[go: up one dir, main page]

JP2004156544A - Fuel injection device for internal combustion engine - Google Patents

Fuel injection device for internal combustion engine Download PDF

Info

Publication number
JP2004156544A
JP2004156544A JP2002323305A JP2002323305A JP2004156544A JP 2004156544 A JP2004156544 A JP 2004156544A JP 2002323305 A JP2002323305 A JP 2002323305A JP 2002323305 A JP2002323305 A JP 2002323305A JP 2004156544 A JP2004156544 A JP 2004156544A
Authority
JP
Japan
Prior art keywords
fuel
pressure
injection
piston
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002323305A
Other languages
Japanese (ja)
Other versions
JP4045922B2 (en
Inventor
Yoshihisa Yamamoto
義久 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2002323305A priority Critical patent/JP4045922B2/en
Publication of JP2004156544A publication Critical patent/JP2004156544A/en
Application granted granted Critical
Publication of JP4045922B2 publication Critical patent/JP4045922B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simplify the structure of a fuel injection device by using a two-way valve in a boost mechanism, to improve the reliability and stability of operation by directly controlling the pressure of a piston actuating chamber, and to reduce the loss of an actuating fluid for actuating the boost mechanism. <P>SOLUTION: The boost mechanism 5 is placed between an accumulator 4 where a fuel from a fuel pump 1 is discharged and an injection mechanism 6. The piston actuating chamber 55 of the booster mechanism 5 is connected to the accumulator 4 through a supply channel 23 and a diaphragm 31. The boost control valve 32 having a two-way valve applies and discharges a pressure to and from the piston actuating chamber 55 to drive a piston with a large diameter and a plunger with a small diameter, thereby boosting the fuel of a plunger chamber 56. A control device 7 achieves desired injection by opening and closing the boost control valve 32 to control the boost action. Further, since the boost control valve 32 allows prompt pressure discharge from the piston actuating chamber 55, the boost control valve 32 is controlled to minimize a valve opening time so as to suppress fuel discharge and reduce energy loss. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、増圧機構を備えた内燃機関用の燃料噴射装置に関し、詳しくは、増圧機構による増圧作動の制御に関する。
【0002】
【従来の技術】
地球温暖化防止の観点から、CO排出量が少ないディーゼルエンジンが着目されている。ディーゼルエンジンについては、排出ガスのクリーン化が重要な課題となっており、その対策として、燃料の噴射圧力を高めることが要求されている。これを簡易に実現するために、燃料ポンプから供給される燃料を増圧する増圧器を備えた燃料噴射装置が提案されており、装置を大型化することなく高圧噴射を行うことを可能にしている(例えば、特許文献1)。
【0003】
【特許文献1】
独国特許出願公開第19910970号明細書
【0004】
特許文献1では、増圧器の燃料を増圧するためのピストンとピストンを作動させるピストン作動室を設けて、ピストンの駆動に伴い燃料を増圧するようにしており、この構成によれば、圧力源からピストン作動室への圧力の導入と、このピストン作動室の圧力をドレン通路へと開放する制御は二位置三方弁によって行っている。また、別の実施例では、ピストン作動室の反対側に設けられるピストン隔室へ圧力源から圧力を導入することによって、ピストンを動作させる構成が開示されており、ピストン隔室への圧力の導入、およびドレン通路への開放を、二位置三方弁によって制御するようにしている。
【0005】
【発明が解決しようとする課題】
しかしながら、特許文献1で増圧器の制御に用いられている三方弁は、シート部が2個必要となり、構成が複雑で高価になるという問題がある。特許文献1には、二位置二方弁をピストン隔室に接続してドレン通路への連通を切換え、ピストン隔室へ圧力源から絞りを介して圧力を導入するようにした実施例も開示されており、制御弁が二方弁でありシート部が1個でよいため、構成が簡易になる。しかしながら、ピストン隔室を制御弁(二方弁または三方弁)で制御する方式のものは、増圧器がピストンの戻り工程では油圧的にバランスしてしまう。このため、ピストンの戻り力はバネ力に頼ることになり、油圧力と比較して小さいために、作動の確実性、安定性に問題があった。また、通常は、ピストンの増圧工程の後、速やかに戻り工程に移行するように制御を行うが、構成によっては、増圧器の駆動に用いる作動流体のムダが多くなり、エネルギ−損失が大きくなる問題があった。
【0006】
本発明では、燃料噴射装置の増圧機構に二方弁を用いることで構成をより簡易にし、かつピストン作動室の圧力を直接制御することによって、作動の確実性、安定性を向上させることを目的とする。また、増圧機構を作動させるための作動流体のムダを低減することを他の目的とする。
【0007】
【課題を解決するための手段】
請求項1記載の内燃機関用燃料噴射装置は、燃料を送出する燃料供給手段と、該燃料供給手段からの燃料を増圧する増圧手段と、上記燃料供給手段からの燃料または上記増圧手段により増圧された燃料を噴射する噴射手段と、上記増圧手段の作動を制御する制御手段とを備える。上記増圧手段は、一体に摺動する大径のピストンおよび小径のプランジャと、上記燃料供給手段と上記噴射手段の間に介設され上記小径のプランジャの作動に伴い容積を拡縮するプランジャ室と、上記大径のピストンに流体圧を作用させるピストン作動室と、上記ピストン作動室に作動流体を供給する流体供給手段と、上記ピストン作動室の流体の加圧、放圧を行う二方弁構造の増圧制御弁を有しており、上記制御手段は、上記増圧制御弁を開閉して増圧作動を制御するとともに、上記増圧制御弁の開弁時間が閉弁時間より短くなるように制御する。
【0008】
上記制御手段により上記増圧制御弁を開閉し、上記ピストン作動室を放圧した後、加圧すると、上記大径のピストンおよび小径のプランジャの作動に伴い上記プランジャ室の燃料が増圧される。よって、これに対応させて上記噴射手段を作動させれば、高圧噴射を行うことができる。上記増圧制御弁が開または閉状態を維持している時に上記噴射手段を作動させると、上記燃料供給手段からの低圧の燃料が噴射される。従って、二方弁を用いた簡易な構成で、上記ピストン作動室の加圧、放圧を直接制御し、確実かつ安定した作動が実現できる。さらに、上記増圧制御弁が開弁している間、作動流体が流出するので、これが閉弁時間より短くなるようにすることで、作動流体のムダを低減することができる。
【0009】
請求項2記載の発明では、上記増圧制御弁を、上記ピストン作動室からの戻り通路または上記流体供給手段と上記ピストン作動室とを連通する流体供給通路に設ける。上記戻り通路に上記増圧制御弁を設けてピストン作動室からの流出を制御するようにしても、上記流体供給通路に上記増圧制御弁を設けてピストン作動室への流出を制御するようにしてもよく、いずれの構成においても、請求項1のように作動させることで上記効果が得られる。
【0010】
請求項3記載の発明では、上記制御手段は、噴射要求に応じて上記増圧制御弁の開弁時間が最小限となるように制御する。具体的には、内燃機関の運転状態に応じて必要な噴射圧力、噴射率となるように上記増圧手段に作動させる際に、上記増圧制御弁の開弁時間ができるだけ少なくなるようにし、例えば、低圧噴射の後、高圧噴射を行う直前に上記増圧手段を駆動することで、作動流体の流出を最小限としてエネルギ−ロスを抑制することができる。
【0011】
請求項4記載の発明のように、上記噴射手段の開閉弁は二方弁または三方弁によって制御することができる。例えば、上記増圧手段からの通路に連通する上記開閉弁の背圧室と戻り通路の間を、二方弁で開閉するようにすれば、簡単な構成で噴射制御を行うことができる。また、三方弁のポートを上記増圧手段からの通路と戻り通路に接続し、これら通路と上記開閉弁の背圧室に至るポートとの連通を切り換えるようにしてもよく、制御性よく燃料噴射を行うことができる。
【0012】
請求項5記載の発明では、上記流体供給手段として上記燃料供給手段を用いる。上記燃料供給手段からの燃料を上記流体供給手段の作動流体として用いることができ、より簡単な構成で上記増圧手段を作動させることができる。
【0013】
請求項6記載の発明では、上記流体供給手段を上記燃料供給手段と別体とする。上記流体供給手段として内燃機関に備えられる他の圧力源を用いることもでき、燃料消費量を低減することができる。
【0014】
請求項7記載の発明では、上記流体供給手段または上記燃料供給手段の少なくとも一方に蓄圧器を設ける。これにより流体通路または燃料通路内の圧力をより安定にすることができる。
【0015】
請求項8記載の発明では、上記噴射手段を内燃機関の気筒数と同数設け、これら噴射手段の2つ以上に上記増圧手段から増圧した燃料を供給する。上記増圧手段によって増圧された高圧燃料を複数の噴射手段に供給することが可能であり、装置を大型化することなく、精度よい噴射制御が可能になる。
【0016】
