【0001】
【技術分野】
本発明は,Mgの水素吸蔵特性を利用した板状のMg系水素吸蔵合金,およびその製造方法に関する。
【0002】
【従来技術】
近年,環境への影響が大きい化石燃料に代わるクリーンなエネルギー源として水素が注目されている。水素は通常の環境下では気体であり,強い爆発性を有するために,安全に水素を貯蔵し利用するための媒体が必要となる。
かかる媒体として,Mgは,自重の最大7.6wt%もの水素を吸蔵する特性を有するために,次世代の水素吸蔵材として期待されている。
【0003】
しかしながらMg単体においてはその水素との化合物が熱力学的に安定であり,300℃以下の温度域での水素排出特性に問題がある。そのため,Mgをベースとして,水素化物を不安定化するための処理を施した材料が各種開発・研究されている。
【0004】
Mg−Ni系水素吸蔵合金は,NiがMgの水素排出の触媒として機能することから水素吸蔵材として注目されている。特にMg2Ni金属間化合物を含む組成域ではMg2NiH4とMgH2という二種類の水素化物を形成し,6wt%以上の水素吸蔵量を示すことが知られている(非特許文献1及び非特許文献2参照)。
【0005】
【非特許文献1】
”The Reaction of Hydrogen with Alloys of Magnesium and Nickel and the Formation of Mg2NiH4”, by J. J. Reilly and R. H. Wiswall, Jr., Inorg. Chem., 7[11] (1968), pp.2254−2256.
【非特許文献2】
”Structural and Hydriding Properties of the Mg−Ni−H System with Nano− and/or Amorphous Structures”, S. Orimo, K. Ikeda, H. Fujii, Y. Fujikawa,Y. Kitano and K. Yamamoto, Acta Mater., 45[6] (1997), pp.2271−2278.
【0006】
【解決しようとする課題】
ところで,Mg2Ni金属間化合物の合成法としては,従来,第1の方法として,不活性雰囲気下での溶解法が,第2の方法として,メカニカルミリングによる強制固溶の方法が行われてきた。
これらのいずれの手法においても金属間化合物相は合成されるが,上記第1の方法では高い蒸気圧をもつMgと高い融点を持つNiを同一容器中で溶解しなければならず,凝固時点での組成制御が困難である。また溶解時のMgの酸化を抑制するためにはSF6などの不活性雰囲気下で溶解する必要があるが,SF6は温室化の原因物質であり,環境への悪影響が懸念される。さらに,状態図からみると液相からの冷却・凝固による単相Mg2Niの合成は不可能であることが知られている。
一方,上記第2の方法は,製品形状が粉末に限定され,ArやSF6などの不活性雰囲気下で長時間ミリングを行う必要がある。更に上記第1,第2の方法とも,いわゆるバッチプロセスであり,本質的に連続化が困難な手法である。
【0007】
また,上記のMg2Ni金属間化合物に合成しなくても,MgとNiとが混在する状態が容易に得られれば,Mgの水素吸蔵特性を有効に発揮させるMg系水素吸蔵合金を得ることができると考えられる。しかし,いまだ,安定的に量産できるMg系水素吸蔵合金およびその製造方法は確立されていないのが現状である。
【0008】
本発明は,かかる従来の問題点に鑑みてなされたもので,量産が可能であり,かつ,Mgの水素吸蔵特性を有効に発揮しうるMg系水素吸蔵合金及びその製造方法を提供しようとするものである。
【0009】
【課題の解決手段】
本発明は,Mgの水素吸蔵特性を利用した板状のMg系水素吸蔵合金を製造する方法であって,
Mgを含むMg板と,Niを含むNi板とを交互に積層して積層体を形成する積層工程と,
上記積層体を圧延することにより,上記Mg板と上記Ni板とが薄肉化した状態で一体化したMg−Ni積層混合板を形成する圧延接合工程とを有することを特徴とするMg系水素吸蔵合金の製造方法にある(請求項1)。
【0010】
本発明においては,上記Mg板と上記Ni板とを素材に用いて,上記積層工程及び上記圧延接合工程とを行う。そのため,MgとNiの両者が混在する板状の上記Mg−Ni積層混合板を容易に得ることができる。
そして,上記Mg系水素吸蔵合金としては,このMg−Ni積層混合板のまま,あるいは,Mg−Ni積層混合板に後述するような工程を更に施した状態で得られる。そのため,得られたMg系水素吸蔵合金は,これに含まれるMgの水素吸蔵特性を,Niの触媒作用によって有効に引き出すことができる優れたものとなる。
【0011】
また,本発明の製造方法では,必要な設備が圧延機等の一般的な塑性加工装置のみであり,蒸着やスパッタリングなどの場合のような高真空の密閉空間を必要としない。そのため,量産化も容易であり,安定した生産を実現することができる。
【0012】
また,MgとNiの含有比率は,各々のモル体積から初期の積層厚み比率を決めることにより,容易に設定することができる。更に,得られるMg系水素吸蔵合金の組織の微細度などは,上記積層工程と上記圧延接合工程とを必要に応じて繰り返すことにより,容易に制御することができる。
【0013】
このように,本発明によれば,量産が可能であり,かつ,Mgの水素吸蔵特性を有効に発揮しうるMg系水素吸蔵合金及の製造方法を提供することができる。
【0014】
【発明の実施の形態】
本発明においては,上記積層工程の後上記圧延接合工程を行うが,上記積層工程において,予め上記Mg板とNi板との境界部を部分的又は全体的に接合する予備接合を行った後に,上記圧延接合工程を行うことが好ましい。この場合には,圧延接合工程における圧延作業を安定して行うことができる。上記の予備接合としては,例えば圧着接合方法や拡散熱処理による拡散接合法などを適用することができる。
【0015】
また,上記圧延接合工程では,上記積層体を圧延した後,さらに該積層体を複数の部分に分断すると共に積層して再び圧延を行うことを,1回又は2回以上繰り返し行うことが好ましい(請求項2)。これにより,得られたMg−Ni積層混合板の組織状態をより微細化することができ,より優れた特性を有するMg系水素吸蔵合金を得ることができる。
【0016】
また,上記圧延接合工程を行った後,上記Mg−Ni積層混合板を200℃〜450℃の温度域に保持し,固相間の相互拡散によってMg2Ni金属間化合物を合成する熱処理工程を行うことが好ましい(請求項3)。これにより,強制的に相互拡散を進行させてMg2Ni金属間化合物を上記Mg−Ni積層混合板内に合成することができる。そして,得られたMg系水素吸蔵合金は,Mg2Niの存在によって,より優れた水素吸蔵特性を発揮することができる。
【0017】
また,上記製造方法によれば,また,Mg2Ni化合物相の形成度合い,組織状態等を上記熱処理工程の条件によって容易に制御することができる。そして,Mg及びNiの含有比率の制御と,上記積層工程,圧延接合工程,及び熱処理工程の条件を調整することによって,Mg2Ni相単一相のもの,あるいは,Mg2Ni相と,MgまたはNiを主体とする相の少なくとも一方の相とを含むものなど,様々な構成のMg系水素吸蔵合金を得ることができる。
【0018】
ここで,上記熱処理工程の保持温度が200℃未満の場合には,上記の固相間の相互拡散を促進することが困難であるという問題があり,一方,450℃を超える場合には,Mgの高い蒸気圧による装置への汚染が生じたり,また試料の組成偏倚が生じたりするという問題がある。
【0019】
次に,Mgの水素吸蔵特性を利用した板状のMg系水素吸蔵合金であって,上記の製造方法により作製されており,少なくともMg2Ni金属間化合物よりなるMg2Ni層を有していることを特徴とするMg系水素吸蔵合金がある(請求項4)。
本発明のMg系水素吸蔵合金は,上記の熱処理工程を含む製造方法により作製されており,かつ,上記Mg2Ni層を有している。そのため,このMg2Ni相の存在により,Mg特有の水素吸蔵特性を有効に発揮することができる。また,上述した製造方法により製造しているので,板状の形状を呈しており,様々な用途に適用することができる。
【0020】
また,このMg系水素吸蔵合金には,上記熱処理工程において未反応のMgを含むMg未反応層あるいは未反応のNiを含むNi未反応層の少なくとも一方が,上記Mg2Ni層と共に層状に共存している構成をとることができる(請求項5)。この場合にも,Mg2Niの単一相の場合と同等の優れた水素吸蔵特性を得ることができる。
【0021】
【実施例】
本発明の実施例にかかるMg系水素吸蔵合金およびその製造方法につき,図1〜図5を用いて説明する。
本例では,図1に示すごとく,Mgを含むMg板1と,Niを含むNi板2とを交互に積層して積層体31aを形成する積層工程と,上記積層体31aを圧延することにより,Mg板1と上記Ni板2とが薄肉化した状態で一体化したMg−Ni積層混合板32を形成する圧延接合工程とを有する。また,本例の圧延接合工程では,積層体31aを圧延した後,さらに該積層体31bを複数の部分に分断すると共に積層して再び圧延を行うことを,2回以上繰り返し行った。そして,この圧延接合工程を行った後,上記Mg−Ni積層混合板32を200℃〜450℃の温度域に保持し,固相間の相互拡散によってMg2Ni金属間化合物を合成する熱処理工程を行って,板状のMg系水素吸蔵合金3を作製した。
以下,これを詳説する。
【0022】
まず,市販Mgインゴット((株)宇部興産製)より5mm厚の薄板を切り出し,温間圧延,冷間圧延の各過程を経て,40μmの厚さのMg板(箔)1を作製した。このMg板1と市販の10μmのNi板(箔)2(Good Fellow社製)とを母材として,これらを長方形(2×3cm)に切り出したものを,Mg板1,Ni板2,Mg板1,Ni板2…のように交互に,各々30枚積層し,ステンレス板(図示略)に挟んで油圧プレス(700kgf/cm3)にて圧着接合し,積層体31aを作製する積層工程を行った。なお,本例では,積層したMgとNiのモル比がほぼ2:1となるように,Mg板1とNi板2の厚みおよび積層数を上記のごとく調整した。
【0023】
次に,積層体31aを2ロール圧延機にて20〜50μm厚まで圧延し,圧延された積層体31bを長方形(1×3cm)に切り分けたものを再度積層して,プレス・圧延し,最終厚さ50μmのMg−Ni積層混合板32を作製する圧延接合工程を実施した。
【0024】
作製したMg−Ni積層混合板32の断面形状を図2に示す。同図は,Mgの部分を符号321,Niの部分を符322で示した模式図である。同図に示されているように,上記Mg−Ni積層混合板32は,複数回の圧延によってNi板2を構成していたNiが分断されると共に延ばされた状態でMgの母相中に層状に分散している状態が観察された。
【0025】
次に,このMg−Ni積層混合板32を,加熱装置5内に配置して,真空中,温度400℃に6時間保持する熱処理工程を行った。
熱処理後の試料を粉砕してX線回折により相同定を行った結果を図3に示す。同図は,横軸にX線回折における2θ/deg.を,縦軸に強度/カウント数(Intennsity/Counts)をとり,「黒丸印」としてMg2Niの回折パターンを,「黒三角印」として角度参照基準の目的で添加したSiの回折ピークを示してある。同図より,金属Mgと金属Niの積層/混合物が,熱処理後においてはほぼMg2Niのみで構成されていることがわかる。このことは,本例の手法が,溶解法では為し難い高いMg2Ni合成率を実現することを示すものである。
このように,本例では,圧延という機械加工と,溶解に比して低い温度域での熱処理を行うだけで合金化を行うために,他の方法では避けがたい合金の汚染,特に酸化と組成偏倚が非常に少ない。つまり高純度合金を特別な設備を用いることなしに作製することが可能である。
【0026】
なお,本例において得られたMg系水素吸蔵合金3は,Mg2Niの化学量論組成を有しており,図4(a)に示すごとく,ほぼ全面がMg2Ni相301の単一相の状態で得られた。
これに対し,最初の積層体31aにおけるMgとNiの含有量をMg2Niの化学量論組成よりもMgを多くした場合あるいはNiを多くした場合には,それぞれ図4(b),図4(c)の状態の組織状態,即ち,Mg2Ni相301内にMgの未反応相302あるいはNiの未反応相303が層状に共存させた組織とすることができる。
また,熱処理工程において,固相間の相互拡散をある程度抑制するすることにより,図4(d)に示すごとく,Mg2Ni相301内に,Mgの未反応相302とNiの未反応相303の両者を層状に共存させた組織を得ることもできる。
【0027】
次に,本例では,上記のごとくMg2Niの化学量論組成を有し,かつ熱処理工程を施して得られたMg系水素吸蔵合金3の特性を評価するため,市販の溶解法により合成された市販のMg2Niと共に試験を行った。
具体的には,上記Mg系水素吸蔵合金3を寸断して作製したフレークと,市販Mg2Ni粉末((株)高純度化学研究所製)を,各々SUS316製容器(容積3.5ml)内に約0.3gずつ入れ,温度230℃でジーベルツ法によるPCT特性評価(最大圧力3.3MPa)を行った。結果を図5に示す。
【0028】
同図は,横軸にH/M,つまり,合金を構成する原子数に対する吸蔵水素原子数の割合を,縦軸に試料容器内の平衡状態における水素圧力(Pressure/MPa)をとったものである。同図より知られるごとく,本手法で作製したMg2Niにおいては,より広いプラトー域が観察されている。これは本実施例において,化合物相を形成するMgとNiが汚染の少ない状態で積層・混合され,また組成偏倚を来さない低い温度で化合物化が行われたことによるものである。
【図面の簡単な説明】
【図1】実施例における,Mg系水素吸蔵合金の製造工程を示す説明図。
【図2】実施例における,Mg−Ni積層混合板の組織状態を示す説明図。
【図3】実施例における,Mg系水素吸蔵合金のX線回折チャートを示す説明図。
【図4】実施例における,(a)Mg2Ni単一相のMg系水素吸蔵合金の組織状態,(b)Mg2Ni相中に,Mgの未反応相が共存するMg系水素吸蔵合金の組織状態,(c)Mg2Ni相中に,Niの未反応相が共存するMg系水素吸蔵合金の組織状態,(d)Mg2Ni相中に,Mgの未反応相及びNiの未反応相が共存するMg系水素吸蔵合金の組織状態,をそれぞれ示す説明図。
【図5】実施例における,Mg系水素吸蔵合金のジーベルツ法によるPCT特性評価結果を示す説明図。
【符号の説明】
1...Mg板,
2...Ni板,
3...Mg系水素吸蔵合金,
31a,31b...積層体,
32...Mg−Ni積層混合板,[0001]
【Technical field】
The present invention relates to a plate-shaped Mg-based hydrogen storage alloy utilizing the hydrogen storage characteristics of Mg, and a method for producing the same.
[0002]
[Prior art]
In recent years, hydrogen has attracted attention as a clean energy source that replaces fossil fuels, which have a large impact on the environment. Hydrogen is a gas under normal circumstances and has a strong explosive property, so a medium for safely storing and using hydrogen is required.
As such a medium, Mg has been expected as a next-generation hydrogen storage material because it has a characteristic of storing hydrogen of up to 7.6% by weight of its own weight.
[0003]
However, in the case of Mg alone, its compound with hydrogen is thermodynamically stable, and there is a problem in hydrogen discharge characteristics in a temperature range of 300 ° C. or lower. Therefore, various materials based on Mg that have been treated to destabilize hydrides have been developed and studied.
[0004]
Mg-Ni-based hydrogen storage alloys are attracting attention as hydrogen storage materials because Ni functions as a catalyst for discharging hydrogen from Mg. In particular, it is known that in a composition region containing an Mg 2 Ni intermetallic compound, two types of hydrides, Mg 2 NiH 4 and MgH 2 , are formed and exhibit a hydrogen storage amount of 6 wt% or more (Non-Patent Documents 1 and 2). Non-Patent Document 2).
[0005]
[Non-patent document 1]
"The Reaction of Hydrogen with Alloys of Magnesium and Nickel and the Formation of Mg 2 NiH 4", by J. J. Reilly and R.S. H. Wiswall, Jr. Inorg. Chem. , 7 [11] (1968), pp. 2254-2256.
[Non-patent document 2]
"Structural and Hybridizing Properties of the Mg-Ni-H System with Nano- and / or Amorphous Structures", S.M. Orimo, K .; Ikeda, H .; Fujii, Y .; Fujikawa, Y .; Kitano and K.S. Yamamoto, Acta Mater. , 45 [6] (1997), pp. 2271-2278.
[0006]
[Problem to be solved]
By the way, as a method for synthesizing the Mg 2 Ni intermetallic compound, a dissolution method in an inert atmosphere has been conventionally used as a first method, and a forced solid solution method by mechanical milling has been used as a second method. Was.
In any of these methods, an intermetallic compound phase is synthesized. However, in the first method, Mg having a high vapor pressure and Ni having a high melting point must be dissolved in the same vessel, and at the time of solidification. Is difficult to control. Although in order to suppress the oxidation of Mg during melting, it is necessary to dissolve under an inert atmosphere such as SF 6, SF 6 is the causative agent of greenhouse, it is feared adverse effects on the environment. Furthermore, it is known from the phase diagram that it is impossible to synthesize single-phase Mg 2 Ni by cooling and solidifying from the liquid phase.
On the other hand, the second method, the product shape is limited to a powder, it is necessary to perform long milling under an inert atmosphere such as Ar or SF 6. Further, both the first and second methods are so-called batch processes, which are essentially difficult to achieve continuity.
[0007]
Also, if a mixed state of Mg and Ni can be easily obtained without synthesizing the above-mentioned Mg 2 Ni intermetallic compound, it is possible to obtain an Mg-based hydrogen storage alloy that effectively exhibits the hydrogen storage characteristics of Mg. It is thought that it is possible. However, at present, an Mg-based hydrogen storage alloy that can be stably mass-produced and a method for producing the same have not been established.
[0008]
The present invention has been made in view of such conventional problems, and aims to provide an Mg-based hydrogen storage alloy which can be mass-produced and can effectively exhibit the hydrogen storage characteristics of Mg, and a method of manufacturing the same. Things.
[0009]
[Means for solving the problem]
The present invention is a method for producing a plate-shaped Mg-based hydrogen storage alloy utilizing the hydrogen storage properties of Mg,
A laminating step of alternately laminating Mg plates containing Mg and Ni plates containing Ni to form a laminate;
Rolling the laminate to form a Mg-Ni laminated mixed plate in which the Mg plate and the Ni plate are integrated in a thinned state. An alloy manufacturing method is provided (claim 1).
[0010]
In the present invention, the laminating step and the rolling joining step are performed using the Mg plate and the Ni plate as raw materials. Therefore, the above-mentioned Mg-Ni laminated mixed plate in which both Mg and Ni are mixed can be easily obtained.
The Mg-based hydrogen storage alloy can be obtained as it is as the Mg-Ni laminated mixed plate or in a state where the Mg-Ni laminated mixed plate is further subjected to a process described later. Therefore, the obtained Mg-based hydrogen storage alloy is an excellent one that can effectively extract the hydrogen storage characteristics of Mg contained therein by the catalytic action of Ni.
[0011]
In addition, in the manufacturing method of the present invention, the necessary equipment is only a general plastic working apparatus such as a rolling mill, and does not require a high-vacuum sealed space unlike the case of vapor deposition or sputtering. Therefore, mass production is easy and stable production can be realized.
[0012]
Further, the content ratio of Mg and Ni can be easily set by determining the initial lamination thickness ratio from each molar volume. Further, the fineness of the structure of the obtained Mg-based hydrogen storage alloy can be easily controlled by repeating the laminating step and the rolling joining step as necessary.
[0013]
As described above, according to the present invention, it is possible to provide an Mg-based hydrogen storage alloy and a method of manufacturing the same, which can be mass-produced and effectively exhibit the hydrogen storage characteristics of Mg.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
In the present invention, the above-mentioned rolling joining step is performed after the above-mentioned laminating step. In the above-mentioned laminating step, after preliminary joining for partially or entirely joining the boundary between the Mg plate and the Ni plate is performed, It is preferable to perform the above-mentioned rolling joining step. In this case, the rolling operation in the rolling joining step can be performed stably. As the preliminary bonding, for example, a pressure bonding method or a diffusion bonding method using diffusion heat treatment can be applied.
[0015]
In addition, in the above-mentioned rolling joining step, it is preferable to repeat once or two or more times, after rolling the laminate, further dividing the laminate into a plurality of portions, laminating, and rolling again ( Claim 2). Thereby, the microstructure of the obtained Mg—Ni laminated mixed plate can be further refined, and an Mg-based hydrogen storage alloy having more excellent characteristics can be obtained.
[0016]
After the rolling and joining step, a heat treatment step of holding the Mg—Ni laminated mixed plate in a temperature range of 200 ° C. to 450 ° C. and synthesizing the Mg 2 Ni intermetallic compound by mutual diffusion between solid phases is performed. It is preferable to carry out (claim 3). As a result, the interdiffusion is forcibly advanced, and the Mg 2 Ni intermetallic compound can be synthesized in the Mg—Ni laminated mixed plate. Then, the obtained Mg-based hydrogen storage alloy can exhibit more excellent hydrogen storage properties due to the presence of Mg 2 Ni.
[0017]
Further, according to the above manufacturing method, the degree of formation of the Mg 2 Ni compound phase, the state of the structure, and the like can be easily controlled by the conditions of the heat treatment step. Then, by controlling the content ratio of Mg and Ni and adjusting the conditions of the laminating step, the rolling joining step, and the heat treatment step, the Mg 2 Ni phase single phase or the Mg 2 Ni phase and Mg 2 Alternatively, it is possible to obtain Mg-based hydrogen storage alloys having various structures such as those containing at least one of the phases mainly composed of Ni.
[0018]
Here, if the holding temperature in the heat treatment step is lower than 200 ° C., there is a problem that it is difficult to promote the interdiffusion between the solid phases. There is a problem that the high vapor pressure causes contamination of the apparatus and a sample composition deviation.
[0019]
Next, a plate-shaped Mg-based hydrogen storage alloy utilizing the hydrogen storage properties of Mg, which is manufactured by the above-described manufacturing method and has at least a Mg 2 Ni layer made of a Mg 2 Ni intermetallic compound. There is an Mg-based hydrogen storage alloy characterized by the following.
The Mg-based hydrogen storage alloy of the present invention is manufactured by a manufacturing method including the above-described heat treatment step, and has the above-mentioned Mg 2 Ni layer. Therefore, due to the presence of the Mg 2 Ni phase, the hydrogen storage characteristics peculiar to Mg can be effectively exhibited. In addition, since it is manufactured by the above-described manufacturing method, it has a plate-like shape and can be applied to various uses.
[0020]
In the Mg-based hydrogen storage alloy, at least one of the Mg unreacted layer containing unreacted Mg and the Ni unreacted layer containing unreacted Ni in the heat treatment step coexists in a layered form together with the Mg 2 Ni layer. (Claim 5). In this case as well, excellent hydrogen storage properties equivalent to those of a single phase of Mg 2 Ni can be obtained.
[0021]
【Example】
An Mg-based hydrogen storage alloy and a method of manufacturing the same according to an embodiment of the present invention will be described with reference to FIGS.
In this example, as shown in FIG. 1, a lamination step of alternately laminating Mg plates 1 containing Mg and Ni plates 2 containing Ni to form a laminate 31a, and rolling the laminate 31a , A Mg plate 1 and the Ni plate 2 to form a Mg-Ni laminated mixed plate 32 integrated in a thinned state. In addition, in the rolling joining step of this example, after rolling the laminate 31a, the laminate 31b was further divided into a plurality of portions, laminated, and rolled again two or more times. After performing the rolling joining step, the Mg-Ni laminated mixed plate 32 is maintained in a temperature range of 200 ° C to 450 ° C, and a heat treatment step of synthesizing the Mg 2 Ni intermetallic compound by mutual diffusion between solid phases. Was performed to produce a plate-shaped Mg-based hydrogen storage alloy 3.
The details are described below.
[0022]
First, a thin plate having a thickness of 5 mm was cut out from a commercially available Mg ingot (manufactured by Ube Industries, Ltd.), and subjected to each process of warm rolling and cold rolling to produce an Mg plate (foil) 1 having a thickness of 40 μm. Using the Mg plate 1 and a commercially available 10 μm Ni plate (foil) 2 (manufactured by Good Fellow) as base materials, these were cut into rectangles (2 × 3 cm), and the Mg plate 1, Ni plate 2, Mg Laminating process of alternately laminating 30 sheets each such as plate 1, Ni plate 2,..., Sandwiching them by a stainless steel plate (not shown), and pressure-bonding them with a hydraulic press (700 kgf / cm 3 ) to produce a laminate 31a Was done. In this example, the thickness and the number of stacked Mg plates 1 and Ni plates 2 were adjusted as described above so that the molar ratio of the stacked Mg and Ni was approximately 2: 1.
[0023]
Next, the laminate 31a is rolled to a thickness of 20 to 50 μm by a two-roll rolling mill, and the rolled laminate 31b cut into rectangular (1 × 3 cm) pieces is again laminated, pressed and rolled, and finally A rolling joining step of producing a 50 μm-thick Mg—Ni laminated mixed plate 32 was performed.
[0024]
FIG. 2 shows a cross-sectional shape of the manufactured Mg—Ni laminated mixed plate 32. In this figure, a Mg portion is indicated by reference numeral 321, and a Ni portion is indicated by reference numeral 322. As shown in the figure, in the Mg-Ni laminated mixed plate 32, the Ni constituting the Ni plate 2 is cut and extended in a matrix of Mg in a state where the Ni is divided and extended by a plurality of rolling operations. In a layered state.
[0025]
Next, a heat treatment step was performed in which the Mg—Ni laminated mixed plate 32 was placed in the heating device 5 and kept at a temperature of 400 ° C. in a vacuum for 6 hours.
FIG. 3 shows the result of phase identification by X-ray diffraction after crushing the heat-treated sample. In the figure, the horizontal axis indicates 2θ / deg. In X-ray diffraction. The intensity / counts (Intensity / Counts) are plotted on the vertical axis, the diffraction pattern of Mg 2 Ni is shown as “black circle”, and the diffraction peak of Si added for the purpose of angle reference is shown as “black triangle”. It is. From the figure, it can be seen that the layered / mixed metal Mg and metal Ni is substantially composed of only Mg 2 Ni after the heat treatment. This indicates that the method of this example achieves a high Mg 2 Ni synthesis rate that is difficult to achieve by the melting method.
As described above, in this example, since alloying is performed only by performing the machining process of rolling and the heat treatment in a temperature range lower than melting, contamination of the alloy, which is inevitable by other methods, particularly oxidation and Very little composition deviation. That is, a high-purity alloy can be manufactured without using special equipment.
[0026]
Incidentally, Mg-based hydrogen storage alloy 3 obtained in this example has a stoichiometric composition of Mg 2 Ni, as shown in FIG. 4 (a), substantially a single entire surface of the Mg 2 Ni phase 301 Obtained in phase.
On the other hand, when the content of Mg and Ni in the first laminate 31a is larger than the stoichiometric composition of Mg 2 Ni or when the content of Ni is increased, FIGS. The structure state (c), that is, a structure in which the Mg unreacted phase 302 or the Ni unreacted phase 303 coexists in a layered manner in the Mg 2 Ni phase 301 can be obtained.
Further, in the heat treatment step, by suppressing the interdiffusion between the solid phases to some extent, the Mg unreacted phase 302 and the Ni unreacted phase 303 are contained in the Mg 2 Ni phase 301 as shown in FIG. Can be obtained in which both of them coexist in layers.
[0027]
Next, in this example, in order to evaluate the characteristics of the Mg-based hydrogen storage alloy 3 having the stoichiometric composition of Mg 2 Ni as described above and obtained by performing the heat treatment step, the alloy was synthesized by a commercially available melting method. The test was carried out with commercially available Mg 2 Ni.
Specifically, flakes produced by cutting the above Mg-based hydrogen storage alloy 3 and commercially available Mg 2 Ni powder (manufactured by Kojundo Chemical Laboratory Co., Ltd.) were each placed in a SUS316 container (3.5 ml in volume). , And subjected to PCT characteristic evaluation (maximum pressure 3.3 MPa) at 230 ° C. by the Siebert's method. FIG. 5 shows the results.
[0028]
In the figure, the horizontal axis represents H / M, that is, the ratio of the number of stored hydrogen atoms to the number of atoms constituting the alloy, and the vertical axis represents the hydrogen pressure (Pressure / MPa) in an equilibrium state in the sample container. is there. As is known from the figure, a wider plateau region is observed in Mg 2 Ni produced by the present method. This is due to the fact that Mg and Ni forming the compound phase were stacked and mixed with little contamination in the present embodiment, and the compound was formed at a low temperature that did not cause compositional deviation.
[Brief description of the drawings]
FIG. 1 is an explanatory view showing a manufacturing process of an Mg-based hydrogen storage alloy in an example.
FIG. 2 is an explanatory diagram showing a structure state of a Mg—Ni laminated mixed plate in an example.
FIG. 3 is an explanatory diagram showing an X-ray diffraction chart of a Mg-based hydrogen storage alloy in an example.
FIG. 4 shows (a) Mg 2 Ni single-phase Mg-based hydrogen storage alloy in the embodiment, and (b) Mg-based hydrogen storage alloy in which unreacted Mg coexists in Mg 2 Ni phase. Not the tissue condition, in (c) Mg 2 Ni phase, tissue condition of Mg-based hydrogen storage alloy unreacted phase of Ni coexist, the (d) Mg 2 to Ni phase, unreacted phase and Ni and Mg Explanatory drawing which shows the microstructure of the Mg-based hydrogen storage alloy in which a reaction phase coexists.
FIG. 5 is an explanatory diagram showing results of PCT characteristic evaluation of the Mg-based hydrogen storage alloy by the Siebert's method in Examples.
[Explanation of symbols]
1. . . Mg plate,
2. . . Ni plate,
3. . . Mg-based hydrogen storage alloy,
31a, 31b. . . Laminate,
32. . . Mg-Ni laminated mixed plate,