[go: up one dir, main page]

JP2004162545A - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
JP2004162545A
JP2004162545A JP2002326875A JP2002326875A JP2004162545A JP 2004162545 A JP2004162545 A JP 2004162545A JP 2002326875 A JP2002326875 A JP 2002326875A JP 2002326875 A JP2002326875 A JP 2002326875A JP 2004162545 A JP2004162545 A JP 2004162545A
Authority
JP
Japan
Prior art keywords
valve
fuel
flow path
seat
swirl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002326875A
Other languages
Japanese (ja)
Other versions
JP3730951B2 (en
Inventor
Masayuki Aota
雅之 青田
Norihisa Fukutomi
範久 福冨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002326875A priority Critical patent/JP3730951B2/en
Publication of JP2004162545A publication Critical patent/JP2004162545A/en
Application granted granted Critical
Publication of JP3730951B2 publication Critical patent/JP3730951B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel injection valve for atomizing a fuel spray, and improving combustibility of an engine by reducing a collision of fuel in a confluent position becoming a factor of a loss in a fuel flowing speed. <P>SOLUTION: An inner peripheral annular groove 22 is formed on the inner periphery of a first end surface 14 facing a valve seat 7 of a turning body 10, and a turning groove 23 is connected to the inner peripheral annular groove 22 so as to contact from the tangent direction with the outer periphery of the inner peripheral annular groove 22. A seat surface 24 is formed at a first opening angle θ1 on the upstream side of an injection hole 8 of the valve seat 7, and a tapered surface 25 is formed at a second opening angle θ2 on the upstream side of the seat surface 24 of the valve seat 7. An opening diameter A of the tapered surface 25 is constituted larger than an outer diameter B of the inner peripheral annular groove 22, and the second opening angle θ2 of the tapered surface 25 is constituted larger than the first opening angle θ1 of the seat surface 24. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、燃料噴射弁、特に筒内噴射用燃料噴射弁に関するものであって、燃料流に旋回手段により旋回エネルギーを与えて燃料噴射孔から噴射する形式の燃料噴射弁に関するものである。
【0002】
【従来の技術】
従来の燃料噴射弁の弁装置は、弁座が弁本体の先端に配設され、旋回体が弁本体内の弁座の上流側に配設され、さらに弁体が弁本体の軸心方向に移動可能に配設されて弁座に穿設された噴射孔を開閉するように構成されている。そして、内周環状溝が旋回体の弁座側端面に形成され、軸方向溝が旋回体の外周面に周方向に等角ピッチで複数形成され、旋回溝が旋回体の弁座側端面に各軸方向溝と内周環状溝とを連通するように複数形成されている。
そして、弁体が吸引されて噴射孔が開弁されると、燃料が軸方向溝を通って旋回溝に流れ込み、さらに旋回溝から内周環状溝に流れ込む。そして、内周環状溝に流れ込んだ燃料は旋回流となって弁座のシート面から噴射孔内に流れ、噴射孔の先端出口から噴霧される。この時、旋回溝から旋回流路内に流れ込んだ燃料が旋回流路内を旋回方向に進み、旋回方向の下流側の旋回溝から旋回流路内に流れ込んだ燃料にぶつかりあって合流する。そこで、旋回溝の弁軸から遠い側の側面を内周環状溝の外周に接線方向につながるように形成し、燃料の合流位置での燃料のぶつかり合いを抑制するようにしていた。(例えば、特許文献1)
【0003】
【特許文献1】
特開平10−47208号公報(段落0026)
【0004】
【発明が解決しようとする課題】
この従来の燃料噴射弁の弁装置では、旋回溝の弁軸から遠い側の側面を内周環状溝の外周に接線方向につながるように形成しているので、燃料の合流位置での燃料のぶつかり合いが抑制されるが、その抑制効果は不十分なものであった。そこで、この燃料の流れのぶつかり合いにより燃料流れ速度の低下(ロス)が生じて、噴霧の微粒化が悪化し、エンジン燃焼性が低下してしまうという課題があった。
【0005】
この発明は、上記の課題を解消するためになされたもので、弁座のシート面の上流に該シート面より開き角度の大きいテーパ面を設け、旋回溝から旋回流路内に流れ込んだ燃料がテーパ面に沿って流れ、旋回方向の下流側の旋回溝から旋回流路内に流れ込んだ燃料との合流位置まで到達するようにし、燃料流れ速度のロスの要因となる合流位置での燃料のぶつかり合いを低減させ、噴霧の微粒化およびエンジン燃焼性を向上する燃料噴射弁を提供するものである。
【0006】
【課題を解決するための手段】
この発明に係る燃料噴射弁は、弁本体の内周面に接して該弁本体に対する位置を規定する複数の外周面部、該外周面部間に設けられて軸方向の流路を形成する複数の流路部、弁座に面する軸方向端面の内周に構成される環状の旋回流路、および、一端が複数の流路部のそれぞれに接続され、他端が旋回流路に対して接線方向に延びて該旋回流路に接続される複数の旋回溝を有する旋回体と、噴射孔の上流側に第1の開き角度で形成されて、弁体が接離されるシート面、および、該シート面の上流側に第2の開き角度で形成されたテーパ面を有する弁座とを備えている。そして、上記テーパ面の開口直径が上記旋回流路の外径より大きく、かつ、上記第2の開き角度が上記第1に開き角度より大きく構成されている。
【0007】
【発明の実施の形態】
以下、この発明の実施の形態を図について説明する。
実施の形態1.
図1はこの発明の実施の形態1に係る筒内噴射用燃料噴射弁の全体構造を示す断面図、図2はこの発明の実施の形態1に係る筒内噴射用燃料噴射弁における弁装置の弁座周りを示す拡大断面図、図3は図2のIII−III矢視断面図、図4はこの発明の実施の形態1に係る筒内噴射用燃料噴射弁における弁装置の弁座を示す拡大断面図である。
【0008】
図1において、筒内噴射用燃料噴射弁1は、ハウジング本体2と、ハウジング本体2の一端にかしめ等により固着された弁装置3とにより構成されている。そして、燃料フィルタ57がハウジング本体2の他端に装着さている。
【0009】
弁装置3は、小径円筒部5および大径円筒部6を有する段付中空円筒形の弁本体4と、弁本体4内の中心孔先端に固着されて燃料噴射孔8を有する弁座7と、後述するソレノイド装置50により弁座7に接離して燃料噴射孔8を開閉する弁体としてのニードルバルブ9と、ニードルバルブ9を軸方向に案内するとともに、径方向内向きに弁座7の燃料噴射孔8に流れ込もうとする燃料に旋回運動を与える旋回体10とを備えている。弁装置3の弁本体4は、ハウジング本体2と協働して筒内噴射用燃料噴射弁1のハウジングを構成している。
【0010】
ハウジング本体2は、筒内噴射用燃料噴射弁1を内燃機関のシリンダヘッド(図示せず)に取り付けるためのフランジ30aを有する第1ハウジング30と、ソレノイド装置50を装着した第2ハウジング40とを備えている。ソレノイド装置50は、コイル51を巻回したボビン部52と、このボビン部52の内周部に設置されたコア53とを備え、コイル51の巻線は端子56につながっている。コア53は、その内部が燃料通路となるように中空円筒形状になっており、その中空部には、スプリング55がスリーブ54とニードルバルブ9との間に縮設されている。
【0011】
ニードルバルブ9の他端部には、コア53の先端側に対向するように可動アマチュア31が取り付けられており、ニードルバルブ9の中間部には、ニードルバルブ9を弁本体4の内周面に沿って摺動案内させるガイド9aと、第1ハウジング30に設置され、スペーサ32と当接するニードルフランジ9bとが設けられている。
【0012】
図2乃至図4において、弁装置3の旋回体10は、中心にニードルバルブ9を囲んで軸方向に摺動可能に支持する中心孔13を持つほぼ中空円筒形に作製されている。弁装置3内に組み立てられた時、弁座7に接する第1端面14と、弁座7と反対側の第2端面15と、第1および第2端面14、15間にあって弁本体4の内周面17に接する周面16とを備えている。
【0013】
旋回体10は、その第2端面15の周辺部を弁本体4の内周面17の肩部18に当接して支持されている。そして、径方向に延びた通路溝21が旋回体10の第2端面15に形成されており、燃料が第2端面15の内周部から外周部に流れるようになっている。
旋回体10の周面16は、軸方向に延びた6つの平坦面が互いに等間隔で周方向に離間して形成され、さらに平坦面間の各角部が円弧状に切り取られて、略正六角形に作製されている。これにより、周面16には弁体9の内周面17に当接して弁体9に対する位置を規定する6つの外周面部16aと、これらの外周面部16a間に設けられた平坦面の流路部16bとが形成されている。この流路部16bと内周面17とが燃料の軸方向流路20を構成している。
【0014】
旋回体10の弁座7に面する軸方向端面、即ち第1端面14には、第1端面14の中心孔13の開口縁部に形成された所定幅の内周環状溝22と、一端で周面16の流路部16bに接続されて、そこからほぼ径方向内側に延びて、他端で内周環状溝22に接続された旋回溝23とが設けられている。
そして、旋回溝23は、中心孔13の中心に対して所定量Lだけオフセットされており、その中心孔13から遠い側の側面が内周環状溝22の外周(図3中一点鎖線で示す)に接線方向につながっている。また、旋回溝23は周方向に等角ピッチで6つ形成されている。このとき、内周環状溝22とニードルバルブ9の外周面との間に構成される環状空間が燃料の旋回流路29となる。
【0015】
孔方向を軸方向とする燃料噴射孔8が弁座7の中心に穿設され、ニードルバルブ9が接離するシート面24が弁座7の燃料噴射孔8の旋回体10側に形成され、さらにテーパ面25が弁座7のシート面24の旋回体10側に形成されている。そして、シート面24およびテーパ面25は、燃料噴射孔8の軸心を中心軸線とする切頭円錐形の外周面に形成され、テーパ面25の頂角(第2の開き角度)θ2がシート面24の頂角(第1の開き角度)θ1より大きく形成されている。また、シート面24の延長線は第1端面14で中心孔13の内周面に一致している。さらに、テーパ面25の開口は、第1端面14の内周環状溝22の径方向外側に位置している。即ち、テーパ面25の開口直径をA、旋回流路29の外径(旋回幅)をBとしたとき、A>Bとなっている。
【0016】
つぎに、この筒内噴射用燃料噴射弁1の動作について説明する。
この筒内噴射用燃料噴射弁1は、図示されていないが、その先端部を燃機関のシリンダヘッドの噴射弁挿入孔に挿入され、ウェーブワッシャ等によりシールされて取り付けられる。そして、燃料供給管がハウジング本体2の他端に装着され、高圧の燃料が燃料供給管から燃料フィルタ57を通って筒内噴射用燃料噴射弁1内に供給される。
そして、外部より、端子56を介してソレノイド装置50のコイル51に通電すると、可動アマチュア31、コア53およびハウジング本体2で構成される磁気通路に磁束が発生し、可動アマチュア31はスプリング55の付勢力に抗してコア53側に吸引される。そして、可動アマチュア31と一体のニードルバルブ9は、そのニードルフランジ9bがスペーサ32に当接するまで図1中上側に移動する。これにより、ニードルバルブ9の先端部が弁座7のシート面24から離れ、燃料噴射孔8が開けられる。
また、コイル51への通電が解除されると、可動アマチュア31をコア53側に磁気吸引する力がなくなり、可動アマチュア31は、スプリング55の付勢力により図1中下側に移動する。そして、可動アマチュア31と一体のニードルバルブ9は、その先端部が弁座7のシート面24に当接する。これにより、燃料噴射孔8が閉じられる。
なお、ニードルバルブ9はガイド9aにより弁本体4の内周面に案内保持される。
【0017】
ニードルバルブ9の先端部が弁座7のシート面24から離れると、燃料供給管から導入される高圧の燃料は、弁本体4とニードルバルブ9との間の通路から、旋回体10の第2端面15の通路溝21を通って周面の軸方向流路20に流れ込む。ついで、燃料は、旋回体10の第1端面14の旋回溝23に流入して径方向内側に流れて、内周環状溝22内へその接線方向から流れ込み、旋回流となってシート面24から燃料噴射孔8内に入ってその先端出口から噴霧される。
このとき、旋回溝23から旋回流路29(内周環状溝22)内に流れ込んだ燃料は、旋回流路29内をテーパ面25に沿って旋回方向の下流側に流れて、旋回方向の下流側の旋回溝23から旋回流路29内に流れ込む燃料の下層側に流れ込む。そこで、旋回溝23から旋回流路29内に流れ込んだ燃料と、下流側の旋回溝23から旋回流路29内に流れ込んだ燃料との合流部分での燃料の流れのぶつかり合いが抑制される。
【0018】
このように、この実施の形態1では、テーパ面25の開口直径をA、旋回流路29の外径(旋回幅)をBとしたとき、A>Bとなっているので、旋回溝23から旋回流路29内に流れ込んだ燃料と、旋回方向の下流側の旋回溝23から旋回流路29内に流れ込んだ燃料との合流部分での燃料の流れのぶつかり合いが抑制される。その結果、旋回流路29内での燃料の流れのぶつかり合いによる燃料の流れのロスが低減され、燃料の流れ速度が向上され、噴霧の微細化につながり、エンジンの燃焼性を向上させることができる。
また、内周環状溝22を旋回体10の第1端面14の内周に形成して旋回流路29を構成しているので、旋回溝23のオフセット量Lを調整でき、燃料噴霧角度の設計自由度が大きくなる。
【0019】
ここで、旋回流路29内での燃料の流れのロスを低減させる弁構造として、例えば図5に示されるように、弁座7Aの燃料噴射孔8の上流側に単一のシート面24aを形成し、該シート面24aの開き角度を大きくして、シート面24aの開口直径Cを旋回流路29の外径Bより大きくすることが考えられる。この構造においては、中心噴霧量は、旋回流路29の体積V1と、旋回流路29の下流側におけるニードルバルブ9とシート面24aとで形成される体積V2との和により決定される。
しかし、この比較例の弁構造においては、単一のシート面24aの開き角度を大きくしてシート面24aの開口直径Cを旋回流路29の外径Bより大きくしているので、体積V2の下限値が旋回流路29の外径Bにより決定され、体積V2、つまり中心噴霧量の設計自由度が制約される。さらに、単一のシート面24aの開き角度を変えているので、シート面24aの開き角度に対する体積V2の変化量が大きく、中心噴霧量の微調整がしにくくなる。
また、旋回溝23のオフセット量Lが大きくなるほど、燃料の旋回速度が速くなり、燃料噴霧角度が大きくなる。しかし、比較例の弁構造では、旋回溝23のオフセット量Lを大きくすると、シート面24aの開口直径Cが大きくなってしまう、つまり体積V2の下限値が大きくなってしまう。その結果、燃料噴霧角度および中心噴霧量の設計自由度が小さくなってしまう。
【0020】
この実施の形態1では、シート面24の上流側にシート面24の第1の開き角度θ1より大きな第2の開き角度θ2のテーパ面25を形成しているので、比較例の弁構造に比べて、体積V2の下限値を小さくできるとともに、テーパ面25の第2の開き角度θ2および開口直径Aを調整することにより体積V2の変化量を微調整できる。
また、旋回溝23のオフセット量Lを大きくしても、テーパ面25の第2の開き角度θ2を大きくすることで、体積V2の増加を抑えてテーパ面25の開口直径Aを旋回流路の外径Bより大きくできる。
その結果、この実施の形態1によれば、テーパ面25の第2の開き角度θ2および開口直径Aを調整することにより中心噴霧量を高精度に設定でき、さらに中心噴霧量および燃料噴霧角度の設計自由度が高められる。
【0021】
実施の形態2.
図6はこの発明の実施の形態2に係る筒内噴射用燃料噴射弁における弁装置の弁座周りを示す拡大断面図、図7は図6のVII−VII矢視断面図である。
【0022】
図6および図7において、旋回体10Aの弁座7に面する軸方向端面、即ち第1端面14には、一端で周面16の流路部16bに接続されて、そこからほぼ径方向内側に延びて、他端で中心孔13に接線方向に接続された旋回溝23が設けられている。ここで、各旋回溝23の中心孔13から遠い側の側面に接する中心孔13の内周面とニードルバルブ9の外周面との間に構成される環状空間が燃料の旋回流路となる。また、テーパ面25の開口直径Aが、中心孔13の直径B1(旋回流路の外径)より大きくなっている。さらに、テーパ面25の第2の開き角度がシート面24の第1の開き角度より大きくなっている。
なお、他の構成は上記実施の形態1と同様に構成されている。
【0023】
この実施の形態2では、弁本体4とニードルバルブ9との間の通路から、旋回体10Aの第2端面15の通路溝21を通って周面の軸方向流路20に流れ込む。ついで、燃料は、旋回体10の第1端面14の旋回溝23に流入して径方向内側に流れて、中心孔13とニードルバルブ9との間に形成される旋回流路内に中心孔13の接線方向から流れ込み、旋回流となってシート面24から燃料噴射孔8内に入ってその先端出口から噴霧される。
【0024】
このとき、テーパ面25の開口直径Aが、中心孔13の直径B1(旋回流路の外径)より大きくなっているので、旋回溝23から旋回流路内に流れ込んだ燃料は、旋回流路内をテーパ面25に沿って旋回方向の下流側に流れて、旋回方向の下流側の旋回溝23から旋回流路内に流れ込む燃料の下層側に流れ込む。そこで、旋回溝23から旋回流路内に流れ込んだ燃料と、旋回方向の下流側の旋回溝23から旋回流路内に流れ込んだ燃料との合流部分での燃料の流れのぶつかり合いが抑制される。
【0025】
このように、この実施の形態2においても、上記実施の形態1と同様に、旋回流路内での燃料の流れのぶつかり合いによる燃料の流れのロスが低減され、燃料の流れ速度が向上され、噴霧の微細化につながり、エンジンの燃焼性を向上させることができる。
また、この実施の形態2では、内周環状溝が省略されているので、中心噴霧量を決定する旋回流路の体積V1が最小となる。さらに、シート面24の上流側にテーパ面25を形成しているので、上記実施の形態1と同様に、体積V2の下限値を小さくできるとともに、体積V2の変化量を微調整できる。その結果、中心噴霧量の設計狙い値が小さい筒内噴射用燃料噴射弁を設計する際に、中心噴霧量を高精度に設定できる。
【0026】
なお、上記各実施の形態では、旋回体10、10Aの第1端面14において、シート面24の延長線が中心孔13の内周面に一致しているものとして説明しているが、シート面24の延長線は必ずしも第1端面14で中心孔13の内周面に一致している必要はなく、例えば中心噴霧量の狙い値にあわせて適宜設定すればよい。つまり、体積V2の狙い値より小さな体積となるようにシート面24の第1の開き角度θ1を設定し、テーパ面25の第2の開き角度θ2により体積V2を狙い値に微調整すればよい。
また、旋回溝23の個数が少なすぎると、各溝から旋回流路内に流れ込んだ燃料が旋回流に一様に混合されにくくなり、一方個数が多くなりすぎると、旋回流の乱れを発生させるとともに、圧力損失が流量特性に影響を及ぼすことになるので、旋回溝23の個数を4〜8個にすることが望ましく、特に旋回溝23の個数を6個にすることが最適である。
また、上記各実施の形態では、筒内噴射用燃料噴射弁について説明しているが、この発明は筒内噴射用燃料噴射弁に限定されるものではなく、例えば吸気管内噴射用燃料噴射弁に適用できる。
【0027】
【発明の効果】
この発明は、以上説明したように、弁座のテーパ面の開口直径が旋回体に構成された旋回流路の外径より大きく、かつ、テーパ面の第2の開き角度がシート面の第1の開き角度より大きく構成されているので、旋回流路内での燃料の流れのぶつかり合いに起因する燃料の流れのロスが低減される。その結果、噴霧の微粒化が促進され、エンジンの燃焼性を向上できる燃料噴射弁が実現される。
【図面の簡単な説明】
【図1】この発明の実施の形態1に係る筒内噴射用燃料噴射弁の全体構造を示す断面図である。
【図2】この発明の実施の形態1に係る筒内噴射用燃料噴射弁における弁装置の弁座周りを示す拡大断面図である。
【図3】図2のIII−III矢視断面図である。
【図4】この発明の実施の形態1に係る筒内噴射用燃料噴射弁における弁装置の弁座を示す拡大断面図である。
【図5】比較例としての筒内噴射用燃料噴射弁における弁装置の弁座周りを示す拡大断面図である。
【図6】この発明の実施の形態2に係る筒内噴射用燃料噴射弁における弁装置の弁座周りを示す拡大断面図である。
【図7】図6のVII−VII矢視断面図である。
【符号の説明】
1 筒内噴射用燃料噴射弁、3 弁装置、4 弁本体、7 弁座、8 噴射孔、9 ニードルバルブ(弁体)、10、10A 旋回体、14 第1端面、16a 外周面部、16b 流路部、22 環状内周溝、23 旋回溝、24 シート面、25 テーパ面、29 旋回流路。
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection valve, and more particularly to a fuel injection valve for in-cylinder injection, and more particularly to a fuel injection valve of a type in which swirling means gives swirling energy to a fuel flow to inject fuel from a fuel injection hole.
[0002]
[Prior art]
In a valve device of a conventional fuel injection valve, a valve seat is disposed at a tip of a valve body, a revolving body is disposed upstream of the valve seat in the valve body, and the valve body is disposed in the axial direction of the valve body. It is arranged so as to be movable and open and close an injection hole formed in a valve seat. An inner circumferential annular groove is formed on the end surface of the revolving structure on the valve seat side, a plurality of axial grooves are formed on the outer peripheral surface of the revolving structure at a constant angular pitch in the circumferential direction, and the revolving grooves are formed on the end surface of the revolving structure on the valve seat side. A plurality of grooves are formed so as to communicate each axial groove and the inner peripheral annular groove.
Then, when the valve body is sucked and the injection hole is opened, fuel flows through the axial groove into the swirl groove, and further flows from the swirl groove into the inner circumferential annular groove. Then, the fuel that has flowed into the inner peripheral annular groove forms a swirling flow, flows from the seat surface of the valve seat into the injection hole, and is sprayed from the outlet at the tip end of the injection hole. At this time, the fuel flowing into the swirl flow path from the swirl groove advances in the swirl flow path in the swirl direction, and collides with the fuel flowing into the swirl flow path from the swirl groove downstream in the swirl direction and merges. Therefore, the side surface of the swirl groove farther from the valve shaft is formed so as to be tangentially connected to the outer periphery of the inner annular groove so as to suppress the collision of the fuel at the fuel merging position. (For example, Patent Document 1)
[0003]
[Patent Document 1]
JP-A-10-47208 (paragraph 0026)
[0004]
[Problems to be solved by the invention]
In this conventional valve device for a fuel injection valve, the side surface of the swirl groove remote from the valve shaft is formed so as to be tangentially connected to the outer periphery of the inner annular groove. Although the matching was suppressed, the suppressing effect was insufficient. Therefore, the collision of the fuel flows causes a decrease (loss) in the fuel flow speed, causing a problem that atomization of the spray deteriorates and engine combustibility decreases.
[0005]
The present invention has been made in order to solve the above-described problem, and a taper surface having an opening angle larger than the seat surface is provided upstream of a seat surface of a valve seat, so that fuel flowing from a swirl groove into a swirl flow path is provided. The fuel flows along the tapered surface and reaches from the swirl groove on the downstream side in the swirl direction to a position where the fuel flows into the swirl flow path, and a collision of the fuel at the merge position that causes a loss of fuel flow velocity It is an object of the present invention to provide a fuel injection valve that reduces the size of the fuel mixture and improves the atomization of the spray and the engine combustion.
[0006]
[Means for Solving the Problems]
The fuel injection valve according to the present invention includes a plurality of outer peripheral surfaces that are in contact with the inner peripheral surface of the valve main body and define a position with respect to the valve main body, and a plurality of flows that are provided between the outer peripheral surface portions and form an axial flow path. A path portion, an annular swirl flow path formed on the inner periphery of an axial end face facing the valve seat, and one end connected to each of the plurality of flow path portions, and the other end tangential to the swirl flow path Body having a plurality of swirling grooves connected to the swirling flow path, a seat surface formed at a first opening angle on the upstream side of the injection hole, and the valve body is brought into contact with and separated from the swirl body; A valve seat having a tapered surface formed at a second opening angle on the upstream side of the surface. The opening diameter of the tapered surface is larger than the outer diameter of the swirling flow path, and the second opening angle is larger than the first opening angle.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a sectional view showing the overall structure of a direct injection fuel injection valve according to Embodiment 1 of the present invention, and FIG. 2 is a sectional view of a valve device in the direct injection fuel injection valve according to Embodiment 1 of the present invention. FIG. 3 is an enlarged sectional view showing the vicinity of the valve seat, FIG. 3 is a sectional view taken along the line III-III of FIG. 2, and FIG. 4 shows a valve seat of a valve device in the in-cylinder fuel injection valve according to the first embodiment of the present invention. It is an expanded sectional view.
[0008]
In FIG. 1, the in-cylinder fuel injection valve 1 includes a housing main body 2 and a valve device 3 fixed to one end of the housing main body 2 by caulking or the like. The fuel filter 57 is mounted on the other end of the housing body 2.
[0009]
The valve device 3 includes a stepped hollow cylindrical valve body 4 having a small-diameter cylindrical portion 5 and a large-diameter cylindrical portion 6, a valve seat 7 fixed to a tip of a center hole in the valve body 4 and having a fuel injection hole 8. A needle valve 9 serving as a valve body that opens and closes the fuel injection hole 8 by being brought into contact with and separated from the valve seat 7 by a solenoid device 50 to be described later. The needle valve 9 is guided in the axial direction, and the valve seat 7 is moved radially inward. A revolving body for imparting a revolving motion to the fuel to flow into the fuel injection holes; The valve body 4 of the valve device 3 forms a housing of the in-cylinder fuel injection valve 1 in cooperation with the housing body 2.
[0010]
The housing body 2 includes a first housing 30 having a flange 30a for mounting the in-cylinder fuel injection valve 1 to a cylinder head (not shown) of an internal combustion engine, and a second housing 40 to which a solenoid device 50 is mounted. Have. The solenoid device 50 includes a bobbin 52 around which a coil 51 is wound, and a core 53 provided on an inner peripheral portion of the bobbin 52. The winding of the coil 51 is connected to a terminal 56. The core 53 has a hollow cylindrical shape so that the inside thereof becomes a fuel passage, and a spring 55 is contracted between the sleeve 54 and the needle valve 9 in the hollow portion.
[0011]
The movable armature 31 is attached to the other end of the needle valve 9 so as to face the distal end side of the core 53, and the needle valve 9 is attached to the inner peripheral surface of the valve body 4 in the middle of the needle valve 9. A guide 9a that slides along the guide 9a and a needle flange 9b that is provided on the first housing 30 and abuts on the spacer 32 are provided.
[0012]
2 to 4, the revolving body 10 of the valve device 3 is formed in a substantially hollow cylindrical shape having a center hole 13 which supports the needle valve 9 at the center and slidably supports in the axial direction. When assembled in the valve device 3, the first end face 14 in contact with the valve seat 7, the second end face 15 opposite to the valve seat 7, and between the first and second end faces 14, 15 and inside the valve body 4. And a peripheral surface 16 in contact with the peripheral surface 17.
[0013]
The revolving superstructure 10 is supported such that a peripheral portion of the second end surface 15 is in contact with a shoulder 18 of an inner peripheral surface 17 of the valve body 4. A radially extending passage groove 21 is formed in the second end face 15 of the revolving structure 10 so that fuel flows from the inner peripheral part to the outer peripheral part of the second end face 15.
The peripheral surface 16 of the revolving unit 10 has six flat surfaces extending in the axial direction formed at equal intervals in the circumferential direction, and each corner between the flat surfaces is cut out in an arc shape to form a substantially regular hexagon. It is made square. Accordingly, the outer peripheral surface 16 abuts against the inner peripheral surface 17 of the valve element 9 to define the position with respect to the valve element 9, and the flat surface flow path provided between the outer peripheral surface parts 16 a A portion 16b is formed. The flow path portion 16b and the inner peripheral surface 17 constitute an axial flow path 20 for fuel.
[0014]
An axial end face of the revolving body 10 facing the valve seat 7, that is, a first end face 14, has an inner circumferential annular groove 22 having a predetermined width formed at an opening edge of the center hole 13 of the first end face 14, and one end. A turning groove 23 is provided, which is connected to the flow path portion 16 b of the peripheral surface 16, extends substantially radially inward therefrom, and is connected at the other end to the inner peripheral annular groove 22.
The turning groove 23 is offset from the center of the center hole 13 by a predetermined amount L, and the side surface far from the center hole 13 has the outer periphery of the inner peripheral annular groove 22 (indicated by a dashed line in FIG. 3). Connected tangentially to Further, six turning grooves 23 are formed at an equal angular pitch in the circumferential direction. At this time, the annular space formed between the inner peripheral annular groove 22 and the outer peripheral surface of the needle valve 9 becomes the fuel swirl flow path 29.
[0015]
A fuel injection hole 8 having the hole direction as an axial direction is formed at the center of the valve seat 7, and a seat surface 24 with which the needle valve 9 comes and goes is formed on the fuel injection hole 8 of the valve seat 7 on the revolving body 10 side, Further, a tapered surface 25 is formed on the revolving body 10 side of the seat surface 24 of the valve seat 7. The seat surface 24 and the tapered surface 25 are formed on the outer peripheral surface of a truncated cone with the axis of the fuel injection hole 8 as the center axis, and the apex angle (second opening angle) θ2 of the tapered surface 25 is determined by the sheet. The surface 24 is formed to be larger than the apex angle (first opening angle) θ1. The extension of the sheet surface 24 coincides with the inner peripheral surface of the center hole 13 at the first end surface 14. Further, the opening of the tapered surface 25 is located radially outside the inner peripheral annular groove 22 of the first end surface 14. That is, when the opening diameter of the tapered surface 25 is A and the outer diameter (the swirling width) of the swirling channel 29 is B, A> B.
[0016]
Next, the operation of the in-cylinder fuel injection valve 1 will be described.
Although not shown, the in-cylinder fuel injection valve 1 has a distal end inserted into an injection valve insertion hole of a cylinder head of a fuel engine, and is sealed and attached with a wave washer or the like. Then, a fuel supply pipe is attached to the other end of the housing body 2, and high-pressure fuel is supplied from the fuel supply pipe through the fuel filter 57 into the in-cylinder fuel injection valve 1.
When the coil 51 of the solenoid device 50 is energized from the outside via the terminal 56, a magnetic flux is generated in a magnetic path formed by the movable armature 31, the core 53 and the housing main body 2. It is sucked toward the core 53 against the force. Then, the needle valve 9 integrated with the movable armature 31 moves upward in FIG. 1 until the needle flange 9b contacts the spacer 32. As a result, the tip end of the needle valve 9 is separated from the seat surface 24 of the valve seat 7, and the fuel injection hole 8 is opened.
Further, when the energization of the coil 51 is stopped, the force for magnetically attracting the movable armature 31 toward the core 53 is lost, and the movable armature 31 moves downward in FIG. The distal end of the needle valve 9 integral with the movable armature 31 contacts the seat surface 24 of the valve seat 7. Thereby, the fuel injection hole 8 is closed.
The needle valve 9 is guided and held on the inner peripheral surface of the valve body 4 by a guide 9a.
[0017]
When the distal end of the needle valve 9 moves away from the seat surface 24 of the valve seat 7, the high-pressure fuel introduced from the fuel supply pipe flows from the passage between the valve body 4 and the needle valve 9 to the second It flows into the axial flow path 20 on the peripheral surface through the passage groove 21 of the end face 15. Next, the fuel flows into the swirl groove 23 of the first end surface 14 of the swirl body 10, flows radially inward, flows into the inner circumferential annular groove 22 from its tangential direction, and forms a swirl flow from the seat surface 24. The fuel enters the fuel injection hole 8 and is sprayed from the outlet at the tip.
At this time, the fuel flowing from the swirl groove 23 into the swirl flow path 29 (the inner circumferential annular groove 22) flows in the swirl flow path 29 along the tapered surface 25 to the downstream side in the swirl direction, and the downstream in the swirl direction. The fuel flowing into the swirling flow channel 29 from the swirling groove 23 on the side flows into the lower layer side. Therefore, the collision of the fuel flow at the junction of the fuel flowing into the swirl flow channel 29 from the swirl groove 23 and the fuel flowing into the swirl flow channel 29 from the downstream swirl groove 23 is suppressed.
[0018]
As described above, in the first embodiment, when the opening diameter of the tapered surface 25 is A and the outer diameter (turning width) of the swirling flow path 29 is B, A> B. The collision of the fuel flow at the confluence of the fuel flowing into the swirl flow path 29 and the fuel flowing into the swirl flow path 29 from the swirl groove 23 on the downstream side in the swirl direction is suppressed. As a result, the fuel flow loss due to the collision of the fuel flow in the swirl flow path 29 is reduced, the fuel flow speed is improved, the atomization becomes finer, and the combustibility of the engine is improved. it can.
Further, since the inner peripheral annular groove 22 is formed on the inner periphery of the first end face 14 of the revolving body 10 to constitute the swirl flow path 29, the offset amount L of the swirl groove 23 can be adjusted, and the fuel spray angle can be designed. The degree of freedom increases.
[0019]
Here, as a valve structure for reducing the loss of the fuel flow in the swirl flow path 29, for example, as shown in FIG. 5, a single seat surface 24a is provided upstream of the fuel injection hole 8 of the valve seat 7A. It is conceivable to increase the opening angle of the seat surface 24a so that the opening diameter C of the seat surface 24a is larger than the outer diameter B of the swirl flow path 29. In this structure, the center spray amount is determined by the sum of the volume V1 of the swirl flow path 29 and the volume V2 formed by the needle valve 9 and the seat surface 24a on the downstream side of the swirl flow path 29.
However, in the valve structure of this comparative example, the opening angle C of the single seat surface 24a is increased to make the opening diameter C of the seat surface 24a larger than the outer diameter B of the swirl flow path 29, so that the volume V2 The lower limit is determined by the outer diameter B of the swirl flow path 29, and the volume V2, that is, the degree of freedom in designing the central spray amount is restricted. Further, since the opening angle of the single sheet surface 24a is changed, the change amount of the volume V2 with respect to the opening angle of the sheet surface 24a is large, and it is difficult to finely adjust the center spray amount.
Further, as the offset amount L of the turning groove 23 increases, the turning speed of the fuel increases, and the fuel spray angle increases. However, in the valve structure of the comparative example, when the offset amount L of the turning groove 23 is increased, the opening diameter C of the seat surface 24a increases, that is, the lower limit value of the volume V2 increases. As a result, the degree of freedom in designing the fuel spray angle and the center spray amount is reduced.
[0020]
In the first embodiment, since the tapered surface 25 having the second opening angle θ2 larger than the first opening angle θ1 of the seat surface 24 is formed on the upstream side of the seat surface 24, compared with the valve structure of the comparative example. Thus, the lower limit of the volume V2 can be reduced, and the amount of change in the volume V2 can be finely adjusted by adjusting the second opening angle θ2 and the opening diameter A of the tapered surface 25.
Further, even if the offset amount L of the swirl groove 23 is increased, by increasing the second opening angle θ2 of the tapered surface 25, the increase in the volume V2 is suppressed and the opening diameter A of the tapered surface 25 is reduced. It can be larger than the outer diameter B.
As a result, according to the first embodiment, the center spray amount can be set with high accuracy by adjusting the second opening angle θ2 and the opening diameter A of the tapered surface 25, and further, the center spray amount and the fuel spray angle can be adjusted. The degree of freedom in design is increased.
[0021]
Embodiment 2 FIG.
FIG. 6 is an enlarged sectional view showing the vicinity of a valve seat of a valve device in a direct injection fuel injection valve according to Embodiment 2 of the present invention, and FIG. 7 is a sectional view taken along the line VII-VII of FIG.
[0022]
6 and 7, an axial end face of the revolving body 10A facing the valve seat 7, that is, the first end face 14, is connected at one end to the flow passage portion 16b of the peripheral surface 16 and substantially radially inward from the end. And a swivel groove 23 is provided which extends tangentially to the center hole 13 at the other end. Here, an annular space formed between the inner peripheral surface of the center hole 13 that is in contact with the side surface of the respective swirl grooves 23 farther from the central hole 13 and the outer peripheral surface of the needle valve 9 becomes a fuel swirl flow path. Further, the opening diameter A of the tapered surface 25 is larger than the diameter B1 of the center hole 13 (outer diameter of the swirling flow path). Further, the second opening angle of the tapered surface 25 is larger than the first opening angle of the seat surface 24.
The other configuration is the same as that of the first embodiment.
[0023]
In the second embodiment, the gas flows from the passage between the valve body 4 and the needle valve 9 into the axial flow path 20 on the peripheral surface through the passage groove 21 of the second end face 15 of the revolving body 10A. Next, the fuel flows into the swirl groove 23 of the first end surface 14 of the swirl body 10 and flows radially inward, and the center hole 13 is formed in the swirl flow path formed between the center hole 13 and the needle valve 9. Flows from the tangential direction of the fuel injection hole 8 into a swirling flow, enters the fuel injection hole 8 from the seat surface 24 and is sprayed from the outlet at the leading end.
[0024]
At this time, since the opening diameter A of the tapered surface 25 is larger than the diameter B1 of the center hole 13 (the outer diameter of the swirl flow path), the fuel flowing from the swirl groove 23 into the swirl flow path is The fuel flows downstream in the swirling direction along the tapered surface 25 and flows into the lower layer of the fuel flowing into the swirling flow path from the swirling groove 23 on the downstream side in the swirling direction. Therefore, collision of the fuel flow at the confluence of the fuel flowing into the swirl flow channel from the swirl groove 23 and the fuel flowing into the swirl flow channel from the swirl groove 23 on the downstream side in the swirl direction is suppressed. .
[0025]
Thus, also in the second embodiment, similarly to the first embodiment, the loss of the fuel flow due to the collision of the fuel flow in the swirl flow path is reduced, and the fuel flow speed is improved. This leads to finer spraying and improves the combustibility of the engine.
Further, in the second embodiment, since the inner peripheral annular groove is omitted, the volume V1 of the swirl flow path that determines the central spray amount is minimized. Further, since the tapered surface 25 is formed on the upstream side of the seat surface 24, the lower limit of the volume V2 can be reduced and the amount of change in the volume V2 can be finely adjusted, as in the first embodiment. As a result, the center spray amount can be set with high precision when designing the in-cylinder injection fuel injection valve having a small design target value of the center spray amount.
[0026]
In each of the above-described embodiments, the extension line of the seat surface 24 coincides with the inner peripheral surface of the center hole 13 on the first end surfaces 14 of the revolving units 10 and 10A. The extension line of 24 does not necessarily need to coincide with the inner peripheral surface of the center hole 13 at the first end surface 14, and may be appropriately set according to, for example, a target value of the center spray amount. That is, the first opening angle θ1 of the seat surface 24 may be set to be smaller than the target value of the volume V2, and the volume V2 may be finely adjusted to the target value by the second opening angle θ2 of the tapered surface 25. .
On the other hand, if the number of the swirl grooves 23 is too small, the fuel flowing from each groove into the swirl flow channel is difficult to be uniformly mixed into the swirl flow, while if the number is too large, the swirl flow is turbulent. At the same time, since the pressure loss affects the flow characteristics, it is desirable to set the number of the swirling grooves 23 to 4 to 8, and particularly to set the number of the swirling grooves 23 to six.
In each of the above embodiments, the in-cylinder fuel injection valve is described. However, the present invention is not limited to the in-cylinder fuel injection valve. Applicable.
[0027]
【The invention's effect】
As described above, according to the present invention, the opening diameter of the tapered surface of the valve seat is larger than the outer diameter of the swirling flow path formed in the rotating body, and the second opening angle of the tapered surface is the first opening angle of the seat surface. , The loss of the fuel flow due to the collision of the fuel flow in the swirl flow path is reduced. As a result, atomization of the spray is promoted, and a fuel injection valve that can improve the combustibility of the engine is realized.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an overall structure of a direct injection fuel injection valve according to Embodiment 1 of the present invention.
FIG. 2 is an enlarged sectional view showing the vicinity of a valve seat of a valve device in the in-cylinder fuel injection valve according to Embodiment 1 of the present invention;
FIG. 3 is a sectional view taken along the line III-III in FIG. 2;
FIG. 4 is an enlarged sectional view showing a valve seat of a valve device in the in-cylinder fuel injection valve according to Embodiment 1 of the present invention;
FIG. 5 is an enlarged cross-sectional view showing the periphery of a valve seat of a valve device in a direct injection fuel injection valve as a comparative example.
FIG. 6 is an enlarged sectional view showing the vicinity of a valve seat of a valve device in a direct injection fuel injection valve according to Embodiment 2 of the present invention;
7 is a sectional view taken along the line VII-VII in FIG.
[Explanation of symbols]
Reference Signs List 1 fuel injection valve for in-cylinder injection, 3 valve device, 4 valve body, 7 valve seat, 8 injection hole, 9 needle valve (valve element), 10 and 10A revolving body, 14 first end face, 16a outer peripheral face, 16b flow Road, 22 annular inner circumferential groove, 23 turning groove, 24 seat surface, 25 taper surface, 29 turning channel.

Claims (2)

中空状の弁本体と、この弁本体の一端に配設され、噴射孔が設けられた弁座と、上記弁本体内を軸方向に往復移動可能に配設され、上記弁座に接離して上記噴射孔を開閉する弁体と、上記弁体の周囲に配設され、上記弁体を摺動可能に支持するとともに、上記噴射孔から流出する燃料に旋回を与える旋回体とを有する弁装置を備えた燃料噴射弁において、
上記旋回体は、上記弁本体の内周面に接して該弁本体に対する位置を規定する複数の外周面部と、上記外周面部間に設けられて軸方向の流路を形成する複数の流路部と、上記旋回体の上記弁座に面する軸方向端面の内周に構成される環状の旋回流路と、一端が上記複数の流路部のそれぞれに接続され、他端が上記旋回流路に対して接線方向に延びて該旋回流路に接続される複数の旋回溝とを有し、
上記弁座は、上記噴射孔の上流側に第1の開き角度で形成されて、上記弁体が接離されるシート面と、上記シート面の上流側に第2の開き角度で形成されたテーパ面とを有し、
上記テーパ面の開口直径が上記旋回流路の外径より大きく、かつ、上記第2の開き角度が上記第1の開き角度より大きいことを特徴とする燃料噴射弁。
A hollow valve main body, a valve seat provided at one end of the valve main body, provided with an injection hole, and disposed so as to be able to reciprocate in the valve main body in the axial direction, and come into contact with and separate from the valve seat. A valve device having a valve body that opens and closes the injection hole, and a revolving body that is disposed around the valve body, slidably supports the valve body, and gives a swirl to fuel flowing out of the injection hole. In a fuel injection valve provided with
A plurality of outer peripheral surfaces that are in contact with an inner peripheral surface of the valve main body and define a position with respect to the valve main body; and a plurality of flow path units that are provided between the outer peripheral surface portions and form an axial flow path. An annular swirl flow path formed on the inner periphery of an axial end face of the revolving body facing the valve seat; one end connected to each of the plurality of flow path units; A plurality of swirl grooves extending tangentially to the swirl flow path,
The valve seat is formed at a first opening angle on the upstream side of the injection hole, and a seat surface on which the valve element is brought into contact with or separated from the valve body, and a taper formed at a second opening angle on the upstream side of the seat surface. Surface and
A fuel injection valve, wherein an opening diameter of the tapered surface is larger than an outer diameter of the swirl flow path, and the second opening angle is larger than the first opening angle.
環状溝がその外周を上記複数の旋回溝の軸心から遠い側の側面に接するように上記旋回体の上記弁座に面する軸方向端面の内周に形成され、上記旋回流路を構成していることを特徴とする請求項1記載の燃料噴射弁。An annular groove is formed on an inner periphery of an axial end face of the revolving body facing the valve seat so that an outer periphery thereof is in contact with a side surface farther from the axis of the plurality of revolving grooves, and constitutes the revolving flow path. The fuel injection valve according to claim 1, wherein
JP2002326875A 2002-11-11 2002-11-11 Fuel injection valve Expired - Fee Related JP3730951B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002326875A JP3730951B2 (en) 2002-11-11 2002-11-11 Fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002326875A JP3730951B2 (en) 2002-11-11 2002-11-11 Fuel injection valve

Publications (2)

Publication Number Publication Date
JP2004162545A true JP2004162545A (en) 2004-06-10
JP3730951B2 JP3730951B2 (en) 2006-01-05

Family

ID=32805687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002326875A Expired - Fee Related JP3730951B2 (en) 2002-11-11 2002-11-11 Fuel injection valve

Country Status (1)

Country Link
JP (1) JP3730951B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223026A (en) * 2009-03-20 2010-10-07 Denso Corp Fuel injection valve
CN111207016A (en) * 2020-03-17 2020-05-29 莆田市宏业精密机械有限公司 Direct-control high-pressure common rail oil sprayer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010223026A (en) * 2009-03-20 2010-10-07 Denso Corp Fuel injection valve
CN111207016A (en) * 2020-03-17 2020-05-29 莆田市宏业精密机械有限公司 Direct-control high-pressure common rail oil sprayer

Also Published As

Publication number Publication date
JP3730951B2 (en) 2006-01-05

Similar Documents

Publication Publication Date Title
KR100291973B1 (en) Fuel injection valve
KR100282108B1 (en) Fuel injection valve
US9194351B2 (en) Injection valve
JP5875443B2 (en) Fuel injection valve
JP4024144B2 (en) Fuel injection device
WO2016063390A1 (en) Valve device for fuel injection valve
JP2010180784A (en) Fuel ejection nozzle
JP2004169572A (en) Fuel injection valve
JP2009250122A (en) Fuel injection valve
JP4215004B2 (en) Fuel injection valve
JP4089915B2 (en) Fuel injection valve
KR100348976B1 (en) Cylinder injection type fuel injection valve
JP2004162545A (en) Fuel injection valve
JP6141350B2 (en) Fuel injection valve
JP2008231928A (en) Fuel injection valve
JP2005325800A (en) Fluid injection valve
US6609665B2 (en) Fuel injection valve
JP3771746B2 (en) In-cylinder fuel injection valve
CZ20003352A3 (en) Fuel injection valve
JP4145843B2 (en) Fuel injection valve
US7337986B2 (en) Fuel injection valve
JP4191760B2 (en) Fuel injection valve
JP3827084B2 (en) Fuel injection valve
JP3625110B2 (en) Fuel injection valve
JP3714212B2 (en) In-cylinder fuel injection valve

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051007

R150 Certificate of patent or registration of utility model

Ref document number: 3730951

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091014

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101014

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111014

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121014

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131014

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees