JP2004152827A - Solar cell element and method of manufacturing the same - Google Patents
Solar cell element and method of manufacturing the same Download PDFInfo
- Publication number
- JP2004152827A JP2004152827A JP2002313795A JP2002313795A JP2004152827A JP 2004152827 A JP2004152827 A JP 2004152827A JP 2002313795 A JP2002313795 A JP 2002313795A JP 2002313795 A JP2002313795 A JP 2002313795A JP 2004152827 A JP2004152827 A JP 2004152827A
- Authority
- JP
- Japan
- Prior art keywords
- magnesium
- solar cell
- cell element
- aluminum
- electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 38
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 37
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims abstract description 27
- 239000000395 magnesium oxide Substances 0.000 claims abstract description 24
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims abstract description 24
- 239000000758 substrate Substances 0.000 claims abstract description 22
- 239000004065 semiconductor Substances 0.000 claims abstract description 18
- 238000000605 extraction Methods 0.000 claims abstract description 8
- 239000011521 glass Substances 0.000 claims abstract description 8
- 229910000679 solder Inorganic materials 0.000 claims abstract description 7
- 229910052751 metal Inorganic materials 0.000 claims abstract description 6
- 239000002184 metal Substances 0.000 claims abstract description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 25
- 239000011777 magnesium Substances 0.000 claims description 19
- 229910052749 magnesium Inorganic materials 0.000 claims description 16
- 229910044991 metal oxide Inorganic materials 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 7
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 4
- BHSXLOMVDSFFHO-UHFFFAOYSA-N (3-ethylsulfanylphenyl)methanamine Chemical compound CCSC1=CC=CC(CN)=C1 BHSXLOMVDSFFHO-UHFFFAOYSA-N 0.000 claims description 3
- -1 magnesium aluminate Chemical class 0.000 claims description 3
- MODMKKOKHKJFHJ-UHFFFAOYSA-N magnesium;dioxido(dioxo)molybdenum Chemical compound [Mg+2].[O-][Mo]([O-])(=O)=O MODMKKOKHKJFHJ-UHFFFAOYSA-N 0.000 claims description 3
- DJZHPOJZOWHJPP-UHFFFAOYSA-N magnesium;dioxido(dioxo)tungsten Chemical compound [Mg+2].[O-][W]([O-])(=O)=O DJZHPOJZOWHJPP-UHFFFAOYSA-N 0.000 claims description 3
- JHYLKGDXMUDNEO-UHFFFAOYSA-N [Mg].[In] Chemical compound [Mg].[In] JHYLKGDXMUDNEO-UHFFFAOYSA-N 0.000 claims description 2
- 239000007772 electrode material Substances 0.000 abstract description 5
- 230000001747 exhibiting effect Effects 0.000 abstract 2
- 238000010586 diagram Methods 0.000 abstract 1
- 238000009792 diffusion process Methods 0.000 description 9
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 7
- 229910052709 silver Inorganic materials 0.000 description 7
- 239000004332 silver Substances 0.000 description 7
- 229910045601 alloy Inorganic materials 0.000 description 5
- 239000000956 alloy Substances 0.000 description 5
- 230000007423 decrease Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- 239000002003 electrode paste Substances 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- XHXFXVLFKHQFAL-UHFFFAOYSA-N phosphoryl trichloride Chemical compound ClP(Cl)(Cl)=O XHXFXVLFKHQFAL-UHFFFAOYSA-N 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 150000002681 magnesium compounds Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- RLOWWWKZYUNIDI-UHFFFAOYSA-N phosphinic chloride Chemical compound ClP=O RLOWWWKZYUNIDI-UHFFFAOYSA-N 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Abstract
【課題】太陽電池素子の裏面にアルミニウムなどからなる電極材料を焼き付ける際に球状の突起や凹凸が発生することを防止する。
【解決手段】一導電型を呈する半導体基板の一主面側に他の導電型を呈する領域と表面電極とを設けると共に、他の主面側に主としてアルミニウムとガラス成分からなる集電部と、この集電部よりも半田濡れ性のよい金属を主成分とする出力取出部とからなる裏面電極を設けた太陽電池素子であって、上記集電部に酸化マグネシウムを含有することを特徴とする。
【選択図】 図1An object of the present invention is to prevent the occurrence of spherical projections and irregularities when baking an electrode material made of aluminum or the like on the back surface of a solar cell element.
A semiconductor substrate exhibiting one conductivity type is provided with a region exhibiting another conductivity type and a surface electrode on one main surface side of the semiconductor substrate, and a current collector mainly composed of aluminum and a glass component is provided on the other main surface side; A solar cell element provided with a back electrode composed of an output extraction section mainly composed of a metal having better solder wettability than the current collection section, wherein the current collection section contains magnesium oxide. .
[Selection diagram] Fig. 1
Description
【0001】
【発明の属する技術分野】
本発明は太陽電池素子とその製造方法に関し、特にアルミニウム粉末を主成分とする裏面電極を設けた太陽電池素子に関する。
【0002】
【従来の技術】
従来の太陽電池素子は、例えばP型シリコンなどからなる半導体基板の表面近傍全面に一定の深さまでN型不純物を拡散させてN型を呈する拡散層を設け、半導体基板の表面に窒化シリコン膜などからなる反射防止膜を設け、表面に銀からなる電極材料を櫛状のパターンで印刷するとともに、裏面には銀などからなる出力取出部とアルミニウムなどからなる集電部を印刷した後、焼き付けることにより電極を形成する。このとき、集電部のアルミニウムが半導体基板に拡散し、P+層を形成する。このP+層は基板内部で発生したキャリアが裏面で再結合するのを防ぐため、太陽電池素子の特性が向上する。
【0003】
【発明が解決しようとする課題】
しかし、従来の太陽電池素子では、アルミニウムなどからなる電極材料を半導体基板に焼き付ける際に、アルミニウムと半導体基板の界面で形成された合金が表面張力によって凝集し、アルミニウム電極を突き抜けて表面で凝固して球状の突起を多数発生させたり、凝集した合金が界面で凝固してアルミニウム電極に凹凸が形成されてしまうという問題があった。そのため、次工程での製造プロセスにおいて、自動機のハンドリングミス等が生じたり、セルの割れや欠けが生じることがあった。
【0004】
本発明は、このような従来の問題点に鑑みてなされたものであり、太陽電池素子の裏面にアルミニウムなどからなる電極材料を焼き付ける際に、球状の突起や凹凸が発生することを防いだ太陽電池素子とその製造方法を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために、請求項1に係る太陽電池素子は、一導電型を呈する半導体基板の一主面側に他の導電型を呈する領域と表面電極とを設けると共に、他の主面側に主としてアルミニウムとガラス成分からなる集電部と、この集電部よりも半田濡れ性のよい金属を主成分とする出力取出部とからなる裏面電極を設けた太陽電池素子において、前記集電部に酸化マグネシウムを含有することを特徴とする。
【0006】
前記酸化マグネシウムを前記アルミニウム100重量部に対して0.05〜5重量部含有することが望ましい。
【0007】
また請求項3に係る太陽電池素子の製造方法においては、一導電型を呈する半導体基板の一主面側に他の導電型を呈する領域と表面電極とを設けると共に、他の主面側に主としてアルミニウムとガラス成分からなる集電部と、この集電部よりも半田濡れ性のよい金属を主成分とする出力取出部とからなる裏面電極を設けた太陽電池素子の製造方法において、前記集電部を酸化マグネシウムもしくは金属酸マグネシウムを含有したペーストを焼き付けることによって形成することを特徴とする。
【0008】
前記金属酸マグネシウムはアルミン酸マグネシウム、マグネシウム・鉄酸化物、モリブデン酸マグネシウム、インジウム酸マグネシウム、スズ酸マグネシウム、チタン酸マグネシウム、タングステン酸マグネシウム、ジルコン酸マグネシウムのうちの一種以上からなることが望ましい。
【0009】
【発明の実施の形態】
以下、本発明の実施形態を図1に基づき詳細に説明する。
本発明に係る太陽電池素子も構造自体は従来の太陽電池素子と略同様である。すなわち、例えばP型シリコンなどからなる半導体基板1の表面近傍の全面に一定の深さまでN型不純物を拡散させてN型を呈する拡散層2を設け、半導体基板1の表面に窒化シリコン膜などからなる反射防止膜3を設け、表面に表面電極4を設けるとともに、裏面にはアルミニウムなどからなる集電部5と銀などからなる出力取出部6で構成される裏面電極を設けている。
【0010】
このような太陽電池素子は、例えばP型半導体基板1をN型不純物雰囲気中で熱処理などして、表面領域の全面に一定の深さまでN型不純物を拡散させてN型を呈する拡散層2を形成し、CVD法などで反射防止膜3を形成して拡散層2を分離した後、表面に銀ペーストを主成分とする電極ペーストをスクリーン印刷するとともに、裏面には酸化マグネシウムまたは金属酸マグネシウムを含有し、アルミニウムと有機ビヒクルを主成分とする電極ペーストをスクリーン印刷して680〜780℃程度で焼き付けることにより、表面電極4、および集電部5と出力取出部6からなる裏面電極を形成する。
【0011】
裏面電極を焼き付ける際に、アルミニウムと半導体基板1との界面に形成される合金に電極材料中のマグネシウムが溶解し、合金の表面張力が軽減されて凝集を防ぐ。これにより、アルミニウム表面の球状の突起や凹凸の発生を抑制することができる。これはアルミニウムペーストに酸化マグネシウムもしくは金属酸マグネシウムのどちらを添加しても同様に得られる効果である。金属酸マグネシウムを添加した場合は、焼き付けることによって酸化マグネシウムのみが合金層と反応し、残りの金属もしくは金属酸化物はアルミニウム中に点在することになる。
【0012】
このとき集電部5中に金属マグネシウムを混合すると、半導体基板1と激しく反応して基板1中に深いスパイクを形成し、pn接合を突き抜ける場合があり、リーク電流が増加して太陽電池特性が低下するため、酸化マグネシウムまたは金属酸マグネシウムの形で含有させる必要がある。
【0013】
上記酸化マグネシウムもしくは金属酸マグネシウムは焼き付け後の集電部5中のアルミニウム100重量部に対して酸化マグネシウムを0.05〜5重量部含有するように添加することが望ましい。酸化マグネシウムの含有量が0.05重量部未満ではアルミニウム表面の球状の突起や凹凸が発生し、5重量部以上ではアルミニウム電極の抵抗値が増大して太陽電池特性の低下を招く。この酸化マグネシウムの含有量はSIMSによって測定することができる。
【0014】
また、集電部5の材料中には少量のガラスフリットを含有させてもよい。ガラスフリットはアルミニウム粉末同士の焼結を抑制してアルミニウムを主成分とする集電部5の収縮を防ぐため、セルの反りが減少して後工程で取扱い易くなる。
【0015】
上記金属酸マグネシウムは、アルミン酸マグネシウム、マグネシウム・鉄酸化物、モリブデン酸マグネシウム、インジウム酸マグネシウム、スズ酸マグネシウム、チタン酸マグネシウム、タングステン酸マグネシウム、ジルコン酸マグネシウムのうちの一種以上からなることが望ましい。例えばハロゲン化物のような金属酸マグネシウム以外のマグネシウム化合物を添加すると焼成時に有毒ガスが発生し、作業上不向きである。
【0016】
【実施例】
以下に本発明の実施例を示す。半導体基板1として15cm角で厚さ0.3mm、比抵抗1.5Ω・cmのP型多結晶シリコン基板を準備し、ダメージ層除去のため、アルカリ水溶液で表面を20μmエッチングした。そして、熱拡散法でオキシ塩化リン(POCl3)を拡散源として深さ0.5μmのN型拡散層2を形成した。次に、表面にプラズマCVD法で窒化シリコンの反射防止膜3を800Åの厚さで形成した後、拡散層2を分離した。
【0017】
次に、シリコン基板1の裏面にアルミニウムペーストおよび酸化マグネシウムを添加したアルミニウムペーストをそれぞれ印刷して乾燥するとともに、銀ペーストを印刷して乾燥した。また、表面に銀ペーストを印刷して乾燥して700℃で焼成することによって表面電極4、および集電部5と出力取出部6からなる裏面電極を形成した。その後、溶融した半田槽の中に浸漬して表面電極4および裏面電極の出力取出部6を上に半田槽(不図示)を形成し、太陽電池素子を形成した。裏面の集電部5上に形成された球状突起の個数および太陽電池素子の出力特性を表1に示す。各条件のサンプル数はそれぞれ10枚で、球状突起の個数は10枚の合計の個数であり、出力特性は10枚の平均特性である。
【0018】
【表1】
【0019】
集電部5に含有される酸化マグネシウムのアルミニウムに対する比率が0.025%(条件No.2)のときは集電部5上の球状突起は82個であったのに対し、0.05%(条件No.3)では38個に減少する。酸化マグネシウムの含有率を0.1%以上(条件No.4以降)に増やしても、球状突起の個数は0.05%(条件No.3)の場合とほとんど変わらない
しかし、集電部5中に含有される酸化マグネシウムをアルミニウムに対して10%(条件No.8)にすると、含有比率が5%以下(条件No.1〜7)の場合に比較して短絡電流、開放電圧、曲線因子(F.F.)のすべてが低下する。
【0020】
つまり条件No.3〜7のときに、球状突起の数が減少し、出力特性の低下も発生しない。
【0021】
また同じように集電部5にアルミニウムペーストおよびチタン酸マグネシウムを添加したアルミニウムペースト使用した時の集電部5上に形成された球状突起の個数および太陽電池素子の出力特性を表2に示す。このときの各条件のサンプル数もそれぞれ10枚で、球状突起の個数は10枚の合計の個数であり、出力特性は10枚の平均特性である。
【0022】
【表2】
【0023】
集電部5に含有される酸化マグネシウムのアルミニウムに対する比率が0.025%(条件No.2)のとき集電部5上の球状突起は85個であったのに対し、0.05%(条件No.3)では41個に減少する。酸化マグネシウムの含有率を0.1%以上(条件No.4以降)に増やしても、球状突起の個数は0.05%(条件No.3)の場合とほとんど変わらない
しかし、集電部5中に含有される酸化マグネシウムをアルミニウムに対して10%(条件No.8)にすると、含有比率が5%以下(条件No.1〜7)の場合に比較して短絡電流、開放電圧、曲線因子(F.F.)のすべてが低下する。
【0024】
つまり条件No.3〜7のときに、球状突起の数が減少し、出力特性の低下も発生しない。
【0025】
アルミニウム電極表面に球状の突起や凹凸が発生するのを抑制する作用をもたらすのは酸化マグネシウムであるので、他の金属酸マグネシウムを使用したときも同様の効果を得ることができる。
【0026】
【発明の効果】
以上のように、本発明に係る太陽電池素子では、裏面電極の集電部に酸化マグネシウムを含有することから、電極を焼付ける際に裏面電極の集電部のアルミニウム表面の微小な玉や凹凸の発生を防ぐことができ、従来問題であったアルミニウム表面の微小な玉や凹凸による後工程での歩留の低下を極力低減することができる。
【図面の簡単な説明】
【図1】本発明に係る太陽電池素子を示す図である。
【符号の説明】
1・・・半導体基板、2・・・拡散層、3・・・反射防止膜、4・・・表面電極、5・・・集電部、6・・・出力取出部[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solar cell element and a method for manufacturing the same, and more particularly to a solar cell element provided with a back electrode mainly composed of aluminum powder.
[0002]
[Prior art]
In a conventional solar cell element, for example, an N-type impurity is diffused to a certain depth over an entire surface near a surface of a semiconductor substrate made of P-type silicon to provide an N-type diffusion layer, and a silicon nitride film or the like is provided on the surface of the semiconductor substrate. An anti-reflection film made of silver is printed on the surface with an electrode material made of silver in a comb-like pattern, and an output extraction part made of silver etc. and a current collecting part made of aluminum etc. are printed on the back side and then baked. To form an electrode. At this time, the aluminum in the current collector diffuses into the semiconductor substrate to form a P + layer. The P + layer prevents carriers generated inside the substrate from being recombined on the back surface, so that the characteristics of the solar cell element are improved.
[0003]
[Problems to be solved by the invention]
However, in a conventional solar cell element, when an electrode material such as aluminum is baked on a semiconductor substrate, an alloy formed at an interface between the aluminum and the semiconductor substrate aggregates due to surface tension, penetrates through the aluminum electrode, and solidifies on the surface. Therefore, there are problems that a large number of spherical projections are generated, and that the aggregated alloy is solidified at the interface to form irregularities on the aluminum electrode. For this reason, in the manufacturing process in the next step, handling errors of the automatic machine or the like may occur, or cells may be cracked or chipped.
[0004]
The present invention has been made in view of such a conventional problem, and has disclosed a solar cell that prevents the occurrence of spherical protrusions and irregularities when baking an electrode material made of aluminum or the like on the back surface of a solar cell element. An object is to provide a battery element and a method for manufacturing the same.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a solar cell element according to claim 1 is provided with a region having another conductivity type and a surface electrode on one main surface side of a semiconductor substrate having one conductivity type, and another main surface. A solar cell element provided on the side with a back electrode composed of a current collecting portion mainly made of aluminum and a glass component and an output extracting portion mainly composed of a metal having better solder wettability than the current collecting portion; It is characterized in that the part contains magnesium oxide.
[0006]
It is desirable that the magnesium oxide be contained in an amount of 0.05 to 5 parts by weight based on 100 parts by weight of the aluminum.
[0007]
Further, in the method for manufacturing a solar cell element according to
[0008]
The magnesium metalate preferably comprises at least one of magnesium aluminate, magnesium / iron oxide, magnesium molybdate, magnesium indium, magnesium stannate, magnesium titanate, magnesium tungstate, and magnesium zirconate.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to FIG.
The structure of the solar cell element according to the present invention is substantially the same as that of a conventional solar cell element. That is, an N-type impurity is diffused to a certain depth over the entire surface near the surface of a semiconductor substrate 1 made of, for example, P-type silicon to provide an N-
[0010]
In such a solar cell element, for example, a P-type semiconductor substrate 1 is heat-treated in an N-type impurity atmosphere to diffuse an N-type impurity to a certain depth over the entire surface region to form an N-
[0011]
When the back electrode is baked, magnesium in the electrode material is dissolved in the alloy formed at the interface between the aluminum and the semiconductor substrate 1, and the surface tension of the alloy is reduced to prevent agglomeration. Thereby, the occurrence of spherical protrusions and irregularities on the aluminum surface can be suppressed. This is an effect that can be similarly obtained by adding either magnesium oxide or magnesium metal oxide to the aluminum paste. When magnesium metal oxide is added, only the magnesium oxide reacts with the alloy layer by baking, and the remaining metal or metal oxide is scattered in aluminum.
[0012]
At this time, if metallic magnesium is mixed in the current collector 5, it reacts violently with the semiconductor substrate 1 to form a deep spike in the substrate 1, which may penetrate the pn junction, increasing the leakage current and increasing the solar cell characteristics. Therefore, it is necessary to contain the same in the form of magnesium oxide or magnesium metal oxide.
[0013]
The magnesium oxide or magnesium metal oxide is desirably added so as to contain 0.05 to 5 parts by weight of magnesium oxide with respect to 100 parts by weight of aluminum in the current collector 5 after baking. If the content of magnesium oxide is less than 0.05 parts by weight, spherical projections and irregularities on the aluminum surface are generated, and if the content is 5 parts by weight or more, the resistance value of the aluminum electrode is increased and the solar cell characteristics are deteriorated. The content of the magnesium oxide can be measured by SIMS.
[0014]
Further, a small amount of glass frit may be contained in the material of the current collector 5. The glass frit suppresses the sintering of the aluminum powders to prevent the current collector 5 containing aluminum as a main component from shrinking, so that the cell warp is reduced and the glass frit is easy to handle in a later step.
[0015]
The magnesium metalate is desirably composed of one or more of magnesium aluminate, magnesium / iron oxide, magnesium molybdate, magnesium indate, magnesium stannate, magnesium titanate, magnesium tungstate, and magnesium zirconate. For example, when a magnesium compound other than magnesium metal oxide such as a halide is added, a toxic gas is generated at the time of firing, which is not suitable for work.
[0016]
【Example】
Examples of the present invention will be described below. A P-type polycrystalline silicon substrate having a size of 15 cm square, a thickness of 0.3 mm, and a specific resistance of 1.5 Ω · cm was prepared as the semiconductor substrate 1, and its surface was etched by 20 μm with an alkaline aqueous solution to remove a damaged layer. Then, an N-
[0017]
Next, an aluminum paste and an aluminum paste to which magnesium oxide was added were printed and dried on the back surface of the silicon substrate 1, and a silver paste was printed and dried. Further, a silver paste was printed on the surface, dried, and baked at 700 ° C. to form a
[0018]
[Table 1]
[0019]
When the ratio of magnesium oxide to aluminum contained in the current collector 5 was 0.025% (condition No. 2), the number of spherical projections on the current collector 5 was 82, whereas 0.05% was used. In (condition No. 3), the number is reduced to 38. Even if the content of magnesium oxide is increased to 0.1% or more (condition No. 4 or later), the number of spherical projections is almost the same as in the case of 0.05% (condition No. 3). When the magnesium oxide contained therein is 10% (condition No. 8) with respect to aluminum, the short-circuit current, open-circuit voltage, and curve are lower than when the content ratio is 5% or less (conditions No. 1 to 7). All of the factors (FF) decrease.
[0020]
That is, condition No. When the number is 3 to 7, the number of spherical projections decreases, and the output characteristics do not deteriorate.
[0021]
Similarly, Table 2 shows the number of spherical projections formed on the current collector 5 and the output characteristics of the solar cell element when an aluminum paste obtained by adding aluminum paste and magnesium titanate to the current collector 5 was used. At this time, the number of samples under each condition is also ten, the number of spherical projections is the total number of ten, and the output characteristic is the average characteristic of ten.
[0022]
[Table 2]
[0023]
When the ratio of magnesium oxide to aluminum contained in the current collector 5 was 0.025% (condition No. 2), the number of spherical protrusions on the current collector 5 was 85, whereas 0.05% ( In condition No. 3), the number is reduced to 41. Even if the content of magnesium oxide is increased to 0.1% or more (condition No. 4 or later), the number of spherical projections is almost the same as in the case of 0.05% (condition No. 3). When the magnesium oxide contained therein is 10% (condition No. 8) with respect to aluminum, the short-circuit current, open-circuit voltage, and curve are lower than when the content ratio is 5% or less (conditions No. 1 to 7). All of the factors (FF) decrease.
[0024]
That is, condition No. When the number is 3 to 7, the number of spherical projections decreases, and the output characteristics do not deteriorate.
[0025]
Since magnesium oxide has the effect of suppressing the generation of spherical protrusions and irregularities on the surface of the aluminum electrode, the same effect can be obtained when another magnesium metal oxide is used.
[0026]
【The invention's effect】
As described above, in the solar cell element according to the present invention, since the current collecting portion of the back electrode contains magnesium oxide, fine particles or irregularities on the aluminum surface of the current collecting portion of the back electrode when firing the electrode. Can be prevented, and a decrease in the yield in the subsequent process due to minute balls or unevenness on the aluminum surface, which has been a problem in the past, can be reduced as much as possible.
[Brief description of the drawings]
FIG. 1 is a view showing a solar cell element according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Semiconductor substrate, 2 ... Diffusion layer, 3 ... Anti-reflection film, 4 ... Surface electrode, 5 ... Current collection part, 6 ... Output extraction part
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002313795A JP4272405B2 (en) | 2002-10-29 | 2002-10-29 | Method for manufacturing solar cell element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002313795A JP4272405B2 (en) | 2002-10-29 | 2002-10-29 | Method for manufacturing solar cell element |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004152827A true JP2004152827A (en) | 2004-05-27 |
JP4272405B2 JP4272405B2 (en) | 2009-06-03 |
Family
ID=32458290
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002313795A Expired - Fee Related JP4272405B2 (en) | 2002-10-29 | 2002-10-29 | Method for manufacturing solar cell element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4272405B2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006093418A (en) * | 2004-09-24 | 2006-04-06 | Sharp Corp | Manufacturing method for solar battery |
WO2007032151A1 (en) * | 2005-09-13 | 2007-03-22 | Toyo Aluminium Kabushiki Kaisha | Aluminum paste composition and solar cell element making use of the same |
JP2008166344A (en) * | 2006-12-27 | 2008-07-17 | Kyocera Corp | Conductive paste for photoelectric conversion element, photoelectric conversion element, and method for producing photoelectric conversion element |
WO2009152238A3 (en) * | 2008-06-11 | 2010-09-10 | E. I. Du Pont De Nemours And Company | A process of forming a silicon solar cell |
KR100990109B1 (en) | 2008-07-28 | 2010-10-29 | 엘지전자 주식회사 | Solar cell and manufacturing method thereof |
JP2011096853A (en) * | 2009-10-29 | 2011-05-12 | Mitsubishi Electric Corp | Solar battery cell and manufacturing method thereof |
US8017428B2 (en) | 2009-06-10 | 2011-09-13 | E. I. Du Pont De Nemours And Company | Process of forming a silicon solar cell |
-
2002
- 2002-10-29 JP JP2002313795A patent/JP4272405B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006093418A (en) * | 2004-09-24 | 2006-04-06 | Sharp Corp | Manufacturing method for solar battery |
WO2007032151A1 (en) * | 2005-09-13 | 2007-03-22 | Toyo Aluminium Kabushiki Kaisha | Aluminum paste composition and solar cell element making use of the same |
JP2008166344A (en) * | 2006-12-27 | 2008-07-17 | Kyocera Corp | Conductive paste for photoelectric conversion element, photoelectric conversion element, and method for producing photoelectric conversion element |
WO2009152238A3 (en) * | 2008-06-11 | 2010-09-10 | E. I. Du Pont De Nemours And Company | A process of forming a silicon solar cell |
KR100990109B1 (en) | 2008-07-28 | 2010-10-29 | 엘지전자 주식회사 | Solar cell and manufacturing method thereof |
US8017428B2 (en) | 2009-06-10 | 2011-09-13 | E. I. Du Pont De Nemours And Company | Process of forming a silicon solar cell |
JP2011096853A (en) * | 2009-10-29 | 2011-05-12 | Mitsubishi Electric Corp | Solar battery cell and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP4272405B2 (en) | 2009-06-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI845484B (en) | Interdigitated back-contacted solar cell with p-type conductivity and manufacturing thereof and photovoltaic module | |
EP2051304B1 (en) | Semiconductor substrate, method for forming electrode, and method for manufacturing solar cell | |
JP3789474B2 (en) | Solar cell having back surface field and method for manufacturing the same | |
US8481105B2 (en) | Solar battery and manufacturing method therefor | |
EP2650926B1 (en) | Solar cell and method of making a solar cell | |
EP2650923B1 (en) | Solar cell, solar cell module and method of making a solar cell | |
JP4373774B2 (en) | Method for manufacturing solar cell element | |
KR19990063990A (en) | Self-Regulating (SALDE) Solar Cells with Partially Deeply Dispersed Emitters and Methods of Manufacturing the Same | |
KR102175305B1 (en) | Electroconductive paste and method for producing crystalline silicon solar battery | |
Shanmugam et al. | Electrical and microstructural analysis of contact formation on lightly doped phosphorus emitters using thick-film Ag screen printing pastes | |
JPWO2006011595A1 (en) | Solar cell element and manufacturing method thereof | |
CN111133589B (en) | Dopant-enhanced solar cells and methods of making the same | |
JP5991945B2 (en) | Solar cell and solar cell module | |
JP4272405B2 (en) | Method for manufacturing solar cell element | |
JP3732947B2 (en) | Method for manufacturing solar cell element | |
JP2008166344A (en) | Conductive paste for photoelectric conversion element, photoelectric conversion element, and method for producing photoelectric conversion element | |
TW201349255A (en) | Metallized paste for solar cells | |
JP2000277768A (en) | Method of forming solar cell | |
CN106653895B (en) | A locally doped crystalline silicon solar cell and its preparation method | |
TW201725742A (en) | Solar cell and method of manufacturing solar cell | |
Ebong | Pathway to low-cost metallization of silicon solar cell through understanding of the silicon metal interface and plating chemistry | |
JP4627511B2 (en) | Photoelectric conversion element and method for manufacturing photoelectric conversion element | |
JP2000138385A (en) | Solar cell | |
JP2003282898A (en) | Solar cell element and method for forming the same | |
JP4070185B2 (en) | Solar cell element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050413 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080805 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080819 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081016 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090203 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090227 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120306 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4272405 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120306 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130306 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130306 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140306 Year of fee payment: 5 |
|
LAPS | Cancellation because of no payment of annual fees |