[go: up one dir, main page]

JP2004154683A - Exhaust gas treatment equipment and its operation method - Google Patents

Exhaust gas treatment equipment and its operation method Download PDF

Info

Publication number
JP2004154683A
JP2004154683A JP2002322880A JP2002322880A JP2004154683A JP 2004154683 A JP2004154683 A JP 2004154683A JP 2002322880 A JP2002322880 A JP 2002322880A JP 2002322880 A JP2002322880 A JP 2002322880A JP 2004154683 A JP2004154683 A JP 2004154683A
Authority
JP
Japan
Prior art keywords
exhaust gas
outlet
heat
dust collector
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002322880A
Other languages
Japanese (ja)
Other versions
JP4761284B2 (en
Inventor
Hirobumi Yoshikawa
博文 吉川
Takanori Nakamoto
隆則 中本
Toshio Katsube
利夫 勝部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2002322880A priority Critical patent/JP4761284B2/en
Publication of JP2004154683A publication Critical patent/JP2004154683A/en
Application granted granted Critical
Publication of JP4761284B2 publication Critical patent/JP4761284B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Landscapes

  • Air Supply (AREA)
  • Chimneys And Flues (AREA)
  • Treating Waste Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of economically removing sulfuric acid mist. <P>SOLUTION: The exhaust gas treatment equipment is provided with an air pre-heating unit 3 for heating combustion air by exhaust gas discharged from a boiler; a heat recovery unit 11 for heating a heating medium by the exhaust gas; a wet type exhaust gas treatment device 6 for wet-treating the exhaust gas; a re-heating unit 13 for heating the exhaust gas by the heating medium; and a heating medium circulation line 15 for circulating the heating medium between the re-heating unit 13 and the heat recovery unit 11. The dew point of the sulfuric acid mist in the exhaust gas is between the temperature of the exhaust gas at an entrance of the heat recovery unit 11 and the temperature of the exhaust gas at a discharge port of a dust-collector 4 and is adjusted such that it becomes higher than the temperature of the exhaust gas at the discharge port of the dust-collector 4 by 30°C or more. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、排ガス処理装置(排煙処理装置とも称する)とその運用方法に係り、特に煙突から排出される排ガス中のSOミスト濃度を低減するために湿式排ガス処理装置から排出される排ガスを再加熱するための熱回収器をバグフィルターや電気集塵器などの集塵器の上流側に配置して集塵器の出口排ガス温度を低く抑えた排ガス処理装置とその運用方法に関する。
【0002】
【従来の技術】
石炭を燃焼すると石炭中の硫黄(S)が酸素と反応して亜硫酸ガス(SO)を発生し、その一部は燃焼装置排ガスダクトの上流部に設けられる脱硝装置で脱硝触媒などにより酸化されてSOとなる。SOは脱硝装置後流側の排ガスダクトに配置される脱硫装置で除去可能であるが、SOは排ガス温度が下がると排ガス中の水分と反応して硫酸ミスト(HSO)となる。排ガス温度が硫酸の露点以下になると、液化した硫酸ミスト(HSO)により機器材料が腐食する原因となる。
【0003】
このため、排ガスの温度を集塵器出口まで、硫酸露点+αの温度(通常10〜20℃)以上に維持する必要がある。硫酸露点を考慮して、空気予熱器、乾式電気集塵機及びGGH(ガスガスヒータ)に耐硫酸腐食性の優れたチタン合金、タンタル合金、インコネル625やハステロイCと称されるNi基の高Cr高Mo合金の使用が考えられるが、これらの材料は、汎用性ステンレス鋼に比べ5〜20倍のコストになり、経済上の理由から使用し難い。
【0004】
一方、排ガスの温度を集塵器出口まで、硫酸露点+α(通常10〜20℃)以上に維持することで、各種機器の腐食は防止可能であるが、排ガス温度は集塵器の後流側の排ガスダクトに設置された湿式脱硫装置で50〜60℃程度まで低下するため、湿式脱硫装置内で露点以下になり硫酸ミストとなる。硫酸ミストは粒径が小さいために湿式脱硫装置ではあまり除去できない。その除去率は硫酸ミストの濃度や粒径、さらには湿式脱硫装置の構造や吸収液と排ガスの比率(L/G)によっても異なるが、10〜50%程度である。
【0005】
このため、集塵器で除去されなかった煤塵とともに硫酸ミストが煙突から排出され、紫煙の原因となる。さらに、当然のことながら、煙突から排出された硫酸ミストは酸性雨の原因となるなど環境への悪影響も大きい。硫酸ミストを除去する方法としては、湿式脱硫装置の後流側の排ガスダクトに湿式集塵器を設置することも可能であるが、この場合には装置コストが高くなる。
【0006】
このように、前記従来技術では、経済的に硫酸ミストを除去し、紫煙を防止することが困難であり、また、排ガス処理装置の機器材料の腐食が避けられなかった。
【0007】
なお、前記熱回収器の出口排ガス温度を制御することは、特開平09−122438号公報や特開平11−347332号公報に記載されている。
【0008】
【特許文献1】
特開平09−122438号公報
【0009】
【特許文献2】
特開平11−347332号公報
【0010】
【発明が解決しようとする課題】
上記の従来技術では、高価な材料を使用しないと機器の腐食が防止できず、さらに高価な装置を使用しないと硫酸ミストを除去することができなかった。
【0011】
本発明の課題は、排ガス中の硫酸ミストを効果的に除去し、排ガス処理装置の機器材料の腐食を防止する排ガス処理装置と方法を提案することにある。
【0012】
【課題を解決するための手段】
本発明の上記課題は、次の手段により解決することができる。
請求項1記載の発明は、燃焼装置から排出する排ガスにより燃焼装置の燃焼用空気を予熱する空気予熱器と、該空気予熱器出口の排ガスの熱を熱媒に回収する伝熱管群からなる熱回収器と、該熱回収器出口の排ガス中のばい塵を回収する集塵器と、該集塵器出口の排ガス中の硫黄酸化物を除去する湿式脱硫装置と、該湿式脱硫装置出口の排ガスを前記熱回収器から供給される熱媒で加熱する伝熱管群からなる再加熱器とを燃焼装置の排ガスダクトの上流側から下流側に順次配置し、熱回収器と再加熱器にそれぞれ設けられた伝熱管を連絡し、その内部に熱媒を循環させる熱媒循環ラインを設けた排ガス処理装置において、排ガス中の硫酸(SO)ミストの露点が、前記熱回収器入口での排ガス温度と前記集塵器出口での排ガス温度の間であり、かつ前記集塵器出口での排ガス温度よりも30℃以上高い状態にする前記集塵器の出口排ガス温度制御手段を設けた排ガス処理装置である。
【0013】
上記請求項1記載の排ガス処理装置において、前記集塵器の出口排ガス温度制御手段は▲1▼排ガス中の硫酸(SO)ミストの露点が、前記熱回収器入口での排ガス温度と前記集塵器出口での排ガス温度の間であり、かつ▲2▼前記集塵器出口での排ガス温度よりも30℃以上高い状態にする構成にすることもできる。
【0014】
また、上記請求項1記載の排ガス処理装置において、前記集塵器の出口排ガス温度制御手段は、前記再加熱器と前記熱回収器との間の熱媒循環ラインの熱媒循環流量調整手段又は前記熱媒を冷却する手段、前記熱媒を加熱する手段のいずれか1つ以上である構成とすることができる。
【0015】
さらに、上記請求項1記載の排ガス処理装置において、前記再加熱器と前記熱回収器との間の熱媒循環ラインから分岐して前記熱回収器の伝熱管内を通る熱媒循環ラインをバイパスして前記再加熱器の伝熱管内にのみ熱媒を循環させるパイパスラインを設け、前記集塵器の出口排ガス温度制御手段は、前記バイパスラインの熱媒流量を調整する手段である構成とすることができる。
【0016】
請求項5記載の発明は、燃焼装置から排出する排ガスにより燃焼装置の燃焼用空気を予熱する空気予熱器と、該空気予熱器出口の排ガスの熱を熱媒に回収する伝熱管群からなる熱回収器と、該熱回収器出口の排ガス中のばい塵を回収する集塵器と、該集塵器出口の排ガス中の硫黄酸化物を除去する湿式脱硫装置と、該湿式脱硫装置出口の排ガスを前記熱回収器から供給される熱媒で加熱する伝熱管群からなる再加熱器とを燃焼装置の排ガスダクトの上流側から下流側に順次配置し、熱回収器と再加熱器にそれぞれ設けられた伝熱管を連絡し、その内部に熱媒を循環させる熱媒循環ラインを設けた排ガス処理装置において、
前記集塵器出口に排ガス中の硫酸(SO)ミスト濃度を測定する硫酸(SO)ミスト濃度計を設け、該硫酸(SO)ミスト濃度計の測定値に基づき、排ガス中の硫酸(SO)ミストの露点が、前記熱回収器入口での排ガス温度と前記集塵器出口での排ガス温度の間である状態にする前記集塵器の出口排ガス温度制御手段を設けた排ガス処理装置である。
【0017】
前記請求項5の排ガス処理装置において、前記集塵器の出口排ガス温度制御手段は、硫酸(SO)ミスト濃度計の測定値に基づき、排ガス中の硫酸(SO)ミストの露点が、前記熱回収器入口での排ガス温度と前記集塵器出口での排ガス温度の間であり、かつ前記集塵器出口での排ガス温度よりも30℃以上高い状態にする構成にすることができる。
【0018】
また、前記請求項5の排ガス処理装置において、前記集塵器の出口排ガス温度制御手段は、前記再加熱器と前記熱回収器との間の熱媒循環ラインの熱媒循環流量調整手段又は前記熱媒を冷却する手段、前記熱媒を加熱する手段のいずれか1つ以上とすることができる。
【0019】
また、前記請求項5記載の排ガス処理装置において、前記再加熱器と前記熱回収器との間の熱媒循環ラインから分岐して前記熱回収器の伝熱管内を通る熱媒循環ラインをバイパスして前記再加熱器の伝熱管内にのみ熱媒を循環させるパイパスラインを設け、前記集塵器の出口排ガス温度制御手段が、前記バイパスラインの熱媒流量を調整する手段である構成とすることもできる。
【0020】
請求項9記載の発明は、燃焼装置から排出する排ガスにより燃焼装置の燃焼用空気を予熱する空気予熱器と、該空気予熱器出口の排ガスの熱を熱媒に回収する伝熱管群からなる熱回収器と、該熱回収器出口の排ガス中のばい塵を回収する集塵器と、該集塵器出口の排ガス中の硫黄酸化物を除去する湿式脱硫装置と、該湿式脱硫装置出口の排ガスを前記熱回収器から供給される熱媒で加熱する伝熱管群からなる再加熱器とを燃焼装置の排ガスダクトの上流側から下流側に順次配置し、熱回収器と再加熱器にそれぞれ設けられた伝熱管を連絡し、その内部に熱媒を循環させる熱媒循環ラインを設けた排ガス処理装置の運用方法において、排ガス中の硫酸(SO)ミストの露点が、前記熱回収器入口での排ガス温度と前記集塵器出口での排ガス温度の間である状態になるように前記集塵器の出口排ガス温度を制御する排ガス処理装置の運用方法である。
【0021】
前記請求項9の排ガス処理装置の運用方法において、排ガス中の硫酸(SO)ミストの露点が、前記熱回収器入口での排ガス温度と前記集塵器出口での排ガス温度の間であり、かつ前記集塵器出口での排ガス温度よりも30℃以上高い状態にすることができる。
【0022】
また、請求項9記載の運用方法において、前記集塵器の出口排ガス温度は、前記再加熱器と前記熱回収器との間の熱媒循環ラインの熱媒循環流量の調整、前記熱媒の冷却又は加熱により行うことができる。
【0023】
さらに、請求項9記載の運用方法において、再加熱器と前記熱回収器との間の熱媒循環ラインから分岐して前記熱回収器の伝熱管内を通る熱媒循環ラインをバイパスして前記再加熱器の伝熱管内にのみ熱媒を循環させるパイパスラインを設け、前記集塵器の出口排ガス温度制御として前記バイパスラインの熱媒流量を調整することができる、
請求項13記載の発明は、燃焼装置から排出する排ガスにより燃焼装置の燃焼用空気を予熱する空気予熱器と、該空気予熱器出口の排ガスの熱を熱媒に回収する伝熱管群からなる熱回収器と、該熱回収器出口の排ガス中のばい塵を回収する集塵器と、該集塵器出口の排ガス中の硫黄酸化物を除去する湿式脱硫装置と、該湿式脱硫装置出口の排ガスを前記熱回収器から供給される熱媒で加熱する伝熱管群からなる再加熱器とを燃焼装置の排ガスダクトの上流側から下流側に順次配置し、熱回収器と再加熱器にそれぞれ設けられた伝熱管を連絡し、その内部に熱媒を循環させる熱媒循環ラインを設けた排ガス処理装置の運用方法において、前記集塵器から排出される排ガス中の硫酸(SO)ミスト濃度を測定し、該硫酸(SO)ミスト濃度の測定値に基づき、排ガス中の硫酸(SO)ミストの露点が、前記熱回収器入口での排ガス温度と前記集塵器出口での排ガス温度の間である状態にする前記集塵器の出口排ガス温度を調整する排ガス処理装置の運用方法である。
【0024】
前記請求項13の排ガス処理装置の運用方法において、排ガス中の硫酸(SO)ミストの露点が、前記熱回収器入口での排ガス温度と前記集塵器出口での排ガス温度の間であり、かつ前記集塵器出口での排ガス温度よりも30℃以上高い状態にすることができる。
【0025】
また、前記請求項13記載の排ガス処理装置の運用方法において、前記集塵器の出口排ガス温度は、前記再加熱器と前記熱回収器との間の熱媒循環ラインの熱媒循環流量の調整、前記熱媒の冷却又は加熱により行うことができる。
【0026】
さらに、請求項13記載の排ガス処理装置の運用方法において、再加熱器と前記熱回収器との間の熱媒循環ラインから分岐して前記熱回収器の伝熱管内を通る熱媒循環ラインをバイパスして前記再加熱器の伝熱管内にのみ熱媒を循環させるパイパスラインを設け、前記集塵器の出口排ガス温度制御は、前記バイパスラインの熱媒流量を調整することができる。
【0027】
なお、前記熱回収器の出口排ガス温度を制御するこれらの手段は、特開平09−122438号公報や特開平11−347332号公報に記載されている方法を用いることができる。
【0028】
【作用】
石炭を燃焼した際に発生する亜硫酸ガス(SO)の一部は脱硝触媒などの触媒作用により排ガス中の酸素と反応してSOとなる。SOからSOへの転換率は条件により異なるが、1〜3%程度である。石炭焚きボイラから排出されるSO濃度は、一般的に300〜3000ppm程度であるので、SO濃度は3〜90ppm程度である。SOは排ガス温度が下がると排ガス中の水分と反応して硫酸ミスト(HSO)となり、排ガス処理装置の低温部では硫酸が結露する。
【0029】
図4に硫酸露点温度に及ぼすSO濃度並びに排ガス温度の影響を示す。硫酸露点は、図中に示したように大塚の式又はMullerの式で計算することができ、SO濃度が3〜90ppmでは、水分量にも依存するが露点は120〜160℃となる。
【0030】
図5は、50ppmのSOおよび水分10%を含むガス(硫酸露点:約150℃)と石炭灰粒子の反応性を本発明者らが調べた試験結果である。硫酸露点よりも30℃低くすることで、硫酸ミストはほぼ100%灰粒子に付着した。すなわち、熱回収器入口から集塵器出口までの排ガス中の灰粒子濃度が高い領域で排ガスを冷却し、硫酸露点よりも30℃低い条件にすることで硫酸ミストは灰粒子とほぼ100%反応する。
【0031】
灰粒子は強いアルカリ性を示すので、硫酸ミストを中和して無害化し、機器の腐食を防止することができる。さらに、硫酸ミストと反応した灰粒子のほとんど(99.9%程度)は集塵器で回収されるので、超微粒子である硫酸ミストが集塵器後流側の排ガスダクトに配置される排ガス脱硫装置に入ることが無く、煙突から紫煙が大気中に放出されることを防止できる。
【0032】
【発明の実施の形態】
本発明の実施の形態について、図面と共に説明する。
【0033】
【実施例1】
図1に本発明の一実施例の排ガス処理システムの構成図を示す。
図1に示すように、本実施の形態の排ガス処理システムにおいて、ボイラ1からの排出される排ガスは排ガスダクト25に設置される脱硝装置2に導入され、脱硝装置2において排ガス中の窒素酸化物が除去された後、空気予熱器3に導かれる。空気予熱器3に導かれた排ガスは、ボイラ1へ供給される燃焼用空気と熱交換され、例えば、120〜170℃に冷却されて熱回収器11に導入される。熱回収器11に導入された排ガスの熱は、熱交換により伝熱管内を流れる熱媒に回収され、例えば75〜110℃に冷却されて電気集塵器4に導かれ、ここで排ガス中の煤塵の大半が捕集される。
【0034】
電気集塵器4を通った排ガスは、誘引ファン5により昇圧されて湿式排ガス処理装置の一例であるスプレ式石灰石−石膏法の湿式脱硫装置6に導入され、気液接触により排ガス中のSOxが除去される。湿式脱硫装置6において飽和ガス温度にまで冷却された排ガスは、再加熱器13により昇温した後、脱硫ファン7を介して煙突8から大気中に排出される。再加熱器13は、熱回収器11と同様に熱媒が通流される伝熱管を備えた熱交換器であり、排ガスは伝熱管内を流れる熱媒と熱交換により、例えば90〜110℃に昇温する。また、熱回収器11と再加熱器13の伝熱管は、熱媒循環管路15−1、15−2によって連通し、ポンプ10により熱回収器11と再加熱器13との間に熱媒が循環されるようになっている。
【0035】
図1に示す排ガス処理システムでは、電気集塵器4出口の排ガス温度を制御することにより、排ガス中の硫酸ミストの除去効率を高くすることができる。
【0036】
図2に、本実施例の特徴部に係る熱回収器11と再加熱器13の熱媒循環系統の詳細図を示す。熱回収器11と再加熱器13のそれぞれの伝熱管12と伝熱管14は、熱媒循環管路15−1、15−2により環状に連結され、その管路の途中に設けられた循環ポンプ10により、それらの伝熱管12、14内に熱媒が循環されるようになっている。伝熱管12、14は、熱交換の効率を向上させるために、フィンチューブ等が用いられる。熱媒循環管路15−2には、管路の熱媒の膨張を吸収するために熱媒タンク26が設置されている。
【0037】
電気集塵器4出口の排ガス温度を制御する具体的な方法は下記のものが挙げられる。
熱回収器11の出口排ガス温度を制御するために、熱回収器11をバイパスして再加熱器13の熱媒出口から入口に戻る熱媒バイパスライン16が設けられ、電気集塵器4の出口排ガス温度を計測する温度計17の信号により、電気集塵器4の出口排ガス温度が設定範囲となるように、熱媒バイパスライン16に設けられた流量調整弁18の開度を調整して熱媒による熱回収器11での熱回収量を制御している。また、熱媒循環管路15−2には熱交換器19が接続され、ここに蒸気または冷却水を供給管20から流量調整弁21の開度を調整して流すことにより熱回収器11の出口排ガス温度を制御する。その結果、電気集塵器4出口の排ガス温度を制御することができる。
【0038】
ポンプ10の流量を調整することにより電気集塵器4の出口排ガス温度を制御することも可能である。例えば、温度計17により測定された電気集塵器4の出口排ガスダクト25内の排ガス温度が所定の値より高い場合は、ポンプ10の流量を増加して熱回収器11と再加熱器13との間の熱交換量を増加し、電気集塵器4の出口の排ガス温度を下げる。しかし、逆にポンプ10の流量を減少させて熱回収器11と再加熱器13との間の熱交換量を減少させると、再加熱器13出口の排ガス温度が低下し、伝熱管14の表面に湿式脱硫装置のミストが飛散して付着し、腐食の原因となることもあるので注意が必要である。
【0039】
図1および図2に示した実施例で電気集塵器4出口の排ガス温度を所定の値に調整し、煙突8入口での排ガス中の硫酸ミスト濃度を測定した。表1にその結果を示す。ただし、硫酸ミスト濃度は、150℃での値をベース100として、相対値で示す。
【0040】
【表1】

Figure 2004154683
【0041】
【実施例2】
図1に示した排ガス処理システムにおいて、硫酸ミスト濃度を測定し、該硫酸ミスト濃度測定値に基づき電気集塵器4出口の排ガス温度を制御する(図4参照)ことも可能である。
【0042】
図3に、本実施例に係る熱回収器11と再加熱器13の熱媒循環系統の詳細図を示す。熱回収器11と再加熱器13のそれぞれの伝熱管12と伝熱管14は、熱媒循環管路15−1、15−2により環状に連結され、その管路の途中に設けられた循環ポンプ10により、それらの伝熱管12、14内に熱媒が循環されるようになっている。伝熱管12、14は、熱交換の効率を向上させるために、フィンチューブ等が用いられる。熱媒循環管路15−2には、管路の熱媒の膨張を吸収するために熱媒タンク26が設置されている。
【0043】
電気集塵器4出口の排ガス温度を制御する具体的な方法は下記のものが挙げられる。
熱回収器11の出口排ガス温度を制御するために、熱媒バイパスライン16が設けられ、電気集塵器4の出口排ガス温度を計測するミスト濃度計22の信号により算出される電気集塵器4の出口でのミスト濃度が設定範囲となるように、熱媒バイパスライン16に設けられた流量調整弁18の開度を調整して熱回収量を制御している。また、熱媒循環管路15−2には熱交換器19が接続され、ここに蒸気または冷却水を供給管20から流量調整弁21の開度を調整して流すことにより熱回収器11の出口排ガス温度を制御して、電気集塵器4の出口でのミスト濃度を制御する。
【0044】
なお、上記実施例1では電気集塵器4の出口排ガス温度を測定しているが、電気集塵器4での排ガス温度低下が小さい場合は、熱回収器11出口や電気集塵器4入口での排ガス温度を代わりに測定することも可能である。また、実施例2では電気集塵器4の出口でのミスト濃度の代わりに煙突8入口でのミスト濃度を測定することも可能である。
【0045】
【発明の効果】
本発明によれば、経済的に煙突から排出される排ガス中の硫酸ミスト濃度を低減することができる。また、アルカリ性が高い石炭灰で硫酸ミストを中和して無害化するため、機器の腐食を防止することができる。
【図面の簡単な説明】
【図1】本発明の実施の形態の排ガス処理システムの基本系統図である。
【図2】本発明の実施例1の排ガス処理システムの部分詳細構造図である。
【図3】本発明の実施例2の排ガス処理システムの部分詳細構造図である。
【図4】本発明の排ガス処理システムに関する排ガス中のSO濃度と排ガス中の硫酸の露点温度との関係図である。
【図5】SO含有ガスと石炭灰の反応性を示す図である。
【符号の説明】
1:ボイラ 2:脱硝装置 3:空気予熱器 4:電気集塵器 5:誘引ファン 6:湿式脱硫装置 7:脱硫ファン 8:煙突 10:ポンプ 11:熱回収器 12:伝熱管 13:再加熱器 14:伝熱管
15:熱媒循環管路 16:熱媒バイパスライン 17:温度計 18:流量調整弁 19:熱交換器 20:供給管 21:流量調整弁 22:ミスト濃度計 25:排ガスダクト 26:熱媒タンク[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an exhaust gas treatment device (also referred to as an exhaust gas treatment device) and an operation method thereof, and particularly to an exhaust gas treatment device for reducing the concentration of SO 3 mist in exhaust gas discharged from a chimney. The present invention relates to an exhaust gas treatment apparatus in which a heat recovery device for reheating is arranged upstream of a dust collector such as a bag filter or an electric dust collector to keep the exhaust gas temperature at the outlet of the dust collector low, and an operation method thereof.
[0002]
[Prior art]
When coal is burned, sulfur (S) in the coal reacts with oxygen to generate sulfurous acid gas (SO 2 ), and a part thereof is oxidized by a denitration catalyst or the like in a denitration device provided upstream of a combustion device exhaust gas duct. To SO 3 . SO 2 can be removed by a desulfurization device disposed in an exhaust gas duct on the downstream side of the denitration device, but SO 3 reacts with moisture in the exhaust gas to form a sulfuric acid mist (H 2 SO 4 ) when the temperature of the exhaust gas decreases. . If the temperature of the exhaust gas falls below the dew point of sulfuric acid, liquefied sulfuric acid mist (H 2 SO 4 ) causes corrosion of equipment materials.
[0003]
For this reason, it is necessary to maintain the temperature of the exhaust gas at a temperature equal to or higher than the sulfuric acid dew point + α (normally 10 to 20 ° C.) up to the dust collector outlet. In consideration of sulfuric acid dew point, Ni-based high Cr high Mo called titanium alloy, tantalum alloy, Inconel 625 or Hastelloy C excellent in sulfuric acid corrosion resistance for air preheater, dry electric dust collector and GGH (gas gas heater) The use of alloys is conceivable, but these materials are 5 to 20 times more expensive than general-purpose stainless steel and are difficult to use for economic reasons.
[0004]
On the other hand, by maintaining the temperature of the exhaust gas at the sulfuric acid dew point + α (normally 10 to 20 ° C.) or more up to the outlet of the dust collector, corrosion of various devices can be prevented, but the exhaust gas temperature is kept downstream of the dust collector. The temperature drops to about 50 to 60 ° C. in the wet desulfurization device installed in the exhaust gas duct of the above, so that it becomes lower than the dew point in the wet desulfurization device and becomes sulfuric acid mist. Since the sulfuric acid mist has a small particle size, it cannot be removed very much by a wet desulfurization apparatus. The removal rate varies depending on the concentration and particle size of the sulfuric acid mist, the structure of the wet desulfurization apparatus, and the ratio (L / G) between the absorbent and the exhaust gas, but is about 10 to 50%.
[0005]
For this reason, the sulfuric acid mist is discharged from the chimney together with the dust that has not been removed by the dust collector, which causes purple smoke. Furthermore, naturally, the sulfuric acid mist discharged from the chimney has a great adverse effect on the environment, such as causing acid rain. As a method for removing the sulfuric acid mist, it is possible to install a wet dust collector in an exhaust gas duct downstream of the wet desulfurization device, but in this case, the cost of the device increases.
[0006]
As described above, in the conventional technology, it is difficult to economically remove sulfuric acid mist and prevent purple smoke, and corrosion of equipment materials of an exhaust gas treatment device is inevitable.
[0007]
The control of the exhaust gas temperature at the outlet of the heat recovery unit is described in JP-A-09-122438 and JP-A-11-347332.
[0008]
[Patent Document 1]
JP 09-122438 A
[Patent Document 2]
JP-A-11-347332
[Problems to be solved by the invention]
In the above-mentioned prior art, corrosion of equipment cannot be prevented unless expensive materials are used, and sulfuric acid mist cannot be removed unless expensive equipment is used.
[0011]
An object of the present invention is to propose an exhaust gas treatment apparatus and method for effectively removing sulfuric acid mist in exhaust gas and preventing corrosion of equipment materials of the exhaust gas treatment apparatus.
[0012]
[Means for Solving the Problems]
The above object of the present invention can be solved by the following means.
According to the first aspect of the present invention, there is provided an air preheater that preheats combustion air of a combustion device by exhaust gas discharged from the combustion device, and a heat transfer tube group that collects heat of the exhaust gas at the outlet of the air preheater into a heat medium. A collector, a dust collector for collecting dust in the exhaust gas at the outlet of the heat recovery unit, a wet desulfurization device for removing sulfur oxides in the exhaust gas at the outlet of the dust collector, and an exhaust gas at the outlet of the wet desulfurization device. And a reheater consisting of a group of heat transfer tubes for heating with a heat medium supplied from the heat recovery unit are sequentially arranged from the upstream side to the downstream side of the exhaust gas duct of the combustion device, and are provided in the heat recovery unit and the reheater, respectively. In a flue gas treatment apparatus provided with a heat medium circulation line for communicating a heat transfer tube and circulating a heat medium inside the heat transfer tube, the dew point of sulfuric acid (SO 3 ) mist in the exhaust gas indicates the temperature of the exhaust gas at the inlet of the heat recovery unit. And the exhaust gas temperature at the outlet of the dust collector Ri, and an exhaust gas treatment apparatus provided with an outlet exhaust gas temperature control means of the dust collector to a high state 30 ° C. or higher than the temperature of the exhaust gas in the dust collector outlet.
[0013]
2. The exhaust gas treatment apparatus according to claim 1, wherein the exhaust gas temperature control means at the outlet of the dust collector comprises: (1) the dew point of sulfuric acid (SO 3 ) mist in the exhaust gas indicates the dew point of the exhaust gas temperature at the inlet of the heat recovery device; The exhaust gas temperature at the outlet of the dust collector and (2) the exhaust gas temperature at the outlet of the dust collector may be higher than the exhaust gas temperature by 30 ° C. or more.
[0014]
Further, in the exhaust gas treatment device according to claim 1, the outlet exhaust gas temperature control means of the dust collector is a heat medium circulation flow rate adjustment means of a heat medium circulation line between the reheater and the heat recovery device or It may be configured to be at least one of a means for cooling the heat medium and a means for heating the heat medium.
[0015]
Further, in the exhaust gas treatment apparatus according to claim 1, a heat medium circulation line that branches off from a heat medium circulation line between the reheater and the heat recovery unit and passes through a heat transfer tube of the heat recovery unit is bypassed. A bypass line for circulating a heat medium only in the heat transfer tube of the reheater is provided, and the outlet exhaust gas temperature control means of the dust collector is a means for adjusting a heat medium flow rate of the bypass line. be able to.
[0016]
According to a fifth aspect of the present invention, there is provided an air preheater for preheating combustion air of a combustion device by exhaust gas discharged from the combustion device, and a heat transfer tube group for collecting heat of the exhaust gas at the outlet of the air preheater into a heat medium. A collector, a dust collector for collecting dust in the exhaust gas at the outlet of the heat recovery unit, a wet desulfurization device for removing sulfur oxides in the exhaust gas at the outlet of the dust collector, and an exhaust gas at the outlet of the wet desulfurization device. And a reheater consisting of a group of heat transfer tubes for heating with a heat medium supplied from the heat recovery unit are sequentially arranged from the upstream side to the downstream side of the exhaust gas duct of the combustion device, and are provided in the heat recovery unit and the reheater, respectively. In the exhaust gas treatment device provided with a heat medium circulation line that communicates the heat transfer tubes and circulates the heat medium therein,
The collector to the dust outlet sulfate in the exhaust gas (SO 3) sulfate (SO 3) to measure the mist concentration provided mist densitometer, based on the measured value of the sulfuric acid (SO 3) mist densitometer, sulfuric acid in the exhaust gas ( SO 3 ) an exhaust gas treatment apparatus provided with exhaust gas temperature control means at the outlet of the dust collector so that the dew point of the mist is between the exhaust gas temperature at the inlet of the heat recovery device and the exhaust gas temperature at the outlet of the dust collector. It is.
[0017]
In the exhaust gas treatment apparatus of claim 5, the outlet exhaust gas temperature control means of said dust collector on the basis of the measured values of sulfate (SO 3) mist densitometer, the dew point of sulfuric acid (SO 3) mist in the exhaust gas, wherein The exhaust gas temperature at the inlet of the heat recovery unit and the exhaust gas temperature at the outlet of the dust collector, and higher than the exhaust gas temperature at the outlet of the dust collector by 30 ° C. or more can be adopted.
[0018]
Further, in the exhaust gas treatment apparatus according to claim 5, the exhaust gas temperature control means at the outlet of the dust collector is a heat medium circulation flow rate adjusting means of a heat medium circulation line between the reheater and the heat recovery unit, or Any one or more of a means for cooling the heat medium and a means for heating the heat medium can be provided.
[0019]
Further, in the exhaust gas treatment apparatus according to claim 5, a heat medium circulation line branched from the heat medium circulation line between the reheater and the heat recovery unit and passing through a heat transfer tube of the heat recovery unit is bypassed. A bypass line that circulates a heat medium only in the heat transfer tube of the reheater is provided, and the outlet exhaust gas temperature control means of the dust collector is a means for adjusting the heat medium flow rate of the bypass line. You can also.
[0020]
According to a ninth aspect of the present invention, there is provided a heat exchanger comprising an air preheater for preheating combustion air of a combustion device by exhaust gas discharged from the combustion device, and a heat transfer tube group for recovering heat of the exhaust gas at the outlet of the air preheater to a heat medium. A collector, a dust collector for collecting dust in the exhaust gas at the outlet of the heat recovery unit, a wet desulfurization device for removing sulfur oxides in the exhaust gas at the outlet of the dust collector, and an exhaust gas at the outlet of the wet desulfurization device. And a reheater consisting of a group of heat transfer tubes for heating with a heat medium supplied from the heat recovery unit are sequentially arranged from the upstream side to the downstream side of the exhaust gas duct of the combustion device, and are provided in the heat recovery unit and the reheater, respectively. In an operation method of an exhaust gas treatment apparatus provided with a heat medium circulating line that communicates the heat transfer tubes and circulates a heat medium therein, the dew point of sulfuric acid (SO 3 ) mist in the exhaust gas is measured at the inlet of the heat recovery unit. Exhaust gas temperature and exhaust gas at the outlet of the dust collector A management method of an exhaust gas processing device for controlling the outlet gas temperature of the dust collector so that the state is between degrees.
[0021]
The method for operating an exhaust gas treatment apparatus according to claim 9, wherein a dew point of the sulfuric acid (SO 3 ) mist in the exhaust gas is between an exhaust gas temperature at an inlet of the heat recovery unit and an exhaust gas temperature at an outlet of the dust collector, In addition, the temperature of the exhaust gas at the outlet of the dust collector can be set to be 30 ° C. or more higher.
[0022]
Further, in the operating method according to claim 9, the exhaust gas temperature at the outlet of the dust collector is adjusted by adjusting a heat medium circulation flow rate of a heat medium circulation line between the reheater and the heat recovery unit. It can be performed by cooling or heating.
[0023]
Further, in the operation method according to claim 9, the heat medium circulating line is branched from a heat medium circulating line between a reheater and the heat recovery device, and bypasses a heat medium circulating line passing through a heat transfer tube of the heat recovery device. A bypass line that circulates the heat medium only in the heat transfer tube of the reheater is provided, and the flow rate of the heat medium in the bypass line can be adjusted as exhaust gas temperature control of the outlet of the dust collector.
According to a thirteenth aspect of the present invention, there is provided an air preheater for preheating combustion air of a combustion device with exhaust gas discharged from the combustion device, and a heat transfer tube group for recovering heat of the exhaust gas at the outlet of the air preheater to a heat medium. A collector, a dust collector for collecting dust in the exhaust gas at the outlet of the heat recovery unit, a wet desulfurization device for removing sulfur oxides in the exhaust gas at the outlet of the dust collector, and an exhaust gas at the outlet of the wet desulfurization device. And a reheater consisting of a group of heat transfer tubes for heating with a heat medium supplied from the heat recovery unit are sequentially arranged from the upstream side to the downstream side of the exhaust gas duct of the combustion device, and are provided in the heat recovery unit and the reheater, respectively. In the method for operating an exhaust gas treatment apparatus provided with a heat medium circulating line that communicates the heat transfer tubes and circulates a heat medium therein, the concentration of sulfuric acid (SO 3 ) mist in the exhaust gas discharged from the dust collector is determined. Measure the sulfuric acid (SO 3 ) mist concentration Of the dust collector, the dew point of the sulfuric acid (SO 3 ) mist in the exhaust gas being between the exhaust gas temperature at the heat recovery device inlet and the exhaust gas temperature at the dust collector outlet based on the measured value of This is an operation method of the exhaust gas treatment device for adjusting the outlet exhaust gas temperature.
[0024]
The method for operating an exhaust gas treatment apparatus according to claim 13, wherein a dew point of sulfuric acid (SO 3 ) mist in the exhaust gas is between an exhaust gas temperature at the heat recovery unit inlet and an exhaust gas temperature at the dust collector outlet, In addition, the temperature of the exhaust gas at the outlet of the dust collector can be set to be 30 ° C. or more higher.
[0025]
Further, in the operation method of the exhaust gas treatment device according to claim 13, the exhaust gas temperature at the outlet of the dust collector is adjusted by adjusting a heat medium circulation flow rate of a heat medium circulation line between the reheater and the heat recovery unit. It can be performed by cooling or heating the heat medium.
[0026]
Furthermore, in the operation method of the exhaust gas treatment apparatus according to claim 13, a heat medium circulation line that branches from a heat medium circulation line between a reheater and the heat recovery unit and passes through a heat transfer tube of the heat recovery unit is provided. A bypass line that bypasses and circulates the heat medium only in the heat transfer tube of the reheater is provided, and the exhaust gas temperature control at the outlet of the dust collector can adjust the flow rate of the heat medium in the bypass line.
[0027]
In addition, as these means for controlling the exhaust gas temperature at the outlet of the heat recovery unit, a method described in JP-A-09-122438 or JP-A-11-347332 can be used.
[0028]
[Action]
Part of sulfur dioxide (SO 2 ) generated when burning coal reacts with oxygen in exhaust gas to form SO 3 by a catalytic action such as a denitration catalyst. The conversion from SO 2 to SO 3 varies depending on the conditions, but is about 1 to 3%. Since the SO 2 concentration discharged from a coal-fired boiler is generally about 300 to 3000 ppm, the SO 3 concentration is about 3 to 90 ppm. When the temperature of the exhaust gas decreases, the SO 3 reacts with the moisture in the exhaust gas to form a sulfuric acid mist (H 2 SO 4 ), and sulfuric acid is condensed in a low temperature portion of the exhaust gas treatment device.
[0029]
FIG. 4 shows the influence of the SO 3 concentration and the exhaust gas temperature on the sulfuric acid dew point temperature. The sulfuric acid dew point can be calculated by Otsuka's equation or Muller's equation as shown in the figure. When the SO 3 concentration is 3 to 90 ppm, the dew point is 120 to 160 ° C., though it depends on the water content.
[0030]
FIG. 5 is a test result obtained by the present inventors examining the reactivity of a gas containing 50 ppm of SO 3 and 10% of moisture (sulfuric acid dew point: about 150 ° C.) with coal ash particles. By lowering the sulfuric acid dew point by 30 ° C., the sulfuric acid mist adhered to almost 100% ash particles. In other words, by cooling the exhaust gas in a region where the ash particle concentration in the exhaust gas is high from the inlet of the heat recovery unit to the outlet of the dust collector, and making the condition 30 ° C. lower than the sulfuric acid dew point, the sulfuric acid mist reacts with the ash particles almost 100%. I do.
[0031]
Since the ash particles show strong alkalinity, the ash particles can neutralize the sulfuric acid mist to make it harmless and prevent corrosion of equipment. Furthermore, since most (about 99.9%) of the ash particles that have reacted with the sulfuric acid mist are collected by the dust collector, the sulfuric acid mist, which is ultrafine particles, is disposed in the exhaust gas duct on the downstream side of the dust collector. Purple smoke can be prevented from being released into the atmosphere from the chimney without entering the device.
[0032]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the drawings.
[0033]
Embodiment 1
FIG. 1 shows a configuration diagram of an exhaust gas treatment system according to one embodiment of the present invention.
As shown in FIG. 1, in the exhaust gas treatment system according to the present embodiment, the exhaust gas discharged from the boiler 1 is introduced into a denitration device 2 installed in an exhaust gas duct 25, and the nitrogen oxides in the exhaust gas in the denitration device 2 Is removed and then guided to the air preheater 3. The exhaust gas guided to the air preheater 3 exchanges heat with the combustion air supplied to the boiler 1, is cooled to, for example, 120 to 170 ° C., and is introduced into the heat recovery unit 11. The heat of the exhaust gas introduced into the heat recovery device 11 is recovered by the heat medium flowing through the heat transfer tube by heat exchange, cooled to, for example, 75 to 110 ° C., and guided to the electric precipitator 4, where the waste gas in the exhaust gas is removed. Most of the dust is collected.
[0034]
The exhaust gas passing through the electrostatic precipitator 4 is pressurized by an induction fan 5 and introduced into a wet limestone-gypsum method wet desulfurization device 6 which is an example of a wet exhaust gas treatment device. Removed. The exhaust gas cooled to the saturated gas temperature in the wet desulfurization device 6 is heated by the reheater 13 and then discharged from the chimney 8 through the desulfurization fan 7 to the atmosphere. The reheater 13 is a heat exchanger provided with a heat transfer tube through which a heat medium flows like the heat recovery device 11, and the exhaust gas is heated to, for example, 90 to 110 ° C. by heat exchange with the heat medium flowing in the heat transfer tube. Raise the temperature. The heat transfer tubes of the heat recovery unit 11 and the reheater 13 communicate with each other by heat medium circulation lines 15-1 and 15-2, and the heat transfer medium is provided between the heat recovery unit 11 and the reheater 13 by the pump 10. Is circulated.
[0035]
In the exhaust gas treatment system shown in FIG. 1, by controlling the exhaust gas temperature at the outlet of the electrostatic precipitator 4, the efficiency of removing sulfuric acid mist in the exhaust gas can be increased.
[0036]
FIG. 2 shows a detailed diagram of a heat medium circulation system of the heat recovery unit 11 and the reheater 13 according to the characteristic part of the present embodiment. The heat transfer tube 12 and the heat transfer tube 14 of the heat recovery unit 11 and the reheater 13 are connected annularly by heat medium circulation lines 15-1 and 15-2, and a circulation pump provided in the middle of the lines. 10, the heat medium is circulated in the heat transfer tubes 12 and 14. Fin tubes and the like are used for the heat transfer tubes 12 and 14 in order to improve the efficiency of heat exchange. The heat medium circulation pipe 15-2 is provided with a heat medium tank 26 for absorbing the expansion of the heat medium in the pipe.
[0037]
A specific method for controlling the exhaust gas temperature at the outlet of the electrostatic precipitator 4 is as follows.
In order to control the exhaust gas temperature at the outlet of the heat recovery unit 11, a heat medium bypass line 16 is provided, which bypasses the heat recovery unit 11 and returns from the heat medium outlet of the reheater 13 to the inlet. The opening degree of the flow control valve 18 provided in the heating medium bypass line 16 is adjusted by the signal of the thermometer 17 for measuring the exhaust gas temperature so that the outlet exhaust gas temperature of the electrostatic precipitator 4 falls within a set range. The amount of heat recovered in the heat recovery unit 11 by the medium is controlled. A heat exchanger 19 is connected to the heat medium circulation line 15-2. Steam or cooling water is supplied from the supply pipe 20 to the heat recovery circuit 11 by adjusting the opening of the flow control valve 21. Control the outlet exhaust gas temperature. As a result, the temperature of the exhaust gas at the outlet of the electric precipitator 4 can be controlled.
[0038]
By adjusting the flow rate of the pump 10, the temperature of the exhaust gas at the outlet of the electric precipitator 4 can be controlled. For example, when the temperature of the exhaust gas in the exhaust gas duct 25 at the outlet of the electrostatic precipitator 4 measured by the thermometer 17 is higher than a predetermined value, the flow rate of the pump 10 is increased to increase the heat recovery device 11 and the reheater 13. During this time, the exhaust gas temperature at the outlet of the electrostatic precipitator 4 is lowered. However, conversely, when the flow rate of the pump 10 is reduced to reduce the amount of heat exchange between the heat recovery unit 11 and the reheater 13, the exhaust gas temperature at the outlet of the reheater 13 is reduced, and the surface of the heat transfer tube 14 is reduced. Care must be taken because the mist of the wet desulfurization equipment may scatter and adhere to the mist, causing corrosion.
[0039]
In the embodiment shown in FIGS. 1 and 2, the exhaust gas temperature at the outlet of the electrostatic precipitator 4 was adjusted to a predetermined value, and the sulfuric acid mist concentration in the exhaust gas at the inlet of the chimney 8 was measured. Table 1 shows the results. However, the sulfuric acid mist concentration is shown as a relative value based on the value at 150 ° C. as 100.
[0040]
[Table 1]
Figure 2004154683
[0041]
Embodiment 2
In the exhaust gas treatment system shown in FIG. 1, it is also possible to measure the sulfuric acid mist concentration and control the exhaust gas temperature at the outlet of the electric precipitator 4 based on the measured sulfuric acid mist concentration (see FIG. 4).
[0042]
FIG. 3 shows a detailed diagram of the heat medium circulation system of the heat recovery unit 11 and the reheater 13 according to the present embodiment. The heat transfer tube 12 and the heat transfer tube 14 of the heat recovery unit 11 and the reheater 13 are connected annularly by heat medium circulation lines 15-1 and 15-2, and a circulation pump provided in the middle of the lines. 10, the heat medium is circulated in the heat transfer tubes 12 and 14. Fin tubes and the like are used for the heat transfer tubes 12 and 14 in order to improve the efficiency of heat exchange. The heat medium circulation pipe 15-2 is provided with a heat medium tank 26 for absorbing the expansion of the heat medium in the pipe.
[0043]
A specific method for controlling the exhaust gas temperature at the outlet of the electrostatic precipitator 4 is as follows.
A heat medium bypass line 16 is provided to control the exhaust gas temperature at the outlet of the heat collector 11, and the electric dust collector 4 is calculated based on a signal from a mist concentration meter 22 that measures the exhaust gas temperature at the outlet of the electric dust collector 4. The amount of heat recovery is controlled by adjusting the opening of the flow control valve 18 provided in the heat medium bypass line 16 so that the mist concentration at the outlet of the heat exchanger falls within the set range. A heat exchanger 19 is connected to the heat medium circulation line 15-2. Steam or cooling water is supplied from the supply pipe 20 to the heat recovery circuit 11 by adjusting the opening of the flow control valve 21. The temperature of the exhaust gas at the outlet is controlled to control the mist concentration at the outlet of the electrostatic precipitator 4.
[0044]
In the first embodiment, the exhaust gas temperature at the outlet of the electrostatic precipitator 4 is measured. However, when the exhaust gas temperature drop at the electric precipitator 4 is small, the exit of the heat recovery device 11 or the entrance of the electric precipitator 4 is performed. It is also possible to measure the temperature of the exhaust gas at this point instead. In the second embodiment, the mist concentration at the inlet of the chimney 8 can be measured instead of the mist concentration at the outlet of the electric precipitator 4.
[0045]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the sulfuric acid mist density | concentration in the exhaust gas exhausted from a chimney can be reduced economically. In addition, since the sulfuric acid mist is neutralized and neutralized with highly alkaline coal ash, corrosion of equipment can be prevented.
[Brief description of the drawings]
FIG. 1 is a basic system diagram of an exhaust gas treatment system according to an embodiment of the present invention.
FIG. 2 is a partial detailed structural view of the exhaust gas treatment system according to the first embodiment of the present invention.
FIG. 3 is a partial detailed structural view of an exhaust gas treatment system according to a second embodiment of the present invention.
FIG. 4 is a graph showing the relationship between the concentration of SO 3 in exhaust gas and the dew point temperature of sulfuric acid in exhaust gas in the exhaust gas treatment system of the present invention.
FIG. 5 is a diagram showing the reactivity between SO 3 -containing gas and coal ash.
[Explanation of symbols]
1: Boiler 2: Denitration device 3: Air preheater 4: Electric precipitator 5: Induction fan 6: Wet desulfurization device 7: Desulfurization fan 8: Chimney 10: Pump 11: Heat recovery unit 12: Heat transfer tube 13: Reheating 14: Heat transfer tube 15: Heat medium circulation line 16: Heat medium bypass line 17: Thermometer 18: Flow control valve 19: Heat exchanger 20: Supply pipe 21: Flow control valve 22: Mist concentration meter 25: Exhaust gas duct 26: Heat medium tank

Claims (16)

燃焼装置から排出する排ガスにより燃焼装置の燃焼用空気を予熱する空気予熱器と、
該空気予熱器出口の排ガスの熱を熱媒に回収する伝熱管群からなる熱回収器と、
該熱回収器出口の排ガス中のばい塵を回収する集塵器と、
該集塵器出口の排ガス中の硫黄酸化物を除去する湿式脱硫装置と、
該湿式脱硫装置出口の排ガスを前記熱回収器から供給される熱媒で加熱する伝熱管群からなる再加熱器と、
を燃焼装置の排ガスダクトの上流側から下流側に順次配置し、
熱回収器と再加熱器にそれぞれ設けられた伝熱管を連絡し、その内部に熱媒を循環させる熱媒循環ラインを設けた排ガス処理装置において、
排ガス中の硫酸(SO)ミストの露点が、前記熱回収器入口での排ガス温度と前記集塵器出口での排ガス温度の間である状態にする前記集塵器の出口排ガス温度制御手段を設けたことを特徴とする排ガス処理装置。
An air preheater for preheating combustion air of the combustion device with exhaust gas discharged from the combustion device,
A heat recovery unit comprising a heat transfer tube group for recovering heat of the exhaust gas at the outlet of the air preheater into a heat medium,
A dust collector for collecting dust in exhaust gas at the outlet of the heat recovery device,
A wet desulfurization device for removing sulfur oxides in the exhaust gas at the outlet of the dust collector,
A reheater comprising a heat transfer tube group for heating the exhaust gas at the outlet of the wet desulfurization device with a heat medium supplied from the heat recovery device,
Are arranged sequentially from upstream to downstream of the exhaust gas duct of the combustion device,
In an exhaust gas treatment device that connects a heat transfer tube provided in each of a heat recovery unit and a reheater and has a heat medium circulation line that circulates a heat medium therein,
The exhaust gas temperature control means at the outlet of the dust collector, wherein the dew point of the sulfuric acid (SO 3 ) mist in the exhaust gas is between the exhaust gas temperature at the heat recovery device inlet and the exhaust gas temperature at the dust collector outlet. An exhaust gas treatment device characterized by being provided.
排ガス中の硫酸(SO)ミストの露点が、前記熱回収器入口での排ガス温度と前記集塵器出口での排ガス温度の間であり、かつ前記集塵器出口での排ガス温度よりも30℃以上高い状態にする前記集塵器の出口排ガス温度制御手段を設けたことを特徴とする請求項1記載の排ガス処理装置。The dew point of the sulfuric acid (SO 3 ) mist in the exhaust gas is between the exhaust gas temperature at the inlet of the heat recovery unit and the exhaust gas temperature at the outlet of the dust collector, and is lower than the exhaust gas temperature at the outlet of the dust collector by 30%. 2. The exhaust gas treatment apparatus according to claim 1, further comprising a temperature control unit for exhaust gas at an outlet of the dust collector, the temperature of which is set to be higher than the temperature of the exhaust gas. 前記集塵器の出口排ガス温度制御手段は、前記再加熱器と前記熱回収器との間の熱媒循環ラインの熱媒循環流量調整手段又は前記熱媒を冷却する手段、前記熱媒を加熱する手段のいずれか1つ以上であることを特徴とする請求項1又は2記載の排ガス処理装置。The exhaust gas temperature control means at the outlet of the dust collector is a heat medium circulation flow rate adjusting means for a heat medium circulation line between the reheater and the heat recovery unit, or a means for cooling the heat medium, and heating the heat medium. The exhaust gas treatment device according to claim 1 or 2, wherein the exhaust gas treatment device is at least one of the following means. 前記再加熱器と前記熱回収器との間の熱媒循環ラインから分岐して前記熱回収器の伝熱管内を通る熱媒循環ラインをバイパスして前記再加熱器の伝熱管内にのみ熱媒を循環させるパイパスラインを設け、前記集塵器の出口排ガス温度制御手段は、前記バイパスラインの熱媒流量を調整する手段であることを特徴とする請求項1ないし3のいずれかに記載の排ガス処理装置。Heat is diverted from the heat medium circulation line between the reheater and the heat recovery unit to bypass only the heat medium circulation line passing through the heat transfer tube of the heat recovery unit, and heat is generated only in the heat transfer tube of the reheater. 4. A bypass line for circulating a medium is provided, and the outlet exhaust gas temperature control means of the dust collector is a means for adjusting a heat medium flow rate of the bypass line. Exhaust gas treatment equipment. 燃焼装置から排出する排ガスにより燃焼装置の燃焼用空気を予熱する空気予熱器と、
該空気予熱器出口の排ガスの熱を熱媒に回収する伝熱管群からなる熱回収器と、
該熱回収器出口の排ガス中のばい塵を回収する集塵器と、
該集塵器出口の排ガス中の硫黄酸化物を除去する湿式脱硫装置と、
該湿式脱硫装置出口の排ガスを前記熱回収器から供給される熱媒で加熱する伝熱管群からなる再加熱器と、
を燃焼装置の排ガスダクトの上流側から下流側に順次配置し、
熱回収器と再加熱器にそれぞれ設けられた伝熱管を連絡し、その内部に熱媒を循環させる熱媒循環ラインを設けた排ガス処理装置において、
前記集塵器出口に排ガス中の硫酸(SO)ミスト濃度を測定する硫酸(SO)ミスト濃度計を設け、該硫酸(SO)ミスト濃度計の測定値に基づき、排ガス中の硫酸(SO)ミストの露点が、前記熱回収器入口での排ガス温度と前記集塵器出口での排ガス温度の間である状態にする前記集塵器の出口排ガス温度制御手段を設けたことを特徴とする排ガス処理装置。
An air preheater for preheating combustion air of the combustion device with exhaust gas discharged from the combustion device,
A heat recovery unit comprising a heat transfer tube group for recovering heat of the exhaust gas at the outlet of the air preheater into a heat medium,
A dust collector for collecting dust in exhaust gas at the outlet of the heat recovery device,
A wet desulfurization device for removing sulfur oxides in the exhaust gas at the outlet of the dust collector,
A reheater comprising a heat transfer tube group for heating the exhaust gas at the outlet of the wet desulfurization device with a heat medium supplied from the heat recovery device,
Are arranged sequentially from upstream to downstream of the exhaust gas duct of the combustion device,
In an exhaust gas treatment device that connects a heat transfer tube provided in each of a heat recovery unit and a reheater and has a heat medium circulation line that circulates a heat medium therein,
The collector to the dust outlet sulfate in the exhaust gas (SO 3) sulfate (SO 3) to measure the mist concentration provided mist densitometer, based on the measured value of the sulfuric acid (SO 3) mist densitometer, sulfuric acid in the exhaust gas ( SO 3 ) an exhaust gas temperature control means for the outlet of the dust collector is provided so that the dew point of the mist is between the exhaust gas temperature at the inlet of the heat recovery device and the exhaust gas temperature at the outlet of the dust collector. Waste gas treatment equipment.
前記硫酸(SO)ミスト濃度計の測定値に基づき、排ガス中の硫酸(SO)ミストの露点が、前記熱回収器入口での排ガス温度と前記集塵器出口での排ガス温度の間であり、かつ前記集塵器出口での排ガス温度よりも30℃以上高い状態にする前記集塵器の出口排ガス温度制御手段を設けたことを特徴とする請求項5記載の排ガス処理装置。Based on the measured value of the sulfuric acid (SO 3) mist densitometer, sulfuric acid in the exhaust gas (SO 3) dew point of the mist, between the exhaust gas temperature in the dust collector outlet and the exhaust gas temperature at the heat recovery inlet 6. The exhaust gas treatment apparatus according to claim 5, further comprising an exhaust gas temperature control means for exiting the dust collector, wherein the temperature of the exhaust gas is 30 ° C. or more higher than the exhaust gas temperature at the exit of the dust collector. 前記集塵器の出口排ガス温度制御手段は、前記再加熱器と前記熱回収器との間の熱媒循環ラインの熱媒循環流量調整手段又は前記熱媒を冷却する手段、前記熱媒を加熱する手段のいずれか1つ以上であることを特徴とする請求項5又は6記載の排ガス処理装置。The exhaust gas temperature control means at the outlet of the dust collector is a heat medium circulation flow rate adjusting means for a heat medium circulation line between the reheater and the heat recovery unit, or a means for cooling the heat medium, and heating the heat medium. The exhaust gas treatment device according to claim 5, wherein the exhaust gas treatment device is any one or more of the means for performing the treatment. 前記再加熱器と前記熱回収器との間の熱媒循環ラインから分岐して前記熱回収器の伝熱管内を通る熱媒循環ラインをバイパスして前記再加熱器の伝熱管内にのみ熱媒を循環させるパイパスラインを設け、前記集塵器の出口排ガス温度制御手段は、前記バイパスラインの熱媒流量を調整する手段であることを特徴とする請求項5ないし7のいずれかに記載の排ガス処理装置。Heat is diverted from the heat medium circulation line between the reheater and the heat recovery unit to bypass only the heat medium circulation line passing through the heat transfer tube of the heat recovery unit, and heat is generated only in the heat transfer tube of the reheater. A bypass line for circulating a medium is provided, and the outlet exhaust gas temperature control means of the dust collector is a means for adjusting a flow rate of a heating medium in the bypass line. Exhaust gas treatment equipment. 燃焼装置から排出する排ガスにより燃焼装置の燃焼用空気を予熱する空気予熱器と、
該空気予熱器出口の排ガスの熱を熱媒に回収する伝熱管群からなる熱回収器と、
該熱回収器出口の排ガス中のばい塵を回収する集塵器と、
該集塵器出口の排ガス中の硫黄酸化物を除去する湿式脱硫装置と、
該湿式脱硫装置出口の排ガスを前記熱回収器から供給される熱媒で加熱する伝熱管群からなる再加熱器と、
を燃焼装置の排ガスダクトの上流側から下流側に順次配置し、
熱回収器と再加熱器にそれぞれ設けられた伝熱管を連絡し、その内部に熱媒を循環させる熱媒循環ラインを設けた排ガス処理装置の運用方法において、
排ガス中の硫酸(SO)ミストの露点が、前記熱回収器入口での排ガス温度と前記集塵器出口での排ガス温度の間である状態になるように前記集塵器の出口排ガス温度を制御することを特徴とする排ガス処理装置の運用方法。
An air preheater for preheating combustion air of the combustion device with exhaust gas discharged from the combustion device,
A heat recovery unit comprising a heat transfer tube group for recovering heat of the exhaust gas at the outlet of the air preheater into a heat medium,
A dust collector for collecting dust in exhaust gas at the outlet of the heat recovery device,
A wet desulfurization device for removing sulfur oxides in the exhaust gas at the outlet of the dust collector,
A reheater comprising a heat transfer tube group for heating the exhaust gas at the outlet of the wet desulfurization device with a heat medium supplied from the heat recovery device,
Are arranged sequentially from upstream to downstream of the exhaust gas duct of the combustion device,
In the method of operating an exhaust gas treatment device provided with a heat medium circulating line for communicating a heat transfer tube provided in each of a heat recovery unit and a reheater and circulating a heat medium therein,
The outlet exhaust gas temperature of the dust collector is adjusted so that the dew point of the sulfuric acid (SO 3 ) mist in the exhaust gas is between the exhaust gas temperature at the heat recovery unit inlet and the exhaust gas temperature at the dust collector outlet. An operation method of an exhaust gas treatment device, characterized by controlling.
前記排ガス中の硫酸(SO)ミストの露点が、前記熱回収器入口での排ガス温度と前記集塵器出口での排ガス温度の間であり、かつ前記集塵器出口での排ガス温度よりも30℃以上高い状態にする前記集塵器の出口排ガス温度制御手段を設けたことを特徴とする請求項9記載の排ガス処理装置の運用方法。The dew point of the sulfuric acid (SO 3 ) mist in the exhaust gas is between the exhaust gas temperature at the heat recovery device inlet and the exhaust gas temperature at the dust collector outlet, and is lower than the exhaust gas temperature at the dust collector outlet. The method for operating an exhaust gas treatment apparatus according to claim 9, further comprising means for controlling the temperature of the exhaust gas at the outlet of the dust collector, which is set to a temperature higher than 30 ° C. 前記集塵器の出口排ガス温度は、前記再加熱器と前記熱回収器との間の熱媒循環ラインの熱媒循環流量の調整、前記熱媒の冷却又は前記熱媒の加熱により行うことを特徴とする請求項9又は10記載の排ガス処理装置の運用方法。The outlet exhaust gas temperature of the dust collector may be adjusted by adjusting a heat medium circulation flow rate of a heat medium circulation line between the reheater and the heat recovery device, cooling the heat medium, or heating the heat medium. The method for operating an exhaust gas treatment device according to claim 9 or 10, wherein 排ガス処理装置に再加熱器と前記熱回収器との間の熱媒循環ラインから分岐して前記熱回収器の伝熱管内を通る熱媒循環ラインをバイパスして前記再加熱器の伝熱管内にのみ熱媒を循環させるパイパスラインを設け、
前記集塵器の出口排ガス温度制御は、前記バイパスラインの熱媒流量を調整することで行うことを特徴とする請求項9ないし11のいずれかに記載の排ガス処理装置の運用方法。
In the exhaust gas treatment device, the heat medium circulation line between the reheater and the heat recovery unit branches off from the heat medium circulation line passing through the heat transfer tube of the heat recovery unit, and the heat transfer tube of the reheater passes through the heat transfer line. A bypass line that circulates the heat medium only in
The method of operating an exhaust gas treatment apparatus according to any one of claims 9 to 11, wherein the temperature control of the exhaust gas at the outlet of the dust collector is performed by adjusting a flow rate of a heating medium in the bypass line.
燃焼装置から排出する排ガスにより燃焼装置の燃焼用空気を予熱する空気予熱器と、
該空気予熱器出口の排ガスの熱を熱媒に回収する伝熱管群からなる熱回収器と、
該熱回収器出口の排ガス中のばい塵を回収する集塵器と、
該集塵器出口の排ガス中の硫黄酸化物を除去する湿式脱硫装置と、
該湿式脱硫装置出口の排ガスを前記熱回収器から供給される熱媒で加熱する伝熱管群からなる再加熱器と、
を燃焼装置の排ガスダクトの上流側から下流側に順次配置し、
熱回収器と再加熱器にそれぞれ設けられた伝熱管を連絡し、その内部に熱媒を循環させる熱媒循環ラインを設けた排ガス処理装置の運用方法において、
前記集塵器から排出される排ガス中の硫酸(SO)ミスト濃度を測定し、該硫酸(SO)ミスト濃度の測定値に基づき、排ガス中の硫酸(SO)ミストの露点が、前記熱回収器入口での排ガス温度と前記集塵器出口での排ガス温度の間であり、かつ前記集塵器出口での排ガス温度よりも30℃以上高い状態にする前記集塵器の出口排ガス温度を調整することを特徴とする排ガス処理装置の運用方法。
前記集塵器から排出される排ガス中の硫酸(SO)ミスト濃度を測定し、該硫酸(SO)ミスト濃度の測定値に基づき、排ガス中の硫酸(SO)ミストの露点が、前記熱回収器入口での排ガス温度と前記集塵器出口での排ガス温度の間である状態にする前記集塵器の出口排ガス温度を調整することを特徴とする排ガス処理装置の運用方法。
An air preheater for preheating combustion air of the combustion device with exhaust gas discharged from the combustion device,
A heat recovery unit comprising a heat transfer tube group for recovering heat of the exhaust gas at the outlet of the air preheater into a heat medium,
A dust collector for collecting dust in exhaust gas at the outlet of the heat recovery device,
A wet desulfurization device for removing sulfur oxides in the exhaust gas at the outlet of the dust collector,
A reheater comprising a heat transfer tube group for heating the exhaust gas at the outlet of the wet desulfurization device with a heat medium supplied from the heat recovery device,
Are arranged sequentially from upstream to downstream of the exhaust gas duct of the combustion device,
In the method of operating an exhaust gas treatment device provided with a heat medium circulating line for communicating a heat transfer tube provided in each of a heat recovery unit and a reheater and circulating a heat medium therein,
The sulfuric acid (SO 3 ) mist concentration in the exhaust gas discharged from the dust collector is measured, and the dew point of the sulfuric acid (SO 3 ) mist in the exhaust gas is determined based on the measured value of the sulfuric acid (SO 3 ) mist concentration. The exhaust gas temperature at the outlet of the dust collector, which is between the exhaust gas temperature at the heat collector inlet and the exhaust gas temperature at the dust collector outlet, and is higher than the exhaust gas temperature at the dust collector outlet by 30 ° C. or more. A method for operating an exhaust gas treatment apparatus, comprising:
The sulfuric acid (SO 3 ) mist concentration in the exhaust gas discharged from the dust collector is measured, and the dew point of the sulfuric acid (SO 3 ) mist in the exhaust gas is determined based on the measured value of the sulfuric acid (SO 3 ) mist concentration. A method for operating an exhaust gas treatment apparatus, comprising adjusting an exhaust gas temperature at an outlet of the dust collector so as to be in a state between an exhaust gas temperature at an inlet of a heat recovery device and an exhaust gas temperature at an outlet of the dust collector.
前記集塵器から排出される排ガス中の硫酸(SO)ミスト濃度を測定し、該硫酸(SO)ミスト濃度の測定値に基づき、排ガス中の硫酸(SO)ミストの露点が、前記熱回収器入口での排ガス温度と前記集塵器出口での排ガス温度の間であり、かつ前記集塵器出口での排ガス温度よりも30℃以上高い状態にする前記集塵器の出口排ガス温度を調整することを特徴とする請求項13記載の排ガス処理装置の運用方法。The sulfuric acid (SO 3 ) mist concentration in the exhaust gas discharged from the dust collector is measured, and the dew point of the sulfuric acid (SO 3 ) mist in the exhaust gas is determined based on the measured value of the sulfuric acid (SO 3 ) mist concentration. The exhaust gas temperature at the outlet of the dust collector, which is between the exhaust gas temperature at the heat collector inlet and the exhaust gas temperature at the dust collector outlet, and is higher than the exhaust gas temperature at the dust collector outlet by 30 ° C. or more. 14. The method for operating an exhaust gas treatment device according to claim 13, wherein: 前記集塵器の出口排ガス温度は、前記再加熱器と前記熱回収器との間の熱媒循環ラインの熱媒循環流量の調整、前記熱媒の冷却又は加熱により行うことを特徴とする請求項13又は14記載の排ガス処理装置の運用方法。The outlet exhaust gas temperature of the dust collector is adjusted by adjusting a heat medium circulation flow rate of a heat medium circulation line between the reheater and the heat recovery unit, and cooling or heating the heat medium. Item 15. The method for operating an exhaust gas treatment device according to item 13 or 14. 再加熱器と前記熱回収器との間の熱媒循環ラインから分岐して前記熱回収器の伝熱管内を通る熱媒循環ラインをバイパスして前記再加熱器の伝熱管内にのみ熱媒を循環させるパイパスラインを設け、
前記集塵器の出口排ガス温度制御は、前記バイパスラインの熱媒流量を調整することで行うことを特徴とする請求項13ないし15にいずれかに記載の排ガス処理装置の運用方法。
The heat medium is diverted from the heat medium circulation line between the reheater and the heat recovery device, bypasses the heat medium circulation line passing through the heat transfer tube of the heat recovery device, and is supplied only into the heat transfer tube of the reheater. A bypass line to circulate
The method according to any one of claims 13 to 15, wherein the control of the exhaust gas temperature at the outlet of the dust collector is performed by adjusting a flow rate of a heating medium in the bypass line.
JP2002322880A 2002-11-06 2002-11-06 Exhaust gas treatment device and its operation method Expired - Fee Related JP4761284B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002322880A JP4761284B2 (en) 2002-11-06 2002-11-06 Exhaust gas treatment device and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002322880A JP4761284B2 (en) 2002-11-06 2002-11-06 Exhaust gas treatment device and its operation method

Publications (2)

Publication Number Publication Date
JP2004154683A true JP2004154683A (en) 2004-06-03
JP4761284B2 JP4761284B2 (en) 2011-08-31

Family

ID=32802944

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002322880A Expired - Fee Related JP4761284B2 (en) 2002-11-06 2002-11-06 Exhaust gas treatment device and its operation method

Country Status (1)

Country Link
JP (1) JP4761284B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078722A1 (en) 2006-12-27 2008-07-03 Babcock-Hitachi Kabushiki Kaisha Method and apparatus for treating discharge gas
JP2009052440A (en) * 2007-08-24 2009-03-12 Hitachi Plant Technologies Ltd Marine exhaust gas treatment equipment
WO2012042892A1 (en) * 2010-09-29 2012-04-05 バブコック日立株式会社 Oxygen combustion system and method for operating same
JP2015157253A (en) * 2014-02-24 2015-09-03 三菱日立パワーシステムズ株式会社 Exhaust gas treatment system and exhaust gas treatment method
EP2827058A4 (en) * 2012-03-14 2015-10-28 Ihi Corp OXYGEN COMBUSTION BOILER SYSTEM
JP2016142515A (en) * 2015-02-05 2016-08-08 三菱日立パワーシステムズ株式会社 Heat exchanger and heat exchanger control method
CN105889963A (en) * 2015-07-07 2016-08-24 大唐环境产业集团股份有限公司 Heat exchange device for wet desulphurization system
EP2103339A4 (en) * 2006-12-27 2017-05-17 Mitsubishi Hitachi Power Systems, Ltd. Exhaust gas treating method and apparatus
US10302301B2 (en) 2014-12-16 2019-05-28 Ihi Corporation Method and apparatus for controlling inlet temperature of dedusting apparatus in oxygen combustion boiler equipment
JP2019100612A (en) * 2017-12-01 2019-06-24 株式会社Ihi Heat exchanger for boiler exhaust gas
KR20210017403A (en) * 2019-08-08 2021-02-17 우민기술(주) Apparatus for purifying exhaust gas

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171622A (en) * 1987-01-09 1988-07-15 Babcock Hitachi Kk Exhaust gas treating device
JPH05154335A (en) * 1990-11-10 1993-06-22 Babcock Hitachi Kk Dry exhaust gas desulfurizer and method
JPH09122438A (en) * 1995-10-31 1997-05-13 Babcock Hitachi Kk Exhaust gas treatment system and its operation method
JPH09243050A (en) * 1996-03-01 1997-09-16 Kawasaki Heavy Ind Ltd Exhaust gas treatment method and device
JPH11270835A (en) * 1998-03-25 1999-10-05 Chiyoda Corp Exhaust gas treating system
JP2002206701A (en) * 2001-01-04 2002-07-26 Babcock Hitachi Kk Exhaust gas heat recovering device and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171622A (en) * 1987-01-09 1988-07-15 Babcock Hitachi Kk Exhaust gas treating device
JPH05154335A (en) * 1990-11-10 1993-06-22 Babcock Hitachi Kk Dry exhaust gas desulfurizer and method
JPH09122438A (en) * 1995-10-31 1997-05-13 Babcock Hitachi Kk Exhaust gas treatment system and its operation method
JPH09243050A (en) * 1996-03-01 1997-09-16 Kawasaki Heavy Ind Ltd Exhaust gas treatment method and device
JPH11270835A (en) * 1998-03-25 1999-10-05 Chiyoda Corp Exhaust gas treating system
JP2002206701A (en) * 2001-01-04 2002-07-26 Babcock Hitachi Kk Exhaust gas heat recovering device and method

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008078722A1 (en) 2006-12-27 2008-07-03 Babcock-Hitachi Kabushiki Kaisha Method and apparatus for treating discharge gas
EP2127728A4 (en) * 2006-12-27 2011-09-21 Babcock Hitachi Kk Method and apparatus for treating discharge gas
EP2103339A4 (en) * 2006-12-27 2017-05-17 Mitsubishi Hitachi Power Systems, Ltd. Exhaust gas treating method and apparatus
JP2009052440A (en) * 2007-08-24 2009-03-12 Hitachi Plant Technologies Ltd Marine exhaust gas treatment equipment
JP5489254B2 (en) * 2010-09-29 2014-05-14 バブコック日立株式会社 Oxyfuel combustion system and operating method thereof
US9513000B2 (en) 2010-09-29 2016-12-06 Mitsubishi Hitachi Power Systems, Ltd. Oxygen combustion system and method for operating same
AU2011310241B2 (en) * 2010-09-29 2015-08-27 Mitsubishi Power, Ltd. Oxygen combustion system and method for operating same
WO2012042892A1 (en) * 2010-09-29 2012-04-05 バブコック日立株式会社 Oxygen combustion system and method for operating same
EP2827058A4 (en) * 2012-03-14 2015-10-28 Ihi Corp OXYGEN COMBUSTION BOILER SYSTEM
US9945558B2 (en) 2012-03-14 2018-04-17 Ihi Corporation Oxyfuel combustion boiler system
JP2015157253A (en) * 2014-02-24 2015-09-03 三菱日立パワーシステムズ株式会社 Exhaust gas treatment system and exhaust gas treatment method
US10302301B2 (en) 2014-12-16 2019-05-28 Ihi Corporation Method and apparatus for controlling inlet temperature of dedusting apparatus in oxygen combustion boiler equipment
WO2016125353A1 (en) * 2015-02-05 2016-08-11 三菱日立パワーシステムズ株式会社 Heat exchanger and method for controlling heat exchanger
JP2016142515A (en) * 2015-02-05 2016-08-08 三菱日立パワーシステムズ株式会社 Heat exchanger and heat exchanger control method
US10436096B2 (en) 2015-02-05 2019-10-08 Mitsubishi Hitachi Power Systems, Ltd. Heat exchanger and method for controlling heat exchanger
CN105889963A (en) * 2015-07-07 2016-08-24 大唐环境产业集团股份有限公司 Heat exchange device for wet desulphurization system
JP2019100612A (en) * 2017-12-01 2019-06-24 株式会社Ihi Heat exchanger for boiler exhaust gas
KR20210017403A (en) * 2019-08-08 2021-02-17 우민기술(주) Apparatus for purifying exhaust gas
KR102315711B1 (en) * 2019-08-08 2021-10-21 황종덕 Apparatus for purifying exhaust gas

Also Published As

Publication number Publication date
JP4761284B2 (en) 2011-08-31

Similar Documents

Publication Publication Date Title
JP5180097B2 (en) Exhaust gas treatment method and apparatus
TWI274130B (en) Exhaust gas treating apparatus
JP5350996B2 (en) Oxygen combustion system exhaust gas treatment equipment
CN102666883B (en) Exhaust processing and heat recovery system
CA2498263C (en) Exhaust smoke-processing system
JP2013202422A (en) Method and apparatus for treating combustion exhaust gas of coal fired boiler
JP4761284B2 (en) Exhaust gas treatment device and its operation method
CN106801884A (en) A kind of smoke comprehensive processing unit and its method
JP3572139B2 (en) Heat exchanger and flue gas treatment device provided with the same
CN206755210U (en) Fire coal boiler fume purifies and waste heat recovery processing system
JP2002370012A (en) Exhaust gas treatment apparatus
JPS6084131A (en) Waste gas treating method and apparatus thereof
CN208720252U (en) A condensation-reheat integrated plume elimination system
JP2019100612A (en) Heat exchanger for boiler exhaust gas
JP3544432B2 (en) Exhaust gas treatment equipment and its operation method
JPS5990617A (en) Treatment of waste gas
CN108144444A (en) A kind of flue gas coprocessing system that technology is utilized based on fume afterheat
JPH10128152A (en) Device and method for flue gas treatment
JP2725784B2 (en) Flue gas desulfurization method
JP2019013893A (en) Exhaust gas treatment method and exhaust gas treatment system
JP2001248826A (en) Equipment and method for boiler exhaust gas treatment
JP3783417B2 (en) Reheater for gas gas heater in flue gas treatment facility
JP2002204925A (en) Exhaust gas treatment system and operating method thereof
JPH11270835A (en) Exhaust gas treating system
JP2826560B2 (en) Exhaust gas treatment method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090311

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110601

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140617

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4761284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees