinder (18) is fixed to the main body (1) by three fixed plates (17) arranged at equal intervals. 18) A guide cylinder (19) having a front end attached to the rear end extends downstream on the axis of the main body (1). The distal end of the fixed cylinder (18) is closed by an end plug (20). A slide cylinder (3), which is a pressure receiving member, is slidably guided in the axial direction on the outer periphery of the guide cylinder (19), and has a predetermined length to secure a sliding distance of the slide cylinder (3). Have.
[0014]
A conical cone (4) whose outer diameter increases in the downstream direction is integrally formed at the upstream end of the slide cylinder (3). The tip of the cone (4) can freely contact the flange (21) of the guide cylinder (19), and the contact restricts the movement of the slide cylinder (3) in the upstream direction. At the position where the movement of the slide cylinder (3) in the upstream direction is stopped, as shown in FIG. 4, the maximum diameter portion of the cone (4) is located at the downstream end which is the minimum diameter portion of the passage (2). The effective cross-sectional area between the passage (2) and the cone (4) is reduced to zero. As the slide cylinder (3) moves downstream by the fluid pressure applied to the cone (4), the effective sectional area between the passage (2) and the cone (4) increases. A stopper shaft (22) is fixed to the downstream end of the guide cylinder (19), and limits the maximum amount of movement of the slide cylinder (3) in the downstream direction. That is, the slide cylinder (3) is movable in the axial direction along the guide cylinder (19) between the flange (21) and the stopper shaft (22). Since the maximum movement amount of the slide cylinder (3) is regulated by the stopper shaft (22), it is possible to prevent the equipment from being damaged by an excessive flow rate or a steam hammer or a water hammer.
[0015]
A spring (5), which is an elastic means, is housed in the guide cylinder (19). The upstream end of the spring (5) is connected to the upper end of the beam (6), and the downstream rear end is connected to a spring adjuster (23) fixed to the downstream end of the slide cylinder (3). I have. The spring adjuster (23) can be moved in the axial direction by a lock nut (24), and the elasticity of the spring (5) can be adjusted to change the flow rate measurement range. The spring (5) is formed of a nickel-chromium alloy widely used in the aerospace field as a gas turbine or rocket engine component having excellent properties in consideration of durability, corrosion resistance, and settling resistance. Further, the stopper shaft (22) limits the extension of the spring to protect the spring.
[0016]
The slide cylinder (3) moves downstream due to the pressure of the fluid flowing through the passage (2). The spring (5) is extended with the movement in the downstream direction of the slide cylinder (3), and the fluid pressure and the spring force determined by the effective sectional area of the passage (2) and the cone (4). The slide cylinder (3) stops at the position where the balance is established. The extension of the spring (5) by the movement of the slide cylinder (3) causes the beam (6) coupled to the tip thereof to swing downstream and bend. The beam (6) is fixedly supported at its lower end by a fixing portion (9), and the deflection of the beam (6) is detected by a strain gauge sensor (7). The amount of deflection of the detected beam (6) is measured by a strain gauge, and the flow rate is calculated. By housing the spring (5) in the fixed cylinder (18) and the guide cylinder (19), the spring (5) is protected from dirt and solid matter contained in the fluid, and smooth operation is compensated. .
[0017]
A bellows as an isolation means (11) is attached to an outer peripheral portion of the beam (6) where the strain gauge sensor (7) is attached, and covers the strain gauge sensor (7) to isolate it from drain water and fluid. Thus, the sensor unit is protected from the temperature, pressure, properties, etc. of the fluid. Further, at the position of a fulcrum (25) supporting the lower end of the beam (6), the lower end of the pocket cylinder (27) is attached while ensuring the sealing performance, and the beam (6) and the bellows (11) are attached. A pocket space (10) is defined in the outer peripheral portion, and the pocket space (10) is filled with drain water so that the fluid in the passage does not directly contact the strain gauge sensor (7), so that the flowing fluid Protect from temperature and pressure. The upper end of the pocket cylinder (25) is open and communicates with the passage (2) to allow inflow of drain water. Since the strain gauge sensor (7) is isolated from the fluid in the passage (2) by the bellows (11) and the drain water in the pocket space (10) and is isolated, the periphery of the gauge sensor (7) The temperature can be greatly reduced as compared with the temperature of the fluid in the pipe, and the fluid can be used without impairing the performance of the meter even at high temperature and high pressure.
[0018]
(26) is a drain hole, and is a hole for discharging drain water generated on the primary side of the main body to the secondary side. When the drain water passes between the passage and the cone, it is flushed and causes vibration, and is discharged from the drain hole (26). (27) a temperature / pressure sensor housed inside the beam (6), based on data stored in an electronic unit provided in the display casing (16) based on a detection value from the sensor. The density of the fluid can be displayed. Also, a change in the density of the fluid can provide a density corrected mass and energy flow or mass or energy flow.
[0019]
【The invention's effect】
According to the present invention, since the hydraulic force generated in the pressure receiving body is converted into beam deflection via the elastic means and measured, the relationship between the thrust and the flow rate is obtained by calibration with a differential pressure gauge using the hydraulic force as the measuring means. Can be accurately grasped, and a flow meter having a wide measurement range can be provided. The strain sensor that detects the deflection of the beam is covered and isolated by a bellows or other isolating means, and drain water is stored outside of the strain sensor.The ambient temperature is greatly reduced compared to the fluid temperature. Measurement can be performed while maintaining performance.
[Brief description of the drawings]
FIG. 1 is an explanatory view schematically illustrating a flow meter according to the present invention. FIG. 2 is an overall view showing a connection state to a pipe. FIG. 3 is a side view. FIG. Missing perspective view [Explanation of reference numerals]
(1) Main body (2) Passage (3) Pressure receiver (4) Cone (5) Elastic means (6) Beam (7) Sensor part (8) Flow path (9) Fixed part (10) Pocket space (11) Isolation Means (12) Piping (13) Flange (14) Through bolt (15) Outer cylinder (16) Display casing (17) Fixing plate (18) Fixed cylinder (19) Guide cylinder (20) End plug (21) ) Flange (22) Stopper shaft (23) Spring adjuster (24) Lock nut (25) Pocket cylinder (26) Small hole (27) Temperature / pressure sensor
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002328792A JP3902535B2 (en) | 2002-11-12 | 2002-11-12 | Area type flow meter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002328792A JP3902535B2 (en) | 2002-11-12 | 2002-11-12 | Area type flow meter |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004163231A true JP2004163231A (en) | 2004-06-10 |
JP3902535B2 JP3902535B2 (en) | 2007-04-11 |
Family
ID=32807006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002328792A Expired - Fee Related JP3902535B2 (en) | 2002-11-12 | 2002-11-12 | Area type flow meter |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3902535B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010023484A1 (en) | 2008-08-29 | 2010-03-04 | Spirax-Sarco Limited | A flow meter |
CN106197574A (en) * | 2016-08-30 | 2016-12-07 | 重庆前卫克罗姆表业有限责任公司 | The measuring room assembly of turbine gas meter, flow meter |
WO2017142192A1 (en) * | 2016-02-15 | 2017-08-24 | 필즈엔지니어링 주식회사 | Flow meter |
KR101778113B1 (en) | 2016-10-19 | 2017-09-13 | 필즈엔지니어링 주식회사 | Flare gas system for including vent analysis method |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104215280A (en) * | 2014-10-08 | 2014-12-17 | 王可崇 | Strain target flowmeter capable of restraining temperature drift |
-
2002
- 2002-11-12 JP JP2002328792A patent/JP3902535B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010023484A1 (en) | 2008-08-29 | 2010-03-04 | Spirax-Sarco Limited | A flow meter |
US8918293B2 (en) | 2008-08-29 | 2014-12-23 | Spirax-Sarco Limited | Flow meter |
WO2017142192A1 (en) * | 2016-02-15 | 2017-08-24 | 필즈엔지니어링 주식회사 | Flow meter |
CN106197574A (en) * | 2016-08-30 | 2016-12-07 | 重庆前卫克罗姆表业有限责任公司 | The measuring room assembly of turbine gas meter, flow meter |
CN106197574B (en) * | 2016-08-30 | 2023-11-28 | 德国埃尔斯特公司 | Metering chamber assembly of turbine gas meter |
KR101778113B1 (en) | 2016-10-19 | 2017-09-13 | 필즈엔지니어링 주식회사 | Flare gas system for including vent analysis method |
Also Published As
Publication number | Publication date |
---|---|
JP3902535B2 (en) | 2007-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3554347B2 (en) | Flowmeter | |
EP2361370B1 (en) | A flow meter | |
US4604906A (en) | Flowmeter | |
US4221134A (en) | Differential pressure transducer with strain gauge | |
US10247590B2 (en) | Balancing valve for adjusting the distribution of fluids in multiple pipes | |
NO341923B1 (en) | Apparatus and method for monitoring particles in a fluid flow, throttle valve condition monitor and method for monitoring the condition of a throttle valve in a tube | |
US5698793A (en) | Flow meters | |
WO2014065116A1 (en) | Mass flowmeter | |
JP3902535B2 (en) | Area type flow meter | |
WO2003067352A1 (en) | Flow regulating valve, flow rate measuring device, flow control device, and flow rate measuring method | |
CN104236642B (en) | Middle through-hole dynamic throttling element flowmeter | |
US9188471B2 (en) | Two-phase flow sensor using cross-flow-induced vibrations | |
EP3128212B1 (en) | Instrument for measuring the flowrate of a fluid | |
CN100510652C (en) | Flow meter for use with high pressure process fluid | |
US4986135A (en) | Apparatus and method for measuring fluid flow and density | |
JPH09101186A (en) | Pitot-tube type mass flowmeter | |
US20180340808A1 (en) | Torque Based Flowmeter Device and Method | |
US3206978A (en) | Fluid measuring system | |
KR0171633B1 (en) | Flow meter having a contoured plug and resilient means | |
JP2892521B2 (en) | Mass flow meter or density meter | |
JPH0450493Y2 (en) | ||
WO1997002470A1 (en) | A total momentum flow meter | |
JP2000275073A (en) | Karman's vortex flowmeter | |
JPH0210417Y2 (en) | ||
JP3297507B2 (en) | Flow measurement device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060516 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20060809 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20060814 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061107 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061205 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061228 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110112 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120112 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120112 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130112 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140112 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |