JP2004146279A - Electrolyte membrane and fuel cell using the electrolyte membrane - Google Patents
Electrolyte membrane and fuel cell using the electrolyte membrane Download PDFInfo
- Publication number
- JP2004146279A JP2004146279A JP2002311929A JP2002311929A JP2004146279A JP 2004146279 A JP2004146279 A JP 2004146279A JP 2002311929 A JP2002311929 A JP 2002311929A JP 2002311929 A JP2002311929 A JP 2002311929A JP 2004146279 A JP2004146279 A JP 2004146279A
- Authority
- JP
- Japan
- Prior art keywords
- electrolyte membrane
- fuel cell
- polymer
- proton
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Conductive Materials (AREA)
Abstract
【課題】燃料電池用電解質膜におけるメタノールの透過・膨潤という問題点を解消し、生産性が高く安価で、かつ燃料電池として運転した場合の耐久性に優れる電解質膜の提供。
【解決手段】多孔性基材の細孔にプロトン導電性を有する架橋重合体を充填してなり、かつ次の条件を満足することを特徴とする電解質膜。
(1) 25℃における純水に1時間浸漬したときの面積増加率が20%以下。
(2) 架橋重合体が、プロトン酸性基含有モノマーもしくはその塩と架橋剤との混合物から得られたもので、当該プロトン酸性基含有モノマーもしくはその塩のモル数と、架橋剤のモル数と架橋剤一分子あたりの平均官能基数を掛けた数との比が、50:2〜50:50。
【選択図】なしAn object of the present invention is to provide an electrolyte membrane which solves the problems of permeation and swelling of methanol in a fuel cell electrolyte membrane, has high productivity, is inexpensive, and has excellent durability when operated as a fuel cell.
The electrolyte membrane is characterized in that pores of a porous base material are filled with a crosslinked polymer having proton conductivity and the following conditions are satisfied.
(1) The area increase rate when immersed in pure water at 25 ° C. for 1 hour is 20% or less.
(2) The cross-linked polymer is obtained from a mixture of a proton acidic group-containing monomer or a salt thereof and a cross-linking agent. The ratio to the number multiplied by the average number of functional groups per agent molecule is 50: 2 to 50:50.
[Selection diagram] None
Description
【0001】
【発明の属する技術分野】
本発明は、電解質膜に関するもので、当該電解質膜は電気化学装置用、特に燃料電池用として好適なものである。
【0002】
【従来の技術】
高分子電解質膜を用いた電気化学装置の一種である燃料電池は、近年電解質膜や触媒技術の発展により性能の向上が著しくなり、低公害自動車用電源や高効率発電方法として注目を集めている。この内、高分子電解質膜を用いた燃料電池(固体高分子形燃料電池)は、膜の表面に酸化、還元触媒を有する反応層を形成した構造を有している。固体高分子形燃料電池においては燃料極において、水素分子がプロトンと電子に分解される反応が起き、発生した電子は導線を通って電気部品を作動させて酸素極側に運ばれ、酸素極においては酸素とプロトンと燃料極から導線を通って運ばれてきた電子から水が生成する。また直接メタノール形燃料電池(DMFC)においては燃料極にはメタノールと水が供給され、膜近傍の触媒によってメタノールと水を反応させてプロトンを取り出す。これらの燃料電池には通常ポリパーフルオロスルホン酸からなる電解質膜が使用される。
【0003】
しかしながら、ポリパーフルオロスルホン酸膜は直接メタノール形燃料電池に用いるとメタノールが膜を通過してしまいエネルギーロスが生じるという問題やメタノールにより膨潤して膜面積が大きく変化するため電極と膜の接合部が剥がれる等の不具合を生じ易く、燃料濃度が上げられないという問題がある。また、フッ素原子を有することで材料自体の価格が高く、また製造工程が複雑で生産性が低いため非常に高価であるという経済的問題もある。
【0004】
このため、直接メタノール形燃料電池としたときのメタノール透過を抑制し、しかも安価な炭化水素骨格からなる高分子電解質膜が求められていた。本発明者等による特願2002−61918において開示された燃料電池用電解質膜は、多孔性基材に安価なプロトン伝導性重合体を充填してなるもので、多孔性基材が無機材料、ポリイミド、架橋ポリエチレン等、外力に対して変形し難い材料から形成されるため、孔内に充填されたプロトン伝導性重合体のメタノール水溶液による過度な膨潤を防ぐことができ、その結果、メタノールの透過を抑制することができるものである。しかしながら直接メタノール形燃料電池として連続運転した場合の耐久性は充分でなかった。
【0005】
また、多孔性基材にモノマーと架橋剤を含浸させた後に重合して得られる膜としては特開平5−237352号において開示される有機溶媒混合物用分離膜があるが、燃料電池として機能するものではなく、また燃料電池運転中に発生すると言われるフリーラジカルに対する耐久性について述べられたものではない。
【0006】
フッ素樹脂系多孔性基材に架橋されたプロトン伝導性を有する重合体を充填し燃料電池に用いるものとしては特開2002−170580があるが、この提案は燃料として水素を使用する場合には好適であるが、燃料としてメタノール水溶液を用いる直接メタノール形燃料電池に用いた場合には、多孔性基材として使用しているポリテトラフルオロエチレン等のフッ素樹脂が柔らかいため孔内に充填された重合体が水やメタノールで膨潤して充填重合体が膨張しようとする力によって基材が大きく変形してしまい、メタノール透過に関してはポリパーフルオロスルホン酸が有している問題を解決するものではない。
【0007】
【特許文献1】
特開平5−237352号公報(1−3頁)
【特許文献2】
特開2002−170580号公報(3頁、7−8頁)
【0008】
【発明が解決しようとする課題】
本発明は、上記のような燃料電池用電解質膜におけるメタノールの透過・膨潤という問題点を解消し、生産性が高く安価で、かつ燃料電池として運転した場合の耐久性に優れる電解質膜を提供すべく検討を行なったものである。
【0009】
【課題を解決するための手段】
本発明者等は、上記の課題を解決すべく鋭意検討した結果、多孔性基材の細孔にプロトン導電性を有する架橋重合体を充填してなり、充分な強度と固さ(弾性率)を有し、充填した重合体が水やメタノールにより膨潤しようとしてもに面積増加が少ない基材を用い、架橋重合体が、プロトン酸性基含有モノマーもしくはその塩と架橋剤との混合物(以下、「ポリマー前駆体」と称する。)から得られたもので、当該プロトン酸性基含有モノマーもしくはその塩のモル数と、架橋剤のモル数と架橋剤一分子あたりの平均官能基数を掛けた数との比が、50:2〜50:50になるようにして作成した電解質膜が燃料電池としての出力特性と耐久性を併せ持つことを見出して本発明を完成するに至った。
【0010】
【発明の実施の形態】
以下本発明を詳細に説明する。
本発明の高分子電解質膜は、多孔性基材の細孔にプロトン伝導性を有する架橋重合体を充填しており、このようなプロトン導電性重合体充填膜の耐久性を向上させ、かつ従来のフッ素系電解質膜に比べてメタノール透過性が抑制できるものである。
【0011】
本発明で用いる多孔性基材は、メタノールおよび水に対して実質的に膨潤しない材料であることが好ましく、特に乾燥時に比べて水による湿潤時の面積変化が少ないか、ほとんどないことが望ましい。面積増加率は、浸漬時間や温度によって変化するが、本発明では25℃における純水に1時間浸漬したときの面積増加率が、乾燥時に比較して最大でも20%以下であることを必要とする。
【0012】
本発明の多孔性基材はまた、引張り弾性率が500〜5000MPaであるものが好ましく、更に好ましくは1000〜5000MPaであり、また破断強度が50〜500MPaを有するのが好ましく、更に好ましくは100〜500MPaである。
これらの範囲を低い方に外れると充填樹脂のメタノールや水により膨潤しようとする力によって膜が変形し易くなり、高い方に外れると基材が脆くなり過ぎて電極接合時のプレス成形や電池に組み込む際の締付け等によって膜がひび割れたりし易い。 また、多孔性基材は燃料電池を運転する際の温度に対して耐熱性を有するものがよく、外力が加えられても容易に延びないものがよい。
そのような性質を持つ材料として、無機材料ではガラス、またはアルミナもしくはシリカ等のセラミックス等がある。また、有機材料では芳香族ポリイミド等のエンジニアリングプラスチック、ポリオレフィンを放射線の照射や架橋剤を加えて架橋したり延伸する等の方法で、外力に対して延び等の変形をし難くしたもの等がある。これらの材料は単独で用いても2種以上を積層する等をして複合化して用いてもよい。
【0013】
これらの多孔性基材の中では、延伸ポリオレフィン、架橋ポリオレフィン、延伸後架橋されたポリオレフィン、ポリイミド類からなるものが充填工程の作業性が良く好ましい。
【0014】
上記のようにして得られる本発明の多孔性基材の空孔率は、5〜95%が好ましく、更に好ましくは5〜90%、特に好ましくは20〜80%である。また平均孔径は0.001〜100μmの範囲にあることが好ましく、更に好ましくは0.01〜1μmの範囲である。空孔率が小さすぎると面積当たりのプロトン伝導性基であるプロトン酸性基が少なすぎて燃料電池としては出力が低くなり、大きすぎると膜強度が低下し好ましくない。更に基材の厚さは200μm以下が好ましい。より好ましくは1〜150μm、更に好ましくは5〜100μm、特に好ましくは5〜50μmである。膜厚が薄すぎると膜強度が低下しメタノールの透過量も増え、厚すぎると膜抵抗が大きくなりすぎ燃料電池の出力が低いため何れも好ましくない。
【0015】
本発明の電解質膜は、多孔性基材の細孔内にプロトン伝導性を有する架橋重合体を充填してなる。重合体の充填方法は、ポリマー前駆体であるプロトン酸性基含有モノマーもしくはその塩と架橋剤との混合物またはその溶液もしくは分散液を多孔性基材に含浸させ、その後に重合させることによって得ることができる。その際、充填する混合液には必要に応じて重合開始剤、触媒、硬化剤、界面活性剤等を含んでいてもよい。
【0016】
また多孔性基材の表面、特に細孔内表面にプロトン伝導性を有する架橋重合体が化学的に結合されているのが好ましく、その結合を形成する手段としては、充填するポリマー前駆体がラジカル重合性物質である場合は予め基材にプラズマ、紫外線、電子線、ガンマ線、コロナ放電等を照射して表面にラジカルを発生させ、充填したポリマー前駆体を重合させる際に基材表面へのグラフト重合が同時に起こるようにする方法、基材にポリマー前駆体を充填した後に電子線を照射することによって基材表面へのグラフト重合とポリマー前駆体の重合を同時に起こす方法、水素引き抜き型のラジカル重合開始剤をポリマー前駆体に配合して充填して加熱または紫外線の照射を行って基材表面へのグラフト重合とポリマー前駆体の重合を同時に起こす方法、カップリング剤を用いる方法等が挙げられる。これらは単独で行っても複数の方法を併用してもよい。
【0017】
本発明で使用されるポリマー前駆体の内、プロトン酸性基含有モノマーとして使用可能なモノマーは、一分子中に重合可能な官能基とプロトン酸あるいは中和、加水分解等の操作によって容易にプロトン酸に変換することができる官能基を併せ持つものである。具体的例としては2−(メタ)アクリルアミド−2−メチルプロパンスルホン酸、スチレンスルホン酸、(メタ)アリルスルホン酸、ビニルスルホン酸、イソプレンスルホン酸、(メタ)アクリル酸、マレイン酸、クロトン酸、ビニルホスホン酸、酸性リン酸基含有(メタ)アクリレート、並びにこれらの塩、無水物、エステル等が使用できる。使用するモノマーの酸残基が塩、無水物、エステル等の誘導体となっている場合は重合後にプロトン酸型にすることでプロトン伝導性を付与することができる。
なお、「(メタ)アクリル」は「アクリルおよび/またはメタクリル」を、「(メタ)アリル」は「アリルおよび/またはメタリル」を、「(メタ)アクリレート」は「アクリレートおよび/またはメタクリレート」を示している。
これらの内、スルホン酸基含有ビニル化合物またはリン酸基含有ビニル化合物がプロトン伝導性に優れるため好ましく、2−メチルプロパン−2−(メタ)アクリルアミドスルホン酸が、高い重合性を有しており更に好ましい。
【0018】
本発明で使用されるポリマー前駆体の内、架橋剤として使用可能な化合物は、一分子中に重合可能な官能基を2個以上有するものであり、上記のプロトン酸性基含有モノマーもしくはその塩と配合して重合することによって重合体中に架橋点を形成し、重合体を不溶不融の3次元網目構造とすることができる。その具体例としては例えばN,N−メチレンビス(メタ)アクリルアミド、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、トリメチロールプロパンジアリルエーテル、ペンタエリスリトールトリアリルエーテル、ジビニルベンゼン、ビスフェノールジ(メタ)アクリレート、イソシアヌル酸ジ(メタ)アクリレート、テトラアリルオキシエタン、トリアリルアミン、ジアリルオキシ酢酸塩等が挙げられる。また架橋性官能基は、炭素炭素二重結合を有するものに限るものではなく、重合反応速度が遅いという点で劣るものの、2官能以上のエポキシ化合物等も使用することができる。エポキシ化合物を使用する場合はポリマー中のカルボキシル基等の酸と反応して架橋させたり、ポリマー前駆体に第三成分として水酸基等を有する共重合可能な化合物を添加しておいてもよい。これらの架橋剤は単独で使用することも、必要に応じて2種類以上を併用することも可能である。
【0019】
本発明では、上記共重合性架橋剤の使用量を特定の範囲としたことを特徴とする。即ち、ポリマー前駆体の内、「プロトン酸性基含有モノマーもしくはその塩のモル数」:「架橋剤のモル数×架橋剤一分子あたりの平均官能基数」=50:2〜50:50の範囲で配合する。好ましくは50:4〜50:40である。架橋剤量は少なすぎると未架橋のポリマーが溶出し易く、燃料電池として運転したときに短時間の内に出力が低下する等の問題があり、多すぎると架橋剤成分が相溶し難いためプロトン伝導を妨げ電池性能を低下させる問題があるため何れも好ましくない。
【0020】
本発明で使用されるポリマー前駆体には、重合体の膨潤性を調整するため等、必要に応じてプロトン酸性基を有しない第三の共重合成分を配合することができる。第三成分としては本発明で用いる酸性基含有モノマーおよび架橋剤と共重合が可能であれば特に限定しないが、(メタ)アクリル酸エステル類、(メタ)アクリルアミド類、マレイミド類、スチレン類、有機酸ビニル類、アリル化合物等が挙げられる。
【0021】
本発明において、多孔性基材の細孔内部にてポリマー前駆体の中のプロトン酸性基含有モノマーを重合させる方法としては、公知の水溶液ラジカル重合法の技術を使用することができる。具体例としては、レドックス開始重合、熱開始重合、電子線開始重合、紫外線等の光開始重合等が挙げられる。
熱開始重合、レドックス開始重合のラジカル重合開始剤としては、次のようなものが挙げられる。2,2‘−アゾビス(2−アミジノプロパン)二塩酸塩等のアゾ化合物;過硫酸アンモニウム、過硫酸カリウム、過硫酸ナトリウム、過酸化水素、過酸化ベンゾイル、クメンヒドロパーオキサイド、ジ−t−ブチルパーオキサイド等の過酸化物。上記過酸化物と、亜硫酸塩、重亜硫酸塩、チオ硫酸塩、ホルムアミジンスルフィン酸、アスコルビン酸等の還元剤とを組み合わせるとレドックス開始剤となる。または2,2’−アゾビス−(2−アミジノプロパン)二塩酸塩、アゾビスシアノ吉草酸等のアゾ系ラジカル重合開始剤がある。これらラジカル重合開始剤は、単独で用いてもよく、また、二種類以上を併用してもよい。これらの内、過酸化物系ラジカル重合開始剤は炭素水素結合から水素を引き抜くことによってラジカルを発生することができるため多孔性基材としてポリオレフィン等の有機材料と併用すると基材表面と充填した重合体との間に化学結合を形成することができるので好ましい。
【0022】
上記重合開始手段の内では、重合反応の制御がし易く、比較的簡便なプロセスで生産性良く所望の電解質膜が得られる点で、紫外線による光開始重合が望ましい。更に光開始重合させる場合には、ラジカル系光重合開始剤を、モノマー、その溶液または分散液中に予め溶解もしくは分散させておくことがより好ましい。
ラジカル系光重合開始剤の具体例としては、一般に紫外線重合に利用されているベンゾイン、ベンジル、アセトフェノン、ベンゾフェノン、キノン、チオキサントン、チオアクリドンおよびこれらの誘導体等が挙げられる。また、当該誘導体の例としては、ベンゾイン系のものとして、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル;アセトフェノン系のものとして、ジエトキシアセトフェノン、2,2−ジメトキシ−1,2−ジフェニルエタン−1−オン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−(4−(メチルチオ)フェニル)−2−モンフォリノプロパン−1、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)ブタノン−1、2−ヒドロキシ−2−メチル−1−フェニルプロパン−1−オン、1−(4−(2−ヒドロキシエトキシ)−フェニル)−2−ヒドロキシジ−2−メチル−1−プロパン−1−オン;ベンゾフェノン系のものとして、o−ベンゾイル安息香酸メチル、4−フェニルベンゾフェノン、4−ベンゾイル−4‘−メチルジフェニルサルファイド、3,3’,4,4‘−テトラ(t−ブチルパーオキシカルボニル)ベンゾフェノン、2,4,6−トリメチルベンゾフェノン、4−ベンゾイル−N,N−ジメチル−N−[2−(1−オキシ−2−プロペニルオキシ)エチル]ベンゼンメタナミニウムブロミド、(4−ベンゾイルベンジル)トリメチルアンモニウムクロリド、4,4’−ジメチルアミノベンゾフェノン、4,4‘−ジエチルアミノベンゾフェノン等が挙げられる。
【0023】
これら光重合開始剤の使用量は、不飽和モノマーの総質量に対して0.001〜1質量%が好ましく、更に好ましくは0.001〜0.5質量%、特に好ましくは0.01〜0.5質量%である。またこれらの内、ベンゾフェノン、チオキサントン、キノン、チオアクリドン等の芳香族ケトン系ラジカル重合開始剤は炭素水素結合から水素を引き抜くことによってラジカルを発生することができるため多孔性基材としてポリオレフィン等の有機材料と併用すると基材表面と充填ポリマーとの間に化学結合を形成することができ好ましい。
【0024】
本発明において多孔性基材にポリマー前駆体溶液を含浸する際は、モノマー、架橋剤、重合開始剤等を混合し液状にしてポリマー前駆体溶液または分散液とする。ポリマー前駆体だけの混合物が低粘度の液体である場合はそのまま含浸に用いることもできるが、濃度を10〜90%の溶液とするのが好ましく、20〜70%の溶液とするのが更に好ましい。
また使用する成分に水に難溶のものが含まれる場合は水の一部または全部を有機溶剤に置き換えてもよいが、有機溶剤を使用する場合は電極を接合する前に有機溶剤を全て取り除く必要があるため水溶液の方が好ましい。このように溶液状にして含浸する理由は、水あるいは溶剤に溶解して含浸に用いることにより微細な孔を有する多孔性基材への含浸が行い易くなることと、予め膨潤したゲルを細孔内に作ることによって、製造した電解質膜を燃料電池にした場合に水あるいはメタノールが細孔内の重合体を膨潤させすぎて重合体が抜け落ちるのを防止する効果があるためである。
【0025】
また含浸作業をより行い易くする目的で、多孔性基材の親水化処理、ポリマー前駆体溶液への界面活性剤の添加、あるいは含浸中の超音波の照射を行うことが好ましい。
【0026】
本発明で製造した電解質膜は固体高分子形燃料電池、特に直接メタノール形燃料電池に好ましく用いることができる。このような燃料電池に電解質膜を用いる際は白金に代表される触媒を付与した2枚の電極間に電解質膜を挟んで加熱プレス等によって一体化した電解質膜電極接合体(MEA)とし、燃料電池セルに組み込んで使用することは広く知られており、本発明による電解質膜も同様の方法によってMEAを作成し、燃料電池セルに組み込んで使用することができる。
【0027】
【作用】