請求項9記載の発明では、上記噴射手段および上記増圧手段を内燃機関の気筒数と同数設ける。上記増圧手段を上記噴射手段のそれぞれに対応させて設けることもでき、増圧作動が各気筒毎になされるので安定性に優れ、より正確な制御が可能となる。
【0017】
請求項10記載の発明では、請求項8記載の構成において、上記噴射手段と上記増圧手段を一体に設ける。これにより、上記噴射手段と上記増圧手段が近接するので、高圧部のデッドボリュームを小さくし、エネルギーロスをより小さくできる。
【0018】
請求項11記載の発明では、上記流体供給手段と上記ピストン作動室とを連通する流体供給通路に絞りを設けるとともに、上記ピストン作動室からの戻り通路に上記増圧制御弁を設ける。この構成では、上記増圧制御弁の開弁により上記ピストン作動室が戻り通路に開放されて、作動流体が速やかに流出するため、上記増圧手段の作動の確実性、安定性に優れる。さらに、上記増圧制御弁の開弁時間を短くする上記制御により、作動流体のムダも小さくできるので、本発明を適用する効果が高い。
【0019】
請求項13記載の発明は、燃料を送出する燃料供給手段と、該燃料供給手段からの燃料を増圧する増圧手段と、上記燃料供給手段からの燃料または上記増圧手段により増圧された燃料を噴射する噴射手段とを備えた内燃機関用燃料噴射装置である。上記増圧手段は、一体に摺動する大径のピストンおよび小径のプランジャと、上記燃料供給手段と上記噴射手段の間に介設され上記小径のプランジャの作動に伴い容積を拡縮するプランジャ室と、上記大径のピストンに流体圧を作用させるピストン作動室と、上記ピストン作動室に作動流体を供給する流体供給手段を有し、上記流体供給手段と上記ピストン作動室とを連通する流体供給通路に絞りを設けるとともに、上記ピストン作動室からの戻り通路に二方弁構造の増圧制御弁を設け、上記ピストン作動室の流体を加圧、放圧することにより増圧作動を制御する。
【0020】
上記構成において、上記増圧制御弁が開状態にあると、上記ピストン作動室から戻り通路へ作動流体が流出するために、上記ピストンおよび小径のプランジャが、上記プランジャ室の容積を拡大する方向へ移動して停止する。次に上記増圧制御弁を閉状態とすると、上記絞りから供給される作動流体によって、上記ピストン作動室の圧力が上昇するために、上記ピストンおよび小径のプランジャが上記プランジャ室の容積を縮小する方向に移動し、燃料を増圧して上記噴射手段へ供給する。この時、上記噴射手段を作動させれば、高圧噴射がなされる。
【0021】
従って、二方弁からなる上記増圧制御弁と絞りを用いた簡単な構成で、増圧作動を制御し、高圧噴射と低圧噴射を任意に切換えることができるので、低コストかつ高い自由度で内燃機関の運転状態に応じた噴射を実現することができる。
【0022】
【発明の実施の形態】
以下、図面に基づいて本発明の第1の実施形態を説明する。図1は本発明を適用したディーゼルエンジンの燃料噴射装置の全体構成を示す図で、主な構成要素として燃料ポンプ1、燃料タンク2、蓄圧器4、増圧機構5、噴射機構6、制御装置7を有している。図中、燃料ポンプ1は、燃料タンク2の燃料をフィルタ21を介して汲み、加圧した燃料を燃料通路22から蓄圧器4に圧送するようになっている。蓄圧器4と噴射機構6の間には、増圧機構5が設けられている。
【0023】
燃料供給手段としての燃料ポンプ1は、吐出量の可変機構を持つ公知の構成のものが用いられ、制御装置7によって吐出量を制御する。制御装置7は、蓄圧器4に取り付けられた圧力センサ71によって、蓄圧器4の圧力を監視し燃料ポンプ1の吐出量を変更して所望の圧力を蓄圧する。
【0024】
増圧手段である増圧機構5は、大径のボア53内を油密を保って摺動可能な大径のピストン51と、ボア54内を油密を保って摺動可能な小径のプランジャ52を有し、これら大径のピストン51と小径のプランジャ52は軸線を一致させて一体的に設けられて増圧ピストンとして機能する。大径のピストン51の端面(プランジャ52と反対側の端面)と大径のボア53とで囲まれる空間はピストン作動室55を形成し、ピストン作動室55は流体供給通路である供給通路23によって蓄圧器4に連結される。供給通路23には絞り31が設けられ、て、この絞り31を介して作動流体としての燃料がピストン作動室55に供給される。
【0025】
ピストン作動室55は、また、戻り通路12によって燃料タンク2に連結しており、戻り通路12には増圧制御弁32が設けられる。増圧制御弁32は二位置二方弁からなり、制御装置7により開位置または閉位置に切換え駆動されることで、ピストン作動室55の加圧、放圧を制御する。
【0026】
増圧機構5の吐出側には、小径のプランジャ52の端面(ピストン51と反対側の端面)と小径のボア54とで囲まれる空間にて、プランジャ室56が形成される。プランジャ室56は、燃料供給路15によって噴射機構6の燃料溜まり室61に接続している。また、供給通路23から分岐する低圧供給路13が、逆止弁14を介して燃料供給路15に接続しており、従って、蓄圧器4からの燃料は、低圧供給路13からプランジャ室56へ供給される一方で、噴射機構6の燃料溜まり室61へも送出される。プランジャ室56は、大径のピストン51と小径のプランジャ52の作動に伴って容積を拡縮し、低圧供給路13から供給される燃料を増圧する。
【0027】
噴射手段である噴射機構6は、噴孔66を開閉する開閉弁であるノズルニードル62と、ノズルニードル62に閉弁方向の圧力を作用させるノズル制御室65を有している。ノズルニードル62はノズルボデー63内を油密を保って摺動可能となっており、ノズルニードル62の上端面とボア64とでノズル制御室65が形成される。ノズル制御室65は、絞り16を介して燃料供給路15と連通しており、また、絞り17を介して燃料タンク2に至る戻り通路18に連通している。戻り通路18には、二位置二方弁からなる噴射制御弁11が設けられている。
【0028】
上記構成の燃料噴射装置の作動について、図2を参照しながら説明する。図 1において、蓄圧器4には、圧力センサ71の検出結果に基づき制御装置7が燃料ポンプ1の吐出量を増減制御することによって、所望の圧力(例えば30MPaの圧力)が蓄圧されており、この燃料が増圧機構5および噴射機構6に供給される。制御装置7は、また、エンジンの運転状態に応じて噴射機構6からの燃料噴射を制御するともに、これに同期させて増圧機構5の作動を制御することにより噴射圧力を制御する。増圧機構5は、増圧制御弁32を開閉して増圧ピストンのリフトを制御することにより、所望のタイミングで、蓄圧器4からの燃料を増圧して噴射機構6に供給することができる。
【0029】
蓄圧器4に燃料ポンプ1からの燃料が蓄圧された状態で、増圧制御弁32を開状態にすると(図2のaの時点)、増圧機構5のピストン作動室55には絞り31を通して蓄圧器4から燃料が流入するとともに、増圧制御弁32を通して戻り通路12へ流出する。ここで、増圧制御弁32のシート部の絞り面積を、絞り31より大きく設定しておけば、流出の方が多くなるので、ピストン作動室55の圧力はほぼ大気圧まで低下する。蓄圧器4の燃料は、同時に、低圧供給路13を通り逆止弁14を開弁してプランジャ室56へも流入できるので、大径のピストン51が下向きに受ける力より小径のプランジャ52が上向きに受ける力の方が大きくなる。このため、大径のピストン51および小径のプランジャ52は、実質一体の増圧ピストンとして、図の上方(プランジャ室56の容積を拡大する方向)へ移動した後、停止する(図2のbの時点)。
【0030】
この時、プランジャ室56の圧力は、低圧供給路13からの燃料流入によって、蓄圧器4とほぼ同じ、例えば30MPaとなる。この状態で、噴射制御弁11が閉状態であれば、燃料供給路15、燃料溜まり室61、ピストン作動室55が、蓄圧器4と同じ圧力となる。ここで、ノズルニードル62が燃料溜まり室61から上向きに受ける力は、その受圧面積がシート内側分だけ小さいために、ノズル制御室65から受ける下向きの力より小さくなる。その結果、ノズルニードル62は下方へ押圧され、噴孔66が閉鎖されて噴射機構6は無噴射状態となる。
【0031】
この時、噴射機構6に、制御装置7から噴射信号を出力し、噴射制御弁11を開状態にすると、ノズル制御室65の燃料は絞り17を通して戻り通路18から燃料タンク2へ開放される。一方、絞り16を通してノズル制御室65へ燃料供給路15からの燃料が流入するが、絞り17を絞り16より大きく設定しておくことで、ノズル制御室65の圧力をほぼ大気圧にすることができる。この状態では、その受圧面積の差にもかかわらず、上向きの力が大きくなるため、ノズルニードル62が上方へ変位する。これにより、噴孔66が開放されて、燃料溜まり室61に供給される、蓄圧器4と同じ圧力(例えば30MPaの圧力)の燃料が、噴孔66から噴射される。
【0032】
次いで、再び、噴射制御弁11を閉状態にすると、戻り通路18から燃料タンク2への燃料の流出が停止するために、ノズル制御室65の圧力が上昇し、ノズルニードル62が下降して噴孔66を閉鎖し、噴射が停止する。つまり、増圧制御弁32が開の状態において、無噴射状態を維持することと、噴射制御弁11を作動させて、例えば30MPaの蓄圧器4の圧力で噴射することを、選択的に行なうことが可能である。
【0033】
無噴射状態で、次に、増圧制御弁32を閉状態にすると(図2のcの時点)、増圧機構5のピストン作動室55から戻り通路12への燃料の流出が止まり、絞り31を通しての流入だけとなる。このため、ピストン作動室55の圧力が蓄圧器4とほぼ同じ圧力(例えば30MPa)になり、ピストン作動室55の圧力によって大径のピストン51が下向きに受ける力が、プランジャ室56によって小径のプランジャ52が上向きに受ける力より大きくなるために、大径のピストン51および小径のプランジャ52は、実質一体となって図の下方(プランジャ室56の容積を縮小する方向)へ変位する。
【0034】
この時、受圧面積比を例えば5:1に設定しておけば、プランジャ室56の圧力が増圧され、例えば150MPaとなる。増圧された燃料は、低圧供給路13に設けた逆止弁14により逆流を妨げられ、燃料供給路15を通して噴射機構6の燃料溜まり室61に供給される。
【0035】
ここで、制御装置7から噴射機構6に噴射信号を与え、噴射制御弁11を開状態にすると(図2のdの時点)、上述したように、ノズル制御室65の圧力がほぼ大気圧となってノズルニードル62が開弁し、例えば150MPaという高圧で燃料が噴射される。次いで、噴射制御弁11を閉状態にすると(図2のeの時点)、噴射が停止する。すなわち、増圧機構5による増圧作動に対応させて噴射機構6を作動させることで高圧での燃料噴射が可能となる。
【0036】
所望の噴射の後、所定のタイミングで増圧制御弁32を開状態にすれば(図2のfの時点)、ピストン作動室55から燃料が流出して圧力が低下し、ほぼ大気圧状態となる。すると、再び、大径のピストン51および小径のプランジャ52が図の上方へ変位し(戻り行程)、これに伴い、プランジャ室56には低圧供給路13から燃料が再充填されて、次の増圧行程に備えることができる。
【0037】
噴射後、増圧制御弁32を開状態にするタイミングは、増圧制御弁32の開弁時間が閉弁時間より短くなるように、好ましくは、高圧での燃料噴射を行なう直前とし、増圧制御弁32の開弁時間ができるだけ短くなるようにすることが望ましい。従来の構成では、増圧ピストンの戻り行程に時間を要するなどから、噴射後、直ちに増圧ピストンの戻り行程を開始する制御が通常行われるが (図2の点線)、本発明の構成によれば、ピストン作動室55からの燃料の流出を二方弁(増圧制御弁32)で制御しており、速やかに大気圧まで低下させることができるので、戻り行程の開始を遅らせることができる。具体的には、増圧ピストンの戻り時間と上死点にある時間の合計 (図2のAの時間)が、増圧行程の時間と下死点にある時間の合計よりも短くなるようにするとよい。
【0038】
本発明の上記構成では、増圧制御弁32が開弁している間、蓄圧器4からピストン作動室55を経由して燃料が流出するが、上記制御を行うことで、流出時間が短くなる。例えば、従来構成では、噴射後直ちに増圧制御弁32を開弁させる制御を行っておりその間(図2のBで示す時間)、燃料が流出し続けることになるが、本発明では、増圧制御弁32の開弁時間(図2のAで示す時間)が、大幅に低減するため、エネルギーロスが大きく低減できる。
【0039】
上記構成によれば、制御装置7により増圧制御弁32の開閉を制御することで、燃料供給路15に低圧の燃料または高圧の燃料を供給することができ、エンジンの運転状態に応じて最適な噴射制御を容易に行うことができる。例えば、エンジンが低速低負荷においては、増圧機構5を作動させず、噴射機構6を作動させて低圧で噴射を行う。中速中負荷においては、低圧での微小噴射の直後に、増圧機構5を作動させて、高圧での噴射を行う。これが、いわゆるパイロット噴射であり、上記図2は、パイロット噴射をしている時の2噴射分のタイミングチャートを示している。高負荷では、増圧機構5を作動させて高圧での噴射を行う。あるいは、低圧状態で噴射を開始し、引き続いて増圧機構5を作動させて、高圧噴射を行なうと、いわゆるブーツ噴射となる。
【0040】
以上のように、本発明では、噴射機構6による噴射の制御と、増圧機構5による増圧の制御が各々望ましい関連を保つように任意に選択できるので、一回毎の噴射の圧力と量、回数、間隔、タイミング等を自由に設定できる。従って、極めて高い自由度で、安定した噴射が得られ、エンジンの運転状態に応じた最適な形で噴射を行うことができる。また、上記した例以外のよりシンプルな、あるいはより複雑なパターンの噴射も容易に行うことができる。しかも、これらの制御を、増圧機構5の増圧制御弁32、噴射機構6の噴射制御弁11の2つの二方弁のみで行うため、構成が簡易で、安価にできる。
【0041】
さらに、従来の構成ではピストン51下側の隔室57の圧力を制御するために、ほぼ圧力バランスした状態で行われるピストンの戻り工程も、本発明では、ピストン作動室55の圧力を二方弁である増圧制御弁32にて容易に放圧できるため、ピストン作動室55がほぼ大気圧の状態にて素早く、確実に行える。これを利用して、本発明では、大径のピストン51の戻り工程の開始を遅くし、開弁時間が閉弁時間より短くなるような制御を容易に行うことができる。これにより、増圧制御弁32が開状態となるためにピストン作動室55を経由して起こる、蓄圧器4からの燃料の流出時間を短くできるので、エネルギーロスを低減できるという効果を有する。
【0042】
以上説明した実施形態では、増圧機構5を作動させるためにピストン作動室55に供給する作動流体を燃料とし、燃料ポンプ1から増圧機構5へ燃料を供給する構成としたが、別の圧力源を用いて燃料以外の作動流体を供給することもできる。別の圧力源としては、例えばオイルポンプを用い、エンジンオイルを作動流体とすることができる。これを図3に本発明の第2実施形態として示す。図中、オイルタンク2aからフィルタ21aを経てオイルポンプ1aへエンジンオイルが供給され、加圧されて蓄圧器4aへ吐出される。蓄圧器4a下流の供給通路23は、絞り31を介して増圧機構5のピストン作動室55に接続される。一方、燃料タンク2bからフィルタ21bを経て供給される燃料は燃料ポンプ1bで加圧されて蓄圧器4bへ吐出される。蓄圧器4b下流の低圧供給路13は、増圧機構5のプランジャ室56および噴射機構6への燃料供給路15へ接続される。
【0043】
蓄圧器4a、蓄圧器4bには、それぞれ圧力センサ71a、71bが接続されており、その検出結果から制御装置7がオイルポンプ1a、燃料ポンプ1bを制御するようになっている。このように、同じ構成の2つの圧力源を用いてもよく、増圧機構5の作動に燃料を使用しないので、燃料消費量を低減できる。また、図に点線で示すように、増圧機構5と噴射機構6を一体に設ければ、両者が近接するために高圧部のデッドボリュームが小さくなり、エネルギーロスをより小さくできる。
【0044】
また、上記実施形態では、増圧機構5を1つ設けた構成、および気筒数だけ設けた構成を示したが、その中間として、例えば2気筒に1つの増圧機構5を設けたりすることも可能である。また、噴射機構6やその他の部位の構成は、上記実施形態に示したものに限らず、適宜変更することができる。例えば、上記実施形態では、噴射機構6の噴射制御弁11を二方弁としたが、これに代えて三方弁を用いることもできる。図4は、三方弁を用いた噴射機構6´の例で、噴射制御弁となる三方電磁弁67は、1つのポートが燃料供給路15に他の1つのポートが戻り通路18に連通しており、これらポートのいずれかとノズル制御室65に連通するポートを連通させることにより、ノズル制御室65の圧力を増減する構成となっている。三方電磁弁67とノズル制御室65は、絞り68および逆止弁69を介して接続されて、ノズルニードル62の移動速度を制御可能となっており、ノズル制御室65への燃料の流入時のみ逆止弁69を開弁させてノズルニードル62を速やかに閉弁させることができる。
【0045】
さらに、上記作動説明においては、蓄圧器4の圧力として、例えば30MPaという一定値を用いたが、通常のコモンレール式噴射システムと同様に、これを最適な値に変更して制御することが望ましい。
【図面の簡単な説明】
【図1】本発明を適用した第1実施形態のディーゼルエンジンの燃料噴射装置構成を示す油圧回路図である。
【図2】第1実施形態の燃料噴射装置を用いた燃料噴射制御の一例(パイロット噴射)のタイムチャートを示す図である。
【図3】第2実施形態のディーゼルエンジンの燃料噴射装置構成を示す油圧回路図である。
【図4】三方弁を用いた噴射機構の構成例を示す図である。
【符号の説明】
1 燃料ポンプ(燃料供給手段、流体供給手段)
11 噴射制御弁
18 戻り通路
2 燃料タンク
23 供給通路(流体供給通路)
31 絞り
32 増圧制御弁
5 増圧機構(増圧手段)
51 大径のピストン
52 小径のプランジャ
55 ピストン作動室
56 プランジャ室
6 噴射機構(噴射手段)
7 制御装置(制御手段)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a fuel injection device for an internal combustion engine having a pressure increasing mechanism, and more particularly, to control of a pressure increasing operation by the pressure increasing mechanism.
[0002]
[Prior art]
From the viewpoint of preventing global warming, a diesel engine that emits less CO 2 has been attracting attention. For diesel engines, it has become an important issue to purify exhaust gas, and as a countermeasure, it has been required to increase the fuel injection pressure. In order to easily realize this, a fuel injection device including a pressure intensifier for increasing the pressure of the fuel supplied from the fuel pump has been proposed, which enables high-pressure injection without increasing the size of the device. (For example, Patent Document 1).
[0003]
[Patent Document 1]
German Patent Application Publication No. 199 10 970
In Patent Literature 1, a piston for increasing the pressure of fuel in a pressure intensifier and a piston working chamber for operating the piston are provided to increase the pressure of the fuel as the piston is driven. The introduction of pressure into the piston working chamber and the control for releasing the pressure in the piston working chamber to the drain passage are performed by a two-position three-way valve. Further, in another embodiment, a configuration for operating a piston by introducing pressure from a pressure source to a piston compartment provided on the opposite side of the piston working chamber is disclosed, and introduction of pressure to the piston compartment is disclosed. , And the opening to the drain passage are controlled by a two-position three-way valve.
[0005]
[Problems to be solved by the invention]
However, the three-way valve used for controlling the pressure intensifier in Patent Literature 1 requires two seat portions, and has a problem that the configuration is complicated and expensive. Patent Literature 1 also discloses an embodiment in which a two-position two-way valve is connected to a piston compartment to switch communication with a drain passage, and pressure is introduced into the piston compartment from a pressure source via a throttle. Since the control valve is a two-way valve and the number of seats may be one, the configuration is simplified. However, in a system in which the piston compartment is controlled by a control valve (two-way valve or three-way valve), the pressure intensifier is hydraulically balanced in the process of returning the piston. For this reason, the return force of the piston relies on the spring force, which is small compared to the hydraulic pressure, and there is a problem in the reliability and stability of the operation. Normally, control is performed so that the process immediately returns to the returning process after the pressure increasing process of the piston. However, depending on the configuration, waste of the working fluid used for driving the pressure intensifier increases, resulting in a large energy loss. There was a problem.
[0006]
In the present invention, the use of a two-way valve for the pressure increasing mechanism of the fuel injection device simplifies the configuration, and improves the reliability and stability of operation by directly controlling the pressure of the piston working chamber. Aim. Another object is to reduce the waste of the working fluid for operating the pressure increasing mechanism.
[0007]
[Means for Solving the Problems]
According to a first aspect of the present invention, there is provided a fuel injection device for an internal combustion engine, comprising: fuel supply means for delivering fuel; pressure increase means for increasing the pressure of fuel from the fuel supply means; and fuel from the fuel supply means or the pressure increase means. Injection means for injecting the pressurized fuel and control means for controlling the operation of the pressure increase means are provided. The pressure increasing means includes a large-diameter piston and a small-diameter plunger that slide together, a plunger chamber that is interposed between the fuel supply means and the injection means and expands or contracts in volume with the operation of the small-diameter plunger. A piston working chamber for applying a fluid pressure to the large-diameter piston, fluid supply means for supplying working fluid to the piston working chamber, and a two-way valve structure for pressurizing and releasing the fluid in the piston working chamber The control means controls the pressure increase operation by opening and closing the pressure increase control valve, and the opening time of the pressure increase control valve is shorter than the valve closing time. To control.
[0008]
When the control means opens and closes the pressure increase control valve to release the pressure in the piston working chamber and then pressurize the fuel, the fuel in the plunger chamber is increased due to the operation of the large diameter piston and the small diameter plunger. . Therefore, by operating the above-described injection means in response to this, high-pressure injection can be performed. When the injection means is operated while the pressure increase control valve is kept open or closed, low-pressure fuel is injected from the fuel supply means. Therefore, with a simple configuration using a two-way valve, the pressurization and release of the piston working chamber are directly controlled, and a reliable and stable operation can be realized. Further, while the pressure increasing control valve is open, the working fluid flows out, so that the working fluid is made shorter than the valve closing time, so that the waste of the working fluid can be reduced.
[0009]
In the invention described in claim 2, the pressure increase control valve is provided in a return passage from the piston working chamber or a fluid supply passage communicating the fluid supply means with the piston working chamber. Even if the pressure increase control valve is provided in the return passage to control outflow from the piston working chamber, the pressure increase control valve is provided in the fluid supply passage to control the outflow to the piston working chamber. In any configuration, the above effect can be obtained by operating as in claim 1.
[0010]
According to the third aspect of the present invention, the control means performs control such that the valve opening time of the pressure increase control valve is minimized in accordance with the injection request. Specifically, the injection pressure required according to the operating state of the internal combustion engine, when operating the pressure increase means so that the injection rate is, when the valve opening time of the pressure increase control valve is minimized, For example, after the low-pressure injection, just before the high-pressure injection is performed, by driving the pressure-intensifying means, it is possible to minimize the outflow of the working fluid and suppress the energy loss.
[0011]
According to the fourth aspect of the present invention, the on-off valve of the injection means can be controlled by a two-way valve or a three-way valve. For example, if a two-way valve is used to open and close between the back pressure chamber of the on-off valve and the return passage communicating with the passage from the pressure increasing means, the injection control can be performed with a simple configuration. Also, the port of the three-way valve may be connected to the passage from the pressure increasing means and the return passage, and the communication between these passages and the port to the back pressure chamber of the on-off valve may be switched, so that the fuel injection can be performed with good controllability. It can be performed.
[0012]
In the invention according to claim 5, the fuel supply means is used as the fluid supply means. The fuel from the fuel supply means can be used as the working fluid of the fluid supply means, and the pressure increasing means can be operated with a simpler configuration.
[0013]
In the invention according to claim 6, the fluid supply means is separate from the fuel supply means. Another pressure source provided in the internal combustion engine can be used as the fluid supply means, and the fuel consumption can be reduced.
[0014]
In the invention according to claim 7, an accumulator is provided in at least one of the fluid supply unit and the fuel supply unit. Thereby, the pressure in the fluid passage or the fuel passage can be further stabilized.
[0015]
In the invention described in claim 8, the same number of the injection means as the number of cylinders of the internal combustion engine are provided, and two or more of these injection means are supplied with the fuel whose pressure has been increased from the pressure increasing means. The high-pressure fuel increased in pressure by the pressure increasing means can be supplied to a plurality of injection means, and accurate injection control can be performed without increasing the size of the apparatus.
[0016]
According to the ninth aspect of the present invention, the number of the injection means and the number of the pressure increasing means are set to be equal to the number of cylinders of the internal combustion engine. The pressure increasing means may be provided corresponding to each of the injection means. Since the pressure increasing operation is performed for each cylinder, the stability is excellent and more accurate control is possible.
[0017]
According to a tenth aspect of the present invention, in the configuration of the eighth aspect, the injection means and the pressure increasing means are provided integrally. Accordingly, the injection means and the pressure increasing means are close to each other, so that the dead volume of the high pressure part can be reduced, and the energy loss can be further reduced.
[0018]
According to an eleventh aspect of the present invention, a throttle is provided in a fluid supply passage communicating the fluid supply means with the piston working chamber, and the pressure increase control valve is provided in a return passage from the piston working chamber. In this configuration, the piston working chamber is opened to the return passage by opening the pressure increasing control valve, and the working fluid quickly flows out, so that the operation of the pressure increasing means is excellent in reliability and stability. Further, the above control for shortening the valve opening time of the pressure increase control valve can reduce the waste of the working fluid, so that the effect of applying the present invention is high.
[0019]
According to a thirteenth aspect of the present invention, there is provided a fuel supply means for delivering fuel, a pressure increasing means for increasing the pressure of the fuel from the fuel supply means, and a fuel from the fuel supply means or a fuel which is increased in pressure by the pressure increasing means. And a fuel injection device for an internal combustion engine provided with an injection means for injecting fuel. The pressure increasing means includes a large-diameter piston and a small-diameter plunger that slide together, a plunger chamber that is interposed between the fuel supply means and the injection means and expands or contracts in volume with the operation of the small-diameter plunger. A fluid supply passage that has a piston working chamber for applying a fluid pressure to the large-diameter piston, and fluid supply means for supplying working fluid to the piston working chamber, and that communicates the fluid supply means with the piston working chamber. A throttle is provided, and a pressure increase control valve having a two-way valve structure is provided in a return passage from the piston working chamber. The pressure increasing operation is controlled by pressurizing and releasing the fluid in the piston working chamber.
[0020]
In the above configuration, when the pressure increase control valve is in an open state, the working fluid flows out from the piston working chamber to the return passage, so that the piston and the small-diameter plunger move in a direction to increase the volume of the plunger chamber. Move and stop. Next, when the pressure increase control valve is closed, the pressure of the piston working chamber is increased by the working fluid supplied from the throttle, so that the piston and the small diameter plunger reduce the volume of the plunger chamber. , The fuel is increased in pressure and supplied to the injection means. At this time, if the injection means is operated, high-pressure injection is performed.
[0021]
Therefore, with a simple configuration using the above-described pressure increase control valve composed of a two-way valve and a throttle, the pressure increase operation can be controlled and the high-pressure injection and the low-pressure injection can be arbitrarily switched. Injection according to the operation state of the internal combustion engine can be realized.
[0022]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing the overall configuration of a fuel injection device for a diesel engine to which the present invention is applied. The main components are a fuel pump 1, a fuel tank 2, a pressure accumulator 4, a pressure booster 5, an injection mechanism 6, and a controller. 7. In the figure, a fuel pump 1 draws fuel from a fuel tank 2 through a filter 21 and sends pressurized fuel from a fuel passage 22 to an accumulator 4. A pressure increasing mechanism 5 is provided between the pressure accumulator 4 and the injection mechanism 6.
[0023]
As the fuel pump 1 as a fuel supply means, a known configuration having a mechanism for changing the discharge amount is used, and the control device 7 controls the discharge amount. The control device 7 monitors the pressure of the pressure accumulator 4 with a pressure sensor 71 attached to the pressure accumulator 4 and changes the discharge amount of the fuel pump 1 to accumulate a desired pressure.
[0024]
The pressure-intensifying mechanism 5 serving as a pressure-intensifying means includes a large-diameter piston 51 that can slide in a large-diameter bore 53 while maintaining oil-tightness, and a small-diameter plunger that can slide in a bore 54 while maintaining oil-tightness. The large-diameter piston 51 and the small-diameter plunger 52 are provided integrally with their axes aligned to function as a pressure-increasing piston. A space surrounded by the end surface of the large-diameter piston 51 (the end surface opposite to the plunger 52) and the large-diameter bore 53 forms a piston working chamber 55, and the piston working chamber 55 is defined by the supply passage 23 which is a fluid supply passage. It is connected to the accumulator 4. A throttle 31 is provided in the supply passage 23, and fuel as a working fluid is supplied to the piston working chamber 55 through the throttle 31.
[0025]
The piston working chamber 55 is connected to the fuel tank 2 by a return passage 12, and the return passage 12 is provided with a pressure increase control valve 32. The pressure increase control valve 32 is a two-position two-way valve, and controls the pressurization and release of the piston working chamber 55 by being switched and driven to the open position or the closed position by the control device 7.
[0026]
A plunger chamber 56 is formed on the discharge side of the pressure increasing mechanism 5 in a space surrounded by the end surface of the small-diameter plunger 52 (the end surface opposite to the piston 51) and the small-diameter bore 54. The plunger chamber 56 is connected to the fuel storage chamber 61 of the injection mechanism 6 by the fuel supply path 15. Further, the low-pressure supply path 13 branched from the supply path 23 is connected to the fuel supply path 15 via the check valve 14, so that the fuel from the accumulator 4 flows from the low-pressure supply path 13 to the plunger chamber 56. While being supplied, it is also delivered to the fuel storage chamber 61 of the injection mechanism 6. The plunger chamber 56 expands and contracts in volume with the operation of the large-diameter piston 51 and the small-diameter plunger 52, and increases the pressure of the fuel supplied from the low-pressure supply passage 13.
[0027]
The injection mechanism 6 as an injection means has a nozzle needle 62 which is an opening / closing valve for opening and closing the injection hole 66, and a nozzle control chamber 65 for applying a pressure to the nozzle needle 62 in a valve closing direction. The nozzle needle 62 is slidable inside the nozzle body 63 while keeping oil tight, and a nozzle control chamber 65 is formed by the upper end surface of the nozzle needle 62 and the bore 64. The nozzle control chamber 65 communicates with the fuel supply path 15 via the throttle 16, and communicates with the return passage 18 leading to the fuel tank 2 via the throttle 17. The return passage 18 is provided with an injection control valve 11 composed of a two-position two-way valve.
[0028]
The operation of the fuel injection device having the above configuration will be described with reference to FIG. In FIG. 1, a desired pressure (for example, a pressure of 30 MPa) is accumulated in the accumulator 4 by the control device 7 increasing or decreasing the discharge amount of the fuel pump 1 based on the detection result of the pressure sensor 71. This fuel is supplied to the pressure increasing mechanism 5 and the injection mechanism 6. The control device 7 controls the fuel injection from the injection mechanism 6 according to the operating state of the engine, and controls the injection pressure by controlling the operation of the pressure increasing mechanism 5 in synchronization with the fuel injection. The pressure increasing mechanism 5 opens and closes the pressure increasing control valve 32 to control the lift of the pressure increasing piston, so that the fuel from the pressure accumulator 4 can be increased in pressure and supplied to the injection mechanism 6 at a desired timing. .
[0029]
When the pressure increasing control valve 32 is opened in a state where the fuel from the fuel pump 1 is accumulated in the pressure accumulator 4 (at the time point a in FIG. 2), the throttle 31 is passed through the piston working chamber 55 of the pressure increasing mechanism 5. Fuel flows in from the accumulator 4 and flows out to the return passage 12 through the pressure increase control valve 32. Here, if the throttle area of the seat portion of the pressure increase control valve 32 is set to be larger than the throttle 31, the outflow becomes larger, and the pressure in the piston working chamber 55 is reduced to substantially the atmospheric pressure. The fuel in the pressure accumulator 4 can also flow into the plunger chamber 56 by opening the check valve 14 through the low-pressure supply passage 13 at the same time, so that the plunger 52 having a smaller diameter faces upward than the force received by the piston 51 having a large diameter downward. The force that is received is greater. For this reason, the large-diameter piston 51 and the small-diameter plunger 52 move upward in the drawing (in a direction in which the volume of the plunger chamber 56 is increased) as a substantially integral pressure-increasing piston, and then stop (see FIG. 2B). Time).
[0030]
At this time, the pressure of the plunger chamber 56 becomes substantially the same as that of the pressure accumulator 4, for example, 30 MPa due to the inflow of fuel from the low-pressure supply passage 13. In this state, if the injection control valve 11 is closed, the pressure of the fuel supply passage 15, the fuel storage chamber 61, and the piston working chamber 55 becomes the same as that of the accumulator 4. Here, the force that the nozzle needle 62 receives upward from the fuel storage chamber 61 is smaller than the downward force that is received from the nozzle control chamber 65 because the pressure receiving area is smaller by the inside of the seat. As a result, the nozzle needle 62 is pressed downward, the injection hole 66 is closed, and the injection mechanism 6 enters a non-injection state.
[0031]
At this time, when the injection signal is output from the control device 7 to the injection mechanism 6 and the injection control valve 11 is opened, the fuel in the nozzle control chamber 65 is released from the return passage 18 through the throttle 17 to the fuel tank 2. On the other hand, the fuel from the fuel supply passage 15 flows into the nozzle control chamber 65 through the throttle 16, but by setting the throttle 17 to be larger than the throttle 16, the pressure in the nozzle control chamber 65 can be set to substantially the atmospheric pressure. it can. In this state, the upward force is increased despite the difference in the pressure receiving area, so that the nozzle needle 62 is displaced upward. As a result, the injection hole 66 is opened, and the fuel supplied to the fuel storage chamber 61 at the same pressure (for example, a pressure of 30 MPa) as the pressure accumulator 4 is injected from the injection hole 66.
[0032]
Next, when the injection control valve 11 is again closed, the flow of fuel from the return passage 18 to the fuel tank 2 stops, so that the pressure in the nozzle control chamber 65 increases, and the nozzle needle 62 descends to inject the fuel. The hole 66 is closed and the injection is stopped. That is, when the pressure increase control valve 32 is in the open state, the non-injection state is maintained, and the injection control valve 11 is operated to perform the injection at the pressure of the accumulator 4 of, for example, 30 MPa. Is possible.
[0033]
Next, when the pressure increase control valve 32 is closed in the non-injection state (at the time point c in FIG. 2), the flow of fuel from the piston working chamber 55 of the pressure increase mechanism 5 to the return passage 12 stops, and the throttle 31 Only the inflow through. For this reason, the pressure in the piston working chamber 55 becomes substantially the same as that of the accumulator 4 (for example, 30 MPa), and the force that the large-diameter piston 51 receives downward due to the pressure in the piston working chamber 55 is reduced by the plunger chamber 56 into the small-diameter plunger. Since the force exerted on the piston 52 is larger than the upward force, the large-diameter piston 51 and the small-diameter plunger 52 are displaced downward (in the direction of reducing the volume of the plunger chamber 56) as a unitary body.
[0034]
At this time, if the pressure receiving area ratio is set to, for example, 5: 1, the pressure of the plunger chamber 56 is increased to, for example, 150 MPa. The fuel whose pressure has been increased is prevented from flowing backward by a check valve 14 provided in the low-pressure supply passage 13, and is supplied to the fuel storage chamber 61 of the injection mechanism 6 through the fuel supply passage 15.
[0035]
Here, when the injection signal is given from the control device 7 to the injection mechanism 6 to open the injection control valve 11 (at the time point d in FIG. 2), as described above, the pressure in the nozzle control chamber 65 becomes substantially atmospheric pressure. As a result, the nozzle needle 62 opens, and fuel is injected at a high pressure of, for example, 150 MPa. Next, when the injection control valve 11 is closed (time point e in FIG. 2), the injection is stopped. That is, by operating the injection mechanism 6 corresponding to the pressure increasing operation by the pressure increasing mechanism 5, fuel injection at a high pressure becomes possible.
[0036]
If the pressure increase control valve 32 is opened at a predetermined timing after the desired injection (at a time point f in FIG. 2), the fuel flows out from the piston working chamber 55, and the pressure is reduced. Become. Then, the large-diameter piston 51 and the small-diameter plunger 52 are again displaced upward in the drawing (return stroke), and accordingly, the plunger chamber 56 is refilled with fuel from the low-pressure supply passage 13 and the next increase. Be prepared for the pressure stroke.
[0037]
After the injection, the timing at which the pressure increase control valve 32 is opened is preferably such that the valve opening time of the pressure increase control valve 32 is shorter than the valve closing time, preferably immediately before performing high-pressure fuel injection. It is desirable that the valve opening time of the control valve 32 be as short as possible. In the conventional configuration, since the return stroke of the pressure-intensifying piston takes time, the control for starting the return stroke of the pressure-intensifying piston immediately after the injection is usually performed (dotted line in FIG. 2). For example, the outflow of fuel from the piston working chamber 55 is controlled by a two-way valve (pressure increase control valve 32), and can be quickly reduced to the atmospheric pressure, so that the start of the return stroke can be delayed. Specifically, the sum of the return time of the pressure boosting piston and the time at the top dead center (time A in FIG. 2) is shorter than the sum of the time of the pressure boosting stroke and the time at the bottom dead center. Good to do.
[0038]
In the above configuration of the present invention, while the pressure increase control valve 32 is open, fuel flows out of the accumulator 4 via the piston working chamber 55. By performing the above control, the outflow time is shortened. . For example, in the conventional configuration, control for opening the pressure increase control valve 32 immediately after injection is performed, and during that time (time indicated by B in FIG. 2), fuel continues to flow out. Since the valve opening time of the control valve 32 (the time indicated by A in FIG. 2) is significantly reduced, energy loss can be greatly reduced.
[0039]
According to the above configuration, by controlling the opening and closing of the pressure increase control valve 32 by the control device 7, low-pressure fuel or high-pressure fuel can be supplied to the fuel supply path 15. Injection control can be easily performed. For example, when the engine is at a low speed and a low load, the injection mechanism 6 is operated and the injection is performed at a low pressure without operating the pressure increasing mechanism 5. At medium speed and medium load, immediately after the minute injection at low pressure, the pressure increasing mechanism 5 is operated to perform injection at high pressure. This is a so-called pilot injection, and FIG. 2 shows a timing chart for two injections during the pilot injection. When the load is high, the pressure increasing mechanism 5 is operated to perform high-pressure injection. Alternatively, when the injection is started in a low pressure state and the pressure increase mechanism 5 is subsequently operated to perform the high pressure injection, so-called boot injection is performed.
[0040]
As described above, in the present invention, since the control of the injection by the injection mechanism 6 and the control of the pressure increase by the pressure increasing mechanism 5 can be arbitrarily selected so as to maintain a desirable relationship, the pressure and amount of the injection each time are controlled. , Frequency, interval, timing, etc. can be set freely. Therefore, stable injection can be obtained with extremely high degree of freedom, and injection can be performed in an optimal form according to the operating state of the engine. In addition, simpler or more complicated patterns other than the examples described above can be easily ejected. Moreover, since these controls are performed only by two two-way valves, ie, the pressure increase control valve 32 of the pressure increase mechanism 5 and the injection control valve 11 of the injection mechanism 6, the configuration can be simplified and the cost can be reduced.
[0041]
Further, in the conventional configuration, in order to control the pressure of the compartment 57 below the piston 51, the return process of the piston, which is performed in a substantially pressure-balanced state, according to the present invention, the pressure of the piston working chamber 55 is controlled by a two-way valve. Since the pressure can be easily released by the pressure increasing control valve 32, the piston working chamber 55 can be quickly and reliably performed in a substantially atmospheric pressure state. By utilizing this, in the present invention, the start of the return process of the large-diameter piston 51 is delayed, and control such that the valve opening time is shorter than the valve closing time can be easily performed. This can shorten the fuel outflow time from the accumulator 4 that occurs via the piston working chamber 55 due to the opening of the pressure increase control valve 32, and thus has the effect of reducing energy loss.
[0042]
In the embodiment described above, the working fluid supplied to the piston working chamber 55 for operating the pressure increasing mechanism 5 is used as fuel, and the fuel is supplied from the fuel pump 1 to the pressure increasing mechanism 5. The source can also be used to supply working fluids other than fuel. As another pressure source, for example, an oil pump may be used, and engine oil may be used as a working fluid. This is shown in FIG. 3 as a second embodiment of the present invention. In the drawing, engine oil is supplied from an oil tank 2a to an oil pump 1a via a filter 21a, and is pressurized and discharged to an accumulator 4a. The supply passage 23 downstream of the accumulator 4 a is connected to the piston working chamber 55 of the pressure increasing mechanism 5 via the throttle 31. On the other hand, the fuel supplied from the fuel tank 2b through the filter 21b is pressurized by the fuel pump 1b and discharged to the accumulator 4b. The low pressure supply path 13 downstream of the accumulator 4 b is connected to the plunger chamber 56 of the pressure increasing mechanism 5 and the fuel supply path 15 to the injection mechanism 6.
[0043]
Pressure sensors 71a and 71b are connected to the accumulators 4a and 4b, respectively, and the control device 7 controls the oil pump 1a and the fuel pump 1b based on the detection results. As described above, two pressure sources having the same configuration may be used, and no fuel is used for operating the pressure increasing mechanism 5, so that the fuel consumption can be reduced. Further, as shown by the dotted line in the figure, if the pressure increasing mechanism 5 and the injection mechanism 6 are provided integrally, the dead volume of the high-pressure portion is reduced because the two are close to each other, and the energy loss can be further reduced.
[0044]
In the above-described embodiment, the configuration in which one pressure increasing mechanism 5 is provided and the configuration in which the number of cylinders is provided are shown. However, for example, one pressure increasing mechanism 5 may be provided in two cylinders. It is possible. Further, the configurations of the injection mechanism 6 and other parts are not limited to those described in the above embodiment, and can be appropriately changed. For example, in the above embodiment, the injection control valve 11 of the injection mechanism 6 is a two-way valve, but a three-way valve may be used instead. FIG. 4 shows an example of an injection mechanism 6 ′ using a three-way valve. A three-way solenoid valve 67 serving as an injection control valve has one port communicating with the fuel supply path 15 and the other port communicating with the return path 18. The pressure in the nozzle control chamber 65 is increased or decreased by communicating any one of these ports with a port communicating with the nozzle control chamber 65. The three-way solenoid valve 67 and the nozzle control chamber 65 are connected via a throttle 68 and a check valve 69 so that the moving speed of the nozzle needle 62 can be controlled, and only when fuel flows into the nozzle control chamber 65. By opening the check valve 69, the nozzle needle 62 can be quickly closed.
[0045]
Further, in the above description of the operation, a constant value of, for example, 30 MPa was used as the pressure of the accumulator 4, but it is desirable to control the pressure by changing it to an optimum value, as in a common common rail injection system.
[Brief description of the drawings]
FIG. 1 is a hydraulic circuit diagram illustrating a configuration of a fuel injection device for a diesel engine according to a first embodiment of the present invention.
FIG. 2 is a diagram showing a time chart of an example (pilot injection) of fuel injection control using the fuel injection device of the first embodiment.
FIG. 3 is a hydraulic circuit diagram illustrating a configuration of a fuel injection device for a diesel engine according to a second embodiment.
FIG. 4 is a diagram showing a configuration example of an injection mechanism using a three-way valve.
[Explanation of symbols]
1 fuel pump (fuel supply means, fluid supply means)
11 Injection control valve 18 Return passage 2 Fuel tank 23 Supply passage (fluid supply passage)
31 throttle 32 pressure increase control valve 5 pressure increase mechanism (pressure increase means)
51 Large-diameter piston 52 Small-diameter plunger 55 Piston working chamber 56 Plunger chamber 6 Injection mechanism (injection means)
7 control device (control means)

Claims (13)

燃料を送出する燃料供給手段と、該燃料供給手段からの燃料を増圧する増圧手段と、上記燃料供給手段からの燃料または上記増圧手段により増圧された燃料を噴射する噴射手段と、上記増圧手段の作動を制御する制御手段を備えた内燃機関用燃料噴射装置であって、上記増圧手段は、一体に摺動する大径のピストンおよび小径のプランジャと、上記燃料供給手段と上記噴射手段の間に介設され上記小径のプランジャの作動に伴い容積を拡縮するプランジャ室と、上記大径のピストンに流体圧を作用させるピストン作動室と、上記ピストン作動室に作動流体を供給する流体供給手段と、上記ピストン作動室の流体の加圧、放圧を行う二方弁構造の増圧制御弁を有しており、上記制御手段は、上記増圧制御弁を開閉して増圧作動を制御するとともに、上記増圧制御弁の開弁時間が閉弁時間より短くなるように制御することを特徴とする内燃機関用燃料噴射装置。A fuel supply means for delivering fuel, a pressure increasing means for increasing the pressure of the fuel from the fuel supply means, an injection means for injecting the fuel from the fuel supply means or the fuel intensified by the pressure increasing means, A fuel injection device for an internal combustion engine including control means for controlling operation of a pressure increasing means, wherein the pressure increasing means includes a large-diameter piston and a small-diameter plunger which slide together, the fuel supply means and the fuel supply means. A plunger chamber that is interposed between the injection means and expands and contracts in volume with the operation of the small-diameter plunger, a piston operating chamber that applies fluid pressure to the large-diameter piston, and supplies a working fluid to the piston operating chamber. A fluid supply means, and a pressure increase control valve having a two-way valve structure for pressurizing and releasing the fluid in the piston working chamber. The control means opens and closes the pressure increase control valve to increase the pressure. Control the operation and A fuel injection system for an internal combustion engine and controls as opening time of the pressure increase control valves is shorter than the closing time. 上記増圧制御弁が、上記ピストン作動室からの戻り通路または上記流体供給手段と上記ピストン作動室とを連通する流体供給通路に設けられる請求項1記載の内燃機関用燃料噴射装置。2. The fuel injection device for an internal combustion engine according to claim 1, wherein the pressure increase control valve is provided in a return passage from the piston working chamber or a fluid supply passage communicating the fluid supply means with the piston working chamber. 上記制御手段は、噴射要求に応じて上記増圧制御弁の開弁時間が最小限となるように制御する請求項1または2記載の内燃機関用燃料噴射装置。3. The fuel injection device for an internal combustion engine according to claim 1, wherein the control unit controls the valve opening time of the pressure increase control valve to be minimized in accordance with an injection request. 上記噴射手段の開閉弁を二方弁または三方弁によって制御する請求項1ないし3のいずれか記載の内燃機関用燃料噴射装置。4. The fuel injection device for an internal combustion engine according to claim 1, wherein the on-off valve of the injection means is controlled by a two-way valve or a three-way valve. 上記流体供給手段として上記燃料供給手段を用いる構成とする請求項1ないし4のいずれか記載の内燃機関用燃料噴射装置。5. The fuel injection device for an internal combustion engine according to claim 1, wherein said fuel supply means is used as said fluid supply means. 上記流体供給手段を上記燃料供給手段と別体に設ける請求項1ないし4のいずれか記載の内燃機関用燃料噴射装置。5. The fuel injection device for an internal combustion engine according to claim 1, wherein the fluid supply unit is provided separately from the fuel supply unit. 上記流体供給手段または上記燃料供給手段の少なくとも一方に蓄圧器を設ける請求項1ないし6のいずれか記載の内燃機関用燃料噴射装置。7. The fuel injection device for an internal combustion engine according to claim 1, wherein an accumulator is provided in at least one of the fluid supply unit and the fuel supply unit. 上記噴射手段は内燃機関の気筒数と同数設けられており、これら噴射手段の2つ以上に上記増圧手段から増圧した燃料を供給する請求項1ないし7のいずれか記載の内燃機関用燃料噴射装置。The fuel for an internal combustion engine according to any one of claims 1 to 7, wherein the number of the injection means is equal to the number of cylinders of the internal combustion engine, and the fuel whose pressure is increased from the pressure increasing means is supplied to two or more of the injection means. Injection device. 上記噴射手段および上記増圧手段は内燃機関の気筒数と同数設けられる請求項1ないし8のいずれか記載の内燃機関用燃料噴射装置。9. The fuel injection device for an internal combustion engine according to claim 1, wherein said injection means and said pressure increasing means are provided in the same number as the number of cylinders of the internal combustion engine. 上記噴射手段と上記増圧手段を一体に設ける請求項9記載の内燃機関用燃料噴射装置。The fuel injection device for an internal combustion engine according to claim 9, wherein the injection means and the pressure increasing means are provided integrally. 上記流体供給手段と上記ピストン作動室とを連通する流体供給通路に絞りを設けるとともに、上記ピストン作動室からの戻り通路に上記増圧制御弁を設けた請求項1ないし10のいずれか記載の内燃機関用燃料噴射装置。The internal combustion engine according to any one of claims 1 to 10, wherein a throttle is provided in a fluid supply passage communicating the fluid supply means with the piston working chamber, and the pressure increase control valve is provided in a return passage from the piston working chamber. Engine fuel injector. 上記制御手段は、上記増圧制御弁による増圧作動の直前に、上記増圧制御弁を開弁する制御を行う請求項11記載の内燃機関用燃料噴射装置。The fuel injection device for an internal combustion engine according to claim 11, wherein the control means performs control to open the pressure increase control valve immediately before the pressure increase operation by the pressure increase control valve. 燃料を送出する燃料供給手段と、該燃料供給手段からの燃料を増圧する増圧手段と、上記燃料供給手段からの燃料または上記増圧手段により増圧された燃料を噴射する噴射手段とを備えた内燃機関用燃料噴射装置であって、上記増圧手段は、一体に摺動する大径のピストンおよび小径のプランジャと、上記燃料供給手段と上記噴射手段の間に介設され上記小径のプランジャの作動に伴い容積を拡縮するプランジャ室と、上記大径のピストンに流体圧を作用させるピストン作動室と、上記ピストン作動室に作動流体を供給する流体供給手段を有し、上記流体供給手段と上記ピストン作動室とを連通する流体供給通路に絞りを設けるとともに、上記ピストン作動室からの戻り通路に二方弁構造の増圧制御弁を設け、上記ピストン作動室の流体を加圧、放圧することにより増圧作動を制御することを特徴とする内燃機関用燃料噴射装置。Fuel supply means for delivering fuel, pressure increasing means for increasing the pressure of the fuel from the fuel supply means, and injection means for injecting the fuel from the fuel supply means or the fuel increased by the pressure increasing means. Wherein the pressure increasing means comprises a large-diameter piston and a small-diameter plunger which slide together, and the small-diameter plunger interposed between the fuel supply means and the injection means. A plunger chamber that expands and contracts in volume with the operation of the piston, a piston working chamber that applies fluid pressure to the large-diameter piston, and a fluid supply unit that supplies working fluid to the piston working chamber. A throttle is provided in the fluid supply passage communicating with the piston working chamber, and a two-way valve pressure increasing control valve is provided in the return passage from the piston working chamber to apply the fluid in the piston working chamber. , For an internal combustion engine fuel injection system and controls the pressure increasing operation by release of the pressure.
JP2002323305A 2002-11-07 2002-11-07 Fuel injection device for internal combustion engine Expired - Fee Related JP4045922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002323305A JP4045922B2 (en) 2002-11-07 2002-11-07 Fuel injection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002323305A JP4045922B2 (en) 2002-11-07 2002-11-07 Fuel injection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004156544A true JP2004156544A (en) 2004-06-03
JP4045922B2 JP4045922B2 (en) 2008-02-13

Family

ID=32803197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002323305A Expired - Fee Related JP4045922B2 (en) 2002-11-07 2002-11-07 Fuel injection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4045922B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243370A (en) * 2008-03-31 2009-10-22 Denso Corp Injector
JP2013536354A (en) * 2010-08-09 2013-09-19 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Injector for injecting urea solution into exhaust gas train of internal combustion engine
JP2017210958A (en) * 2016-05-26 2017-11-30 マン ディーゼル アンド ターボ フィリアル ア マン ディーゼル アンド ターボ エスイー チュスクランMAN Diesel & Turbo,filial af MAN Diesel & Turbo SE,Tyskland Large-sized two-stroke compression ignition internal combustion engine with fuel injection system for low flash point fuel, and fuel valve for the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243370A (en) * 2008-03-31 2009-10-22 Denso Corp Injector
JP2013536354A (en) * 2010-08-09 2013-09-19 ローベルト ボッシュ ゲゼルシャフト ミット ベシュレンクテル ハフツング Injector for injecting urea solution into exhaust gas train of internal combustion engine
US9279400B2 (en) 2010-08-09 2016-03-08 Robert Bosch Gmbh Injection device for introducing a urea solution into the exhaust tract of an internal combustion engine
JP2017210958A (en) * 2016-05-26 2017-11-30 マン ディーゼル アンド ターボ フィリアル ア マン ディーゼル アンド ターボ エスイー チュスクランMAN Diesel & Turbo,filial af MAN Diesel & Turbo SE,Tyskland Large-sized two-stroke compression ignition internal combustion engine with fuel injection system for low flash point fuel, and fuel valve for the same
US10344686B2 (en) 2016-05-26 2019-07-09 Man Energy Solutions, Filial Af Man Energy Solutions Se, Tyskland Large two-stroke compression-ignited internal combustion engine with fuel injection system for low flashpoint fuel and a fuel valve therefore
US10400683B2 (en) 2016-05-26 2019-09-03 Man Energy Solutions, Filial Afman Energy Solutions Se, Tyskland Large two-stroke compression-ignited internal combustion engine with fuel injection system for low flashpoint fuel and a fuel valve therefore
US10400682B2 (en) 2016-05-26 2019-09-03 Man Energy Solutions, Filial Af Man Energy Solutions Se, Tyskland Large two-stroke compression-ignited internal combustion engine with fuel injection system for low flashpoint fuel and a fuel valve therefore

Also Published As

Publication number Publication date
JP4045922B2 (en) 2008-02-13

Similar Documents

Publication Publication Date Title
US6619263B1 (en) Fuel injection system for an internal combustion engine
JPH06299928A (en) Fuel injection device for internal combustion engine
KR20010021360A (en) Method and device for injecting fuel for internal combustion engine
JPH08232796A (en) Injection supply pattern control port check stop member of fuel injection nozzle
JP2009509079A (en) Device for injecting fuel into a combustion chamber of an internal combustion engine
JP2003042040A (en) Fuel injection device
US7398765B2 (en) Fuel injection device of internal combustion engine
JP2003507636A (en) Fuel injection system for internal combustion engines
JP2004519613A (en) Fuel injection device
JP2005188511A (en) Fuel injector
JP4134979B2 (en) Fuel injection device for internal combustion engine
KR20010080112A (en) Fuel injection device
JP2003172229A (en) Fuel injection system used by internal combustion
US6928986B2 (en) Fuel injector with piezoelectric actuator and method of use
US6568369B1 (en) Common rail injector with separately controlled pilot and main injection
US7128058B2 (en) Fuel injection system for internal combustion engine
JP2001073900A (en) Fuel injection method and fuel injection system for internal combustion engine
JP2004156544A (en) Fuel injection device for internal combustion engine
JP2526620B2 (en) Fuel injection device for internal combustion engine
JP2004521242A (en) Fuel injection device with booster
JP4623930B2 (en) Common rail fuel injection system for automobiles
JP2006505734A (en) Fuel injection device with built-in pressure booster
JP2008304017A (en) Three-way selector valve and fuel injection device using the same
WO2006033469A1 (en) Fuel injection device
JP4218630B2 (en) Fuel injection device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070906

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071112

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees