[go: up one dir, main page]

JP2004143910A - Photovoltaic power generation roof tile and its construction method - Google Patents

Photovoltaic power generation roof tile and its construction method Download PDF

Info

Publication number
JP2004143910A
JP2004143910A JP2002376084A JP2002376084A JP2004143910A JP 2004143910 A JP2004143910 A JP 2004143910A JP 2002376084 A JP2002376084 A JP 2002376084A JP 2002376084 A JP2002376084 A JP 2002376084A JP 2004143910 A JP2004143910 A JP 2004143910A
Authority
JP
Japan
Prior art keywords
photovoltaic
power generation
tile
cell
solar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002376084A
Other languages
Japanese (ja)
Other versions
JP3662906B2 (en
Inventor
Eiichi Ishikawa
石川 榮一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinto Co Ltd
Original Assignee
Shinto Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinto Co Ltd filed Critical Shinto Co Ltd
Priority to JP2002376084A priority Critical patent/JP3662906B2/en
Publication of JP2004143910A publication Critical patent/JP2004143910A/en
Application granted granted Critical
Publication of JP3662906B2 publication Critical patent/JP3662906B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S20/00Supporting structures for PV modules
    • H02S20/20Supporting structures directly fixed to an immovable object
    • H02S20/22Supporting structures directly fixed to an immovable object specially adapted for buildings
    • H02S20/23Supporting structures directly fixed to an immovable object specially adapted for buildings specially adapted for roof structures
    • H02S20/25Roof tile elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Roof Covering Using Slabs Or Stiff Sheets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simplify transport and roof tile laying construction work, and to facilitate the installation of a photovoltaic power generation cell by applying a crystalline silicon power generation base board to a photovoltaic power generation roof tile. <P>SOLUTION: A housing recess 13 is formed in the surface of a ceramic roof tile body 1 for housing the photovoltaic power generation cell 2 for internally storing the crystalline silicon power generation base board. For arranging the photovoltaic power generation cell 2 in the recess, right and left engaging members 3a and 3b are prepared for engaging both sides of the housing recess 13 and both side ends 21 and 22 of the photovoltaic power generation cell 2. The photovoltaic power generation cell 2 can be detachably arranged by the engaging members 3a and 3b in a state of arranging a ventilation space 14 between the housing recess 13 and an inside bottom surface. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、発電性能に優れ、かつデザイン性や施工性に優れた屋根瓦一体型の太陽光発電瓦およびその施工方法の改良に関する。
【0002】
【従来の技術】
近年、陶器瓦とシリコン発電基板を内蔵する太陽光発電セルとを一体化した太陽光発電瓦の実用化研究が進められているが、多くはアモルファスシリコンを発電素子としたもの(特許文献1を参照)であり、発電効率が低いため多数の太陽光発電セルを搭載する必要があり設備,建設費が高くなることから普及の障害となっていた。
【0003】
また、シリコン発電基板には、発電効率がアモルファスタイプの約2倍に達する結晶質シリコン(多結晶質および単結晶質)の利用も考えられている(特許文献1を参照)が、発電効率の温度依存性が強く、70℃程度に曝されると発電量が低下してしまうという問題があった。
【0004】
さらに、これらの太陽光発電瓦では、あらかじめ瓦と太陽光発電セルとを組み付けた屋根瓦一体型として工場から出荷されるのが通例(特許文献1を参照)であって、施工現場までの運搬における、太陽光発電セルの破損防止のための養生費用や運搬費用がコストアップになる上、現場での瓦葺き施工には熟練が要求され、またセル個々の電力取出し用ケーブルの結線作業が必要になるなど施工作業性やコスト面で解決すべき問題が多かった。
【0005】
【特許文献1】
特開平11−6255号公報:〔0005〕、〔0007〕、〔0015〕。
【0006】
【発明が解決しようとする課題】
本発明は、上記の問題点を解決するためになされたものであり、結晶質シリコン発電基板を太陽光発電瓦に適用可能とすること、施工現場までの運搬を簡便化すること、現場での瓦葺き施工に特別な熟練が要求されないこと、太陽光発電セルの組み付け容易であること、などを可能とする太陽光発電瓦およびその施工方法を提供する。
【0007】
【課題を解決するための手段】
上記の問題は、次の本件第1発明である太陽光発電瓦によって、解決することができる。それは、陶器瓦本体の表面に、結晶系シリコン発電基板を内蔵する太陽光発電セルが収納可能とされる収納凹部を形成するとともに、その収納凹部の両側部と前記太陽光発電セルの両側端部とを係合させるための係合部材によって、その太陽光発電セルを、その裏面と前記収納凹部内底面との間に通風空間を設けて、該収納凹部に着脱自在に配設可能としたことを特徴とする太陽光発電セルを配設するための太陽光発電瓦である。
【0008】
この太陽光発電瓦は、前記係合部材が、太陽光発電セルの端部が嵌着される横向きに開口した凹部を形成するコ字状屈曲部とそれに続く下垂部と外方に折返される先端係止部とからなる屈曲弾性金属板材であって、その先端係止部が前記収納凹部側面に設けた係止凹部に係止することによって、前記太陽光発電セルを着脱自在に配設可能とした形態の太陽光発電瓦、特に平板瓦タイプの太陽光発電瓦に好ましく具体化される。
【0009】
さらに、この第1発明は、前記太陽光発電セルの下端両側部を、前記収納凹部の下端両側に設けられ、陶器瓦本体と一体に形成した断面庇状係合部の庇部下に挿入して係合可能とした形態の前記した太陽光発電瓦としても具体化できる。
【0010】
また、上記の問題は、本件第2発明である次の太陽光発電瓦の施工方法によっても解決できるのである。すなわち、それは、第1発明の太陽光発電瓦を屋根の施工下地上に葺いた後、結晶系シリコン基板を内蔵する太陽光発電セルを前記係合部材によってその太陽光発電瓦の前記収納凹部に配設することを特徴とする太陽光発電瓦の施工方法である。
【0011】
そして、この第2発明は、太陽光発電セルを配設していない複数枚の太陽光発電瓦を横列に葺いた後、あらかじめ電力取出し用ケーブルを相互に連結した複数枚の太陽光発電セルを順次、それぞれの太陽光発電瓦に設けられた収納凹部に配設する形態、すなわち、太陽光発電瓦自体の施工と太陽光発電セルの施工とを現場で個別に行うようにした方法に具体化できる。さらに、この太陽光発電瓦の施工方法は、太陽光発電セルを配設した太陽光発電瓦からなる1列または複数列の横列の下側に太陽光発電セルを配設しない陶器瓦からなる横列を配置する形態に好ましく具体化される。
【0012】
【発明の実施の形態】
次に、本発明の太陽光発電瓦およびその施工方法に係る実施形態について、図1〜6を参照しながら説明する。
(第1発明:太陽光発電瓦)
本発明の太陽光発電瓦の特徴とするところは、第1に、1側のアンダラップ部11と他側のオーバラップ部12の間に位置する陶器瓦本体1の表面に、結晶系シリコン発電基板を内蔵する太陽光発電セル2が収納可能とされる収納凹部13を形成した点にある。
【0013】
第2に、前記太陽光発電セル2を収納凹部13に配設するために、その収納凹部13の両側部と前記太陽光発電セル2の両側端部21、22とを係合させるための左側の係合部材3a、右側の係合部材3b(頭部を下向きにした状態で左右を示す)に示される係合部材を準備した点にある。
【0014】
第3に、配設される太陽光発電セル2は、その外周がその係合部材3a、3bによって陶器瓦本体1に対して非接触状態とされ、かつその裏面と前記収納凹部13内底面13との間に通風空間14を設けた状態で、着脱自在に配設され得るようにした点にある。この通風空間の厚さは、少なくとも5mm、好ましくは10mm以上になるよう設定するのがよい。
【0015】
次に、この係合部材3a、3bの好ましい実施形態について、図4、5を用いて説明する。
この係合部材3a、3bは、以下説明する形状の屈曲弾性金属板材3であって、太陽光発電セル2の端部が嵌着される横向きに開口した凹部を形成する断面コ字状の屈曲部31と、それに続く下垂部32と、その下端部から外方に折返される折返し係止部33とから一体に形成されている屈曲弾性金属板材3である。
【0016】
そして、図4に示すように、屈曲弾性金属板材3の断面コ字状の屈曲部31と太陽光発電セル2の端部とを嵌め着けて組み付ける。図では、1側端部のみを示しているが、この実施形態では太陽光発電セル2の左右両端部に屈曲弾性金属板材3を組み付けるものである。次いで、折返し係止部33を内方に押し付けながら、陶器瓦本体1の収納凹部13に向けて押し込めば、図5に示すように、屈曲弾性金属板材3の折返し係止部33の先端が前記収納凹部13側面に設けた係止凹部15に弾段状態に係止することによって、前記太陽光発電セルは先の図1に示す前記収納凹部13に配設されるのである。
【0017】
なお、このために、屈曲弾性金属板材3は適宜なバネ弾性を有する金属板から形成されるのがよく、前記太陽光発電セル2は前記収納凹部13に弾段状態に収納されるよう、前記収納凹部13側面相互間の間隔、太陽光発電セル2の横幅寸法、屈曲弾性金属板材3の折返し係止部33の外方への張出し寸法などを設定するのがよい。
【0018】
また、本発明では、図5に示すように、通風空間14の厚さは、係止凹部15の高さと屈曲弾性金属板材3の寸法(高さ)によって、適宜に調整可能である。
さらに、本発明の屈曲弾性金属板材3では、その断面コ字状の屈曲部31の開口の方向を逆転させることにより、太陽光発電セル2の左右両端部に嵌着させることができるという左右両用の利点が得られる。
また、太陽光発電セル2を前記収納凹部13から取り外すには、太陽光発電セル2を左右どちらかに引き寄せて、反対側の屈曲弾性金属板材3を陶器瓦1から離脱させれば、全体を容易に取り外すことが可能である。
【0019】
さらに、この第1発明の好ましい形態について図6によって説明する。
前述の通り太陽光発電セル2の左右両側部は、係合部材3a、3bによって陶器瓦本体1に対して取り付けられるのであるが、さらにこの実施形態では、前記太陽光発電セル2の下端両側部を、前記収納凹部13の下端両側に設けられ、かつ陶器瓦本体1と一体に形成した断面庇状係合部16a、16bの庇部下の隙間17a、17bに挿入して係合可能としているのである。かくして、強風時に風圧で吹上げられやすい太陽光発電セル2の下部が陶器瓦本体1によって直接拘束されるので、強風時の安全性が向上するという利点が得られる。
【0020】
以上説明したように、本発明の太陽光発電瓦では、太陽光発電セル2を前記陶器瓦本体1に対して簡単に着脱可能に配設できるので、太陽光発電セル2を配設していない状態の太陽光発電瓦、すなわち前記陶器瓦本体1と太陽光発電セル2とを別々に包装し、従来の手法によって施工現場に運搬することができるから、特に運搬コストが嵩むことがない。
【0021】
さらに、本発明も太陽光発電瓦は、発電効率の高い多結晶質または単結晶質のシリコン発電基板を応用するものであるが、太陽光発電セル2と、陶器瓦本体1との間には通風空間14を設けているので、その外周から適宜に空気が出入りすることによる適度な通風により太陽光発電セル2の温度上昇が防止できから、発電効率が低下するのを防ぐことができるという利点が得られる。さらに、図1、図6に例示の本発明では、この通風空間14が頭部に向けて直接開口しているので、侵入した雨水を容易に排水できるという利点も有しているのである。
なお、本発明の太陽光発電瓦では、できるだけ大きなサイズの平板状太陽光発電セルを配設するのが好ましく、その目的には、陶器瓦自体が平板瓦であることが好ましい。
【0022】
(第2発明:太陽光発電瓦の施工方法)
次に、本件第2発明である太陽光発電瓦の施工方法の実施形態について説明する。この第2発明の要点は、従来のように太陽光発電セルを組み込んだ一体型瓦を施工するのではなく、太陽光発電セルを組み込んでいない状態の第1発明の太陽光発電瓦を葺き施工し、その後、所定の太陽光発電セルを嵌め付け施工するというように、陶器瓦の部分と太陽光発電セルの部分とを別個に施工して、現場で一体型太陽光発電瓦に完成させる点にある。
【0023】
具体的には、先ず、前記した第1発明の太陽光発電瓦を屋根の施工下地上に葺き施工する。この施工方法は、従来の陶器瓦に施工となんら変わるところはないのいで、太陽光発電セル組み込み済みの場合のような特別な養生や熟練した施工は全く必要でない。次いで、予め準備した結晶系シリコン基板を内蔵する太陽光発電セル2をその施工済みの太陽光発電瓦の前記収納凹部13に収納し、前記嵌め合わせ部3と止め付け部4によって取り付ける、という手順を経る。
【0024】
この施工方法を図2によってさらに説明すると、先ず、複数枚の太陽光発電瓦1A、1A、・・(太陽光発電セルを取り付けていない)を横列Aを形成するように葺いた後、あらかじめ電力取出し用ケーブル23を相互に連結した複数枚の太陽光発電セル2A、2A、・・を順次、それぞれの太陽光発電瓦1A、1A、・・に設けられた収納凹部に収納し、それぞれの嵌め合わせ部3と止め付け部4によって取り付け配設する。
【0025】
次いで、この横列Aの上側の次の横列Bについても同様に、複数枚の太陽光発電瓦1B、1B、・・を横列Bのように葺いた後、複数枚の太陽光発電セル2B、2B、・・を収納する。これを順次繰り返して所要の屋根部分を太陽光発電セル一体型瓦として施工されるのである。
【0026】
以上説明したように、本発明の施工方法では、陶器瓦の部分と太陽光発電セルの部分とを別個に施工して、現場で一体型太陽光発電瓦に完成させるのであるから、従来のあらかじめ瓦と太陽光発電セルとを組み付けた屋根瓦一体型の場合と異なり、施工現場での瓦葺き作業には特別な熟練が要求されない。また予め電力取出し用ケーブル23の結線が済ませてある太陽光発電セルを順次、所定の収納凹部に取り付ければよいので、この作業も特別な熟練を要しないうえ、太陽光発電セルも損傷しないという利点が得られるのである。
【0027】
なお、図2の太陽光発電セル2A、2B、・・では、1枚の太陽光発電セルが4枚の発電セル2Aa、2Ab、2Ac、2Adを1組にモジュール化されたものを示しているが、本発明はこれに限定されるものではない。
また、本発明の施工方法は、筋葺き、千鳥葺きのいずれの工法にも応用可能であるのはいうまでもない。
【0028】
さらに、この第2発明は、図3に例示するように、太陽光発電セル2、2、・・を配設した太陽光発電瓦からなる横列C、Cの下側に、太陽光発電セルを配設しない陶器瓦からなる横列E(雪止め瓦の例)、および同横列D(普通の桟瓦の例)とを配置するように具体化できる。
【0029】
このように、太陽光発電セルを配設しない陶器瓦からなる横列E、Dを太陽光発電瓦の横列の下側に設けておくと、施工後に作業員が屋根に登って行う太陽光発電セルの点検,整備などメンテナンスの際に、この横列E、Dを足場にして作業できるので安全かつ作業が容易になる利点がある。また、この目的からして、太陽光発電セルを配設しない陶器瓦の横列は、太陽光発電瓦の横列Cの2または3列毎に設けるのがよい。
【0030】
【発明の効果】
本発明の太陽光発電瓦およびその施工方法は、以上説明したように構成されているので、発電効率の高い結晶質シリコン発電素子が太陽光発電瓦に適用可能となり、施工面積を従来のアモルファスの場合の約1/2することができ、また、施工現場まで太陽光発電瓦の運搬に特別な養生が不要となり、さらに施工現場での瓦葺き作業に特別な熟練が要求されないうえ、太陽光発電セルの組み付け容易になるなどコストダウンに大きく寄与できるという優れた効果がある。よって本発明は、従来の問題点を解消した発電性能に優れ、かつデザイン性や施工性に優れた屋根瓦一体型の太陽光発電瓦およびその施工方法として、工業的価値はきわめて大なるものがある。
【図面の簡単な説明】
【図1】本発明を説明するため太陽光発電瓦の正面図(A)、要部断面図(B)。
【図2】本発明の施工方法を説明するための施工瓦の部分正面図。
【図3】本発明の施工方法を説明するための施工面の部分斜視図。
【図4】本発明の係合部材の実施形態を示す要部断面図。
【図5】陶器瓦本体と太陽光発電セルの配設状態を示す要部断面図。
【図6】本発明を1実施形態を説明するため太陽光発電瓦の正面図(A)、断面庇状係合部を横切る要部断面図(B)。
【符号の説明】
1 陶器瓦本体、11 アンダラップ部、12 オーバラップ部、13 収納凹部、14 通風空間、15 係止凹部、2 太陽光発電セル、21 1側端部、22 他側端部、3a、3b 係合部材、3 屈曲弾性金属板材、31 屈曲部、32 下垂部、33 折返し係止部。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a roof tile-integrated photovoltaic power generation tile having excellent power generation performance and excellent design and workability, and to an improvement in a method of constructing the same.
[0002]
[Prior art]
In recent years, research on the practical use of solar power generation tiles in which a ceramic tile and a photovoltaic power generation cell incorporating a silicon power generation substrate are integrated has been promoted, but most of them use amorphous silicon as a power generation element (see Patent Document 1). The power generation efficiency is low, and it is necessary to mount a large number of photovoltaic power generation cells.
[0003]
For the silicon power generation substrate, use of crystalline silicon (polycrystalline and monocrystalline), which has a power generation efficiency approximately twice as high as that of the amorphous type, is also considered (see Patent Document 1). There is a problem that the temperature dependency is strong and the power generation amount is reduced when exposed to about 70 ° C.
[0004]
Further, these solar power generation tiles are usually shipped from a factory as a roof tile integrated type in which the tile and the photovoltaic cell are assembled in advance (see Patent Document 1), and are transported to a construction site. In addition, the cost of curing and transportation to prevent damage to the photovoltaic power generation cell will increase, and in addition to the need for skill in the on-site roofing work, it will also be necessary to connect cables for extracting power from individual cells. There were many problems to be solved in terms of construction workability and cost.
[0005]
[Patent Document 1]
JP-A-11-6255: [0005], [0007], [0015].
[0006]
[Problems to be solved by the invention]
The present invention has been made in order to solve the above-mentioned problems, and it is possible to apply a crystalline silicon power generation substrate to a solar power generation tile, to simplify transportation to a construction site, Provided is a photovoltaic tile capable of requiring no special skill in roofing construction, easy assembling of a photovoltaic cell, and a method for constructing the same.
[0007]
[Means for Solving the Problems]
The above problem can be solved by the following solar power generation tile of the present invention. It is possible to form, on the surface of the ceramic tile body, a storage recess in which a photovoltaic cell incorporating a crystalline silicon power generation substrate can be stored, and both sides of the storage recess and both side ends of the photovoltaic cell. The solar cell can be detachably provided in the storage recess by providing a ventilation space between the back surface and the bottom surface of the storage recess by an engaging member for engaging the solar cell. A solar power generation tile for disposing a photovoltaic power generation cell characterized by the following.
[0008]
In this photovoltaic power generation tile, the engaging member is folded outward with a U-shaped bent portion forming a laterally opened concave portion into which the end portion of the photovoltaic cell is fitted, and a subsequent hanging portion. A bent elastic metal plate comprising a tip locking portion, wherein the tip locking portion is locked in a locking recess provided on a side surface of the storage recess, so that the photovoltaic power generation cell can be detachably provided. The present invention is preferably embodied in a photovoltaic roof tile of the form described above, in particular, a flat roof tile type photovoltaic roof tile.
[0009]
Further, in the first invention, the lower end both sides of the photovoltaic cell are inserted below the eaves of the cross-section eaves-shaped engaging portion provided on both lower ends of the storage recess and formed integrally with the ceramic tile body. The present invention can also be embodied as the above-described solar power generation tile in an engageable form.
[0010]
In addition, the above problem can be solved by the following method of constructing a photovoltaic roof tile according to the second invention. That is, after the photovoltaic tile of the first invention is laid on the construction base of the roof, the photovoltaic cell incorporating the crystalline silicon substrate is placed in the housing recess of the photovoltaic tile by the engaging member. This is a method for constructing a photovoltaic power generation tile, which is provided.
[0011]
In the second invention, after a plurality of photovoltaic tiles having no photovoltaic cells are laid in a row, a plurality of photovoltaic cells in which power takeout cables are interconnected in advance are provided. Formed in the form of being sequentially arranged in the storage recess provided in each photovoltaic tile, that is, the method in which the construction of the photovoltaic tile itself and the construction of the photovoltaic cell are performed individually on site it can. Furthermore, this method of constructing a photovoltaic tile includes a row of ceramic tiles having no photovoltaic cells arranged below one or more rows of photovoltaic tiles having photovoltaic cells. Is preferably embodied in the form of disposing.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of a photovoltaic power generation tile of the present invention and a construction method thereof will be described with reference to FIGS.
(First invention: photovoltaic tile)
The feature of the photovoltaic tile of the present invention is that, first, the surface of the ceramic tile main body 1 located between the underlap portion 11 on one side and the overlap portion 12 on the other side has a crystalline silicon power generation. The point is that a storage recess 13 is formed in which the photovoltaic cell 2 incorporating the substrate can be stored.
[0013]
Secondly, in order to dispose the photovoltaic cell 2 in the storage recess 13, a left side for engaging both sides of the storage recess 13 with both side ends 21 and 22 of the photovoltaic cell 2. And the right side of the engaging member 3a (the left and right sides are shown with the head down).
[0014]
Third, the photovoltaic cell 2 to be disposed has its outer periphery brought into a non-contact state with the ceramic tile body 1 by the engaging members 3a and 3b, and its back surface and the inner bottom surface 13 of the storage recess 13 are provided. In a state where the ventilation space 14 is provided between them. The thickness of the ventilation space is set to be at least 5 mm, preferably at least 10 mm.
[0015]
Next, a preferred embodiment of the engaging members 3a and 3b will be described with reference to FIGS.
The engaging members 3a and 3b are bent elastic metal plate members 3 having a shape described below, and have a U-shaped cross section that forms a laterally opened concave portion into which the end of the photovoltaic cell 2 is fitted. The bent elastic metal plate member 3 is formed integrally with a portion 31, a hanging portion 32 following the bent portion, and a folded locking portion 33 that is folded outward from a lower end thereof.
[0016]
Then, as shown in FIG. 4, the bent portion 31 having the U-shaped cross section of the bent elastic metal plate 3 and the end of the photovoltaic cell 2 are fitted and assembled. Although only one side end is shown in the figure, in this embodiment, the bent elastic metal plate 3 is attached to both left and right ends of the photovoltaic cell 2. Next, while pushing the folded locking portion 33 inward while pushing it toward the storage recess 13 of the ceramic tile body 1, as shown in FIG. 5, the tip of the folded locking portion 33 of the bent elastic metal plate material 3 becomes The photovoltaic power generation cell is disposed in the storage recess 13 shown in FIG. 1 described above by engaging the locking recess 15 provided on the side surface of the storage recess 13 in a stepped state.
[0017]
For this purpose, the bent elastic metal plate 3 is preferably formed of a metal plate having an appropriate spring elasticity, and the photovoltaic power generation cell 2 is stored in the storage recess 13 in a stepped state. It is preferable to set the interval between the side surfaces of the storage recess 13, the lateral width of the photovoltaic cell 2, the outward extension of the folded locking portion 33 of the bent elastic metal plate 3, and the like.
[0018]
In the present invention, as shown in FIG. 5, the thickness of the ventilation space 14 can be appropriately adjusted by the height of the locking recess 15 and the dimension (height) of the bent elastic metal plate 3.
Furthermore, in the bent elastic metal plate material 3 of the present invention, by reversing the direction of the opening of the bent portion 31 having a U-shaped cross section, the bent elastic metal plate material 3 can be fitted to the left and right end portions of the photovoltaic cell 2. Is obtained.
To remove the photovoltaic cell 2 from the storage recess 13, pull the photovoltaic cell 2 to the left or right and detach the bent elastic metal plate 3 on the opposite side from the ceramic tile 1. It can be easily removed.
[0019]
Further, a preferred embodiment of the first invention will be described with reference to FIG.
As described above, the left and right sides of the photovoltaic cell 2 are attached to the ceramic tile main body 1 by the engaging members 3a and 3b. Are inserted into the gaps 17a, 17b below the eaves of the eaves-like engaging portions 16a, 16b provided on both sides of the lower end of the storage recess 13 and formed integrally with the ceramic tile main body 1. is there. Thus, since the lower part of the photovoltaic power generation cell 2 which is easily blown up by the wind pressure in the strong wind is directly restrained by the ceramic tile main body 1, the advantage that the safety in the strong wind is improved is obtained.
[0020]
As described above, in the photovoltaic power generation tile of the present invention, the photovoltaic power generation cell 2 can be easily attached to and detached from the ceramic tile main body 1, and therefore the photovoltaic power generation cell 2 is not provided. Since the photovoltaic tile in the state, that is, the ceramic tile body 1 and the photovoltaic cell 2 can be separately packaged and transported to the construction site by a conventional method, the transport cost does not particularly increase.
[0021]
Furthermore, the present invention also applies the photovoltaic tile to a polycrystalline or monocrystalline silicon power generation substrate having a high power generation efficiency. Since the ventilation space 14 is provided, it is possible to prevent a rise in the temperature of the photovoltaic power generation cell 2 due to appropriate ventilation due to air flowing in and out from the outer periphery of the ventilation space 14, thereby preventing a decrease in power generation efficiency. Is obtained. Further, in the present invention illustrated in FIGS. 1 and 6, since the ventilation space 14 is directly opened toward the head, there is an advantage that the infiltrated rainwater can be easily drained.
In the solar power generation tile of the present invention, it is preferable to dispose a flat photovoltaic power generation cell having a size as large as possible, and for that purpose, it is preferable that the ceramic tile itself is a flat tile.
[0022]
(Second invention: construction method of solar power generation tile)
Next, an embodiment of a method for constructing a photovoltaic roof tile according to the second invention will be described. The gist of the second invention is that the roof tiles of the first invention without the solar cell are installed instead of the integrated roof tile incorporating the solar cell as in the prior art. Then, the part of the ceramic tile and the part of the photovoltaic cell are separately constructed, for example, by fitting a predetermined photovoltaic cell, and completed as an integrated photovoltaic tile on site. It is in.
[0023]
Specifically, first, the above-described solar power generation tile of the first invention is laid on a construction base of a roof. Since this construction method is no different from the construction of the conventional ceramic tile, there is no need for special curing or skilled construction as in the case where the photovoltaic cell is already incorporated. Then, the photovoltaic cell 2 incorporating the prepared crystalline silicon substrate is stored in the storage recess 13 of the installed photovoltaic tile, and attached by the fitting portion 3 and the fixing portion 4. Go through.
[0024]
This construction method will be further described with reference to FIG. 2. First, a plurality of photovoltaic roof tiles 1A, 1A,... The plurality of photovoltaic cells 2A, 2A,... Interconnecting the takeout cables 23 are sequentially stored in storage recesses provided in the respective photovoltaic roof tiles 1A, 1A,. It is attached and arranged by the fitting part 3 and the fastening part 4.
[0025]
Next, similarly for the next row B above the row A, after a plurality of photovoltaic roof tiles 1B, 1B,... Are laid like the row B, a plurality of photovoltaic cells 2B, 2B , ... is stored. By repeating this process, the required roof is constructed as a photovoltaic cell integrated tile.
[0026]
As described above, according to the construction method of the present invention, the part of the ceramic tile and the part of the photovoltaic cell are separately constructed to complete the on-site integrated photovoltaic tile. Unlike the case of a roof tile integrated type in which a tile and a photovoltaic cell are assembled, no special skill is required for the roofing work at the construction site. In addition, since the photovoltaic cells, to which the power take-out cable 23 has been connected in advance, may be sequentially attached to the predetermined storage recesses, this operation does not require any special skills, and the photovoltaic cells are not damaged. Is obtained.
[0027]
In FIG. 2, the photovoltaic power generation cells 2A, 2B,... Show that one photovoltaic power generation cell is modularized into a set of four power generation cells 2Aa, 2Ab, 2Ac, and 2Ad. However, the present invention is not limited to this.
Further, it goes without saying that the construction method of the present invention can be applied to any of the construction methods of the stitching and the staggering.
[0028]
Further, as illustrated in FIG. 3, the second invention includes a photovoltaic cell on the lower side of a row C of photovoltaic tiles in which the photovoltaic cells 2, 2,. It can be embodied so that a row E (an example of a snow-roof tile) and a row D (an example of a normal cross tile) made of ceramic tiles not to be arranged are arranged.
[0029]
As described above, if the rows E and D made of the ceramic tiles without the photovoltaic cells are provided below the rows of the photovoltaic tiles, the workers can climb the roof after the construction and perform the operation. During maintenance such as inspection and maintenance, the work can be performed by using the rows E and D as a foothold, so that there is an advantage that the work can be performed safely and easily. For this purpose, it is preferable to provide rows of ceramic tiles in which no photovoltaic cells are provided, every two or three rows C of photovoltaic tiles.
[0030]
【The invention's effect】
Since the photovoltaic tile of the present invention and the construction method thereof are configured as described above, a crystalline silicon power generation element having a high power generation efficiency can be applied to the photovoltaic tile, and the construction area can be reduced to a conventional amorphous tile. In addition, special curing is not required for transporting the photovoltaic tiles to the construction site, and no special skill is required for the roofing work at the construction site. Has an excellent effect of greatly contributing to cost reduction, such as easy assembling. Therefore, the present invention provides a roof tile-integrated photovoltaic tile with excellent power generation performance that solves the conventional problems, and excellent design and workability, and a method of constructing the same. is there.
[Brief description of the drawings]
FIG. 1 is a front view (A) and a cross-sectional view (B) of a main part of a solar power generation tile for explaining the present invention.
FIG. 2 is a partial front view of a construction tile for explaining the construction method of the present invention.
FIG. 3 is a partial perspective view of a construction surface for explaining the construction method of the present invention.
FIG. 4 is a sectional view of a main part showing an embodiment of the engaging member of the present invention.
FIG. 5 is a cross-sectional view of a main part showing an arrangement state of a ceramic tile body and a photovoltaic cell.
FIG. 6 is a front view (A) of a photovoltaic power generation tile and a cross-sectional view (B) of a main part crossing an eaves-shaped engaging portion for explaining one embodiment of the present invention.
[Explanation of symbols]
1 Ceramic tile body, 11 Underlap, 12 Overlap, 13 Storage recess, 14 Ventilation space, 15 Engagement recess, 2 Photovoltaic cell, 211 One end, 22 Other end, 3a, 3b Joint member, 3 bent elastic metal plate material, 31 bent portion, 32 hanging portion, 33 folded back locking portion.

Claims (7)

陶器瓦本体の表面に、結晶系シリコン発電基板を内蔵する太陽光発電セルが収納可能とされる収納凹部を形成するとともに、その収納凹部の両側部と前記太陽光発電セルの両側端部とを係合させるための係合部材によって、その太陽光発電セルを、その裏面と前記収納凹部内面との間に通風空間を設けて、該収納凹部に着脱自在に配設可能としたことを特徴とする太陽光発電瓦。On the surface of the ceramic tile body, a storage recess is formed in which a photovoltaic cell incorporating a crystalline silicon power generation substrate can be stored, and both sides of the storage recess and both side ends of the photovoltaic cell are formed. An engaging member for engaging the photovoltaic cell, wherein a ventilation space is provided between the back surface and the inner surface of the storage recess, and the photovoltaic cell can be detachably disposed in the storage recess. Solar roof tiles. 前記係合部材が、太陽光発電セルの端部が嵌着される横向きに開口した凹部を形成するコ字状屈曲部とそれに続く下垂部と外方に折返される先端係止部とからなる屈曲弾性金属板材であって、その先端係止部が前記収納凹部側面に設けた係止凹部に係止することによって、前記太陽光発電セルを着脱自在に配設可能とした請求項1に記載の太陽光発電瓦。The engaging member includes a U-shaped bent portion forming a laterally opened concave portion into which the end portion of the photovoltaic cell is fitted, a drooping portion following the bent portion, and a tip locking portion bent outward. 2. The photovoltaic power generation cell according to claim 1, wherein the photovoltaic cell is detachably provided by being a bent elastic metal plate material, wherein a leading end locking portion is locked in a locking recess provided on a side surface of the storage recess. Solar power tile. 前記陶器瓦が平板瓦である請求項1または2に記載の太陽光発電瓦。The solar power generation tile according to claim 1 or 2, wherein the ceramic tile is a flat tile. 前記太陽光発電セルの下端両側部を、前記収納凹部の下端両側に設けられ、陶器瓦本体と一体に形成した断面庇状係合部の庇部下に挿入して係合可能とした請求項1または2または3に記載の太陽光発電瓦。The lower end both sides of the photovoltaic power generation cell are provided on both sides of the lower end of the storage recess, and can be inserted and engaged below the eaves of the cross-section eaves-shaped engagement part formed integrally with the ceramic tile body. Or the solar power generation tile according to 2 or 3. 請求項1、2または3に記載の太陽光発電瓦を屋根の施工下地上に葺いた後、結晶系シリコン基板を内蔵する太陽光発電セルを前記係合部材によってその太陽光発電瓦の前記収納凹部に配設することを特徴とする太陽光発電瓦の施工方法。4. After the photovoltaic tile according to claim 1, 2 or 3 is laid on a construction base of a roof, the photovoltaic cell containing a crystalline silicon substrate is stored by the engaging member. A method for constructing a photovoltaic roof tile, which is provided in a recess. 複数枚の太陽光発電瓦を横列に葺いた後、あらかじめ電力取出し用ケーブルを相互に連結した複数枚の太陽光発電セルを順次、それぞれの太陽光発電瓦に設けられた収納凹部に配設する請求項5に記載の太陽光発電瓦の施工方法。After a plurality of photovoltaic tiles are laid in rows, a plurality of photovoltaic cells, in which power extraction cables are interconnected in advance, are sequentially arranged in storage recesses provided in each photovoltaic tile. A construction method of the photovoltaic roof tile according to claim 5. 太陽光発電セルを配設した太陽光発電瓦からなる1列または複数列の横列の下側に太陽光発電セルを配設しない陶器瓦からなる横列を配置する請求項5または6に記載の太陽光発電瓦の施工方法。The solar cell according to claim 5 or 6, wherein a row of ceramic tiles without solar cells is arranged below one or more rows of solar tiles with solar cells arranged therein. How to install photovoltaic roof tiles.
JP2002376084A 2002-08-26 2002-12-26 Photovoltaic roof tile and its construction method Expired - Lifetime JP3662906B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002376084A JP3662906B2 (en) 2002-08-26 2002-12-26 Photovoltaic roof tile and its construction method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002245288 2002-08-26
JP2002376084A JP3662906B2 (en) 2002-08-26 2002-12-26 Photovoltaic roof tile and its construction method

Publications (2)

Publication Number Publication Date
JP2004143910A true JP2004143910A (en) 2004-05-20
JP3662906B2 JP3662906B2 (en) 2005-06-22

Family

ID=32472650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002376084A Expired - Lifetime JP3662906B2 (en) 2002-08-26 2002-12-26 Photovoltaic roof tile and its construction method

Country Status (1)

Country Link
JP (1) JP3662906B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186904A (en) * 2006-01-13 2007-07-26 Asahi Kasei Construction Materials Co Ltd Solar cell module-integrated roof material, fixing member used therefor, and method for replacing solar cell module
FR2921397A1 (en) * 2007-09-25 2009-03-27 Mathieu Pierre Georges Rivot Photovoltaic panels connecting and fixing device for e.g. building, has support provided with rubber pads and circular lower hooks, and independent circular upper hook inserted in rail and blocked by detent device
WO2009111908A1 (en) * 2008-03-14 2009-09-17 Chen Jen-Shyan Solar cell device with high heat dissipation efficiency
EP2228502A1 (en) * 2009-03-10 2010-09-15 Mathieu Rivot Device for fixing photovoltaic panels on roof tiles.
EP2262003A1 (en) 2009-06-10 2010-12-15 Mediat's Assembly device between a photovoltaic panel and a tile body included in a covering element of a building
US8511006B2 (en) 2009-07-02 2013-08-20 Owens Corning Intellectual Capital, Llc Building-integrated solar-panel roof element systems
US8782972B2 (en) 2011-07-14 2014-07-22 Owens Corning Intellectual Capital, Llc Solar roofing system
CN106712669A (en) * 2016-12-02 2017-05-24 于浩民 Split combined type full-width photovoltaic power generation tile bottom tile
KR102511835B1 (en) * 2022-05-25 2023-03-20 솔라존 주식회사 solar roof tile
ES2951894A1 (en) * 2022-03-16 2023-10-25 Flexbrick S L PHOTOELECTRIC BUILDING BLOCK (Machine-translation by Google Translate, not legally binding)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186904A (en) * 2006-01-13 2007-07-26 Asahi Kasei Construction Materials Co Ltd Solar cell module-integrated roof material, fixing member used therefor, and method for replacing solar cell module
FR2921397A1 (en) * 2007-09-25 2009-03-27 Mathieu Pierre Georges Rivot Photovoltaic panels connecting and fixing device for e.g. building, has support provided with rubber pads and circular lower hooks, and independent circular upper hook inserted in rail and blocked by detent device
WO2009111908A1 (en) * 2008-03-14 2009-09-17 Chen Jen-Shyan Solar cell device with high heat dissipation efficiency
EP2228502A1 (en) * 2009-03-10 2010-09-15 Mathieu Rivot Device for fixing photovoltaic panels on roof tiles.
EP2262003A1 (en) 2009-06-10 2010-12-15 Mediat's Assembly device between a photovoltaic panel and a tile body included in a covering element of a building
FR2946677A1 (en) * 2009-06-10 2010-12-17 Mediat S ASSEMBLY DEVICE BETWEEN A PHOTOVOLTAIC PANEL AND A TILE BODY COMPRISING A COVERING ELEMENT OF A BUILDING
US8511006B2 (en) 2009-07-02 2013-08-20 Owens Corning Intellectual Capital, Llc Building-integrated solar-panel roof element systems
US8782972B2 (en) 2011-07-14 2014-07-22 Owens Corning Intellectual Capital, Llc Solar roofing system
CN106712669A (en) * 2016-12-02 2017-05-24 于浩民 Split combined type full-width photovoltaic power generation tile bottom tile
ES2951894A1 (en) * 2022-03-16 2023-10-25 Flexbrick S L PHOTOELECTRIC BUILDING BLOCK (Machine-translation by Google Translate, not legally binding)
KR102511835B1 (en) * 2022-05-25 2023-03-20 솔라존 주식회사 solar roof tile

Also Published As

Publication number Publication date
JP3662906B2 (en) 2005-06-22

Similar Documents

Publication Publication Date Title
CA2846540C (en) Low profile slate-style solar roofing system
US7487771B1 (en) Solar panel frame assembly and method for forming an array of connected and framed solar panels
ES2366332T3 (en) PLATE SYSTEM.
US8833005B1 (en) Base sheet integrated photovoltaic roofing assemblies
JP2004143910A (en) Photovoltaic power generation roof tile and its construction method
UA48207C2 (en) ROOF WITH SOLAR ELEMENTS
KR20080009264A (en) Roof cover or facade siding
ITRM20100032U1 (en) COVERAGE ELEMENT FOR BUILDINGS WITH INTEGRATED ELECTRICITY PRODUCTION DEVICE.
JP4822418B2 (en) Roofing with solar cells
KR101513233B1 (en) A roof fixing type support structure of solar panel
JP4336221B2 (en) Solar cell module and solar cell array using the same
JP2004027734A (en) Solar cell module and solar cell array using the same
JP2005264441A (en) Solar cell array
KR101542487B1 (en) Convex roofing tiles and root structure of korean-style house with solar cell module
EP0940859A3 (en) Combined solar collector and photovoltaic cells
JP2010007407A (en) Roof seeding and planting tray mounting structure for folded plate roof
JP2005307693A (en) Solar cell module and its installation structure
JP3588541B2 (en) Roof tile with solar cell
JP4146787B2 (en) Roof mounting structure for solar cell module, solar cell structure, roof mounting method thereof, and module unit replacement method
JP6449006B2 (en) Roof structure
JP2003347576A (en) Solar battery module
JP4358363B2 (en) Solar cell module roof tiles
JP2011166038A (en) Solar cell module and roof structure
RU2215100C2 (en) Process of manufacture of roof panel with solar battery
KR101295389B1 (en) Roof solar battery module embedded type roof panel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20021226

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20030117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20030130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20030207

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20030207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20030207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050318

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050324

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080401

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110401

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250