本発明による電解質膜は、外力に対して変形し難い材質でできた多孔性基材にプロトン伝導性を有する重合体を充填しているため、充填された重合体が水やメタノールによって膨潤しようとしても物理的にそれを抑えることができ、メタノールの透過を抑制することができる。また、充填された重合体が架橋点を多く有しているため、重合体内でフリーラジカルや加水分解が生じても全体が溶出するまでには到らずゲル形状を保持することができるため、安価な炭化水素系材料を用いているにもかかわらず耐久性が高く、固体高分子形燃料電池、特に直接メタノール形燃料電池に好ましく用いることができる。
【0028】
【実施例】
(実施例1)
多孔性基材として架橋ポリエチレン膜(厚さ16μm、空孔率40%、平均孔径約0.1μm)を用いた。2−アクリルアミド−2−メチルプロパンスルホン酸50g、N,N‘−メチレンビスアクリルアミド5g、ノニオン性界面活性剤0.005g、過硫酸アンモニウム(水素引き抜き型光重合開始剤)0.005g、水50gからなるポリマー前駆体水溶液に、該多孔性膜を浸漬させ当該水溶液を充填させた。次いで、多孔性基材膜を溶液から引き上げた後、ガラスで挟んで80℃に加熱したオーブンで2時間放置して細孔内部のモノマーを重合させた。得られた膜を触媒付き電極で挟んでMEAとし直接メタノール形燃料電池として評価を行った結果を表1に示す。本実施例で作成した膜は10日間運転後も性能の低下はほとんどなかった。
【0029】
(実施例2)
N,N‘−メチレンビスアクリルアミドを10gとしたこと以外は実施例1に準じて電解質膜を作成した。得られた膜を触媒付き電極で挟んでMEAとし直接メタノール形燃料電池として評価を行った結果を表1に示す。本実施例で作成した膜は10日間運転後も性能の低下はほとんどなかった。
【0030】
(実施例3)
2−アクリルアミド−2−メチルプロパンスルホン酸をアクリル酸40g、ビニルスルホン酸10gとしたこと以外は実施例1に準じて電解質膜を作成した。得られた膜を触媒付き電極で挟んでMEAとし直接メタノール形燃料電池として評価を行った結果を表1に示す。本実施例で作成した膜は10日間運転後も性能の低下はほとんどなかったが、初期性能は実施例1、2より低かった。
【0031】
(実施例4)
多孔性基材として架橋していないポリエチレン製基材(厚さ25μm、空孔率40%、平均孔径約0.1μm)を用いたこと以外は実施例1に準じて電解質膜を作成した。得られた膜について後述の方法で水に対する膨潤性を評価したところ、面積が16%増加した。得られた膜を触媒付き電極で挟んでMEAとし直接メタノール形燃料電池として評価を行った結果を表1に示す。本実施例で作成した膜は10日間運転後も性能の低下はほとんどなかった。
【0032】
(比較例1)
N,N−メチレンビスアクリルアミドを0.5gとしたこと以外は実施例1に準じて電解質膜を作成した。得られた膜を触媒付き電極で挟んでMEAとし直接メタノール形燃料電池として評価を行った結果を表1に示す。電池としての性能は10時間しか持続しなかった。
【0033】
(比較例2)
多孔性基材をポリテトラフルオロエチレン製多孔性膜(厚さ80μm、空孔率80%、平均孔径約0.2μm)としたこと以外は実施例1に準じて電解質膜を作成した。得られた膜について後述の方法で水に対する膨潤性を評価したところ、面積が32%増加した。触媒付き電極で挟んでMEAとし直接メタノール形燃料電池として評価を行った結果を表1に示す。電池としての性能は最初から低く、その性能も20時間しか持続しなかった。
【0034】
(比較例3)
N,N‘−メチレンビスアクリルアミドを26gとし、溶解性を向上させるためにイソプロピルアルコールを20g加えたこと意外は実施例1に準じて電解質膜を作成した。得られた膜は一度70℃で2時間乾燥させた後に純水に浸してイソプロピルアルコールを水に置換した。次に触媒付き電極で挟んでMEAとし直接メタノール形燃料電池として評価を行った結果を表1に示す。電池としての性能は初期性能が低く、その性能も20時間しか持続しなかった。
【0035】
(膜膨潤性評価方法)
得られた電解質膜を70℃で2時間乾燥した後の面積を測定し(A1)とした。次にこの膜を25℃に保った純水に1時間浸した後の面積を測定し(A2)とした。これらから面積変化率を下記式(1)にしたがって算出した。
面積変化率(%)=[(A2)−(A1)]/(A1)×100 ・・・・式(1)
【0036】
(燃料電池の性能評価方法)
▲1▼MEAの作成
酸素極用に白金担持カーボン(田中貴金属工業(株)製:TEC10E50E)、および燃料極用に白金ルテニウム合金担持カーボン(田中貴金属工業(株)製:TEC61E54)をそれぞれ用い、これらの触媒粉末に高分子電解質溶液(デュポン社製:ナフィオン5%溶液)とポリテトラフルオロエチレンディスパージョンを配合し、水を適宜加えて攪拌して反応層用塗料を得た。これをスクリーン印刷法でカーボンペーパー(東レ(株)製:TGP−H−060)の片面に印刷し乾燥して電極とした。その際酸素極側は白金量が1mg/cm2、燃料極側は白金とルテニウムの総量が3mg/cm2とした。これらを電解質膜の中央部に塗料面を内側にして重ね合せ、130℃で加熱プレスし燃料電池用膜電極接合体(MEA)を作成した。これを燃料電池単セルに組み込んで運転し、性能を確認した。
▲2▼燃料電池評価
実施例および比較例で作成したMEAを直接メタノール形燃料電池単セルに組み込んだ際の運転条件は次のとおり。燃料を1mol%メタノール水溶液、酸化剤を純酸素とした。セル温度は50℃とした。電子負荷器により0.1A/cm2の電量密度で1日10時間の運転を10日間行い電圧の低下を測定した。
【0037】
【表1】
【0038】
【発明の効果】
本発明の電解質膜は、従来燃料電池用電解質膜に用いられてきたポリパーフルオロスルホン酸系電解質膜をDMFCに用いる場合に問題とされていたメタノール透過の問題を克服し、更に炭化水素系電解質重合体を使用することによって問題となっていた耐久性の問題を向上させることができる。これは充分な強度と弾性率を有する多孔性基材の細孔にプロトン導電性を有する架橋重合体を充填したことによって、水やメタノールが透過し難くなるためと、架橋重合体の高度な架橋構造によって燃料電池運転中に充填した重合体が分解して細孔から脱落するのを防止するためである。
これらのため本発明の電解質膜は、燃料電池としての出力特性と耐久性を併せ持ち燃料電池等用途として極めて有用である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an electrolyte membrane, and the electrolyte membrane is suitable for an electrochemical device, particularly for a fuel cell.
[0002]
[Prior art]
Fuel cells, which are a type of electrochemical device using polymer electrolyte membranes, have recently been remarkably improved in performance due to the development of electrolyte membranes and catalyst technology, and have attracted attention as low-emission vehicle power supplies and high-efficiency power generation methods. . Among them, a fuel cell (polymer electrolyte fuel cell) using a polymer electrolyte membrane has a structure in which a reaction layer having an oxidation and reduction catalyst is formed on the surface of the membrane. In a polymer electrolyte fuel cell, a reaction occurs in which hydrogen molecules are decomposed into protons and electrons at the fuel electrode, and the generated electrons are transported to the oxygen electrode side by operating electrical components through a conducting wire. In water, water is generated from oxygen, protons, and electrons transported from the anode through a conductor. In a direct methanol fuel cell (DMFC), methanol and water are supplied to a fuel electrode, and a catalyst near the membrane reacts methanol and water to extract protons. In these fuel cells, an electrolyte membrane made of polyperfluorosulfonic acid is usually used.
[0003]
However, when a polyperfluorosulfonic acid membrane is used directly in a methanol fuel cell, methanol passes through the membrane, causing energy loss, and swelling due to methanol causes a large change in the membrane area. However, there is a problem that the fuel concentration is liable to occur and the fuel concentration cannot be increased. Further, there is an economical problem that the material itself is expensive due to having a fluorine atom, and it is very expensive due to a complicated manufacturing process and low productivity.
[0004]
For this reason, there has been a demand for a polymer electrolyte membrane comprising a hydrocarbon skeleton, which suppresses methanol permeation in a direct methanol fuel cell and is inexpensive. The fuel cell electrolyte membrane disclosed in Japanese Patent Application No. 2002-61918 by the present inventors comprises a porous base material filled with an inexpensive proton-conductive polymer. Since it is formed from a material that is not easily deformed by external force, such as cross-linked polyethylene, it is possible to prevent excessive swelling of the proton-conductive polymer filled in the pores with an aqueous methanol solution, and as a result, the permeation of methanol is reduced. It can be suppressed. However, durability in continuous operation as a direct methanol fuel cell was not sufficient.
[0005]
Further, as a membrane obtained by impregnating a porous substrate with a monomer and a crosslinking agent and then polymerizing, there is a separation membrane for an organic solvent mixture disclosed in JP-A-5-237352, but a membrane that functions as a fuel cell However, it does not describe the durability against free radicals that are generated during the operation of the fuel cell.
[0006]
Japanese Patent Application Laid-Open No. 2002-170580 discloses a method of filling a crosslinked polymer having proton conductivity into a fluororesin-based porous base material and using it for a fuel cell. However, this proposal is suitable when hydrogen is used as a fuel. However, when used in a direct methanol fuel cell using an aqueous methanol solution as a fuel, the polymer filled in the pores is soft because the fluororesin such as polytetrafluoroethylene used as the porous substrate is soft. However, the base material is greatly deformed by the force of swelling with water or methanol to expand the filled polymer, and methanol permeation does not solve the problem of polyperfluorosulfonic acid.
[0007]
[Patent Document 1]
JP-A-5-237352 (pages 1-3)
[Patent Document 2]
JP-A-2002-170580 (pages 3 and 7-8)
[0008]
[Problems to be solved by the invention]
The present invention solves the problems of permeation and swelling of methanol in the fuel cell electrolyte membrane as described above, and provides an electrolyte membrane having high productivity, low cost, and excellent durability when operated as a fuel cell. The study was conducted in order to do so.
[0009]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in order to solve the above-mentioned problems. As a result, the pores of the porous base material are filled with a cross-linked polymer having proton conductivity, and have sufficient strength and rigidity (elastic modulus). Having a small area increase even if the filled polymer is swelled by water or methanol, and the crosslinked polymer is a mixture of a proton acidic group-containing monomer or a salt thereof and a crosslinking agent (hereinafter, referred to as “ Of the proton acidic group-containing monomer or a salt thereof, and the number obtained by multiplying the number of moles of the crosslinking agent by the average number of functional groups per molecule of the crosslinking agent. The inventors have found that an electrolyte membrane prepared so as to have a ratio of 50: 2 to 50:50 has both output characteristics and durability as a fuel cell, and completed the present invention.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail.
The polymer electrolyte membrane of the present invention fills the pores of the porous substrate with a crosslinked polymer having proton conductivity, improves the durability of such a proton conductive polymer filled membrane, and improves The methanol permeability can be suppressed as compared with the fluorine-based electrolyte membrane.
[0011]
The porous base material used in the present invention is preferably a material that does not substantially swell with methanol and water, and it is particularly desirable that the area change when wet with water is small or little compared to when dry. The area increase rate varies depending on the immersion time and temperature. In the present invention, the area increase rate when immersed in pure water at 25 ° C. for 1 hour is required to be at most 20% or less as compared with the time of drying. I do.
[0012]
The porous substrate of the present invention also preferably has a tensile modulus of 500 to 5000 MPa, more preferably 1000 to 5000 MPa, and preferably has a breaking strength of 50 to 500 MPa, more preferably 100 to 500 MPa. 500 MPa.
If these ranges are deviated to the lower side, the membrane tends to be deformed by the force of swelling with the filling resin methanol or water, and if it is deviated to the higher side, the base material becomes too brittle and it is used for press molding and battery during electrode bonding. The membrane is likely to crack due to tightening or the like when assembling. The porous substrate preferably has heat resistance to the temperature at which the fuel cell is operated, and preferably does not easily expand even when an external force is applied.
Examples of the material having such properties include inorganic materials such as glass and ceramics such as alumina and silica. Further, among organic materials, there are engineering plastics such as aromatic polyimides, and those in which polyolefins are hardly deformed by elongation to external force by a method such as irradiation or irradiation of a crosslinking agent to be crosslinked or stretched. . These materials may be used alone or may be used as a composite by laminating two or more kinds.
[0013]
Among these porous substrates, those composed of a stretched polyolefin, a crosslinked polyolefin, a crosslinked polyolefin after stretching, and polyimides are preferable because of good workability in the filling step.
[0014]
The porosity of the porous substrate of the present invention obtained as described above is preferably 5 to 95%, more preferably 5 to 90%, and particularly preferably 20 to 80%. Further, the average pore size is preferably in the range of 0.001 to 100 μm, and more preferably in the range of 0.01 to 1 μm. If the porosity is too small, the proton acidic group, which is a proton conductive group, per area is too small, resulting in a low output as a fuel cell. Further, the thickness of the substrate is preferably 200 μm or less. It is more preferably from 1 to 150 μm, further preferably from 5 to 100 μm, particularly preferably from 5 to 50 μm. If the film thickness is too small, the membrane strength is reduced and the amount of permeation of methanol is increased. If the film thickness is too large, the membrane resistance becomes too large and the output of the fuel cell is low.
[0015]
The electrolyte membrane of the present invention is obtained by filling a crosslinked polymer having proton conductivity into pores of a porous substrate. The method of filling the polymer can be obtained by impregnating a mixture or a solution or dispersion thereof of a proton acidic group-containing monomer or a salt thereof, which is a polymer precursor, and a crosslinking agent into a porous substrate, followed by polymerization. it can. At this time, the mixed liquid to be filled may contain a polymerization initiator, a catalyst, a curing agent, a surfactant, and the like, if necessary.
[0016]
Further, it is preferable that a cross-linked polymer having proton conductivity is chemically bonded to the surface of the porous base material, particularly to the inner surface of the pores. In the case of a polymerizable substance, radicals are generated on the surface by previously irradiating the substrate with plasma, ultraviolet rays, electron beams, gamma rays, corona discharge, etc., and grafting to the substrate surface when polymerizing the filled polymer precursor A method of causing polymerization to occur simultaneously, a method of simultaneously graft-polymerizing a polymer precursor onto a substrate surface by irradiating an electron beam after filling the substrate with a polymer precursor, and a hydrogen abstraction-type radical polymerization Initiator is blended with polymer precursor, filled and heated or irradiated with ultraviolet light to simultaneously cause graft polymerization on substrate surface and polymerization of polymer precursor Law, method and the like using a coupling agent. These may be performed alone or in combination of a plurality of methods.
[0017]
Among the polymer precursors used in the present invention, monomers that can be used as proton-acid-group-containing monomers include a polymerizable functional group in one molecule and a protonic acid or a protonic acid that is easily treated by operations such as neutralization and hydrolysis. It also has a functional group that can be converted into Specific examples include 2- (meth) acrylamide-2-methylpropanesulfonic acid, styrenesulfonic acid, (meth) allylsulfonic acid, vinylsulfonic acid, isoprenesulfonic acid, (meth) acrylic acid, maleic acid, crotonic acid, Vinyl phosphonic acid, acidic phosphoric acid group-containing (meth) acrylates, and salts, anhydrides and esters thereof can be used. When the acid residue of the monomer used is a derivative such as a salt, an anhydride or an ester, proton conductivity can be imparted by converting the monomer into a proton acid type after polymerization.
In addition, “(meth) acryl” indicates “acryl and / or methacryl”, “(meth) allyl” indicates “allyl and / or methallyl”, and “(meth) acrylate” indicates “acrylate and / or methacrylate”. ing.
Of these, a sulfonic acid group-containing vinyl compound or a phosphoric acid group-containing vinyl compound is preferable because of its excellent proton conductivity, and 2-methylpropane-2- (meth) acrylamide sulfonic acid has high polymerizability and further has preferable.
[0018]
Among the polymer precursors used in the present invention, compounds that can be used as a cross-linking agent are those having two or more polymerizable functional groups in one molecule, and the above-described proton acidic group-containing monomer or a salt thereof. By blending and polymerizing, a crosslinking point is formed in the polymer, and the polymer can be formed into an insoluble and infusible three-dimensional network structure. Specific examples thereof include N, N-methylenebis (meth) acrylamide, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, trimethylolpropane diallyl ether, pentaerythritol triallyl ether, divinylbenzene, and bisphenol di ( (Meth) acrylate, di (meth) acrylate isocyanurate, tetraallyloxyethane, triallylamine, diallyloxyacetate and the like. The crosslinkable functional group is not limited to those having a carbon-carbon double bond, but a difunctional or higher functional epoxy compound may be used, although the polymerization reaction rate is low. When an epoxy compound is used, it may be reacted with an acid such as a carboxyl group in the polymer to crosslink, or a copolymerizable compound having a hydroxyl group or the like as a third component may be added to the polymer precursor. These crosslinking agents can be used alone or in combination of two or more as needed.
[0019]
The present invention is characterized in that the amount of the copolymerizable crosslinking agent used is in a specific range. That is, in the polymer precursor, “the number of moles of the proton acidic group-containing monomer or a salt thereof”: “the number of moles of the crosslinking agent × the average number of functional groups per molecule of the crosslinking agent” = 50: 2 to 50:50. Mix. Preferably it is 50: 4 to 50:40. If the amount of the cross-linking agent is too small, the uncross-linked polymer is easily eluted, and there is a problem that the output is reduced within a short time when operated as a fuel cell, and if the amount is too large, the cross-linking agent component is difficult to be compatible. Either is not preferable because there is a problem of hindering proton conduction and lowering battery performance.
[0020]
If necessary, a third copolymer component having no proton acidic group can be blended with the polymer precursor used in the present invention, for example, for adjusting the swellability of the polymer. The third component is not particularly limited as long as it can be copolymerized with the acidic group-containing monomer and the crosslinking agent used in the present invention, but includes (meth) acrylic esters, (meth) acrylamides, maleimides, styrenes, and organic compounds. Vinyl acid, allyl compound and the like.
[0021]
In the present invention, as a method of polymerizing the proton acidic group-containing monomer in the polymer precursor inside the pores of the porous substrate, a known aqueous radical polymerization technique can be used. Specific examples include redox-initiated polymerization, heat-initiated polymerization, electron-beam-initiated polymerization, and photoinitiated polymerization with ultraviolet light.
Examples of the radical polymerization initiator for heat-initiated polymerization and redox-initiated polymerization include the following. Azo compounds such as 2,2'-azobis (2-amidinopropane) dihydrochloride; ammonium persulfate, potassium persulfate, sodium persulfate, hydrogen peroxide, benzoyl peroxide, cumene hydroperoxide, di-t-butyl perchlorate Peroxides such as oxides. When the above peroxide is combined with a reducing agent such as a sulfite, a bisulfite, a thiosulfate, a formamidine sulfinic acid, or ascorbic acid, a redox initiator is obtained. Or, there is an azo radical polymerization initiator such as 2,2′-azobis- (2-amidinopropane) dihydrochloride and azobiscyanovaleric acid. These radical polymerization initiators may be used alone or in combination of two or more. Of these, peroxide-based radical polymerization initiators can generate radicals by extracting hydrogen from carbon-hydrogen bonds. Therefore, when used in combination with an organic material such as polyolefin as a porous substrate, the weight of the substrate filled with heavy It is preferable because a chemical bond can be formed with the union.
[0022]
Among the above-mentioned polymerization initiation means, photoinitiated polymerization by ultraviolet rays is preferable because the polymerization reaction is easily controlled and a desired electrolyte membrane can be obtained with good productivity by a relatively simple process. In the case of photoinitiated polymerization, it is more preferable to previously dissolve or disperse the radical photopolymerization initiator in the monomer or its solution or dispersion.
Specific examples of the radical photopolymerization initiator include benzoin, benzyl, acetophenone, benzophenone, quinone, thioxanthone, thioacridone, and derivatives thereof generally used for ultraviolet polymerization. Examples of the derivative include benzoin-based compounds such as benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzoin isobutyl ether; and acetophenone-based compounds such as diethoxyacetophenone, 2,2-dimethoxy-1,2. -Diphenylethan-1-one, 1-hydroxycyclohexylphenyl ketone, 2-methyl-1- (4- (methylthio) phenyl) -2-monforinopropane-1, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butanone-1,2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- (4- (2-hydroxyethoxy) -phenyl) -2-hydroxydi-2- Methyl-1-propan-1-one; benzophenone-based As methyl o-benzoylbenzoate, 4-phenylbenzophenone, 4-benzoyl-4′-methyldiphenylsulfide, 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, 2,4 , 6-Trimethylbenzophenone, 4-benzoyl-N, N-dimethyl-N- [2- (1-oxy-2-propenyloxy) ethyl] benzenemethananium bromide, (4-benzoylbenzyl) trimethylammonium chloride, 4 , 4'-dimethylaminobenzophenone, 4,4'-diethylaminobenzophenone and the like.
[0023]
The use amount of these photopolymerization initiators is preferably from 0.001 to 1% by mass, more preferably from 0.001 to 0.5% by mass, particularly preferably from 0.01 to 0% by mass, based on the total mass of the unsaturated monomer. 0.5% by mass. Among these, aromatic ketone-based radical polymerization initiators such as benzophenone, thioxanthone, quinone, and thioacridone can generate radicals by extracting hydrogen from carbon-hydrogen bonds. When used together, a chemical bond can be formed between the base material surface and the filled polymer, which is preferable.
[0024]
When the porous substrate is impregnated with the polymer precursor solution in the present invention, a monomer, a crosslinking agent, a polymerization initiator, and the like are mixed to form a liquid to obtain a polymer precursor solution or dispersion. When the mixture of the polymer precursor alone is a low-viscosity liquid, it can be used for impregnation as it is, but preferably has a concentration of 10 to 90%, more preferably 20 to 70%. .
In addition, if the components used include those that are hardly soluble in water, some or all of the water may be replaced with an organic solvent, but if an organic solvent is used, remove all the organic solvent before joining the electrodes An aqueous solution is preferred because it is necessary. The reason for impregnating in the form of a solution in this way is that it is easy to impregnate a porous substrate having fine pores by dissolving it in water or a solvent and to use the impregnated gel. This is because, when the electrolyte membrane is formed in a fuel cell, water or methanol has an effect of preventing the polymer from falling off due to excessive swelling of the polymer in the pores.
[0025]
For the purpose of making the impregnation work easier, it is preferable to perform a hydrophilic treatment on the porous substrate, add a surfactant to the polymer precursor solution, or irradiate ultrasonic waves during the impregnation.
[0026]
The electrolyte membrane produced by the present invention can be preferably used for a polymer electrolyte fuel cell, particularly for a direct methanol fuel cell. When an electrolyte membrane is used in such a fuel cell, an electrolyte membrane-electrode assembly (MEA) is formed by sandwiching the electrolyte membrane between two electrodes provided with a catalyst typified by platinum by a heat press, etc. It is widely known that the electrolyte membrane according to the present invention is used by incorporating it into a battery cell, and an MEA can be prepared in the same manner as the electrolyte membrane according to the present invention and used by incorporating it into a fuel cell.
[0027]
[Action]
Since the electrolyte membrane according to the present invention is filled with a polymer having proton conductivity in a porous substrate made of a material that is hardly deformed by an external force, the filled polymer tends to swell with water or methanol. Can also be physically suppressed, and the permeation of methanol can be suppressed. Also, because the filled polymer has many crosslinking points, even if free radicals or hydrolysis occurs in the polymer, the gel shape can be maintained without eluted completely, Despite using an inexpensive hydrocarbon-based material, it has high durability and can be preferably used for a polymer electrolyte fuel cell, particularly a direct methanol fuel cell.
[0028]
【Example】
(Example 1)
A crosslinked polyethylene film (thickness: 16 μm, porosity: 40%, average pore diameter: about 0.1 μm) was used as a porous substrate. 50 g of 2-acrylamide-2-methylpropanesulfonic acid, 5 g of N, N'-methylenebisacrylamide, 0.005 g of nonionic surfactant, 0.005 g of ammonium persulfate (hydrogen abstraction type photopolymerization initiator), and 50 g of water The porous membrane was immersed in an aqueous solution of a polymer precursor to be filled with the aqueous solution. Next, after the porous substrate film was pulled out of the solution, the film was sandwiched between glasses and left in an oven heated to 80 ° C. for 2 hours to polymerize the monomer inside the pores. Table 1 shows the results of evaluating the obtained membrane as a MEA by sandwiching the obtained membrane between electrodes provided with a catalyst, and as a direct methanol fuel cell. The performance of the membrane prepared in this example was hardly reduced even after 10 days of operation.
[0029]
(Example 2)
An electrolyte membrane was prepared according to Example 1, except that the amount of N, N'-methylenebisacrylamide was changed to 10 g. Table 1 shows the results of evaluating the obtained membrane as a MEA by sandwiching the obtained membrane between electrodes provided with a catalyst, and as a direct methanol fuel cell. The performance of the membrane prepared in this example was hardly reduced even after 10 days of operation.
[0030]
(Example 3)
An electrolyte membrane was prepared in the same manner as in Example 1, except that 2-acrylamide-2-methylpropanesulfonic acid was changed to 40 g of acrylic acid and 10 g of vinylsulfonic acid. Table 1 shows the results of evaluating the obtained membrane as a MEA by sandwiching the obtained membrane between electrodes provided with a catalyst, and as a direct methanol fuel cell. Although the performance of the membrane prepared in this example hardly decreased after 10 days of operation, the initial performance was lower than those of Examples 1 and 2.
[0031]
(Example 4)
An electrolyte membrane was prepared in the same manner as in Example 1, except that a non-crosslinked polyethylene substrate (thickness: 25 μm, porosity: 40%, average pore diameter: about 0.1 μm) was used as the porous substrate. When the swelling property with respect to water of the obtained film was evaluated by the method described later, the area was increased by 16%. Table 1 shows the results of evaluating the obtained membrane as a MEA by sandwiching the obtained membrane between electrodes provided with a catalyst, and as a direct methanol fuel cell. The performance of the membrane prepared in this example was hardly reduced even after 10 days of operation.
[0032]
(Comparative Example 1)
An electrolyte membrane was prepared according to Example 1, except that 0.5 g of N, N-methylenebisacrylamide was used. Table 1 shows the results of evaluating the obtained membrane as a MEA by sandwiching the obtained membrane between electrodes provided with a catalyst, and as a direct methanol fuel cell. The performance as a battery lasted only 10 hours.
[0033]
(Comparative Example 2)
An electrolyte membrane was prepared according to Example 1, except that the porous substrate was a polytetrafluoroethylene porous membrane (thickness: 80 μm, porosity: 80%, average pore diameter: about 0.2 μm). When the swelling property of the obtained film in water was evaluated by the method described later, the area was increased by 32%. Table 1 shows the results of evaluation as a MEA sandwiched between electrodes with a catalyst and evaluation as a direct methanol fuel cell. The performance as a battery was low from the beginning, and the performance lasted only for 20 hours.
[0034]
(Comparative Example 3)
An electrolyte membrane was prepared according to Example 1, except that 26 g of N, N'-methylenebisacrylamide was added and 20 g of isopropyl alcohol was added to improve solubility. The obtained film was once dried at 70 ° C. for 2 hours and then immersed in pure water to replace isopropyl alcohol with water. Next, the results of evaluating the MEA with a catalyst-equipped electrode as a direct methanol fuel cell are shown in Table 1. The initial performance of the battery was low, and the performance lasted only for 20 hours.
[0035]
(Method of evaluating film swellability)
The area after the obtained electrolyte membrane was dried at 70 ° C. for 2 hours was measured and defined as (A1). Next, the area after immersing this film in pure water kept at 25 ° C. for 1 hour was measured and defined as (A2). From these, the area change rate was calculated according to the following equation (1).
Area change rate (%) = [(A2) − (A1)] / (A1) × 100 Equation (1)
[0036]
(Fuel cell performance evaluation method)
{Circle around (1)} Preparation of MEA Platinum-supported carbon (TEC10E50E, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) for the oxygen electrode and platinum-ruthenium alloy-supported carbon (TEC61E54, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) are used for the fuel electrode. A polymer electrolyte solution (manufactured by DuPont: Nafion 5% solution) and polytetrafluoroethylene dispersion were mixed with these catalyst powders, water was added as appropriate, and the mixture was stirred to obtain a reaction layer paint. This was printed on one side of carbon paper (TGP-H-060, manufactured by Toray Industries, Inc.) by screen printing and dried to form electrodes. At that time the oxygen electrode side is the amount of platinum 1 mg / cm 2, the fuel electrode side total platinum and ruthenium was 3 mg / cm 2. These were superimposed on the center of the electrolyte membrane with the paint surface inside, and heated and pressed at 130 ° C. to produce a membrane electrode assembly (MEA) for a fuel cell. This was assembled into a single fuel cell and operated to confirm the performance.
{Circle over (2)} The operating conditions when the MEAs prepared in the fuel cell evaluation example and the comparative example were directly incorporated into a single cell of a methanol fuel cell were as follows. The fuel was a 1 mol% methanol aqueous solution, and the oxidant was pure oxygen. The cell temperature was 50 ° C. The operation was performed for 10 hours a day at a charge density of 0.1 A / cm 2 with an electronic loader for 10 days, and the voltage drop was measured.
[0037]
[Table 1]
[0038]
【The invention's effect】
The electrolyte membrane of the present invention overcomes the problem of methanol permeation, which has been a problem when a polyperfluorosulfonic acid-based electrolyte membrane conventionally used for a fuel cell electrolyte membrane is used in a DMFC, and furthermore, a hydrocarbon-based electrolyte. The use of a polymer can improve the problem of durability, which has been a problem. This is because the pores of a porous substrate having sufficient strength and elastic modulus are filled with a cross-linked polymer having proton conductivity, which makes it difficult for water and methanol to permeate. This is because the structure prevents the filled polymer from decomposing and dropping out of the pores during operation of the fuel cell.
For these reasons, the electrolyte membrane of the present invention has both output characteristics and durability as a fuel cell, and is extremely useful as a fuel cell or the like.
Claims (6)
(1) 25℃における純水に1時間浸漬したときの面積増加率が20%以下。
(2) 架橋重合体が、プロトン酸性基含有モノマーもしくはその塩と架橋剤との混合物から得られたもので、当該プロトン酸性基含有モノマーもしくはその塩のモル数と、架橋剤のモル数と架橋剤一分子あたりの平均官能基数を掛けた数との比が、50:2〜50:50。An electrolyte membrane characterized by filling pores of a porous base material with a crosslinked polymer having proton conductivity, and satisfying the following conditions.
(1) The area increase rate when immersed in pure water at 25 ° C. for 1 hour is 20% or less.
(2) The cross-linked polymer is obtained from a mixture of a proton acidic group-containing monomer or a salt thereof and a cross-linking agent. The ratio to the number multiplied by the average number of functional groups per agent molecule is 50: 2 to 50:50.
(a)多孔性基材にプロトン酸性基含有モノマーもしくはその塩と架橋剤との混合物を含浸する工程。
(b)含浸したモノマーを重合する工程。The electrolyte membrane according to claim 1, wherein the electrolyte membrane is manufactured through at least the following steps (a) and (b).
(A) a step of impregnating a porous base material with a mixture of a proton acidic group-containing monomer or a salt thereof and a crosslinking agent;
(B) a step of polymerizing the impregnated monomer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002311929A JP4284463B2 (en) | 2002-10-25 | 2002-10-25 | Electrolyte membrane and fuel cell using the electrolyte membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002311929A JP4284463B2 (en) | 2002-10-25 | 2002-10-25 | Electrolyte membrane and fuel cell using the electrolyte membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004146279A true JP2004146279A (en) | 2004-05-20 |
JP4284463B2 JP4284463B2 (en) | 2009-06-24 |
Family
ID=32456969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002311929A Expired - Fee Related JP4284463B2 (en) | 2002-10-25 | 2002-10-25 | Electrolyte membrane and fuel cell using the electrolyte membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4284463B2 (en) |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004253147A (en) * | 2002-12-24 | 2004-09-09 | Ube Ind Ltd | Method for producing hybrid material, electrolyte membrane for fuel cell, electrolyte membrane-electrode assembly, and fuel cell |
JP2004269875A (en) * | 2003-03-06 | 2004-09-30 | Atofina Chemicals Inc | Non-perfluorinated polymer resins containing ionic or ionizable functional groups and products containing the resins |
WO2006004098A1 (en) * | 2004-07-06 | 2006-01-12 | Toagosei Co., Ltd. | Electrolyte membrane and fuel cell utilizing the electrolyte membrane |
JP2006032302A (en) * | 2004-07-22 | 2006-02-02 | Toagosei Co Ltd | Electrolyte film and fuel cell using the electrolyte film |
WO2006022081A1 (en) * | 2004-08-26 | 2006-03-02 | National University Corporation Yokohama National University | Proton conductor |
JP2006221873A (en) * | 2005-02-08 | 2006-08-24 | Ricoh Co Ltd | Method of manufacturing electrolyte membrane, electrolyte membrane, fuel cell, and electronic equipment |
JP2006269414A (en) * | 2005-02-28 | 2006-10-05 | Shin Etsu Chem Co Ltd | Curable resin composition for electrolyte membrane, method for producing electrolyte membrane, and method for producing electrolyte membrane / electrode assembly |
JP2007048543A (en) * | 2005-08-09 | 2007-02-22 | Toagosei Co Ltd | Electrolyte film and direct liquid fuel type fuel cell |
JP2007280688A (en) * | 2006-04-04 | 2007-10-25 | Tokuyama Corp | Diaphragm for direct liquid fuel cell |
JP2008204952A (en) * | 2007-01-24 | 2008-09-04 | Fujifilm Corp | SOLID ELECTROLYTE FILM, PROCESS FOR PRODUCING THE SAME, ELECTRODE MEMBRANE COMPOSITION USING THE SOLID ELECTROLYTE FILM, FUEL CELL |
WO2009104470A1 (en) * | 2008-02-18 | 2009-08-27 | 東亞合成株式会社 | Method for producing electrolyte membrane, and electrolyte membrane |
WO2009110631A1 (en) * | 2008-03-04 | 2009-09-11 | 国立大学法人山梨大学 | Proton transport material and raw materials to manufacture the same; ion exchanger, membrane electrode assembly and fuel cell that use the proton transport material |
WO2009145188A1 (en) * | 2008-05-28 | 2009-12-03 | トヨタ自動車株式会社 | Electrolyte membrane |
EP1833111A4 (en) * | 2004-12-03 | 2010-03-17 | Nitto Denko Corp | Electrolyte membrane and solid polymer fuel cell using same |
US7846610B2 (en) | 2006-10-23 | 2010-12-07 | Canon Kabushiki Kaisha | Electrolyte membrane, production method thereof, and fuel cell |
WO2011073637A1 (en) | 2009-12-16 | 2011-06-23 | Fujifilm Manufacturing Europe Bv | Curable compositions and membranes |
US8026016B2 (en) | 2004-08-31 | 2011-09-27 | Samsung Sdi Co., Ltd. | Polymer electrolyte membrane and fuel cell employing the same |
JP5255281B2 (en) * | 2006-10-24 | 2013-08-07 | 三菱レイヨン株式会社 | Method for imparting conductivity, method for producing conductive material, and conductive material |
WO2013155608A1 (en) * | 2012-04-19 | 2013-10-24 | Saltworks Technologies Inc. | Resilient ion exchange membranes prepared by polymerizing ionic surfactant monomers |
US8642228B2 (en) | 2004-08-31 | 2014-02-04 | Samsung Sdi Co., Ltd. | Polymer electrolyte membrane and fuel cell using the polymer electrolyte membrane |
-
2002
- 2002-10-25 JP JP2002311929A patent/JP4284463B2/en not_active Expired - Fee Related
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004253147A (en) * | 2002-12-24 | 2004-09-09 | Ube Ind Ltd | Method for producing hybrid material, electrolyte membrane for fuel cell, electrolyte membrane-electrode assembly, and fuel cell |
JP2004269875A (en) * | 2003-03-06 | 2004-09-30 | Atofina Chemicals Inc | Non-perfluorinated polymer resins containing ionic or ionizable functional groups and products containing the resins |
WO2006004098A1 (en) * | 2004-07-06 | 2006-01-12 | Toagosei Co., Ltd. | Electrolyte membrane and fuel cell utilizing the electrolyte membrane |
JP4656060B2 (en) * | 2004-07-06 | 2011-03-23 | 東亞合成株式会社 | Electrolyte membrane and fuel cell using the electrolyte membrane |
JPWO2006004098A1 (en) * | 2004-07-06 | 2008-04-24 | 東亞合成株式会社 | Electrolyte membrane and fuel cell using the electrolyte membrane |
JP2006032302A (en) * | 2004-07-22 | 2006-02-02 | Toagosei Co Ltd | Electrolyte film and fuel cell using the electrolyte film |
WO2006022081A1 (en) * | 2004-08-26 | 2006-03-02 | National University Corporation Yokohama National University | Proton conductor |
US8642228B2 (en) | 2004-08-31 | 2014-02-04 | Samsung Sdi Co., Ltd. | Polymer electrolyte membrane and fuel cell using the polymer electrolyte membrane |
US8026016B2 (en) | 2004-08-31 | 2011-09-27 | Samsung Sdi Co., Ltd. | Polymer electrolyte membrane and fuel cell employing the same |
EP1833111A4 (en) * | 2004-12-03 | 2010-03-17 | Nitto Denko Corp | Electrolyte membrane and solid polymer fuel cell using same |
US7785751B2 (en) | 2004-12-03 | 2010-08-31 | Nitto Denko Corporation | Production method of electrolyte membrane, electrolyte membrane and solid polymer fuel cell using same |
JP2006221873A (en) * | 2005-02-08 | 2006-08-24 | Ricoh Co Ltd | Method of manufacturing electrolyte membrane, electrolyte membrane, fuel cell, and electronic equipment |
JP2006269414A (en) * | 2005-02-28 | 2006-10-05 | Shin Etsu Chem Co Ltd | Curable resin composition for electrolyte membrane, method for producing electrolyte membrane, and method for producing electrolyte membrane / electrode assembly |
JP2007048543A (en) * | 2005-08-09 | 2007-02-22 | Toagosei Co Ltd | Electrolyte film and direct liquid fuel type fuel cell |
JP2007280688A (en) * | 2006-04-04 | 2007-10-25 | Tokuyama Corp | Diaphragm for direct liquid fuel cell |
US7846610B2 (en) | 2006-10-23 | 2010-12-07 | Canon Kabushiki Kaisha | Electrolyte membrane, production method thereof, and fuel cell |
JP5255281B2 (en) * | 2006-10-24 | 2013-08-07 | 三菱レイヨン株式会社 | Method for imparting conductivity, method for producing conductive material, and conductive material |
JP2008204952A (en) * | 2007-01-24 | 2008-09-04 | Fujifilm Corp | SOLID ELECTROLYTE FILM, PROCESS FOR PRODUCING THE SAME, ELECTRODE MEMBRANE COMPOSITION USING THE SOLID ELECTROLYTE FILM, FUEL CELL |
WO2009104470A1 (en) * | 2008-02-18 | 2009-08-27 | 東亞合成株式会社 | Method for producing electrolyte membrane, and electrolyte membrane |
US8338054B2 (en) | 2008-03-04 | 2012-12-25 | University Of Yamanashi | Proton transporting material, starting material thereof, ion exchange membrane, membrane electrolyte assembly, and fuel cell using the same |
WO2009110631A1 (en) * | 2008-03-04 | 2009-09-11 | 国立大学法人山梨大学 | Proton transport material and raw materials to manufacture the same; ion exchanger, membrane electrode assembly and fuel cell that use the proton transport material |
WO2009145188A1 (en) * | 2008-05-28 | 2009-12-03 | トヨタ自動車株式会社 | Electrolyte membrane |
WO2011073637A1 (en) | 2009-12-16 | 2011-06-23 | Fujifilm Manufacturing Europe Bv | Curable compositions and membranes |
US9238221B2 (en) | 2009-12-16 | 2016-01-19 | Fujifilm Manufacturing Europe Bv | Curable compositions and membranes |
US8956782B2 (en) | 2009-12-16 | 2015-02-17 | Fujifilm Manufacturing Europe Bv | Curable compositions and membranes |
US8968963B2 (en) | 2009-12-16 | 2015-03-03 | Fujifilm Manufacturing Europe Bv | Curable compositions and membranes |
US9487418B2 (en) | 2009-12-16 | 2016-11-08 | Fujifilm Manufacturing Europe B.V. | Curable compositions and membranes |
WO2013155608A1 (en) * | 2012-04-19 | 2013-10-24 | Saltworks Technologies Inc. | Resilient ion exchange membranes prepared by polymerizing ionic surfactant monomers |
US9199203B2 (en) | 2012-04-19 | 2015-12-01 | Saltworks Technologies, Inc. | Resilient ion exchange membranes prepared by polymerizing ionic surfactant monomers |
US9636642B2 (en) | 2012-04-19 | 2017-05-02 | Saltworks Technologies Inc. | Resilient anion exchange membranes prepared by polymerizing a composition |
Also Published As
Publication number | Publication date |
---|---|
JP4284463B2 (en) | 2009-06-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4284463B2 (en) | Electrolyte membrane and fuel cell using the electrolyte membrane | |
JP5702093B2 (en) | Polymer membrane composition for fuel cell, polymer membrane produced using the same, membrane-electrode assembly containing the same, and fuel cell | |
EP1890351A1 (en) | Membrane electrode assembly and direct liquid fuel type fuel cell | |
CN100409475C (en) | Polymer electrolyte membrane and fuel cell using it | |
JP4656060B2 (en) | Electrolyte membrane and fuel cell using the electrolyte membrane | |
JP2004247091A (en) | Electrolyte membrane electrode assembly and direct alcohol fuel cell | |
EP1737000A1 (en) | Electrolyte membrane, method for producing membrane electrode assembly, and fuel cell | |
JP4247571B2 (en) | Electrolyte membrane and fuel cell using the electrolyte membrane | |
CN1786047A (en) | Polymer electrolyte and fuel cell employing the same | |
EP1858097A1 (en) | Membrane electrode joined product, process for producing the same, and direct methanol-type fuel cell | |
JP2004253336A (en) | Electrolyte membrane and fuel cell using the electrolyte membrane | |
US20080020255A1 (en) | Electrolyte Membrane and Fuel Cell | |
JPWO2005076396A1 (en) | Electrolyte membrane and fuel cell using the electrolyte membrane | |
JP4561214B2 (en) | Electrolyte membrane | |
JP2004253183A (en) | Method for producing electrolyte membrane and fuel cell | |
KR100709220B1 (en) | Polymer electrolyte membrane for fuel cell, manufacturing method thereof and fuel cell system comprising same | |
WO2009099041A1 (en) | Solid polymer electrolyte membrane and manufacturing method thereof, membrane electrode assembly for fuel cell, and fuel cell | |
JP2007048543A (en) | Electrolyte film and direct liquid fuel type fuel cell | |
JP2005268032A (en) | POLYMER ELECTROLYTE MEMBRANE, ITS EVALUATION METHOD, AND FUEL CELL | |
JP2005063690A (en) | Electrolyte membrane and fuel cell using same | |
JPWO2009034965A1 (en) | Solid polymer electrolyte membrane, method for producing solid polymer electrolyte membrane, and fuel cell | |
JP2007048551A (en) | Electrolyte membrane for direct liquid fuel type fuel cell, and direct liquid fuel type fuel cell | |
KR100570770B1 (en) | Fuel cell electrode and fuel cell comprising same | |
KR20110082853A (en) | Polymer membrane composition for fuel cell, polymer membrane, membrane electrode assembly and fuel cell using same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050221 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070525 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070619 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070810 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090224 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090309 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120403 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4284463 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120403 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120403 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130403 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130403 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140403 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |