[go: up one dir, main page]

JP2004157080A - X-ray fluorescence analyzer - Google Patents

X-ray fluorescence analyzer Download PDF

Info

Publication number
JP2004157080A
JP2004157080A JP2002325144A JP2002325144A JP2004157080A JP 2004157080 A JP2004157080 A JP 2004157080A JP 2002325144 A JP2002325144 A JP 2002325144A JP 2002325144 A JP2002325144 A JP 2002325144A JP 2004157080 A JP2004157080 A JP 2004157080A
Authority
JP
Japan
Prior art keywords
sample
drive shaft
holder
rotating
irradiation position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002325144A
Other languages
Japanese (ja)
Other versions
JP3677765B2 (en
Inventor
Etsuhisa Yamamoto
悦久 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rigaku Corp
Original Assignee
Rigaku Industrial Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rigaku Industrial Corp filed Critical Rigaku Industrial Corp
Priority to JP2002325144A priority Critical patent/JP3677765B2/en
Publication of JP2004157080A publication Critical patent/JP2004157080A/en
Application granted granted Critical
Publication of JP3677765B2 publication Critical patent/JP3677765B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

【課題】試料ホルダを円周経路で搬送する際に試料方向を維持し、照射位置と指定位置での試料方向の初期化を不要にできる蛍光X線分析装置を提供する。
【解決手段】r駆動手段37は、試料3 に1次X線2 が照射される照射位置と、試料ホルダ34の交換が行われる投入位置との間で、r駆動軸43を回転させて試料ホルダ34をr駆動軸43中心の円周方向に搬送し、かつ、照射位置でr駆動軸43を回転させて試料3 の測定部分を前記円周方向に位置決めする。θ駆動手段38は、θ駆動軸53を回転させて試料ホルダ34をその中心軸まわりに回転させる機能を有し、照射位置でθ駆動軸53を回転させて前記測定部分を前記中心軸まわりに位置決めする。r駆動軸43とθ駆動軸53が同心の2重軸を構成する。前記測定部分の指定が行われる指定位置が照射位置とは異なる位置であり、試料ホルダ34がr駆動手段37により搬送されてr駆動軸43まわりに公転する際に自転しないように、θ駆動軸53を回転させる制御手段111 を備える。
【選択図】 図1
Provided is an X-ray fluorescence spectrometer capable of maintaining a sample direction when a sample holder is conveyed along a circumferential path and eliminating the need to initialize the sample direction at an irradiation position and a designated position.
An r driving means (37) rotates an r driving shaft (43) between an irradiation position at which a primary X-ray (2) is irradiated to a sample (3) and an input position at which a sample holder (34) is replaced. The holder 34 is conveyed in the circumferential direction around the center of the r drive shaft 43, and the measuring portion of the sample 3 is positioned in the circumferential direction by rotating the r drive shaft 43 at the irradiation position. The θ driving means 38 has a function of rotating the θ drive shaft 53 to rotate the sample holder 34 around its central axis, and rotating the θ drive shaft 53 at the irradiation position to move the measurement portion around the central axis. Position. The r drive shaft 43 and the θ drive shaft 53 form a concentric double shaft. The designated position at which the designation of the measurement portion is performed is different from the irradiation position, and the θ drive shaft is used so that the sample holder 34 does not rotate when it is conveyed by the r drive means 37 and revolves around the r drive shaft 43. Control means 111 for rotating the motor 53.
[Selection diagram] Fig. 1

Description

【0001】
【発明の属する技術分野】
本発明は、1次X線が照射される照射位置に試料を搬送し、照射位置で試料の測定部分を位置決めして分析を行う蛍光X線分析装置に関する。
【0002】
【従来の技術】
例えば、試料ホルダに装着され、ターレット(板状の回転体)に載せられた試料を、試料ホルダの交換が行われる投入位置から、1次X線を照射する照射位置のrθステージへ、ターレットを回転させることにより搬送し、その照射位置でrθステージを適切に駆動して試料の測定部分を位置決めし、任意の微小部分の分析を行う蛍光X線分析装置がある。このような装置では、位置決めと測定を繰り返して複数の測定部分について分析することにより、マッピング分析(分布分析)を行うことができる。測定部分の指定は、例えば、投入位置と照射位置の間の適切な位置にCCDカメラなどの撮像手段を設置してその位置を指定位置とし、搬送中に試料ホルダを指定位置で一旦停止させ、撮像手段で撮像した試料表面を見ながら画面上で行う。
【0003】
【発明が解決しようとする課題】
ところが、試料ホルダがターレットの回転により搬送される際、つまりターレットの回転軸まわりに公転する際、試料ホルダはターレットに対しては静止しているため、搬送の回転角と同じだけ、同時に自転(円筒状である試料ホルダ自身の中心軸まわりの回転)もすることになる。ターレット15の回転で搬送される試料ホルダにおける試料3の方向3dを、試料3の上面に矢印を付すことにより、搬送の回転角90度ごとに例示すると、図7のようになる。したがって、指定位置と照射位置とにおいても、試料の方向が変わってしまう。かといって、指定位置と照射位置を同じ位置にすること、つまり、照射位置においてX線管などに干渉しないようにCCDカメラなどを設けることは困難である。
【0004】
この不具合を解消するために、例えば下記特許文献1に記載の蛍光X線分析装置において、以下のような工夫がなされている。試料ホルダ(試料)Sに基準マークMを設けておき、指定位置(画像測定部)においてθステージなどの回転機構で試料ホルダSを回転させて、レーザー変位計などの検出器5bで基準マークMの回転方向の位置を検出し、基準マークMが3時の方向にくるようにθステージを停止させて試料Sの方向を初期化してから、測定部分pの指定を行う。次に、試料ホルダSを照射位置(蛍光X線測定部)に搬送し、同様に回転機構および検出器5Bを用いて試料Sの方向を初期化してから、試料Sの測定部分Pの位置決めを行う。つまり、照射位置と指定位置の両方において、試料の方向の初期化のために、回転機構および検出器が必要で装置の構成が複雑になり、また時間もかかる。
【0005】
【特許文献1】
特開2002−39972号公報(段落0015〜0018、図2)
【0006】
本発明は前記従来の問題に鑑みてなされたもので、試料ホルダを円周経路で搬送する際に試料の方向を維持して、照射位置および指定位置における試料の方向の初期化を不要にできる蛍光X線分析装置を提供することを目的とする。
【0007】
【課題を解決するための手段】
前記目的を達成するために、本発明の装置は、試料に1次X線を照射して発生する2次X線の強度を測定する蛍光X線分析装置であって、以下のr駆動手段とθ駆動手段とを備える。r駆動手段は、試料ホルダに装着された試料に1次X線が照射される照射位置と、試料ホルダの交換が行われる投入位置との間で、r駆動軸を回転させることにより試料ホルダを前記r駆動軸を中心とする円周方向に搬送し、かつ、前記照射位置で前記r駆動軸を回転させることにより試料の測定部分を前記円周方向に位置決めする。θ駆動手段は、θ駆動軸を回転させることにより試料ホルダをその中心軸まわりに回転させる機能を有して、前記照射位置で前記θ駆動軸を回転させることにより試料の測定部分を前記中心軸まわりに位置決めする。そして、前記r駆動軸およびθ駆動軸が同心の2重軸を構成する。
【0008】
ここで、試料の測定部分の指定が行われる指定位置が前記照射位置とは異なる位置であり、この蛍光X線分析装置は、試料ホルダが前記r駆動手段により搬送されてr駆動軸まわりに公転する際に自転しないように、前記θ駆動軸を回転させる制御手段をさらに備える。
【0009】
本発明の装置によれば、試料ホルダがr駆動軸まわりに搬送されて公転する際に自転しないように、制御手段がθ駆動軸を適切に回転させるので、試料の方向が維持され、照射位置および指定位置における試料の方向の初期化を不要にできる。
【0010】
【発明の実施の形態】
以下、本発明の一実施形態の装置について、構成から説明する。図1の縦断面図に示すように、この装置は、まず、真空引きされるチャンバ39内で試料3にX線管などのX線源1から1次X線2を下方から照射して、発生する2次X線5の強度を検出手段6で測定する下面照射型蛍光X線分析装置である。検出手段6は、発散ソーラースリット、分光素子、受光ソーラースリット、検出器などを含むが、ここでは、発散ソーラースリットのみを図示している。なお、SSDのようにエネルギー分解能の高い検出器を用いる場合には、分光素子を備える必要はない。また、本発明は、下面照射型に限定されず、試料に上方から1次X線を照射する上面照射型でもよい。
【0011】
この装置は、以下のr駆動手段37とθ駆動手段38とを備える。r駆動手段37は、チャンバ39を除去した斜視図である図2に示すように、試料ホルダ34Aに装着された試料3AにX線源1から1次X線2(図1)が照射される照射位置(図1、図2での右側)と、試料ホルダ34Bの交換が行われる投入位置(図1、図2での左側)との間で、r駆動軸43(図1)を回転させることにより試料ホルダ34A,34Bをr駆動軸43を中心とする円周方向rに搬送し、かつ、前記照射位置でr駆動軸43を回転させることにより試料3Aの測定部分を円周方向rに位置決めする。図2で左側の投入位置から手前側を経て右側の照射位置へ至る半円周を搬送往路とし、右側の照射位置から奥側を経て左側の投入位置へ戻る半円周を搬送復路とし、円周全体を搬送経路とする。
【0012】
より具体的には、図1に示すように、r駆動手段37は、ステッピングモータであるr駆動モータ40、そのr駆動モータ40の回転軸に伝達部49を介して連結された円柱状のr駆動体41、そのr駆動体41の円筒状の下端部で直径方向(図1では紙面垂直方向)に連結されたピン42、そのピン42が係合する溝を上端部に有する円柱状のr駆動軸43、そのr駆動軸43の下端部に連結された水平の円板状のステージ45、そのステージ45にそれぞれ軸受け47A,47Bを介して取り付けられ、試料ホルダ34A,34Bがそれぞれ載置される2つのホルダ受け48A,48Bなどを含む。2つのホルダ受け48A,48Bは、前記円周方向r(図2)に180度離れた位置に設けられている。伝達部49は、r駆動モータ40の回転軸に連結されたプーリ63、r駆動体41を回転軸として連結されたプーリ65、および両プーリ63,65に掛けられたベルト64からなる。
【0013】
ホルダ受け48A,48Bは、ステージ45に軸受け47A,47Bを介して取り付けられる輪状歯車61A,61Bと、それに載置されるカップ状のホルダ受け本体62A,62Bとからなる。ホルダ受け本体62A,62Bの上端部外周には段部(つば)が形成され、輪状歯車61A,61Bの上部内周側に、ホルダ受け本体62A,62Bの上部外周側が嵌入、係合する。ホルダ受け本体62A,62Bの底部(下部)は底板の周縁部を残して開口しており、その底部内側に、試料ホルダ34A,34Bの下部外周に形成された下側段部が嵌入、係合するように載置される。試料ホルダ34A,34Bは底付き円筒状であるが、底部は底板の周縁部を残して開口しており、その底部内側に、円板状の試料3A,3Bの外周部が嵌入、係合するように装着され、試料ホルダ34A,34Bの底部の開口を通って1次X線2が試料3Aの下面に照射される。また、試料ホルダ34A,34Bの上端部外周には上側段部が形成されている。
【0014】
ステージ45には、図2のように上面外周部3箇所において、車輪状のベアリング46D,46E,46Fの軸がねじ込まれて取り付けられ、図1のチャンバ39の円筒状の壁の内面に対しベアリング46D,46E,46Fの外周がころがる。また、ステージ45の下面外周部に対しベアリング46G,46H,46I(図1に46G,46Hを示し、図2に46Iを示す)の外周がころがるように、ベアリング46G,46H,46Iの軸が、水平に設定され、チャンバ39に固定されている(固定の様子については図示を省略している)。これらのベアリング46D,46E,46F,46G,46H,46Iを用いた支持構造により、ステージ45は、r駆動軸43を中心として円周方向rに回転自在である。
【0015】
θ駆動手段38は、図2に示すように、θ駆動軸53を回転させることにより試料ホルダ34A,34Bを各中心軸CA ,CB まわり(θA ,CB 方向)に回転させる機能を有して、前記照射位置でθ駆動軸53を回転させることにより試料3Aの測定部分を前記中心軸CA まわり(θA 方向)に位置決めする。
【0016】
より具体的には、図1に示すように、θ駆動手段38は、ステッピングモータであるθ駆動モータ50、そのθ駆動モータ50の回転軸に伝達部59を介して連結され、中間部において軸受け55を介して内側のr駆動体41と相対回転自在な段付き円筒状のθ駆動体52、そのθ駆動体52の下端部の溝が係合する突起を上端部に有し、下端部において軸受け54を介して内側のr駆動軸43と相対回転自在な円筒状のθ駆動軸53、そのθ駆動軸53の下端部外周に設けられた歯車に外周が噛み合う前記ホルダ受け48A,48Bなどを含む。チャンバ39の上部(天板)には、円筒状のカバー80が取り付けられており、その内側に位置するθ駆動体52は、中間部において軸受け81を介してカバー80と相対回転自在である。r駆動軸43はθ駆動軸53を貫通し、両者は同心の2重軸を構成している。伝達部59は、θ駆動モータ50の回転軸に連結されたプーリ73、θ駆動体52を回転軸として連結されたプーリ75、および両プーリ73,75に掛けられたベルト74からなる。
【0017】
r,θ駆動モータ40,50は、回転位置が検出できるものであればよく、ステッピングモータ以外に、サーボモータを用いてもよく、また、回転位置検出をしないモータと回転位置検出のためのエンコーダとを組み合わせたものを用いてもよい。また、r駆動体41とθ駆動体52との間、θ駆動体52とカバー80との間、カバー80とチャンバ39の上部(天板)との間は、いずれも適切にシールされる。なお、図1は、図2の縦断面図であるが、ステージ45およびチャンバ39の外周部においては、ベアリング46D,46E,46G,46Hの軸を通る断面を示す。
【0018】
また、この実施形態の装置は、図1に示すように、前記投入位置で試料ホルダ34Bの交換つまり試料3Bの交換を行うための以下のような試料交換手段90を備えている。まず、投入位置にある試料ホルダ34Bおよびホルダ受け本体62Bが、図3に示すように上方へ移動できるように、チャンバ39の上部には開口39aが設けられており、その開口39aを介してチャンバ39内と連通する円筒状の交換筒91がチャンバ39の上面に取り付けられている。その交換筒91の上部を密閉する蓋体92は、一対のステー93a,93bを介して図示しない移動機構により水平方向および上下方向に移動される。蓋体92の内部には、試料ホルダ34Bを把持、解放するための一対の爪94a,94bを有する把持部94が設けられている。
【0019】
また、交換筒91の中心軸に沿って上下動する円柱状の交換軸95が設けられ、その先端部には、試料ホルダ34Bを載置する円板状のホルダ台96が取り付けられている。交換軸95の外側には摺動自在の2重軸を構成するホルダ受け台97が設けられており、ホルダ受け台97の上部は底付き円筒状に形成され、上端部にホルダ受け本体62Bの底部が嵌入するように載置される。ホルダ受け台97の下方で、交換軸95には段付き円筒状のばね止め98が取り付けられ、交換軸95の溝に嵌め込まれたリング99により下方向への移動を規制されている。そして、ホルダ受け台97とばね止め98との間に挿入されたコイルばね100の伸長力により、ホルダ受け台97は、交換軸95に対し上方に押し上げられ、ホルダ受け台97の底の内面にはホルダ台96の下面が当接する。
【0020】
なお、交換筒91の内側には、ホルダ受け台97に載置されたホルダ受け本体62Bの上端が下から当接する段部91aが形成されている。また、蓋体92と交換筒91との間、交換筒91とチャンバ39との間、交換筒91の段部とホルダ受け本体62Bとの間、ホルダ受け本体62Bとホルダ受け台97との間、ホルダ受け台97と交換軸95との間は、いずれも適切にシールされる。
【0021】
また、この実施形態の装置では、図2に示すように、左側の投入位置から手前側を経て右側の照射位置へ至る前記搬送往路の中間に、下方から試料表面を見上げるCCDカメラなどの撮像手段110を設置し、搬送経路におけるその位置を指定位置としている。測定部分の指定は、往路搬送中に試料ホルダ34を指定位置で一旦停止させ、撮像手段110で撮像した試料表面を操作者が見ながら画面上で行う。搬送経路において指定位置を照射位置や投入位置とは異なる位置とするのは、照射位置のX線源1や投入位置の試料交換手段90(図3)などに干渉しないように撮像手段110を設置するのが困難だからである。さらに、この実施形態の装置は、図1に示すように、試料ホルダ34がr駆動手段37により搬送されてr駆動軸43まわりに公転する際に自転しないように、θ駆動軸53を回転させる制御手段111を備える。この装置の他の構成については、次述の動作の説明とともに説明する。
【0022】
次に、この実施形態の装置の動作について説明する。全体の動作も制御手段111により自動的になされる。今、図1において、照射位置にある試料ホルダ34Aは、搬送された直後で、試料3Aの測定部分の位置決め前である。ここで、照射位置とは、試料ホルダ34Aに装着された試料3AにX線源1から1次X線2が照射される位置をいい、ある程度の範囲を有する。搬送された直後の位置は、そのうちの所定の基準となる位置である。このとき、もう一方の試料ホルダ34Bは、装着した試料3Bについてすでに照射位置での強度測定を終えて、投入位置にある。この段階で、図3に示すように、投入位置にある試料ホルダ34Bおよびホルダ受け本体62Bの下方から、交換軸95と一体となったホルダ台96およびホルダ受け台97が上昇してきて、試料ホルダ34Bおよびホルダ受け本体62Bを載置して押し上げ、ホルダ受け本体62Bの上端が、交換筒91の段部91aの下面に当接する。その結果、蓋体92および交換筒91の内部でホルダ受け本体62Bおよびホルダ受け台97よりも上側の空間SU は、チャンバ39内と連通しない密閉空間となる。
【0023】
そこで、この上側空間SU に空気が導入され大気圧にされるとともに、図4に示すように、試料ホルダ34Bを載置したホルダ台96および交換軸95が、コイルばね100の伸長力に打ち勝って、さらに上昇する。そして、爪94a,94bを開いて待機していた把持部94(図3)が、爪94a,94bを閉じて試料ホルダ34Bの上側段部に係合させ、試料ホルダ34Bを把持する。把持部94が試料ホルダ34Bを把持した状態で、蓋体92が移動機構により上下方向および水平方向に移動され、把持部94の爪94a,94bが開くことにより、試料ホルダ34Bは、もともと待機していた位置(図示せず)に戻される。
【0024】
さらに、試料ホルダ34Bを待機位置に戻したのと逆の手順によって、現在照射位置にある試料3A(図1)の次に分析すべき試料3Cを装着した試料ホルダ34Cが、待機位置から図3の試料ホルダ34Bの位置まで移動される。その際、蓋体92が交換筒91の上部を密閉した後、上側空間SU が真空引きされる。
【0025】
さて、以上の試料交換作業の間、チャンバ39内の真空は維持されており、また、ステージ45は、輪状歯車61Bが交換軸95およびばね止め98に干渉しない範囲で、前記円周方向rに回転できる。つまり、投入位置で試料交換をしながら、並行して以下のように照射位置で分析ができる。まず、図1の制御手段111が、r駆動手段37のr駆動モータ40およびθ駆動手段38のθ駆動モータ50を適切に回転させ、試料3Aの指定された測定部分(測定部分の指定については後述する)にX線源1から1次X線2が照射されそこから発生した2次X線5が検出手段6に入射するように、測定部分を前記円周方向rおよびθA 方向に位置決めする。そして、その測定部分に1次X線2が照射され発生する2次X線5の強度が検出手段6で測定され、蛍光X線分析がなされる。複数の測定部分が指定された場合は、位置決めおよび強度測定が順次行われ、分布分析がなされる。
【0026】
また、試料3Aにおける不均一性の問題を回避して平均化したデータを得たい場合には、上述のような位置決めを行わずに、θ駆動手段38のいわゆるスピン機能を利用して、照射位置で試料ホルダ34Aを連続回転させながら測定することにより、円状または輪状の広い測定部分について分析することもできる。なお、θ駆動軸53を回転させることにより照射位置でホルダ受け48Aを回転させると、同時に図3に示すような状態で投入位置側の輪状歯車61Bが空回りするが、問題はない。
【0027】
試料3Aについての強度測定がすべて終了すると、図1の制御手段111が、r駆動手段37のr駆動モータ40を適切に回転させ、試料ホルダ34Aを、位置決め前の位置、つまり照射位置のうちの前記所定の基準となる位置に戻す。これにより、図3に示すように、輪状歯車61Bが、厳密に試料ホルダ34Cおよびホルダ受け本体62Bの直下に位置する。そして、試料ホルダ34Cおよびホルダ受け本体62Bを載置したホルダ台96、ホルダ受け台97および交換軸95が下降し、試料ホルダ34Cは、図1に示す投入位置にくる。これで、投入位置における試料3Bから試料3Cへの交換作業が完了する。
【0028】
次に、制御手段111が、r駆動手段37のr駆動モータ40を適切に(この実施形態の装置では上から見て左回りに90度)回転させ、投入位置の試料ホルダ34Cを指定位置に移動させると、撮像手段110(図2)で撮像された試料3Cの表面の画像が、CRTなどの表示手段112の画面112aに表示される。このとき、試料3C表面の中心が画面112aの中心にくるように、撮像手段110(図2)が設置されている。
【0029】
そして、操作者により、表示手段112の画面112aに表示された試料3C表面の画像に基づいて、試料3Cの測定部分(複数でもよい)が指定される。この指定は、制御手段111含まれる指定手段113を用いて、例えばマウス113aで画面上112aのポインタ113bを所望の測定すべき部分まで移動させ、そこでクリックすることにより行われる。指定された測定部分のデータは、試料3C表面の中心(画面112aの中心でもある)を原点とする座標値(rθ座標値やXY座標値)として指定手段113に記憶される。
【0030】
試料3Cについて操作者による測定部分の指定が終了すると、その測定のため、制御手段111が、r駆動手段37のr駆動モータ40を適切に(この実施形態の装置では上から見て左回りに90度)回転させ、指定位置の試料ホルダ34Cを照射位置に移動させる。さて、このように試料ホルダ34Cがr駆動軸43まわりに搬送されて公転する際、前述したように、従来は、試料ホルダが搬送の回転角と同じだけ、同時に自転もして(図7)、指定位置と照射位置とで試料の方向が変わってしまうという問題があった。
【0031】
この実施形態の装置においても、もし、搬送の際、θ軸駆動53を回転させずにr駆動軸43のみを回転させると、静止したθ駆動軸53まわりに、ステージ45とともにホルダ受け48A,48Bも回転し、ホルダ受け48A,48Bの輪状歯車61A,61Bは、θ駆動軸53の下端部外周に設けられた歯車に噛み合っているので、ホルダ受け48A,48Bとそこに載置された試料ホルダ34A,34Cは、自転することになる。例えば、この実施形態の装置において輪状歯車61A,61Bとθ駆動軸53の歯車の直径、歯数が共通であるとすると、搬送の回転角の2倍分、試料ホルダ34が自転することになる。ステージ45の回転で搬送される試料ホルダ34における試料3の方向3dを、試料3の上面に矢印を付すことにより、搬送の回転角90度ごとに例示すると、図6のようになる。このように従来よりも大きい角速度で自転すると、自転の慣性力により、図1の試料ホルダ34がホルダ受け48に対してスリップして、その分さらに指定位置と照射位置とで試料の方向が変わってしまうなどのおそれも生じる。
【0032】
そこで、本発明の装置においては、制御手段111により、試料ホルダ34がr駆動手段37により搬送されてr駆動軸43まわりに公転する際に自転しないように、θ駆動軸53を回転させる。例えば、この実施形態の装置では、搬送の回転角の2倍分、θ駆動手段38のθ駆動モータ50をr駆動モータ40とは逆向きに回転させて、試料ホルダ34の自転運動を打ち消す。この動作は、搬送経路全体においてなされる。ステージ45の回転で搬送される試料ホルダ34における試料3の方向3dを、試料3の上面に矢印を付すことにより、搬送の回転角90度ごとに例示すると、図5のようになる。本発明においては、搬送経路のどこにおいても、試料の方向は変わらない。
【0033】
このようにして、図1の制御手段111は、試料3Cの測定のため、r駆動手段37のr駆動モータ40およびθ駆動手段38のθ駆動モータ50を適切に回転させ、指定位置の試料ホルダ34Cを自転させずに照射位置に移動させる。したがって、この実施形態の装置によれば、試料ホルダ34Cがr駆動軸43まわりに搬送される際、試料3Cの方向が維持され、照射位置および指定位置における試料3Cの方向の初期化を不要にできる。
【0034】
指定位置の試料ホルダ34Cを照射位置に移動させると同時に、もう一方の試料ホルダ34Aを投入位置に移動させ、以上の手順を繰り返す。続けて分析する試料3Cがない場合には、分析済みの試料3Aを装着した試料ホルダ34Aを、前述したように待機位置に戻して、分析作業を終了する。
【0035】
なお、指定位置はステージ45の回転による搬送経路外でもよい。例えば、蛍光X線分析装置本体の外に撮像手段110を設置し、前述したのと同様に試料ホルダ34に装着した試料3について測定部分を指定した後、試料ホルダ34をそれぞれの前記待機位置に載置し(載置にあたり、操作者から見た試料3の方向を指定時と同じ向きにする)、前記試料交換手段90による待機位置から投入位置までの移動において、操作者から見た試料3の方向を維持するようにしておけば、投入位置以降のステージ45の回転による搬送経路においては、前述したように試料3の方向は維持されるので、やはり、照射位置および指定位置における試料3の方向の初期化を不要にできる。
【0036】
【発明の効果】
以上詳細に説明したように、本発明の蛍光X線分析装置によれば、試料ホルダがr駆動軸まわりに搬送されて公転する際に自転しないように、制御手段がθ駆動軸を適切に回転させるので、試料の方向が維持され、照射位置および指定位置における試料の方向の初期化を不要にできる。
【図面の簡単な説明】
【図1】本発明の一実施形態である下面照射型蛍光X線分析装置を示す縦断面図である。
【図2】同装置のチャンバを除去した斜視図である。
【図3】同装置の試料交換機構を示す縦断面図である。
【図4】同装置の試料交換機構の別の状態を示す縦断面図である。
【図5】同装置においてステージの回転で搬送される試料の方向を、搬送の回転角90度ごとに例示した図である。
【図6】同装置において仮にθ軸駆動を停止したままでステージを回転させた場合に搬送される試料の方向を、搬送の回転角90度ごとに例示した図である。
【図7】従来の蛍光X線分析装置においてターレットの回転で搬送される試料の方向を、搬送の回転角90度ごとに例示した図である。
【符号の説明】
2…1次X線、3…試料、5…2次X線、34…試料ホルダ、37…r駆動手段、38…θ駆動手段、43…r駆動軸、53…θ駆動軸、111…制御手段、C…試料ホルダの中心軸、r…円周方向、θ…中心軸まわり。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fluorescent X-ray analyzer that transports a sample to an irradiation position where primary X-rays are irradiated, positions a measurement portion of the sample at the irradiation position, and performs analysis.
[0002]
[Prior art]
For example, the sample mounted on the sample holder and placed on the turret (plate-like rotating body) is transferred from the input position where the sample holder is replaced to the rθ stage at the irradiation position where the primary X-ray is irradiated. There is a fluorescent X-ray analyzer that transports the sample by rotating it, appropriately drives the rθ stage at the irradiation position, positions the measurement portion of the sample, and analyzes an arbitrary minute portion. In such an apparatus, mapping analysis (distribution analysis) can be performed by repeating positioning and measurement to analyze a plurality of measurement portions. The designation of the measurement portion is, for example, installing an imaging means such as a CCD camera at an appropriate position between the input position and the irradiation position, setting that position as the designated position, and temporarily stopping the sample holder at the designated position during transport, This is performed on the screen while watching the sample surface imaged by the imaging means.
[0003]
[Problems to be solved by the invention]
However, when the sample holder is transported by the rotation of the turret, that is, revolves around the rotation axis of the turret, since the sample holder is stationary with respect to the turret, the sample holder simultaneously rotates by the same rotation angle as the transport ( (Rotation about the central axis of the cylindrical sample holder itself). FIG. 7 illustrates the direction 3d of the sample 3 in the sample holder conveyed by the rotation of the turret 15 at every 90 ° rotation angle of conveyance by attaching an arrow to the upper surface of the sample 3. Therefore, the direction of the sample changes between the designated position and the irradiation position. However, it is difficult to make the designated position the same as the irradiation position, that is, to provide a CCD camera or the like so as not to interfere with the X-ray tube or the like at the irradiation position.
[0004]
In order to solve this problem, for example, in a fluorescent X-ray analyzer described in Patent Literature 1 below, the following device has been devised. A reference mark M is provided on a sample holder (sample) S, and the sample holder S is rotated at a designated position (image measurement unit) by a rotation mechanism such as a θ stage, and the reference mark M is detected by a detector 5b such as a laser displacement meter. , The θ stage is stopped so that the reference mark M is in the direction of 3 o'clock, the direction of the sample S is initialized, and then the measurement portion p is specified. Next, the sample holder S is transported to the irradiation position (the fluorescent X-ray measurement unit), and the direction of the sample S is initialized using the rotation mechanism and the detector 5B in the same manner. Do. That is, at both the irradiation position and the designated position, a rotation mechanism and a detector are required for initializing the direction of the sample, which complicates the configuration of the apparatus and takes time.
[0005]
[Patent Document 1]
JP-A-2002-39972 (paragraphs 0015 to 0018, FIG. 2)
[0006]
The present invention has been made in view of the above-described conventional problems, and can maintain the direction of a sample when transporting the sample holder along a circumferential path, thereby making it unnecessary to initialize the direction of the sample at an irradiation position and a designated position. An object of the present invention is to provide a fluorescent X-ray analyzer.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, an apparatus of the present invention is an X-ray fluorescence analyzer for measuring the intensity of secondary X-rays generated by irradiating a sample with primary X-rays. θ driving means. The r driving means rotates the r drive shaft between an irradiation position at which the primary X-ray is irradiated to the sample mounted on the sample holder and an input position at which the sample holder is exchanged, thereby causing the sample holder to rotate. The measurement part of the sample is positioned in the circumferential direction by transporting in the circumferential direction around the r drive shaft and rotating the r drive shaft at the irradiation position. The θ drive means has a function of rotating the sample holder around its central axis by rotating the θ drive axis, and rotating the θ drive axis at the irradiation position to move the measurement portion of the sample to the central axis. Position around. The r drive shaft and the θ drive shaft constitute a concentric double shaft.
[0008]
Here, the designated position where the measurement portion of the sample is designated is a position different from the irradiation position. In this X-ray fluorescence spectrometer, the sample holder is conveyed by the r driving means and revolves around the r driving axis. And a control unit for rotating the θ drive shaft so that the θ drive shaft does not rotate.
[0009]
According to the apparatus of the present invention, the control means appropriately rotates the θ drive shaft so that the sample holder is not rotated when conveyed around the r drive shaft and revolves, so that the direction of the sample is maintained and the irradiation position is maintained. Also, it is not necessary to initialize the direction of the sample at the designated position.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an apparatus according to an embodiment of the present invention will be described from the configuration. As shown in the longitudinal sectional view of FIG. 1, this apparatus first irradiates a sample 3 with primary X-rays 2 from below from an X-ray source 1 such as an X-ray tube in a chamber 39 to be evacuated. This is a bottom-illuminated X-ray fluorescence spectrometer that measures the intensity of the generated secondary X-rays 5 with the detection means 6. The detection means 6 includes a divergent solar slit, a spectral element, a light-receiving solar slit, a detector, and the like. Here, only the divergent solar slit is illustrated. When a detector having a high energy resolution such as an SSD is used, it is not necessary to provide a spectral element. Further, the present invention is not limited to the bottom irradiation type, but may be a top irradiation type in which the sample is irradiated with primary X-rays from above.
[0011]
This device includes the following r driving means 37 and θ driving means 38. The r driving means 37 irradiates the sample 3A mounted on the sample holder 34A with the primary X-ray 2 (FIG. 1) from the X-ray source 1, as shown in FIG. The r drive shaft 43 (FIG. 1) is rotated between an irradiation position (the right side in FIGS. 1 and 2) and an input position (the left side in FIGS. 1 and 2) where the sample holder 34B is replaced. Thus, the sample holders 34A and 34B are conveyed in the circumferential direction r around the r drive shaft 43, and the measured portion of the sample 3A is moved in the circumferential direction r by rotating the r drive shaft 43 at the irradiation position. Position. In FIG. 2, the semicircle from the input position on the left side to the irradiation position on the right side through the near side is defined as the transport forward path, and the semicircle returning from the irradiation position on the right side to the input position on the left side via the back side is defined as the transport return path. The entire circumference is defined as a transport route.
[0012]
More specifically, as shown in FIG. 1, the r driving means 37 includes an r driving motor 40 which is a stepping motor, and a columnar r connected to a rotating shaft of the r driving motor 40 via a transmission unit 49. A driving body 41, a pin r connected to a cylindrical lower end of the driving body 41 in a diametrical direction (a direction perpendicular to the paper surface in FIG. 1), and a cylindrical r having an upper end with a groove in which the pin 42 engages. The drive shaft 43, a horizontal disk-shaped stage 45 connected to the lower end of the r drive shaft 43, and are mounted on the stage 45 via bearings 47A and 47B, respectively, and the sample holders 34A and 34B are mounted respectively. And two holder receivers 48A and 48B. The two holder receivers 48A and 48B are provided at positions separated by 180 degrees in the circumferential direction r (FIG. 2). The transmission unit 49 includes a pulley 63 connected to the rotation shaft of the r drive motor 40, a pulley 65 connected with the r drive body 41 as a rotation shaft, and a belt 64 hung on the pulleys 63 and 65.
[0013]
The holder receivers 48A and 48B include ring gears 61A and 61B attached to the stage 45 via bearings 47A and 47B, and cup-shaped holder receiving bodies 62A and 62B mounted on the ring gears 61A and 61B. Steps (collars) are formed on the outer periphery of the upper ends of the holder receiving bodies 62A and 62B, and the upper outer peripheral sides of the holder receiving bodies 62A and 62B are fitted and engaged with the upper inner peripheral sides of the ring gears 61A and 61B. The bottom portions (lower portions) of the holder receiving bodies 62A and 62B are open except for the peripheral edge of the bottom plate, and the lower step formed on the outer periphery of the lower portions of the sample holders 34A and 34B is fitted and engaged inside the bottom portions. It is placed so that it does. Although the sample holders 34A and 34B are cylindrical with a bottom, the bottom is open except for the peripheral edge of the bottom plate, and the outer periphery of the disk-shaped samples 3A and 3B fits into and engages with the inside of the bottom. The primary X-rays 2 are applied to the lower surface of the sample 3A through the openings at the bottoms of the sample holders 34A and 34B. An upper step is formed on the outer periphery of the upper end of each of the sample holders 34A and 34B.
[0014]
The shafts of wheel-shaped bearings 46D, 46E and 46F are screwed and attached to the stage 45 at three positions on the outer peripheral portion of the upper surface as shown in FIG. 2, and the bearings are mounted on the inner surface of the cylindrical wall of the chamber 39 in FIG. The outer periphery of 46D, 46E, 46F rolls. Also, the axes of the bearings 46G, 46H, and 46I are set so that the outer circumferences of the bearings 46G, 46H, and 46I (46G and 46H are shown in FIG. 1 and 46I is shown in FIG. 2) roll around the outer peripheral portion of the lower surface of the stage 45. It is set horizontally and fixed to the chamber 39 (the fixing state is not shown). With the support structure using these bearings 46D, 46E, 46F, 46G, 46H, and 46I, the stage 45 is rotatable in the circumferential direction r around the r drive shaft 43.
[0015]
As shown in FIG. 2, the θ driving means 38 has a function of rotating the sample holders 34A and 34B around the respective central axes CA and CB (in the θA and CB directions) by rotating the θ driving shaft 53. The measurement portion of the sample 3A is positioned around the central axis CA (the θA direction) by rotating the θ drive shaft 53 at the irradiation position.
[0016]
More specifically, as shown in FIG. 1, the θ driving means 38 is connected to a θ driving motor 50 which is a stepping motor and a rotating shaft of the θ driving motor 50 via a transmission portion 59, and a bearing is provided at an intermediate portion. A stepped cylindrical θ-driving body 52 that is rotatable relative to the inner r-driving body 41 via 55, and has a projection at the upper end that engages a groove at the lower end of the θ-driving body 52. A cylindrical θ drive shaft 53 that is rotatable relative to the inner r drive shaft 43 via a bearing 54, and the holder receivers 48 </ b> A, 48 </ b> B and the like whose outer periphery meshes with gears provided on the outer periphery of the lower end of the θ drive shaft 53. Including. A cylindrical cover 80 is attached to an upper portion (top plate) of the chamber 39, and the θ driving body 52 located inside the cylindrical cover 80 is rotatable relative to the cover 80 via a bearing 81 at an intermediate portion. The r drive shaft 43 penetrates the θ drive shaft 53, and both constitute a concentric double shaft. The transmission unit 59 includes a pulley 73 connected to the rotation shaft of the θ drive motor 50, a pulley 75 connected to the θ drive body 52 as a rotation axis, and a belt 74 hung on the pulleys 73 and 75.
[0017]
The r and θ drive motors 40 and 50 need only be able to detect the rotational position, and may use a servomotor in addition to the stepping motor. Also, a motor that does not detect the rotational position and an encoder that detects the rotational position May be used in combination. Further, the space between the r drive body 41 and the θ drive body 52, the space between the θ drive body 52 and the cover 80, and the space between the cover 80 and the upper portion (top plate) of the chamber 39 are all appropriately sealed. FIG. 1 is a longitudinal sectional view of FIG. 2, but shows a section passing through the axes of the bearings 46D, 46E, 46G, and 46H in the outer periphery of the stage 45 and the chamber 39.
[0018]
Further, as shown in FIG. 1, the apparatus of this embodiment includes the following sample exchange means 90 for exchanging the sample holder 34B, that is, exchanging the sample 3B at the loading position. First, an opening 39a is provided at the top of the chamber 39 so that the sample holder 34B and the holder receiving main body 62B at the loading position can move upward as shown in FIG. A cylindrical exchange cylinder 91 communicating with the inside of the chamber 39 is attached to the upper surface of the chamber 39. The lid 92 that seals the upper part of the exchange cylinder 91 is moved in the horizontal and vertical directions by a moving mechanism (not shown) via a pair of stays 93a and 93b. A grip portion 94 having a pair of claws 94a and 94b for gripping and releasing the sample holder 34B is provided inside the lid 92.
[0019]
In addition, a column-shaped exchange shaft 95 that moves up and down along the center axis of the exchange cylinder 91 is provided, and a disk-shaped holder base 96 on which the sample holder 34B is placed is attached to a tip end thereof. Outside the exchange shaft 95, a holder receiving base 97 constituting a slidable double shaft is provided. The upper part of the holder receiving base 97 is formed in a cylindrical shape with a bottom, and the upper end of the holder receiving main body 62B is provided. It is placed so that the bottom fits. Below the holder receiving base 97, a stepped cylindrical spring stopper 98 is attached to the replacement shaft 95, and its downward movement is regulated by a ring 99 fitted in a groove of the replacement shaft 95. The extension of the coil spring 100 inserted between the holder receiving base 97 and the spring stopper 98 causes the holder receiving base 97 to be pushed upward with respect to the replacement shaft 95, so that the inner surface of the bottom of the holder receiving base 97 , The lower surface of the holder base 96 contacts.
[0020]
In addition, a step portion 91 a is formed inside the replacement cylinder 91 so that the upper end of the holder receiving body 62 </ b> B placed on the holder receiving base 97 abuts from below. Also, between the lid 92 and the exchange cylinder 91, between the exchange cylinder 91 and the chamber 39, between the step portion of the exchange cylinder 91 and the holder receiving main body 62B, and between the holder receiving main body 62B and the holder receiving base 97. The space between the holder receiving base 97 and the replacement shaft 95 is properly sealed.
[0021]
Further, in the apparatus of this embodiment, as shown in FIG. 2, an image pickup means such as a CCD camera which looks up the sample surface from below in the middle of the transport forward path from the input position on the left side to the irradiation position on the right side through the near side. 110 is set, and its position on the transport route is set as a designated position. The specification of the measurement portion is performed on the screen while the operator temporarily stops the sample holder 34 at the specified position during the outward transport and looks at the sample surface imaged by the imaging unit 110. The reason why the designated position on the transport path is different from the irradiation position and the injection position is that the imaging unit 110 is installed so as not to interfere with the X-ray source 1 at the irradiation position or the sample exchange unit 90 (FIG. 3) at the injection position. Because it is difficult to do. Further, as shown in FIG. 1, the apparatus of this embodiment rotates the θ drive shaft 53 so that the sample holder 34 does not rotate when it is conveyed by the r drive means 37 and revolves around the r drive shaft 43. Control means 111 is provided. Other configurations of this device will be described together with the following description of the operation.
[0022]
Next, the operation of the device of this embodiment will be described. The entire operation is also automatically performed by the control unit 111. Now, in FIG. 1, the sample holder 34A at the irradiation position is immediately after being conveyed and before the positioning of the measurement portion of the sample 3A. Here, the irradiation position refers to a position where the sample 3A mounted on the sample holder 34A is irradiated with the primary X-ray 2 from the X-ray source 1, and has a certain range. The position immediately after being conveyed is a predetermined reference position among them. At this time, the other sample holder 34B has already finished the intensity measurement at the irradiation position with respect to the mounted sample 3B, and is at the loading position. At this stage, as shown in FIG. 3, the holder table 96 and the holder table 97 integrated with the exchange shaft 95 are lifted from below the sample holder 34B and the holder receiving body 62B at the loading position, and the sample holder The holder 34B and the holder receiving main body 62B are placed and pushed up, and the upper end of the holder receiving main body 62B abuts on the lower surface of the step portion 91a of the replacement cylinder 91. As a result, the space SU above the holder receiving main body 62 </ b> B and the holder receiving base 97 inside the lid 92 and the replacement cylinder 91 becomes a closed space that does not communicate with the inside of the chamber 39.
[0023]
Therefore, air is introduced into the upper space SU and brought to atmospheric pressure, and as shown in FIG. 4, the holder base 96 on which the sample holder 34B is placed and the replacement shaft 95 overcome the extension force of the coil spring 100. , Rise further. Then, the gripper 94 (FIG. 3), which has opened the claws 94 a and 94 b and is on standby, closes the claws 94 a and 94 b and engages with the upper step of the sample holder 34 </ b> B to grip the sample holder 34 </ b> B. With the gripper 94 gripping the sample holder 34B, the lid 92 is moved vertically and horizontally by the moving mechanism, and the claws 94a and 94b of the gripper 94 are opened. It is returned to the position (not shown).
[0024]
Further, by the reverse procedure of returning the sample holder 34B to the standby position, the sample holder 34C mounted with the sample 3C to be analyzed next to the sample 3A (FIG. 1) at the current irradiation position is moved from the standby position to the position shown in FIG. Is moved to the position of the sample holder 34B. At this time, the upper space SU is evacuated after the lid 92 seals the upper part of the replacement cylinder 91.
[0025]
During the above-mentioned sample exchange operation, the vacuum in the chamber 39 is maintained, and the stage 45 moves in the circumferential direction r within a range where the ring gear 61B does not interfere with the exchange shaft 95 and the spring stopper 98. Can rotate. That is, while exchanging the sample at the loading position, the analysis can be performed at the irradiation position in parallel as follows. First, the control unit 111 of FIG. 1 appropriately rotates the r drive motor 40 of the r drive unit 37 and the θ drive motor 50 of the θ drive unit 38, and sets the designated measurement portion of the sample 3A (for the designation of the measurement portion, The measurement portion is positioned in the circumferential direction r and the θA direction so that the primary X-ray 2 is irradiated from the X-ray source 1 and the secondary X-ray 5 generated therefrom is incident on the detecting means 6. . Then, the intensity of the secondary X-ray 5 generated by irradiating the measurement portion with the primary X-ray 2 is measured by the detecting means 6, and the fluorescent X-ray analysis is performed. When a plurality of measurement portions are specified, positioning and intensity measurement are sequentially performed, and distribution analysis is performed.
[0026]
When it is desired to obtain the averaged data while avoiding the problem of non-uniformity in the sample 3A, the above-described positioning is not performed, and the so-called spin function of the θ driving unit 38 is used. By performing the measurement while continuously rotating the sample holder 34A, it is also possible to analyze a circular or ring-shaped wide measurement part. Note that when the holder receiver 48A is rotated at the irradiation position by rotating the θ drive shaft 53, the ring gear 61B on the loading position side idles at the same time as shown in FIG. 3, but there is no problem.
[0027]
When all the intensity measurements on the sample 3A are completed, the control unit 111 of FIG. 1 appropriately rotates the r drive motor 40 of the r drive unit 37, and moves the sample holder 34A to the position before positioning, that is, the irradiation position. Return to the predetermined reference position. Thereby, as shown in FIG. 3, the ring gear 61B is strictly located immediately below the sample holder 34C and the holder receiving main body 62B. Then, the holder table 96 on which the sample holder 34C and the holder receiving body 62B are placed, the holder receiving table 97, and the replacement shaft 95 are lowered, and the sample holder 34C comes to the loading position shown in FIG. This completes the work of replacing the sample 3B with the sample 3C at the loading position.
[0028]
Next, the control unit 111 appropriately rotates the r-drive motor 40 of the r-drive unit 37 (in the device of this embodiment, 90 degrees counterclockwise when viewed from above), and moves the sample holder 34C at the input position to the designated position. When moved, an image of the surface of the sample 3C captured by the imaging unit 110 (FIG. 2) is displayed on the screen 112a of the display unit 112 such as a CRT. At this time, the imaging unit 110 (FIG. 2) is installed such that the center of the surface of the sample 3C is located at the center of the screen 112a.
[0029]
Then, based on the image of the surface of the sample 3C displayed on the screen 112a of the display means 112, the operator specifies a measurement part (or a plurality of measurement parts) of the sample 3C. This designation is performed by using the designation means 113 included in the control means 111, moving the pointer 113b of the screen 112a on the screen to a desired portion to be measured, for example, with the mouse 113a, and clicking there. The data of the designated measurement portion is stored in the designation unit 113 as coordinate values (rθ coordinate values and XY coordinate values) having the origin at the center of the surface of the sample 3C (also the center of the screen 112a).
[0030]
When the operator designates the measurement portion of the sample 3C, the control means 111 appropriately controls the r drive motor 40 of the r drive means 37 (in the apparatus of this embodiment, counterclockwise when viewed from above) for the measurement. 90 °) to move the sample holder 34C at the designated position to the irradiation position. By the way, when the sample holder 34C is conveyed around the r drive shaft 43 and revolves, as described above, conventionally, the sample holder is rotated by the same rotation angle as the conveyance (FIG. 7). There is a problem that the direction of the sample changes between the designated position and the irradiation position.
[0031]
Also in the apparatus of this embodiment, if only the r-drive shaft 43 is rotated without rotating the θ-axis drive 53 at the time of conveyance, the holder receivers 48A and 48B together with the stage 45 around the stationary θ-drive shaft 53. Also rotates, and the ring gears 61A, 61B of the holder receivers 48A, 48B mesh with the gears provided on the outer periphery of the lower end portion of the θ drive shaft 53, so that the holder receivers 48A, 48B and the sample holder mounted thereon. 34A and 34C will rotate. For example, assuming that the gears of the ring gears 61A and 61B and the θ drive shaft 53 have the same diameter and the same number of teeth in the apparatus of this embodiment, the sample holder 34 rotates by twice the rotation angle of the conveyance. . FIG. 6 illustrates the direction 3d of the sample 3 in the sample holder 34 conveyed by the rotation of the stage 45 at every 90 ° rotation angle of conveyance by giving an arrow to the upper surface of the sample 3. As described above, when the sample is rotated at a larger angular velocity than the conventional one, the sample holder 34 shown in FIG. 1 slips with respect to the holder receiver 48 due to the inertial force of the rotation, and the direction of the sample further changes between the designated position and the irradiation position. There is also a risk that it will be lost.
[0032]
Thus, in the apparatus of the present invention, the θ drive shaft 53 is rotated by the control means 111 so that the sample holder 34 is not rotated when it is conveyed by the r drive means 37 and revolves around the r drive shaft 43. For example, in the apparatus of this embodiment, the θ drive motor 50 of the θ drive means 38 is rotated in a direction opposite to that of the r drive motor 40 by twice the rotation angle of the transport to cancel the rotation of the sample holder 34. This operation is performed in the entire transport path. FIG. 5 illustrates the direction 3d of the sample 3 in the sample holder 34 conveyed by the rotation of the stage 45 at every 90 ° rotation angle of conveyance by giving an arrow to the upper surface of the sample 3. In the present invention, the direction of the sample does not change anywhere on the transport path.
[0033]
In this way, the control unit 111 of FIG. 1 appropriately rotates the r drive motor 40 of the r drive unit 37 and the θ drive motor 50 of the θ drive unit 38 for measurement of the sample 3C, and 34C is moved to the irradiation position without rotating. Therefore, according to the apparatus of this embodiment, when the sample holder 34C is transported around the r drive shaft 43, the direction of the sample 3C is maintained, and the initialization of the direction of the sample 3C at the irradiation position and the designated position becomes unnecessary. it can.
[0034]
At the same time as moving the sample holder 34C at the designated position to the irradiation position, the other sample holder 34A is moved to the loading position, and the above procedure is repeated. If there is no sample 3C to be subsequently analyzed, the sample holder 34A mounted with the analyzed sample 3A is returned to the standby position as described above, and the analysis operation is completed.
[0035]
Note that the designated position may be outside the transport path due to the rotation of the stage 45. For example, the imaging means 110 is installed outside the main body of the X-ray fluorescence spectrometer, and a measurement portion is specified for the sample 3 mounted on the sample holder 34 in the same manner as described above, and then the sample holder 34 is moved to the respective standby positions. The sample is placed (the direction of the sample 3 as viewed from the operator is the same as the direction specified at the time of mounting), and when the sample exchange unit 90 moves from the standby position to the loading position, the sample 3 as viewed from the operator is moved. Is maintained, the direction of the sample 3 is maintained as described above in the transport path by the rotation of the stage 45 after the loading position, so that the sample 3 at the irradiation position and the designated position is also maintained. It is not necessary to initialize the direction.
[0036]
【The invention's effect】
As described above in detail, according to the X-ray fluorescence spectrometer of the present invention, the control means appropriately rotates the θ drive shaft so that the sample holder does not rotate when it is transported around the r drive shaft and revolves. Therefore, the direction of the sample is maintained, and it is not necessary to initialize the direction of the sample at the irradiation position and the designated position.
[Brief description of the drawings]
FIG. 1 is a vertical sectional view showing a bottom-illuminated X-ray fluorescence spectrometer according to an embodiment of the present invention.
FIG. 2 is a perspective view of the apparatus with a chamber removed.
FIG. 3 is a longitudinal sectional view showing a sample exchange mechanism of the same device.
FIG. 4 is a longitudinal sectional view showing another state of the sample exchange mechanism of the apparatus.
FIG. 5 is a diagram exemplifying the direction of a sample conveyed by rotation of a stage in the same apparatus at every 90 ° rotation angle of conveyance.
FIG. 6 is a diagram exemplifying the direction of a sample conveyed when the stage is rotated while the θ-axis drive is stopped in the same apparatus at every 90 ° rotation angle of conveyance.
FIG. 7 is a diagram exemplifying the direction of a sample conveyed by rotation of a turret in a conventional X-ray fluorescence spectrometer at every 90 ° rotation angle of conveyance.
[Explanation of symbols]
2: Primary X-ray, 3: Sample, 5: Secondary X-ray, 34: Sample holder, 37: r drive means, 38: θ drive means, 43: r drive axis, 53: θ drive axis, 111: control Means, C: central axis of sample holder, r: circumferential direction, θ: around central axis.

Claims (1)

試料に1次X線を照射して発生する2次X線の強度を測定する蛍光X線分析装置であって、
試料ホルダに装着された試料に1次X線が照射される照射位置と、試料ホルダの交換が行われる投入位置との間で、r駆動軸を回転させることにより試料ホルダを前記r駆動軸を中心とする円周方向に搬送し、かつ、前記照射位置で前記r駆動軸を回転させることにより試料の測定部分を前記円周方向に位置決めするr駆動手段と、
θ駆動軸を回転させることにより試料ホルダをその中心軸まわりに回転させる機能を有して、前記照射位置で前記θ駆動軸を回転させることにより試料の測定部分を前記中心軸まわりに位置決めするθ駆動手段とを備え、
前記r駆動軸およびθ駆動軸が同心の2重軸を構成し、
試料の測定部分の指定が行われる指定位置が前記照射位置とは異なる位置であり、
試料ホルダが前記r駆動手段により搬送されてr駆動軸まわりに公転する際に自転しないように、前記θ駆動軸を回転させる制御手段を備えた蛍光X線分析装置。
A fluorescent X-ray analyzer for measuring the intensity of secondary X-rays generated by irradiating a sample with primary X-rays,
By rotating the r drive shaft between the irradiation position at which the sample mounted on the sample holder is irradiated with the primary X-ray and the input position at which the sample holder is replaced, the sample drive is moved to the r drive shaft. R driving means for transporting in the circumferential direction around the center, and positioning the measurement portion of the sample in the circumferential direction by rotating the r drive shaft at the irradiation position;
has a function of rotating the sample holder around its central axis by rotating the θ drive shaft, and positioning the measurement portion of the sample around the central axis by rotating the θ drive shaft at the irradiation position. And driving means,
The r drive axis and the θ drive axis constitute a concentric double axis,
The designated position where the designation of the measurement portion of the sample is performed is a position different from the irradiation position,
An X-ray fluorescence spectrometer comprising: a control unit for rotating the θ drive shaft so that the sample holder does not rotate when revolved around the r drive shaft by being conveyed by the r drive unit.
JP2002325144A 2002-11-08 2002-11-08 X-ray fluorescence analyzer Expired - Fee Related JP3677765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002325144A JP3677765B2 (en) 2002-11-08 2002-11-08 X-ray fluorescence analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002325144A JP3677765B2 (en) 2002-11-08 2002-11-08 X-ray fluorescence analyzer

Publications (2)

Publication Number Publication Date
JP2004157080A true JP2004157080A (en) 2004-06-03
JP3677765B2 JP3677765B2 (en) 2005-08-03

Family

ID=32804459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002325144A Expired - Fee Related JP3677765B2 (en) 2002-11-08 2002-11-08 X-ray fluorescence analyzer

Country Status (1)

Country Link
JP (1) JP3677765B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007107936A (en) * 2005-10-11 2007-04-26 Shimadzu Corp X-ray fluoroscopy system
CN102519996A (en) * 2011-11-18 2012-06-27 烟台东方分析仪器有限公司 Automatic sample conveying device of X-ray fluorescence spectrometer
JP2014224733A (en) * 2013-05-16 2014-12-04 コニカミノルタ株式会社 Optical characteristic measurement instrument
JP2017090353A (en) * 2015-11-13 2017-05-25 リコーエレメックス株式会社 Analysis equipment
WO2020044399A1 (en) * 2018-08-27 2020-03-05 株式会社島津製作所 X-ray analysis device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3928014B2 (en) * 2004-01-23 2007-06-13 理学電機工業株式会社 X-ray fluorescence analyzer

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007107936A (en) * 2005-10-11 2007-04-26 Shimadzu Corp X-ray fluoroscopy system
CN102519996A (en) * 2011-11-18 2012-06-27 烟台东方分析仪器有限公司 Automatic sample conveying device of X-ray fluorescence spectrometer
JP2014224733A (en) * 2013-05-16 2014-12-04 コニカミノルタ株式会社 Optical characteristic measurement instrument
JP2017090353A (en) * 2015-11-13 2017-05-25 リコーエレメックス株式会社 Analysis equipment
WO2020044399A1 (en) * 2018-08-27 2020-03-05 株式会社島津製作所 X-ray analysis device
TWI725511B (en) * 2018-08-27 2021-04-21 日商島津製作所股份有限公司 X-ray analysis device
JPWO2020044399A1 (en) * 2018-08-27 2021-08-10 株式会社島津製作所 X-ray analyzer
JP7136211B2 (en) 2018-08-27 2022-09-13 株式会社島津製作所 X-ray analyzer

Also Published As

Publication number Publication date
JP3677765B2 (en) 2005-08-03

Similar Documents

Publication Publication Date Title
JP3525188B2 (en) X-ray fluorescence analyzer
JP4664818B2 (en) Substrate inspection device, substrate inspection method and recovery jig
CN104849295B (en) X-ray analysis equipment
US4293643A (en) Rotary shaking culture measuring method and apparatus
JP3677765B2 (en) X-ray fluorescence analyzer
WO2007034814A1 (en) X-ray photographing device and method for tire
US6781689B2 (en) Continuous inspection apparatus
TW200306408A (en) Fluorescence measuring apparatus
JP7136211B2 (en) X-ray analyzer
JP3269039B2 (en) X-ray analysis sample holder and X-ray analyzer
KR102000941B1 (en) An X-Ray Investigating Apparatus with Nano Scale Resolution and a Method for Correcting an Error of the Same
KR101761793B1 (en) An X-ray Apparatus Having a Structure of a Rotating or Horizontal Displacement
JP2006242737A (en) Internal defect inspection method and device of tire sidewall part
JP2004045064A (en) X-ray fluorescence analyzer
JP3928014B2 (en) X-ray fluorescence analyzer
JP2000258366A (en) Minute part x-ray diffraction apparatus
JP2006317465A (en) X-ray analysis method and x-ray analysis device
JPS601492Y2 (en) Sample exchange device for fluorescent X-ray analyzers, etc.
CN218397814U (en) Clamping device
CN219985448U (en) Full-automatic quartz wafer angle sorting device
JP3012018B2 (en) Tubular body fixing device
JP5968601B2 (en) Roll mold manufacturing apparatus and roll mold manufacturing method
JP4729056B2 (en) Inspection stage for vacuum probe equipment
JP2003172614A (en) Displacement-measuring method and apparatus, and x-ray analysis method and apparatus
JP2002107313A (en) X-ray analysis sample holder and X-ray analyzer

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3677765

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080520

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090520

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100520

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110520

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120520

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130520

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140520

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

SG99 Written request for registration of restore

Free format text: JAPANESE INTERMEDIATE CODE: R316G99

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S803 Written request for registration of cancellation of provisional registration

Free format text: JAPANESE INTERMEDIATE CODE: R316805

LAPS Cancellation because of no payment of annual fees
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350