[go: up one dir, main page]

JP2004142260A - Thermoplastic resin foam molded body and method for manufacturing it - Google Patents

Thermoplastic resin foam molded body and method for manufacturing it Download PDF

Info

Publication number
JP2004142260A
JP2004142260A JP2002310111A JP2002310111A JP2004142260A JP 2004142260 A JP2004142260 A JP 2004142260A JP 2002310111 A JP2002310111 A JP 2002310111A JP 2002310111 A JP2002310111 A JP 2002310111A JP 2004142260 A JP2004142260 A JP 2004142260A
Authority
JP
Japan
Prior art keywords
resin
foamed
particles
polystyrene
polyolefin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002310111A
Other languages
Japanese (ja)
Other versions
JP4202716B2 (en
Inventor
Taro Kiguchi
木口太郎
Tomonori Iwamoto
岩本友典
Jutaro Yajima
矢島寿太郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP2002310111A priority Critical patent/JP4202716B2/en
Publication of JP2004142260A publication Critical patent/JP2004142260A/en
Application granted granted Critical
Publication of JP4202716B2 publication Critical patent/JP4202716B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Molding Of Porous Articles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoplastic resin foam molded body with a high energy absorbing efficiency in a dynamic compression test as an energy absorbing material for absorbing impact energy. <P>SOLUTION: In this thermoplastic resin foam molded body, polyolefin resin foamed particles (B) are dispersed in a foamed body (A) comprising a polystyrene resin. In the dynamic compression test, a difference between an impact loading at 20% strain and an impact loading at 60% is small, namely, as the loading generated is constant regardless of the strain, it has characteristics absorbing efficiently the energy when the impact is received. It can be manufactured by performing in-mold foam molding using a mixture of polystyrene resin foamed particles and the polyolefin resin foamed particles as a raw material. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
エネルギー吸収材は、自動車バンパーの芯材、自動車のドアトリム、精密機械の緩衝包装材などの様々な用途に用いられている。ポリスチレン系樹脂発泡体、ポリオレフィン系樹脂発泡体に代表される熱可塑性樹脂発泡成形体は、型内発泡成形などにより任意の形状を容易に作成しうること、リサイクル性に優れていることなどの特性から、該エネルギー吸収材によく用いられている。
【0002】
本発明はエネルギー吸収材用途に使用される熱可塑性樹脂発泡成形体、及びその製造方法に関する。特に高歪み時においても衝撃による荷重を低く抑えることができ、エネルギー吸収効率が高い熱可塑性樹脂発泡成形体、及びその製造方法に関する。
【0003】
【従来の技術】
エネルギー吸収材は緩衝包装材や自動車バンパー芯材などに用いられており、精密機械や自動車などに落下、衝突などの衝撃が発生しても、それ自身及びその衝突対象(以後、被保護物)に過大な衝撃を発生させないことを目的とする。エネルギー吸収材は、衝撃を受けるとそれ自身が部分破壊したり変形を生じたりすることにより、衝撃エネルギーを異なるエネルギーに変換することにより衝撃エネルギーを吸収する。
【0004】
前記機構により、被保護物は衝突により発生したエネルギーを直接受けることなく、破壊、機能消失を避けられる。しかし、いくらエネルギーを直接受けることがないとは言え、被保護物には衝撃による荷重が発生する。この荷重が大きすぎると、やはり被保護物は破壊、機能消失してしまう。したがってエネルギー吸収材は、発生する最大衝撃荷重が出来るだけ小さい方が望ましい。一方エネルギー吸収量は、該衝撃荷重とエネルギー吸収材の変形量の積算であるため、衝撃荷重が大きい方がより多くのエネルギーを吸収できる。これら2つの相反する事象より、エネルギー吸収材の特性は、低歪み時から高歪み時まで、変位によらず一定の衝撃荷重を生じるもの、すなわちエネルギー吸収効率の高いものが望ましい。
【0005】
エネルギー吸収材用途に使用される発泡成形体について、そのエネルギー吸収効率を高めるため、様々な発明がなされている。特許文献1には、重量平均分子量が4.5万以上12万以下である発泡スチレン系樹脂粒子を用いた発泡成形品が、JIS K7220で定められた圧縮試験において、圧縮歪みが5%の時の圧縮応力をX、50%の時の圧縮応力をYとしたときY/Xの値が2.0以下となることが示されている。しかし発泡スチレン系樹脂を用いた発泡成形品の圧縮応力は、圧縮歪みが50%前後から急激に上昇するため、該発泡成形品を用いたエネルギー吸収材を考えた場合、圧縮歪みが50%までであれば良好なエネルギー吸収効率を持つと考えられるが、それ以上の圧縮歪みが必要とされる用途では改良効果が少ないと考えられる。
【0006】
また特許文献2には、ASTM D790に準拠して測定したメルトフローレートが20−100g/10分であるポリプロピレンホモポリマーを用いた場合、静的圧縮において圧縮時に気泡構造が破壊され高歪み時にも応力の上昇が抑えられ、エネルギー吸収効率が良いと示されている。しかし本発明者らが動的圧縮試験での性能を評価したところ改善効果が小さかった。これは動的圧縮試験のような高速での変位を受けた場合は、該公報にて記述のある気泡構造の破壊が起こりにくい為であると推測される。
【0007】
さらに特許文献3には、弾性体よりなる格子状のエネルギー吸収体は、圧縮・挫屈を利用してエネルギー吸収効率が良くなることが示されている。しかし該公報の方法は形状が限定されるという欠点があった。
【0008】
一方単独の樹脂では得られない物性を得るため、2種以上の樹脂を様々な状況で混合させ、新規な性能を付与する研究も多々行われている。例えば、異なる樹脂同士を、相溶化剤等の存在、非存在下で溶融混練し、新規に様々な物性を持つ発泡成形体を得る方法は、ここに枚挙するまでも無く、広く検討されている。
【0009】
溶融混練以外の方法に関しても様々な発明がなされている。すなわち、特許文献4には、2種類以上の熱可塑性樹脂発泡粒子を、混合することなく同時成形することにより、部分毎に異なる特性を持つ成形品を得ることが出来ることが示されている。該公報記載の方法は、成形品部分毎に元原料に対応した物性を得ることができるとしているが、特にエネルギー吸収効率については、なんら開示されていない。
【0010】
また、特許文献5には、ポリオレフィン系樹脂と、粒径の小さいポリスチレン系樹脂を混合して押し出し機に供給し、ポリスチレン系樹脂が溶融せずポリオレフィン系樹脂のみが溶融する条件で溶融混合しペレット化することにより、ポリスチレン系樹脂が微分散したポリオレフィン系樹脂ペレットを作製し、これを発泡、成形することにより発泡樹脂成形体を得る方法が示されている。該公報記載の成形体はポリオレフィン系樹脂発泡成形体の様な柔軟性に加え、分散したポリスチレン系樹脂によってポリオレフィン系樹脂発泡成形体より強度が高くなると言う長所がある。しかし強度という面からは、ポリオレフィン系樹脂発泡成形体よりは高いものの、ポリスチレン系樹脂発泡成形体に比較し弱くなることは容易に推察でき、少ない歪みでエネルギーを効率よく吸収できると言う点では劣ると言わざるを得ない。
【0011】
さらに、特許文献6には、軟質発泡樹脂をマトリックスとし、該マトリックスに発泡ガラスビーズ等の無機材を分散させることにより、小さな衝撃に対しては軟質発泡樹脂の変形で吸収し、大きな衝撃には無機材により衝撃吸収することが可能な発泡成形体について示されている。該公報記載の方法も、軟質発泡樹脂をマトリックスとしているため、少ない歪みにおけるエネルギー吸収は小さく、また大きな歪みが発生した際は無機材による強度上昇のため、かなりの衝撃荷重が発生しエネルギー吸収材としては好ましくない。
【0012】
また、特許文献7には、融点の異なる2種のポリプロピレン系樹脂発泡粒子を用いて、低融点のポリプロピレン系樹脂発泡粒子のみが溶融する条件で型内成形する方法が記載されている。該公報によれば、成形時の加熱条件を低くでき、少ない歪みではソフト感を感じる、すなわち応力が弱く、大きな歪み時には強度が高くなる、と言う特徴を持つ。これに関しても比較的強度が低い低融点のポリプロピレン系樹脂の発泡樹脂をマトリックスとしているため、少ない歪みにおけるエネルギー吸収は小さく、また大きな歪みが発生した際は比較的強度が高い高融点のポリプロピレン系樹脂の発泡樹脂による強度上昇のため、かなりの衝撃荷重が発生しエネルギー吸収材としては好ましくない。
【0013】
【特許文献1】
特開2002−212332号公報
【0014】
【特許文献2】
特開平10−45939号公報
【0015】
【特許文献3】
特開平7−228144号公報
【0016】
【特許文献4】
特公昭54−73863号公報
【0017】
【特許文献5】
特公昭61−12736号公報
【0018】
【特許文献6】
特公昭61−55128号公報
【0019】
【特許文献7】
特開2002−200635号公報
【0020】
【発明が解決しようとする課題】
エネルギー吸収材用途に、様々な発泡成形体が用いられている。発泡体がエネルギーを吸収する機構は様々であるが、概ね2種に大別することが出来る。すなわち、硬質ポリウレタンフォーム等のように、衝撃が加わった場合に発泡成形体を構成するセルが破壊され、その破壊によりエネルギーを吸収するタイプ、あるいは発泡ポリスチレンや発泡ポリオレフィンなどのように、衝撃が加わった場合に成形体が変形し、その変形応力によりエネルギーを吸収するタイプである。
【0021】
前者は、エネルギーの吸収機構が発泡成形体を構成するセルの破壊であるため、衝撃を受けた際に生じる衝撃荷重が、変位によらずほぼ一定となるため、エネルギー吸収効率が高い。しかし、これらは一般に熱可塑性樹脂ではなく、リサイクル性や望む形状への成形のしやすさ、すなわち成形性に劣っているという欠点も持つ。
【0022】
一方後者は熱可塑性樹脂に代表され、リサイクル性や成形性などが良好である。反面、エネルギー吸収機構が成形体の変形によるが、この変形応力は歪みにより大きく変化し、とくに歪みが大きくなると衝撃荷重が急激に増大する。このため、特に材料厚みを大きくとれないときなど、許容荷重を越えてしまうと言う問題があった。
【0023】
本発明は前記問題に鑑みなされたものであり、リサイクル性、成形性などに優れる熱可塑性樹脂を用いて、高歪み時においても衝撃による荷重を低く抑えることができる、エネルギー吸収効率の高い発泡成形体を提供することを目的とする。
【0024】
【課題を解決するための手段】
本発明者らは、前記課題を解決すべく鋭意検討を重ねた結果、熱可塑性樹脂発泡体に、大きな衝撃を受けた際に破壊される構造を付与し、この破壊応力により衝撃エネルギーを効率良く吸収出来ることを発見した。該構造を付与するためには、ポリオレフィン系樹脂発泡粒子をポリスチレン系樹脂発泡体中に分散させることが有効であることを発見し、本発明を完成するに至った。
【0025】
すなわち、本発明は、
ポリスチレン系樹脂からなる発泡体(A)中に、ポリオレフィン系樹脂発泡粒子(B)が分散している熱可塑性樹脂発泡成形体に関する。
【0026】
好ましい実施態様としては、ポリスチレン系樹脂からなる発泡体(A)を構成するポリスチレン系樹脂が、スチレン0〜70重量%、α−メチルスチレン10〜80重量%、アクリロニトリル5〜50重量%の単量体組成の共重合体であることを特徴とする前記に記載の熱可塑性樹脂発泡成形体に関する。
【0027】
より好ましい実施態様としては、ポリスチレン系樹脂からなる発泡体(A)を構成するポリスチレン系樹脂が、α−メチルスチレン50〜80重量%、アクリロニトリル20〜50重量%の単量体組成の共重合体であることを特徴とする前記いずれか1項に記載の熱可塑性樹脂発泡成形体に関する。
【0028】
また、好ましい実施態様としては、ポリオレフィン系樹脂発泡粒子(B)を構成するポリオレフィン系樹脂がポリプロピレン系樹脂であることを特徴とする前記いずれか1項に記載の熱可塑性樹脂発泡成形体に関する。
【0029】
さらに好ましい実施態様としては、ポリスチレン系樹脂からなる発泡体(A)の割合が10〜80体積%、及びポリオレフィン系樹脂発泡粒子(B)の割合が90〜20体積%である事を特徴とする前記いずれか1項に記載の熱可塑性樹脂発泡成形体に関する。
【0030】
さらに好ましい実施態様としては、ポリスチレン系樹脂からなる発泡体(A)が三次元的に網目状の構造を持つ、前記いずれか1項に記載の熱可塑性樹脂発泡成形体に関する。
【0031】
さらに好ましい実施態様としては、ポリオレフィン系樹脂発泡粒子(B)同士、及びポリオレフィン系樹脂発泡粒子(B)とポリスチレン系樹脂からなる発泡体(A)が、部分的、もしくは完全に融着しておらず、非連続に分散している前記いずれか1項に記載の熱可塑性樹脂発泡成形体に関する。
【0032】
さらに好ましい実施態様としては、動的圧縮試験に基づく60%歪み時の荷重(F60%)と、同20%歪み時の荷重(F20%)との比(F60%/F20%)が、1.60以下であることを特徴とする前記いずれか1項に記載の熱可塑性樹脂発泡成形体に関する。
【0033】
特に好ましい実施態様としては、密度が50g/L以上であることを特徴とする前記いずれか1項に記載の熱可塑性樹脂発泡成形体に関する。
【0034】
また、ポリスチレン系樹脂からなる発泡粒子(C)と、ポリオレフィン系樹脂発泡粒子(B)とを混合した状態で成形金型内に充填し、ついで成形金型内に加熱媒体を導いて、ポリスチレン系樹脂発泡粒子(C)同士は融着するが、ポリオレフィン系樹脂発泡粒子(B)同士は融着しない条件下で型内成形することを特徴とする、熱可塑性樹脂発泡成形体の製造方法に関する。
【0035】
【発明の実施の形態】
本発明で用いる発泡体(A)の基材樹脂となるポリスチレン系樹脂は、スチレン単独重合体でも、スチレンもしくはスチレン系誘導体を50重量%以上含む共重合体でも良い。スチレン系誘導体としては、α−メチルスチレン、パラメチルスチレン、t−ブチルスチレン、クロルスチレンスチレン等があげられる。またスチレンもしくはスチレン系誘導体と共重合する他の単量体としては、メチルアクリレート、ブチルアクリレート、メチルメタクリレートエチルメタクリレート、セチルメタクリレート等のアクリル酸及びメタクリル酸のエステル、あるいはアクリロニトリル、ジメチルフマレート、エチルフマレート、無水マレイン酸等の各単量体があげられ、これらの単量体を単独、もしくは2種以上混合して用いることが出来る。また、より高い強度を求める場合は、ジビニルベンゼン、アルキレングリコールジメタクリレート等の2官能性単量体を併用しても良いが、その場合、ポリスチレン系樹脂の伸びが落ちることがありうるため、若干発泡倍率が落ちる傾向があることに注意する必要がある。
【0036】
本発明で用いる発泡体(A)の基材樹脂となるポリスチレン系樹脂は、好ましくはスチレン0〜70重量%、α−メチルスチレン10〜80重量%、アクリロニトリル5〜50重量%の単量体組成の共重合体、より好ましくはα−メチルスチレン50〜80重量%、アクリロニトリル20〜50重量%の単量体組成の共重合体である。該共重合体はスチレンの単独重合体に比べ、強度や耐熱性、耐薬品性に優れている。また強度が高いことに加え脆さがあることから、低歪み時の衝撃荷重が高く、かつ大きな衝撃を受けた際に生じる破壊が発生しやすくなる。
【0037】
本発明で用いるポリオレフィン系樹脂発泡粒子(B)の基材となるポリオレフィン系樹脂の具体例としては、たとえばエチレン−プロピレンランダム共重合体、1−ブテン−プロピレンランダム共重合体、エチレン−1−ブテン−プロピレンランダム3元共重合体、エチレン−プロピレンブロック共重合体、ホモポリプロピレンなどのポリプロピレン系樹脂;低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、直鎖状低密度ポリエチレン、エチレン−酢酸ビニル共重合体などのポリエチレン系樹脂;ポリブテン、ポリペンテンなどがあげられる。これらのうちではエチレン−プロピレンランダム共重合体、1−ブテン−プロピレンランダム共重合体、エチレン−1−ブテン−プロピレンランダム3元共重合体、ホモポリプロピレンがポリオレフィン系樹脂発泡粒子を容易に得られる事、スチレン系樹脂が溶融する温度範囲でも溶融しない熱特性を持つ物が多く、スチレン系樹脂と融着しにくい事から好ましい。
【0038】
前記ポリオレフィン系樹脂から該樹脂発泡粒子(B)を得る方法は特に限定はないが、例えば耐圧容器内に、ポリオレフィン系樹脂粒子、分散剤および分散助剤を含む水系分散媒ならびに発泡剤を仕込み、攪拌しながら昇温して一定圧力、一定温度として樹脂粒子に発泡剤を含浸させた後、加圧容器内より低圧雰囲気中に放出して発泡させる方法が挙げられる。
【0039】
本発明による熱可塑性樹脂発泡成形体は、ポリスチレン系樹脂からなる発泡体(A)中に、ポリオレフィン系樹脂発泡粒子(B)が分散している。ポリスチレン系樹脂からなる発泡成形体(A)のみであると、大きな衝撃を受けた際にもポリスチレン系樹脂からなる発泡体(A)が破壊するまでにかなりの衝撃荷重が発生する。また、ポリオレフィン系樹脂発泡粒子(B)はポリスチレン系樹脂では無くポリオレフィン系樹脂を用い、かつ分散することにより、互いの樹脂が融着せずポリスチレン系樹脂からなる発泡体(A)の破壊を促す。
【0040】
本発明による熱可塑性樹脂発泡成形体は、ポリスチレン系樹脂からなる発泡体(A)の割合が好ましくは10〜80体積%、より好ましくは15〜70体積%、更に好ましくは20〜50体積%及びポリオレフィン系樹脂発泡粒子(B)の割合が好ましくは90〜20体積%、より好ましくは85〜30体積%、さらに好ましくは80〜50体積%である事が望ましい。ポリスチレン系樹脂からなる発泡体(A)の割合が該範囲を下回ると低温での成形が難しくなり、該範囲を上回ると大きな衝撃を受けた際にもポリスチレン系樹脂からなる発泡体(A)が破壊するまでにかなりの衝撃荷重が発生するため、エネルギーを効率よく吸収することが難しくなる。
【0041】
本発明による熱可塑性樹脂発泡成形体は、より好ましくはポリスチレン系樹脂からなる発泡体(A)が三次元的に網目構造を持つ。前記のポリスチレン系樹脂からなる発泡体(A)の破壊は、この三次元的な網目構造の場合に、より効率よく発生する。
【0042】
またポリオレフィン系樹脂発泡粒子(B)同士、及びポリオレフィン系樹脂発泡粒子(B)とポリスチレン系樹脂からなる発泡体(A)が部分的、もしくは完全に融着しておらず、非連続に分散している場合、ポリオレフィン系樹脂発泡粒子(B)の未融着部分が該熱可塑性樹脂発泡成形体内においてクラックとなり、ポリスチレン系樹脂からなる発泡体(A)の破壊を生じやすくする。
【0043】
本発明で定義される熱可塑性樹脂発泡成形体は、動的圧縮試験に基づく60%歪み時の荷重F60%と該20%歪み時の荷重F20%との比(F60%/F20%)が、1.60以下であることを特徴とする熱可塑性樹脂発泡成形体を内包される。該発泡成形体において、その荷重比F60%/F20%は1.50以下であることがより望ましく、1.40以下がさらに望ましい。ポリオレフィン系樹脂発泡粒子(B)が最適にポリスチレン系樹脂からなる発泡体(A)中に分散し、かつポリスチレン系樹脂からなる発泡体(A)の構造が最適な網目構造を有するとき、該荷重比は1.00に近づき最適なエネルギー吸収効率を発現する。該動的圧縮試験は、後述する実施例での方法に基づいた試験とする。
【0044】
本発明における熱可塑性樹脂発泡成形体は、好ましくは密度が50g/L以上、より好ましくは80g/L以上である。該密度が50g/L未満であると、衝撃を受ける際に成形体構造の破壊が発生せず、成形体の変形のみが発生する確率が高い。
【0045】
本発明は、ポリスチレン系樹脂からなる発泡粒子(C)と、ポリオレフィン系樹脂発泡粒子(B)とを混合した状態で成形金型内に充填し、ついで成形金型内に加熱媒体を導いて、ポリスチレン系樹脂発泡粒子(C)同士は融着するが、ポリオレフィン系樹脂発泡粒子(B)同士は融着しない条件下で型内成形することを特徴とする、熱可塑性樹脂発泡成形体の製造方法に関する。
【0046】
本発明で用いられる型内発泡成形方法としては、従来より既知の成形方法を用いることが出来る。例えば閉鎖しうるが密閉し得ない成形型内に熱可塑性樹脂発泡粒子を充填し、水蒸気などを加熱媒体として0.05〜0.6MPaの加熱水蒸気圧で3〜30秒の加熱時間で成形し熱可塑性樹脂発泡粒子を融着させ、このあと成形金型を水冷により型内発泡成形体取り出し後の型内発泡成形体の変形を抑制できる程度まで冷却した後、金型を開き型内発泡成形体を得る方法などが挙げられる。
【0047】
この際、熱可塑性樹脂発泡粒子として十分均一に混合したポリオレフィン系樹脂発泡粒子(B)とポリスチレン系樹脂発泡粒子(C)を用い、ポリスチレン系樹脂発泡粒子(C)同士は融着するが、ポリオレフィン系樹脂発泡粒子(B)同士は融着しない加熱条件で成形することにより、ポリスチレン系樹脂からなる発泡体中にポリオレフィン系樹脂発泡粒子(B)が分散している構造の熱可塑性樹脂発泡成形体が容易に得られる。
【0048】
ポリオレフィン系樹脂発泡粒子(B)同士が融着する条件下で型内成形した場合、得られる熱可塑性樹脂発泡成形体は強い衝撃を受けた際に破壊よりも変形が優先的に生じる。このためエネルギー吸収効率は通常の熱可塑性樹脂発泡成形体と同等になる。またポリオレフィン系樹脂発泡粒子(B)同士だけでなく、ポリスチレン系樹脂発泡粒子(C)も融着しない条件下で型内成形した場合、原料の粒子はバラバラなままで、成形体は得られない。
【0049】
該製造方法において、ポリオレフィン系樹脂発泡粒子(B)とポリスチレン系樹脂発泡粒子(C)の密度差は小さいほど好ましい。密度差が大きいと均一に混合するのが難しくなり、また均一に混合した状態で充填できても、型内成形の間に分級が発生しやすい。つまり得られる型内成形体の部位による密度、性能のバラツキが発生しやすい。
【0050】
該製造方法において、ポリスチレン系樹脂発泡粒子(C)の大きさとポリオレフィン系樹脂発泡粒子(B)の大きさに特に制限はないが、通常0.1〜10mm程度の大きさである。またポリスチレン系樹脂発泡粒子(C)の大きさがポリオレフィン系樹脂発泡粒子(B)の大きさより小さい方が好ましい。この場合、ポリスチレン系樹脂発泡粒子(C)をポリオレフィン系樹脂発泡粒子(B)の間により均等に存在させることが可能となり、該発泡粒子それぞれを大きく発泡させなくとも粒子間隙を埋めることが容易になり、ポリスチレン系樹脂からなる発泡体(A)の三次元的な網目構造を形成しやすい。
【0051】
該製造方法において用いられるポリオレフィン系樹脂発泡粒子(B)、及びポリスチレン系樹脂発泡粒子(C)の嵩密度は、一般に該製造方法に適用しうるものであれば特に制限はないが、これらを原料に得られる熱可塑性樹脂発泡成形体の密度を前記のごとく50g/L以上にすることが望ましいことから、嵩密度が30g/L以上、より好ましくは50g/L以上の物が好適に使用しうる。
【0052】
【実施例】
次に本発明を実施例及び比較例に基づき説明するが、本発明はこれらの実施例に限定されるものではない。
(動的圧縮試験サンプルの調整)
型内発泡成形にて得られた該発泡成形体を、75±1℃の乾燥室内で16時間乾燥した後、23±1℃の恒温室で24時間放置した。この後該発泡成形体から100×300×60mmのサンプル(厚み方向の上下面にのみスキン有り)を切り出し、23±1℃の恒温室で24時間放置することにより、動的圧縮試験用の評価用サンプルを得た。
(動的圧縮試験)
吉田精機(株)製緩衝材用落下衝撃試験機CST−320Sを用いて、以下に示す条件にて試験を行った。なお、治具の円柱長さ方向と評価サンプルの縦方向が一致するよう、サンプル中心めがけて落下させ、このとき発生する衝撃荷重と、評価サンプルの変位を測定した。
【0053】
治具:直径φ70mm、長さ150mmの円柱状の丸棒
サンプル:縦100mm×横300mm×厚み60mm
落下高さ:81.6cm(衝突速度:4.0m/s)
重錘重量:30−80kg(評価サンプルの密度等により選定)
該落下試験において評価サンプルに与えるエネルギーは、落下高さと重錘重量の積で決まる。本発明における落下高さと重錘重量は、評価サンプルの歪みが65%以上になるように決定した。
(荷重)
前記試験機の円柱治具を取り付けた重錘を固定する台に、共和電業(株)製加速度変換器AS−500Bを固定し、該重錘台にかかる加速度Gを計測した。衝撃により発生する荷重Fは、加速度Gと重錘重量Mとの積として次式によって得られる。
【0054】
F[kN]=G×M×9.8/1000
(変位)
評価サンプルの変位はアンリツ(株)製光マイクロ変位計KL137Aを用いて測定した。前記試験機に該変位計を用いる場合には、重錘を固定する台に変位計から発する赤外線を反射する板を取り付け、これと変位計との距離Hを測定する。評価サンプルの変位を計算する方法は、測定した距離のうち、加速度計の出力が得られる、すなわち落下治具と評価サンプルが接した時点の距離H0から次式により算出する
変位[mm]=H0−H
(歪み)
該動的圧縮試験に基づく歪みとは次式で表すように変位を評価サンプルの厚みで除し、百分率で表したものである。
【0055】
歪み[%]=変位/評価サンプル厚み×100
(荷重比)
該動的圧縮試験に基づく60%歪み時の荷重F60%と、20%歪み時の荷重F20%は、文言通り前記のごとく歪みを規定した場合に、該歪み時に測定される荷重で定義する。これらの値より次式に従って荷重比を算出する。
【0056】
荷重比=(F60%)/(F20%
(原料に用いた発泡粒子)
ポリスチレン系樹脂発泡粒子C−1として、α−メチルスチレン70重量%、アクリロニトリル30重量%の単量体組成を持つ共重合体(30℃、0.3% DMF溶液における比粘度ηSP=O.17)を基材樹脂とし、発泡剤としてブタンを6%含む、粒径1mm、嵩密度143g/Lの発泡粒子を用いた。
【0057】
ポリスチレン系樹脂発泡粒子C−2として、スチレン45重量%、α−メチルスチレン35重量%、アクリロニトリル20重量%の単量体組成を持つ共重合体(30℃、0.3% DMF溶液における比粘度ηSP=O.14)を基材樹脂とし発泡剤としてブタンを2%含む、粒径1mm、嵩密度75g/Lの発泡粒子を用いた。
【0058】
ポリオレフィン系樹脂発泡粒子B−1として、エチレン−プロピレンランダム共重合体(融点146.7℃、MFR=7g/10分)を基材樹脂とする、粒径3mm、嵩密度134g/Lの発泡粒子を用いた。
【0059】
ポリオレフィン系樹脂発泡粒子B−2として、エチレン−プロピレンランダム共重合体(融点146.7℃、MFR=7g/10分)を基材樹脂とする、粒径3mm、嵩密度71g/Lの発泡粒子を用いた。
【0060】
ポリオレフィン系樹脂発泡粒子B−3として、エチレン−プロピレンランダム共重合体(融点142.5℃、MFR=6g/10分)を基材樹脂とする、粒径3mm、嵩密度131g/Lの発泡粒子を用いた。
【0061】
ポリオレフィン系樹脂発泡粒子B−4として、ホモポリプロピレン(融点165.3℃、MFR=4g/10分)を基材樹脂とする、粒径3mm、嵩密度137g/Lの発泡粒子を用いた。
【0062】
(実施例1)
ポリスチレン系樹脂からなる発泡粒子(C)としてはC−1、ポリオレフィン系樹脂からなる発泡粒子(B)としてはB−1を用い、B−1のみ前もって耐圧容器内で空気により0.2MPaの圧力で16時間加圧することにより発泡力を付与した。
【0063】
前記ポリスチレン系樹脂発泡粒子(C)とポリオレフィン系樹脂発泡粒子(B)を体積分率35:65で混合し、これを縦320mm×横320mm×厚み60mmの金型内に充填し、0.20MPaの水蒸気で10秒間加熱、融着させ熱可塑性樹脂発泡成形体を得た。該発泡成形体の密度は148g/Lであった。
【0064】
これから切り出した評価サンプルの断面を観察すると、ポリオレフィン系樹脂発泡粒子(B)同士、及びポリオレフィン系樹脂発泡粒子(B)とポリスチレン系樹脂発泡粒子(C)はほとんど融着しておらず、非連続に分散していた。またポリスチレン系樹脂発泡粒子(C)はポリオレフィン系樹脂発泡粒子(B)の間隙を埋めるように三次元的に網目状の発泡体(A)となっていた。
【0065】
該評価用サンプルを用い、重錘重量80kgの条件で、動的圧縮試験を行った。該動的圧縮試験にて得られた、20%歪み時の荷重F20%は14.83kN、60%歪み時の荷重F60%は14.45kNであった。また60%歪み時の荷重F60%と20%歪み時の荷重F20%との比(F60%/F20%)は0.97であった。
【0066】
(実施例2)
ポリスチレン系樹脂からなる発泡粒子(C)としてはC−2、ポリオレフィン系樹脂からなる発泡粒子(B)としてはB−2を用い、B−2のみ前もって耐圧容器内で空気により0.2MPaの圧力で16時間加圧することにより発泡力を付与した。
【0067】
前記ポリスチレン系樹脂発泡粒子(C)とポリオレフィン系樹脂発泡粒子(B)を体積分率30:70で混合し、これを縦320mm×横320mm×厚み60mmの金型内に充填し、0.20MPaの水蒸気で10秒間加熱、融着させ熱可塑性樹脂発泡成形体を得た。該発泡成形体の密度は85g/Lであった。
【0068】
これから切り出した評価サンプルの断面を観察すると、ポリオレフィン系樹脂発泡粒子(B)同士、及びポリオレフィン系樹脂発泡粒子(B)とポリスチレン系樹脂発泡粒子(C)はほとんど融着しておらず、非連続に分散していた。またポリスチレン系樹脂発泡粒子(C)はポリオレフィン系樹脂発泡粒子(B)の間隙を埋めるように三次元的に網目状の発泡体(A)となっていた。
【0069】
該評価用サンプルを用い、重錘重量30kgの条件で、動的圧縮試験を行った。該動的圧縮試験にて得られた、20%歪み時の荷重F20%は4.12kN、60%歪み時の荷重F60%は4.72kNであった。また60%歪み時の荷重F60%と20%歪み時の荷重F20%との比(F60%/F20%)は1.15であった。
【0070】
(実施例3)
ポリスチレン系樹脂からなる発泡粒子(C)としてはC−1、ポリオレフィン系樹脂からなる発泡粒子(B)としてはB−3を用い、B−3のみ前もって耐圧容器内で空気により0.2MPaの圧力で16時間加圧することにより発泡力を付与した。
【0071】
前記ポリスチレン系樹脂発泡粒子(C)とポリオレフィン系樹脂発泡粒子(B)を体積分率35:65で混合し、これを縦320mm×横320mm×厚み60mmの金型内に充填し、0.20MPaの水蒸気で10秒間加熱、融着させ熱可塑性樹脂発泡成形体を得た。該発泡成形体の密度は150g/Lであった。
【0072】
これから切り出した評価サンプルの断面を観察すると、ポリオレフィン系樹脂発泡粒子(B)はやや変形していたものの、ポリオレフィン系樹脂発泡粒子(B)同士、及びポリオレフィン系樹脂発泡粒子(B)とポリスチレン系樹脂発泡粒子(C)はほとんど融着しておらず、非連続に分散していた。またポリスチレン系樹脂発泡粒子(C)は全体的に広がっているものの、三次元的に網目状の発泡体(A)となっていた。
【0073】
該評価用サンプルを用い、重錘重量80kgの条件で、動的圧縮試験を行った。該動的圧縮試験にて得られた、20%歪み時の荷重F20%は13.35kN、60%歪み時の荷重F60%は19.68kNであった。また60%歪み時の荷重F60%と20%歪み時の荷重F20%との比(F60%/F20%)は1.47であった。
【0074】
(実施例4)
ポリスチレン系樹脂からなる発泡粒子(C)としてはC−1、ポリオレフィン系樹脂からなる発泡粒子(B)としてはB−4を用い、B−4のみ前もって耐圧容器内で空気により0.2MPaの圧力で16時間加圧することにより発泡力を付与した。
【0075】
前記ポリスチレン系樹脂発泡粒子(C)とポリオレフィン系樹脂発泡粒子(B)を体積分率35:65で混合し、これを縦320mm×横320mm×厚み60mmの金型内に充填し、0.20MPaの水蒸気で10秒間加熱、融着させ熱可塑性樹脂発泡成形体を得た。該発泡成形体の密度は151g/Lであった。
【0076】
これから切り出した評価サンプルの断面を観察すると、ポリオレフィン系樹脂発泡粒子(B)同士、及びポリオレフィン系樹脂発泡粒子(B)とポリスチレン系樹脂発泡粒子(C)はほとんど融着しておらず、非連続に分散していた。またポリスチレン系樹脂発泡粒子(C)はポリオレフィン系樹脂発泡粒子(B)の間隙を埋めるように三次元的に網目状の発泡体(A)となっていた。
【0077】
該評価用サンプルを用い、重錘重量80kgの条件で、動的圧縮試験を行った。該動的圧縮試験にて得られた、20%歪み時の荷重F20%は22.23kN、60%歪み時の荷重F60%は22.56kNであった。また60%歪み時の荷重F60%と20%歪み時の荷重F20%との比(F60%/F20%)は1.01であった。
【0078】
(実施例5)
ポリスチレン系樹脂からなる発泡粒子(C)としてはC−1、ポリオレフィン系樹脂からなる発泡粒子(B)としてはB−1を用い、B−1のみ前もって耐圧容器内で空気により0.2MPaの圧力で16時間加圧することにより発泡力を付与した。
【0079】
前記ポリスチレン系樹脂発泡粒子(C)とポリオレフィン系樹脂発泡粒子(B)を体積分率65:35で混合し、これを縦320mm×横320mm×厚み60mmの金型内に充填し、0.20MPaの水蒸気で10秒間加熱、融着させ熱可塑性樹脂発泡成形体を得た。該発泡成形体の密度は153g/Lであった。
【0080】
これから切り出した評価サンプルの断面を観察すると、ポリオレフィン系樹脂発泡粒子(B)同士、及びポリオレフィン系樹脂発泡粒子(B)とポリスチレン系樹脂発泡粒子(C)はほとんど融着しておらず、非連続に分散していた。またポリスチレン系樹脂発泡粒子(C)は体積分率が高く、ポリオレフィン系樹脂発泡粒子(B)の間隙を埋めるというより、ポリスチレン系樹脂からなる発泡体中にポリオレフィン系樹脂発泡粒子(B)が浮いているような構造を取っていた。
【0081】
該評価用サンプルを用い、重錘重量80kgの条件で、動的圧縮試験を行った。該動的圧縮試験にて得られた、20%歪み時の荷重F20%は17.55kN、60%歪み時の荷重F60%は26.76kNであった。また60%歪み時の荷重F60%と20%歪み時の荷重F20%との比(F60%/F20%)は1.52であった。
【0082】
(実施例6)
ポリスチレン系樹脂からなる発泡粒子(C)としてはC−1、ポリオレフィン系樹脂からなる発泡粒子(B)としてはB−1を用い、B−1のみ前もって耐圧容器内で空気により0.2MPaの圧力で16時間加圧することにより発泡力を付与した。
【0083】
前記ポリスチレン系樹脂発泡粒子(C)とポリオレフィン系樹脂発泡粒子(B)を体積分率50:50で混合し、これを縦320mm×横320mm×厚み60mmの金型内に充填し、0.20MPaの水蒸気で10秒間加熱、融着させ熱可塑性樹脂発泡成形体を得た。該発泡成形体の密度は150g/Lであった。
【0084】
これから切り出した評価サンプルの断面を観察すると、ポリオレフィン系樹脂発泡粒子(B)同士、及びポリオレフィン系樹脂発泡粒子(B)とポリスチレン系樹脂発泡粒子(C)はほとんど融着しておらず、非連続に分散していた。またポリスチレン系樹脂発泡粒子(C)はポリオレフィン系樹脂発泡粒子(B)の間隙を埋めるように三次元的に網目状の発泡体(A)となっていた。
【0085】
該評価用サンプルを用い、重錘重量70kgの条件で、動的圧縮試験を行った。該動的圧縮試験にて得られた、20%歪み時の荷重F20%は15.53kN、60%歪み時の荷重F60%は14.80kNであった。また60%歪み時の荷重F60%と20%歪み時の荷重F20%との比(F60%/F20%)は0.95であった。
【0086】
(実施例7)
ポリスチレン系樹脂からなる発泡粒子(C)としてはC−1、ポリオレフィン系樹脂からなる発泡粒子(B)としてはB−1を用い、B−1のみ前もって耐圧容器内で空気により0.2MPaの圧力で16時間加圧することにより発泡力を付与した。
【0087】
前記ポリスチレン系樹脂発泡粒子(C)とポリオレフィン系樹脂発泡粒子(B)を体積分率20:80で混合し、これを縦320mm×横320mm×厚み60mmの金型内に充填し、0.20MPaの水蒸気で10秒間加熱、融着させ熱可塑性樹脂発泡成形体を得た。該発泡成形体の密度は145g/Lであった。
【0088】
これから切り出した評価サンプルの断面を観察すると、ポリオレフィン系樹脂発泡粒子(B)同士、及びポリオレフィン系樹脂発泡粒子(B)とポリスチレン系樹脂発泡粒子(C)はほとんど融着しておらず、非連続に分散していた。またポリスチレン系樹脂発泡粒子(C)はポリオレフィン系樹脂発泡粒子(B)の間隙を埋めるように三次元的に網目状の発泡体(A)となっていた。
【0089】
該評価用サンプルを用い、重錘重量80kgの条件で、動的圧縮試験を行った。該動的圧縮試験にて得られた、20%歪み時の荷重F20%は12.69kN、60%歪み時の荷重F60%は18.44kNであった。また60%歪み時の荷重F60%と20%歪み時の荷重F20%との比(F60%/F20%)は1.25であった。
【0090】
(実施例8)
ポリスチレン系樹脂からなる発泡粒子(C)としてはC−1、ポリオレフィン系樹脂からなる発泡粒子(B)としてはB−1を用い、B−1に特に発泡力を付与させる操作を行わなかった。
【0091】
前記ポリスチレン系樹脂発泡粒子(C)とポリオレフィン系樹脂発泡粒子(B)を体積分率35:65で混合し、これを縦320mm×横320mm×厚み60mmの金型内に充填し、0.20MPaの水蒸気で10秒間加熱、融着させ熱可塑性樹脂発泡成形体を得た。該発泡成形体の密度は147g/Lであった。
【0092】
これから切り出した評価サンプルの断面を観察すると、ポリオレフィン系樹脂発泡粒子(B)同士、及びポリオレフィン系樹脂発泡粒子(B)とポリスチレン系樹脂発泡粒子(C)はほとんど融着しておらず、非連続に分散していた。またポリスチレン系樹脂発泡粒子(C)はポリオレフィン系樹脂発泡粒子(B)の間隙を埋めるように三次元的に網目状の発泡体(A)となっていた。
【0093】
該評価用サンプルを用い、重錘重量80kgの条件で、動的圧縮試験を行った。該動的圧縮試験にて得られた、20%歪み時の荷重F20%は13.80kN、60%歪み時の荷重F60%は15.10kNであった。また60%歪み時の荷重F60%と20%歪み時の荷重F20%との比(F60%/F20%)は1.09であった。
【0094】
(実施例9)
ポリスチレン系樹脂からなる発泡粒子(C)としてはC−1、ポリオレフィン系樹脂からなる発泡粒子(B)としてはB−4を用い、B−4のみ前もって耐圧容器内で空気により0.2MPaの圧力で16時間加圧することにより発泡力を付与した。
【0095】
前記ポリスチレン系樹脂発泡粒子(C)とポリオレフィン系樹脂発泡粒子(B)を体積分率35:65で混合し、これを縦320mm×横320mm×厚み60mmの金型内に充填し、0.30MPaの水蒸気で10秒間加熱、融着させ熱可塑性樹脂発泡成形体を得た。該発泡成形体の密度は152g/Lであった。
【0096】
これから切り出した評価サンプルの断面を観察すると、ポリオレフィン系樹脂発泡粒子(B)同士、及びポリオレフィン系樹脂発泡粒子(B)とポリスチレン系樹脂発泡粒子(C)はほとんど融着しておらず、非連続に分散していた。またポリスチレン系樹脂発泡粒子(C)はポリオレフィン系樹脂発泡粒子(B)の間隙を埋めるように三次元的に網目状の発泡体(A)となっていた。
【0097】
該評価用サンプルを用い、重錘重量80kgの条件で、動的圧縮試験を行った。該動的圧縮試験にて得られた、20%歪み時の荷重F20%は21.51kN、60%歪み時の荷重F60%は23.13kNであった。また60%歪み時の荷重F60%と20%歪み時の荷重F20%との比(F60%/F20%)は1.07であった。
【0098】
(比較例1)
ポリスチレン系樹脂からなる発泡粒子(C)としてC−1を用い、ポリオレフィン系樹脂からなる発泡粒子(B)を混合せず、単独で使用した。
【0099】
前記ポリスチレン系樹脂発泡粒子(C)を縦320mm×横320mm×厚み60mmの金型内に充填し、0.12MPaの水蒸気で10秒間加熱、融着させ熱可塑性樹脂発泡成形体を得た。該発泡成形体の密度は161g/Lであった。
【0100】
これから切り出した評価サンプルの断面を観察すると、当然ポリスチレン系樹脂発泡粒子(C)のみの発泡体(A)となっていた。
【0101】
該評価用サンプルを用い、重錘重量80kgの条件で、動的圧縮試験を行った。このサンプルのみ発生する荷重が非常に高いので評価サンプルの縦寸法を50mmに設定し、荷重の算出は得られた測定値に2を乗じた。該動的圧縮試験にて得られた、20%歪み時の荷重F20%は25.80kN、60%歪み時の荷重F60%は48.08kNであった。また60%歪み時の荷重F60%と20%歪み時の荷重F20%との比(F60%/F20%)は1.86であった。
【0102】
(比較例2)
ポリスチレン系樹脂からなる発泡粒子(C)としてC−2を用い、ポリオレフィン系樹脂からなる発泡粒子(B)を混合せず、単独で使用した。
【0103】
前記ポリスチレン系樹脂発泡粒子(C)を縦320mm×横320mm×厚み60mmの金型内に充填し、0.12MPaの水蒸気で10秒間加熱、融着させ熱可塑性樹脂発泡成形体を得た。該発泡成形体の密度は85g/Lであった。
【0104】
これから切り出した評価サンプルの断面を観察すると、当然ポリスチレン系樹脂発泡粒子(C)のみの発泡体(A)となっていた。
【0105】
該評価用サンプルを用い、重錘重量70kgの条件で、動的圧縮試験を行った。該動的圧縮試験にて得られた、20%歪み時の荷重F20%は9.30kN、60%歪み時の荷重F60%は16.21kNであった。また60%歪み時の荷重F60%と20%歪み時の荷重F20%との比(F60%/F20%)は1.74であった。
【0106】
(比較例3)
ポリオレフィン系樹脂発泡粒子(B)としてB−1を用い、ポリスチレン系樹脂からなる発泡粒子(C)を混合せずに単独で使用した。B−1には前もって耐圧容器内で空気により0.2MPaの圧力で16時間加圧することにより発泡力を付与した。
【0107】
前記ポリオレフィン系樹脂発泡粒子(B)を縦320mm×横320mm×厚み60mmの金型内に充填し、0.32MPaの水蒸気で10秒間加熱、融着させ熱可塑性樹脂発泡成形体を得た。該発泡成形体の密度は145g/Lであった。
【0108】
これから切り出した評価サンプルの断面を観察すると、当然ポリオレフィン系樹脂発泡粒子(B)のみの発泡体となっていた。
【0109】
該評価用サンプルを用い、重錘重量80kgの条件で、動的圧縮試験を行った。該動的圧縮試験にて得られた、20%歪み時の荷重F20%は11.35kN、60%歪み時の荷重F60%は29.00kNであった。また60%歪み時の荷重F60%と20%歪み時の荷重F20%との比(F60%/F20%)は2.56であった。
【0110】
(比較例4)
ポリオレフィン系樹脂発泡粒子(B)としてB−2を用い、ポリスチレン系樹脂からなる発泡粒子(C)を混合せずに単独で使用した。B−2には前もって耐圧容器内で空気により0.2MPaの圧力で16時間加圧することにより発泡力を付与した。
【0111】
前記ポリオレフィン系樹脂発泡粒子(B)を縦320mm×横320mm×厚み60mmの金型内に充填し、0.32MPaの水蒸気で10秒間加熱、融着させ熱可塑性樹脂発泡成形体を得た。該発泡成形体の密度は80g/Lであった。
【0112】
これから切り出した評価サンプルの断面を観察すると、当然ポリオレフィン系樹脂発泡粒子(B)のみの発泡体となっていた。
【0113】
該評価用サンプルを用い、重錘重量40kgの条件で、動的圧縮試験を行った。該動的圧縮試験にて得られた、20%歪み時の荷重F20%は5.14kN、60%歪み時の荷重F60%は9.87kNであった。また60%歪み時の荷重F60%と20%歪み時の荷重F20%との比(F60%/F20%)は1.92であった。
【0114】
(比較例5)
ポリスチレン系樹脂からなる発泡粒子(C)としてはC−1、ポリオレフィン系樹脂からなる発泡粒子(B)としてはB−1を用い、B−1のみ前もって耐圧容器内で空気により0.2MPaの圧力で16時間加圧することにより発泡力を付与した。
【0115】
前記ポリスチレン系樹脂発泡粒子(C)とポリオレフィン系樹脂発泡粒子(B)を体積分率35:65で混合し、これを縦320mm×横320mm×厚み60mmの金型内に充填し、0.32MPaの水蒸気で10秒間加熱、融着させ熱可塑性樹脂発泡成形体を得た。該発泡成形体の密度は149g/Lであった。
【0116】
これから切り出した評価サンプルの断面を観察すると、ポリオレフィン系樹脂発泡粒子(B)同士が融着することにより連続的に三次元的に網目状の発泡体となっており、その間隙にポリスチレン系樹脂発泡粒子(C)が存在していた。
【0117】
該評価用サンプルを用い、重錘重量80kgの条件で、動的圧縮試験を行った。該動的圧縮試験にて得られた、20%歪み時の荷重F20%は13.92kN、60%歪み時の荷重F60%は25.00kNであった。また60%歪み時の荷重F60%と20%歪み時の荷重F20%との比(F60%/F20%)は1.80であった。
【0118】
(比較例6)
ポリスチレン系樹脂からなる発泡粒子(C)としてはC−2、ポリオレフィン系樹脂からなる発泡粒子(B)としてはB−2を用い、B−2のみ前もって耐圧容器内で空気により0.2MPaの圧力で16時間加圧することにより発泡力を付与した。
【0119】
前記ポリスチレン系樹脂発泡粒子(C)とポリオレフィン系樹脂発泡粒子(B)を体積分率30:70で混合し、これを縦320mm×横320mm×厚み60mmの金型内に充填し、0.32MPaの水蒸気で10秒間加熱、融着させ熱可塑性樹脂発泡成形体を得た。該発泡成形体の密度は82g/Lであった。
【0120】
これから切り出した評価サンプルの断面を観察すると、ポリオレフィン系樹脂発泡粒子(B)同士が融着することにより連続的に三次元的に網目状の発泡体となっており、その間隙にポリスチレン系樹脂発泡粒子(C)が存在していた。
【0121】
該評価用サンプルを用い、重錘重量30kgの条件で、動的圧縮試験を行った。該動的圧縮試験にて得られた、20%歪み時の荷重F20%は4.16kN、60%歪み時の荷重F60%は9.98kNであった。また60%歪み時の荷重F60%と20%歪み時の荷重F20%との比(F60%/F20%)は2.40であった。
【0122】
以上の実施例、比較例の結果を表1にまとめた。表1の結果を見ると、本発明の熱可塑性樹脂発泡成形体を用いると、単独樹脂種では得られない、エネルギー吸収効率の極めて高いエネルギー吸収材が得られることが分かる。したがって本発明の効果は明らかである。
【表1】

Figure 2004142260
【0123】
【発明の効果】
衝撃エネルギー吸収用のエネルギー吸収材として熱可塑性樹脂発泡成形体を用いた場合、そのエネルギー吸収機構が変形応力への変換であるため、衝撃により発生する荷重は歪みに大きく依存する。すなわち、低歪み時の変形応力は小さいが、高歪み時の変形応力はかなり大きくなる。このことは特にエネルギー吸収材の厚みを多くとれないときなどに問題となり、大きな衝撃を受けた場合に衝撃荷重が増大し、被保護物の破損を起こす畏れがある。
【0124】
本発明者らは、強度の高いポリスチレン系樹脂発泡体を骨格とし、これと相溶しにくいポリオレフィン系樹脂発泡粒子をポリスチレン系樹脂発泡体中に分散させた熱可塑性樹脂発泡成形体を考案した。
【0125】
本発明の熱可塑性樹脂発泡成形体は、低歪み時には高強度のポリスチレン系樹脂の効果により衝撃荷重を高くできる。また高歪み時には発泡体中に分散したポリオレフィン系樹脂発泡粒子がクラックとなり、ポリスチレン系樹脂発泡体骨格の破壊が発生し、衝撃荷重の増大を回避できる。この結果、低歪みから高歪み時まで一定の衝撃荷重を持ち、極めてエネルギー吸収効率の高いエネルギー吸収材となる。
【0126】
本発明により、例えば自動車の側突パッドや近年注目を浴びている歩行者保護バンパーの芯材として、それ程大きな厚みを取らなくても大きな衝撃荷重が発生せず、かつリサイクル、成形性の優れた熱可塑性樹脂発泡成形体を得ることが可能になる。
【0127】
また本発明者らは、ポリスチレン系樹脂の比較的低い加熱温度でも成形可能な性質と、これに比べると成形に必要な加熱温度が高いポリオレフィン系樹脂の性質に着目し、それぞれを発泡粒子の状態でブレンドし、ポリスチレン系樹脂が融着しポリオレフィン系樹脂が融着しない条件で型内発泡成形に用いる製造方法を考案した。
【0128】
本発明記載の製造方法を用いると、エネルギー吸収効率の極めて高いエネルギー吸収材を容易に製造することが可能となった。
【図面の簡単な説明】
【図1】本発明記載の熱可塑性樹脂発泡成形体(実施例1)、ポリスチレン系樹脂からなる発泡体(比較例1)、ポリオレフィン系樹脂からなる発泡体(比較例3)について、それぞれ動的圧縮試験により得られる衝撃荷重−歪み曲線を示す。
【図2】本発明記載の熱可塑性樹脂発泡成形体の断面図(イメージ)。断面の楕円がポリオレフィン系樹脂発泡粒子。周囲の灰色の部分がポリスチレン系樹脂発泡体[0001]
TECHNICAL FIELD OF THE INVENTION
Energy absorbing materials are used in various applications such as core materials for automobile bumpers, door trims for automobiles, and cushioning packaging materials for precision machinery. Thermoplastic resin foams represented by polystyrene resin foams and polyolefin resin foams have properties such as easy creation of any shape by in-mold foaming and excellent recyclability. Therefore, it is often used for the energy absorbing material.
[0002]
TECHNICAL FIELD The present invention relates to a foamed thermoplastic resin article used for an energy absorbing material and a method for producing the same. Particularly, the present invention relates to a foamed thermoplastic resin article having a high energy absorption efficiency capable of suppressing a load caused by an impact even at a high strain, and a method for producing the same.
[0003]
[Prior art]
Energy absorbers are used for cushioning packaging materials and core materials for automobile bumpers. Even if impacts such as falling or collision occur on precision machines or automobiles, they themselves and the object of the collision (hereinafter referred to as protected objects) The purpose of the present invention is to prevent an excessive impact from being generated. The energy absorbing material absorbs impact energy by converting impact energy into different energy by being partially destroyed or deformed when subjected to an impact.
[0004]
By the above-mentioned mechanism, the object to be protected can be prevented from destruction and loss of function without directly receiving the energy generated by the collision. However, although the energy is not directly received, a load due to impact is generated in the protected object. If the load is too large, the object to be protected will be destroyed and lose its function. Therefore, it is desirable for the energy absorbing material to have a maximum impact load as small as possible. On the other hand, the amount of energy absorption is the integration of the impact load and the amount of deformation of the energy absorbing material, so that a greater impact load can absorb more energy. From these two contradictory phenomena, it is desirable that the energy absorbing material generates a constant impact load regardless of displacement from low strain to high strain, that is, has high energy absorption efficiency.
[0005]
Various inventions have been made for foamed molded articles used for energy absorbing materials in order to increase the energy absorption efficiency. Patent Literature 1 discloses that a foam molded product using expanded styrene resin particles having a weight average molecular weight of 45,000 or more and 120,000 or less has a compression test of 5% in a compression test defined by JIS K7220. It is shown that the value of Y / X is 2.0 or less when the compressive stress of X is 50% and the compressive stress at 50% is Y. However, the compressive stress of a foamed molded product using a foamed styrene-based resin rapidly increases from about 50% in compressive strain. Therefore, when considering an energy absorbing material using the foamed molded product, the compressive strain is reduced to 50%. In this case, it is considered that there is good energy absorption efficiency, but it is considered that the improvement effect is small in applications that require more compressive strain.
[0006]
Patent Document 2 discloses that when a polypropylene homopolymer having a melt flow rate of 20 to 100 g / 10 minutes measured in accordance with ASTM D790 is used, the bubble structure is destroyed during compression in static compression, and even when high strain is applied. It is shown that the rise in stress is suppressed and the energy absorption efficiency is good. However, when the present inventors evaluated the performance in the dynamic compression test, the improvement effect was small. This is presumed to be due to the fact that when subjected to a high-speed displacement such as a dynamic compression test, the breakage of the bubble structure described in the publication is unlikely to occur.
[0007]
Further, Patent Literature 3 discloses that a lattice-like energy absorber made of an elastic body has improved energy absorption efficiency by utilizing compression and buckling. However, the method of this publication has a disadvantage that the shape is limited.
[0008]
On the other hand, in order to obtain physical properties that cannot be obtained with a single resin, many studies have been made to mix two or more resins in various situations to impart new performance. For example, a method of melt-kneading different resins in the presence or absence of a compatibilizer and the like to obtain a foamed molded article having various new physical properties has been widely studied, not to mention here. .
[0009]
Various inventions have been made regarding methods other than melt kneading. That is, Patent Literature 4 discloses that a molded article having different characteristics for each portion can be obtained by simultaneously molding two or more types of thermoplastic resin foam particles without mixing. Although the method described in this publication can obtain physical properties corresponding to the raw material for each molded article portion, it does not disclose any energy absorption efficiency.
[0010]
Patent Document 5 discloses that a polyolefin-based resin and a polystyrene-based resin having a small particle diameter are mixed and supplied to an extruder, and melt-mixed under conditions that only the polyolefin-based resin is melted without melting the polystyrene-based resin. In this method, a polyolefin-based resin pellet in which a polystyrene-based resin is finely dispersed is produced, and then foamed and molded to obtain a foamed resin molded article. The molded article described in this publication has the advantage that, in addition to the flexibility as a polyolefin-based resin foam molded article, the strength is higher than the polyolefin-based resin foam molded article due to the dispersed polystyrene resin. However, from the viewpoint of strength, although it is higher than the polyolefin resin foam molded article, it can be easily inferred that it becomes weaker than the polystyrene resin foam molded article, and is inferior in that it can efficiently absorb energy with less distortion. I have to say.
[0011]
Further, Patent Document 6 discloses that a soft foamed resin is used as a matrix, and an inorganic material such as foamed glass beads is dispersed in the matrix. The figure shows a foam molded article that can be shock-absorbed by an inorganic material. The method described in this publication also uses a soft foamed resin as a matrix, so that energy absorption at a small strain is small, and when a large strain occurs, a considerable impact load is generated due to an increase in strength due to an inorganic material. Is not preferred.
[0012]
Patent Literature 7 describes a method of performing in-mold molding using two types of expanded polypropylene resin particles having different melting points under the condition that only expanded polypropylene resin particles having a low melting point are melted. According to the publication, the heating conditions at the time of molding can be lowered, and a soft feeling is felt with a small distortion, that is, the stress is weak, and the strength is increased with a large distortion. Also in this regard, the foam resin of the low melting point polypropylene resin with relatively low strength is used as the matrix, so the energy absorption at low strain is small, and when high strain occurs, the relatively high strength high melting point polypropylene resin is used. Because of the increased strength of the foamed resin, a considerable impact load is generated, which is not preferable as an energy absorbing material.
[0013]
[Patent Document 1]
JP 2002-212332 A
[0014]
[Patent Document 2]
JP-A-10-45939
[0015]
[Patent Document 3]
JP-A-7-228144
[0016]
[Patent Document 4]
JP-B-54-73863
[0017]
[Patent Document 5]
Japanese Patent Publication No. 61-12736
[0018]
[Patent Document 6]
JP-B-61-55128
[0019]
[Patent Document 7]
JP-A-2002-200635
[0020]
[Problems to be solved by the invention]
Various foamed molded articles are used for energy absorbing materials. Although the mechanism by which the foam absorbs energy is various, it can be roughly classified into two types. That is, when a shock is applied, such as a rigid polyurethane foam, the cells constituting the foamed molded body are destroyed, and the impact is applied, such as a type that absorbs energy by the destruction, or a foamed polystyrene or a foamed polyolefin. In this case, the molded body is deformed when it is deformed, and energy is absorbed by the deformation stress.
[0021]
In the former, since the energy absorption mechanism is the destruction of the cells constituting the foam molded article, the impact load generated when receiving an impact becomes almost constant regardless of the displacement, so that the energy absorption efficiency is high. However, these are not thermoplastic resins in general, and have a drawback that they are inferior in recyclability and ease of molding into a desired shape, that is, moldability.
[0022]
On the other hand, the latter is represented by a thermoplastic resin and has good recyclability and moldability. On the other hand, the energy absorbing mechanism is caused by the deformation of the molded body, and the deformation stress changes greatly due to the strain. In particular, when the strain increases, the impact load sharply increases. For this reason, there is a problem that the allowable load is exceeded especially when the material thickness cannot be made large.
[0023]
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and uses a thermoplastic resin having excellent recyclability, moldability, and the like, and is capable of suppressing a load due to an impact even at a high strain. The purpose is to provide the body.
[0024]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to solve the above-mentioned problems, and as a result, imparted to the thermoplastic resin foam a structure that is destroyed when subjected to a large impact, and efficiently use this fracture stress to reduce impact energy. I discovered that it could be absorbed. In order to impart the structure, it has been discovered that it is effective to disperse polyolefin resin foam particles in a polystyrene resin foam, and have completed the present invention.
[0025]
That is, the present invention
The present invention relates to a thermoplastic resin foam molded article in which foamed polyolefin resin particles (B) are dispersed in foam (A) made of a polystyrene resin.
[0026]
In a preferred embodiment, the polystyrene-based resin constituting the foam (A) made of polystyrene-based resin is a simple substance comprising 0 to 70% by weight of styrene, 10 to 80% by weight of α-methylstyrene, and 5 to 50% by weight of acrylonitrile. The present invention relates to the foamed thermoplastic resin article described above, which is a copolymer having a body composition.
[0027]
As a more preferred embodiment, a copolymer having a monomer composition of 50 to 80% by weight of α-methylstyrene and 20 to 50% by weight of acrylonitrile is used as the polystyrene resin constituting the foam (A) made of the polystyrene resin. The present invention relates to the thermoplastic resin foam molded article according to any one of the above items.
[0028]
Further, as a preferred embodiment, the present invention relates to the foamed thermoplastic resin article according to any one of the above items, wherein the polyolefin-based resin constituting the polyolefin-based resin expanded particles (B) is a polypropylene-based resin.
[0029]
In a further preferred embodiment, the ratio of the foam (A) made of a polystyrene resin is 10 to 80% by volume, and the ratio of the expanded polyolefin resin particles (B) is 90 to 20% by volume. The present invention relates to the thermoplastic resin foam molded article according to any one of the above.
[0030]
As a further preferred embodiment, the present invention relates to the thermoplastic resin foam molded article according to any one of the above, wherein the foam (A) made of a polystyrene resin has a three-dimensional network structure.
[0031]
In a more preferred embodiment, the foamed polyolefin resin particles (B) and the foamed polyolefin resin foam (A) and the foamed polystyrene resin (A) are partially or completely fused. And a non-continuously dispersed thermoplastic resin foam according to any one of the above.
[0032]
In a more preferred embodiment, the load (F 60% ) And the load at the time of 20% strain (F 20% ) And the ratio (F 60% / F 20% ) Is 1.60 or less, and relates to the thermoplastic resin foam molded article according to any one of the above items.
[0033]
As a particularly preferred embodiment, the present invention relates to the foamed thermoplastic resin article according to any one of the above items, wherein the density is 50 g / L or more.
[0034]
In addition, foamed particles (C) made of polystyrene resin and polyolefin-based resin foamed particles (B) are mixed and charged into a molding die, and then a heating medium is introduced into the molding die to form a polystyrene resin. The present invention relates to a method for producing a foamed thermoplastic resin article, characterized in that the resin foamed particles (C) are fused to each other, but the polyolefin resin foamed particles (B) are not fused to each other.
[0035]
BEST MODE FOR CARRYING OUT THE INVENTION
The polystyrene resin serving as the base resin of the foam (A) used in the present invention may be a styrene homopolymer or a copolymer containing 50% by weight or more of styrene or a styrene derivative. Examples of the styrene derivatives include α-methylstyrene, paramethylstyrene, t-butylstyrene, chlorostyrenestyrene, and the like. Other monomers copolymerized with styrene or styrene-based derivatives include acrylic acid and methacrylic acid esters such as methyl acrylate, butyl acrylate, methyl methacrylate ethyl methacrylate, and cetyl methacrylate, or acrylonitrile, dimethyl fumarate, and ethyl fumarate. And monomers such as maleic anhydride. These monomers can be used alone or in combination of two or more. When a higher strength is required, a difunctional monomer such as divinylbenzene or alkylene glycol dimethacrylate may be used in combination, but in that case, the elongation of the polystyrene resin may decrease. It should be noted that the expansion ratio tends to decrease.
[0036]
The polystyrene resin used as the base resin of the foam (A) used in the present invention is preferably a monomer composition of styrene 0 to 70% by weight, α-methylstyrene 10 to 80% by weight, and acrylonitrile 5 to 50% by weight. And more preferably a copolymer having a monomer composition of 50 to 80% by weight of α-methylstyrene and 20 to 50% by weight of acrylonitrile. The copolymer is superior in strength, heat resistance and chemical resistance as compared with a homopolymer of styrene. In addition to the high strength and the brittleness, the impact load at the time of low strain is high, and the destruction that occurs when a large impact is applied tends to occur.
[0037]
Specific examples of the polyolefin resin serving as a base material of the expanded polyolefin resin particles (B) used in the present invention include, for example, an ethylene-propylene random copolymer, a 1-butene-propylene random copolymer, and an ethylene-1-butene. -Polypropylene resins such as propylene random terpolymer, ethylene-propylene block copolymer, homopolypropylene; low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, ethylene-vinyl acetate copolymer Polyethylene resins such as coalesce; polybutene, polypentene and the like. Among these, ethylene-propylene random copolymer, 1-butene-propylene random copolymer, ethylene-1-butene-propylene random terpolymer, and homopolypropylene make it easy to obtain expanded polyolefin resin particles. Many of them have a heat characteristic that does not melt even in a temperature range in which the styrene resin melts, and are preferable because they hardly fuse with the styrene resin.
[0038]
The method for obtaining the resin expanded particles (B) from the polyolefin resin is not particularly limited. For example, an aqueous dispersion medium containing a polyolefin resin particle, a dispersant and a dispersant, and a foaming agent are charged in a pressure vessel, There is a method in which the resin particles are impregnated with a foaming agent at a constant pressure and a constant temperature by raising the temperature while stirring, and then discharged into a low-pressure atmosphere from a pressurized container to foam.
[0039]
In the thermoplastic resin foam molded article according to the present invention, foamed polyolefin resin particles (B) are dispersed in a foam (A) made of a polystyrene resin. If only the foamed molded article (A) made of a polystyrene resin is used, a considerable impact load is generated until the foam (A) made of the polystyrene resin is broken even when a large impact is received. The polyolefin-based resin foamed particles (B) are not polystyrene-based resins but polyolefin-based resins, and by dispersing the polyolefin-based resins, the resins are not fused to each other to promote the destruction of the foam (A) made of the polystyrene-based resin.
[0040]
In the thermoplastic resin foam molded article according to the present invention, the ratio of the foam (A) made of a polystyrene resin is preferably 10 to 80% by volume, more preferably 15 to 70% by volume, still more preferably 20 to 50% by volume. It is desirable that the ratio of the foamed polyolefin resin particles (B) is preferably 90 to 20% by volume, more preferably 85 to 30% by volume, and still more preferably 80 to 50% by volume. If the proportion of the foam (A) made of a polystyrene resin is lower than the above range, molding at a low temperature becomes difficult. Since a considerable impact load is generated before breaking, it is difficult to efficiently absorb energy.
[0041]
In the thermoplastic resin foam molded article according to the present invention, more preferably, the foam (A) made of a polystyrene resin has a three-dimensional network structure. The destruction of the foam (A) made of the polystyrene resin occurs more efficiently in the case of the three-dimensional network structure.
[0042]
In addition, the foamed polyolefin-based resin particles (B) and the foamed polyolefin-based resin (B) and the foamed polystyrene-based resin (A) are not partially or completely fused, and are dispersed discontinuously. In this case, the unfused portion of the expanded polyolefin-based resin particles (B) becomes a crack in the thermoplastic resin expanded molded body, and the polystyrene-based resin foam (A) is easily broken.
[0043]
The thermoplastic resin foam molded article defined in the present invention has a load F at 60% strain based on a dynamic compression test. 60% And the load F at the time of the 20% strain 20% And the ratio (F 60% / F 20% ) Is 1.60 or less. In the foam molded article, the load ratio F 60% / F 20% Is more preferably 1.50 or less, and further preferably 1.40 or less. When the polyolefin-based resin foamed particles (B) are optimally dispersed in the polystyrene-based resin foam (A) and the structure of the polystyrene-based resin foam (A) has an optimum network structure, The ratio approaches 1.00 and develops optimal energy absorption efficiency. The dynamic compression test is a test based on the method in the examples described later.
[0044]
The foamed thermoplastic resin article of the present invention preferably has a density of 50 g / L or more, more preferably 80 g / L or more. When the density is less than 50 g / L, there is a high probability that the structure of the molded body does not break when receiving an impact and only the deformation of the molded body occurs.
[0045]
In the present invention, a foamed particle (C) made of a polystyrene-based resin and a polyolefin-based resin foamed particle (B) are mixed and charged into a molding die, and then a heating medium is introduced into the molding die. A method for producing a foamed thermoplastic resin article, wherein the foamed polystyrene-based resin particles (C) are fused together but the foamed polyolefin-based resin particles (B) are not fused together. About.
[0046]
As the in-mold foam molding method used in the present invention, a conventionally known molding method can be used. For example, the thermoplastic resin expanded particles are filled in a mold that can be closed but cannot be closed, and molded using a steam or the like as a heating medium at a heating steam pressure of 0.05 to 0.6 MPa for a heating time of 3 to 30 seconds. The thermoplastic resin foam particles are fused, and then the mold is cooled by water cooling to such an extent that deformation of the in-mold foam after removal of the in-mold foam is suppressed, and then the mold is opened to open the in-mold foam. Examples include a method for obtaining a body.
[0047]
At this time, the expanded polyolefin resin particles (B) and the expanded polystyrene resin particles (C) mixed sufficiently uniformly as the expanded thermoplastic resin particles are used, and the expanded polystyrene resin particles (C) are fused together. Thermoplastic resin foam molded article having a structure in which foamed polyolefin-based resin particles (B) are dispersed in a foam made of polystyrene resin by molding the foamed resin-based particles (B) under heating conditions that do not fuse together. Can be easily obtained.
[0048]
When the polyolefin resin foamed particles (B) are molded in a mold under the condition of fusing together, the resulting thermoplastic resin foamed molded article undergoes deformation preferentially over destruction when subjected to a strong impact. For this reason, the energy absorption efficiency becomes equivalent to that of a normal thermoplastic resin foam molded article. In addition, when not only the polyolefin-based resin foamed particles (B) but also the polystyrene-based resin foamed particles (C) are molded in a mold under the condition that they are not fused, the raw material particles remain scattered and a molded product cannot be obtained. .
[0049]
In the production method, the smaller the density difference between the expanded polyolefin resin particles (B) and the expanded polystyrene resin particles (C), the more preferable. If the density difference is large, it is difficult to mix uniformly, and even if filling can be performed in a uniformly mixed state, classification tends to occur during in-mold molding. In other words, variations in density and performance due to the site of the obtained in-mold body tend to occur.
[0050]
In the production method, the size of the expanded polystyrene resin particles (C) and the size of the expanded polyolefin resin particles (B) are not particularly limited, but are generally about 0.1 to 10 mm. The size of the expanded polystyrene resin particles (C) is preferably smaller than the size of the expanded polyolefin resin particles (B). In this case, the expanded polystyrene-based resin particles (C) can be present more evenly between the expanded polyolefin-based resin particles (B), and it is easy to fill the particle gap without greatly expanding each of the expanded beads. Thus, it is easy to form a three-dimensional network structure of the foam (A) made of a polystyrene resin.
[0051]
The bulk density of the expanded polyolefin resin particles (B) and expanded polystyrene resin particles (C) used in the production method is not particularly limited as long as it can be generally applied to the production method. Since it is desirable that the density of the thermoplastic resin foam molded product obtained in step (1) is 50 g / L or more as described above, a material having a bulk density of 30 g / L or more, more preferably 50 g / L or more can be suitably used. .
[0052]
【Example】
Next, the present invention will be described based on examples and comparative examples, but the present invention is not limited to these examples.
(Adjustment of dynamic compression test sample)
The foam molded body obtained by in-mold foam molding was dried in a drying room at 75 ± 1 ° C. for 16 hours, and then left in a constant temperature room at 23 ± 1 ° C. for 24 hours. Thereafter, a 100 × 300 × 60 mm sample (skins are provided only on the upper and lower surfaces in the thickness direction) is cut out from the foamed body and left in a constant temperature room at 23 ± 1 ° C. for 24 hours to evaluate for a dynamic compression test. A sample was obtained.
(Dynamic compression test)
The test was performed under the following conditions using a drop impact tester CST-320S for cushioning material manufactured by Yoshida Seiki Co., Ltd. The jig was dropped toward the center of the sample so that the lengthwise direction of the jig coincided with the longitudinal direction of the evaluation sample. The impact load generated at this time and the displacement of the evaluation sample were measured.
[0053]
Jig: A cylindrical round bar with a diameter of 70 mm and a length of 150 mm
Sample: length 100mm x width 300mm x thickness 60mm
Fall height: 81.6cm (collision speed: 4.0m / s)
Weight: 30-80kg (Selected according to the density of the evaluation sample, etc.)
The energy given to the evaluation sample in the drop test is determined by the product of the drop height and the weight of the weight. The drop height and the weight of the weight in the present invention were determined so that the distortion of the evaluation sample was 65% or more.
(load)
An acceleration transducer AS-500B manufactured by Kyowa Dengyo Co., Ltd. was fixed to a table for fixing a weight to which the cylindrical jig of the tester was attached, and the acceleration G applied to the weight stand was measured. The load F generated by the impact is obtained by the following equation as the product of the acceleration G and the weight M.
[0054]
F [kN] = G × M × 9.8 / 1000
(Displacement)
The displacement of the evaluation sample was measured using an optical micro displacement meter KL137A manufactured by Anritsu Corporation. When the displacement meter is used in the tester, a plate for reflecting infrared rays emitted from the displacement meter is attached to a table on which a weight is fixed, and the distance H between the plate and the displacement meter is measured. The method of calculating the displacement of the evaluation sample is such that the output of the accelerometer is obtained from the measured distances, that is, the displacement is calculated from the distance H0 at the time when the evaluation sample comes into contact with the drop jig by the following formula
Displacement [mm] = H0-H
(distortion)
The strain based on the dynamic compression test is obtained by dividing the displacement by the thickness of the evaluation sample and expressing the displacement as a percentage as represented by the following equation.
[0055]
Strain [%] = displacement / evaluation sample thickness × 100
(Load ratio)
Load F at 60% strain based on the dynamic compression test 60% And the load F at the time of 20% strain 20% Is defined by the load measured at the time of distortion when the distortion is defined as described above. From these values, the load ratio is calculated according to the following equation.
[0056]
Load ratio = (F 60% ) / (F 20% )
(Expanded particles used as raw material)
As the polystyrene resin expanded particles C-1, a copolymer having a monomer composition of 70% by weight of α-methylstyrene and 30% by weight of acrylonitrile (specific viscosity η at 30 ° C., 0.3% DMF solution) SP = O. 17) was used as a base resin, and foamed particles containing 6% of butane as a foaming agent and having a particle diameter of 1 mm and a bulk density of 143 g / L were used.
[0057]
As the polystyrene resin expanded particles C-2, a copolymer having a monomer composition of 45% by weight of styrene, 35% by weight of α-methylstyrene, and 20% by weight of acrylonitrile (specific viscosity in a 0.3% DMF solution at 30 ° C.) η SP = O. A foamed particle having a particle diameter of 1 mm and a bulk density of 75 g / L containing 14% as a base resin and containing 2% of butane as a foaming agent was used.
[0058]
As the polyolefin-based resin foamed particles B-1, foamed particles having a particle diameter of 3 mm and a bulk density of 134 g / L using an ethylene-propylene random copolymer (melting point: 146.7 ° C., MFR = 7 g / 10 min) as a base resin. Was used.
[0059]
As the polyolefin resin foamed particles B-2, foamed particles having a particle diameter of 3 mm and a bulk density of 71 g / L using an ethylene-propylene random copolymer (melting point: 146.7 ° C., MFR = 7 g / 10 min) as a base resin. Was used.
[0060]
As the polyolefin-based resin expanded particles B-3, expanded particles having a particle diameter of 3 mm and a bulk density of 131 g / L using an ethylene-propylene random copolymer (melting point: 142.5 ° C., MFR = 6 g / 10 minutes) as a base resin. Was used.
[0061]
As the polyolefin-based resin foamed particles B-4, foamed particles having a particle diameter of 3 mm and a bulk density of 137 g / L using homopolypropylene (melting point 165.3 ° C., MFR = 4 g / 10 minutes) as a base resin were used.
[0062]
(Example 1)
C-1 was used as the expanded particles (C) made of a polystyrene resin, and B-1 was used as the expanded particles (B) made of a polyolefin resin, and only B-1 was previously subjected to a pressure of 0.2 MPa with air in a pressure vessel. For 16 hours to give foaming power.
[0063]
The foamed polystyrene-based resin particles (C) and the foamed polyolefin-based resin particles (B) are mixed at a volume fraction of 35:65, and the mixture is filled in a mold having a length of 320 mm × width of 320 mm × thickness of 60 mm. For 10 seconds to obtain a thermoplastic resin foam molded article. The density of the foam molded article was 148 g / L.
[0064]
When the cross section of the evaluation sample cut out from this was observed, the expanded polyolefin resin particles (B) and the expanded polyolefin resin particles (B) and the expanded polystyrene resin particles (C) were hardly fused to each other. Was dispersed. Further, the expanded polystyrene resin particles (C) were formed into a three-dimensionally reticulated foam (A) so as to fill the gaps between the expanded polyolefin resin particles (B).
[0065]
Using the evaluation sample, a dynamic compression test was performed under the condition of a weight of 80 kg. Load F at 20% strain obtained in the dynamic compression test 20% Is 14.83 kN, load F at 60% strain 60% Was 14.45 kN. The load F at the time of 60% strain 60% And load F at 20% strain 20% And the ratio (F 60% / F 20% ) Was 0.97.
[0066]
(Example 2)
C-2 was used as the expanded particles (C) made of a polystyrene-based resin, and B-2 was used as the expanded particles (B) made of a polyolefin-based resin, and only B-2 was previously subjected to a pressure of 0.2 MPa with air in a pressure vessel. For 16 hours to give foaming power.
[0067]
The foamed polystyrene-based resin particles (C) and the foamed polyolefin-based resin particles (B) are mixed at a volume fraction of 30:70, and the mixture is filled in a mold having a length of 320 mm × width of 320 mm × thickness of 60 mm. For 10 seconds to obtain a thermoplastic resin foam molded article. The density of the foam molded article was 85 g / L.
[0068]
When the cross section of the evaluation sample cut out from this was observed, the expanded polyolefin resin particles (B) and the expanded polyolefin resin particles (B) and the expanded polystyrene resin particles (C) were hardly fused to each other. Was dispersed. Further, the expanded polystyrene resin particles (C) were formed into a three-dimensionally reticulated foam (A) so as to fill the gaps between the expanded polyolefin resin particles (B).
[0069]
Using the evaluation sample, a dynamic compression test was performed under the condition of a weight of 30 kg. Load F at 20% strain obtained in the dynamic compression test 20% Is the load F at 4.12 kN and 60% strain. 60% Was 4.72 kN. The load F at the time of 60% strain 60% And load F at 20% strain 20% And the ratio (F 60% / F 20% ) Was 1.15.
[0070]
(Example 3)
C-1 was used as the expanded particles (C) made of a polystyrene resin, and B-3 was used as the expanded particles (B) made of a polyolefin resin. A pressure of 0.2 MPa was applied to only B-3 in advance in a pressure vessel with air. For 16 hours to give foaming power.
[0071]
The foamed polystyrene-based resin particles (C) and the foamed polyolefin-based resin particles (B) are mixed at a volume fraction of 35:65, and the mixture is filled in a mold having a length of 320 mm × width of 320 mm × thickness of 60 mm. For 10 seconds to obtain a thermoplastic resin foam molded article. The density of the foam molded article was 150 g / L.
[0072]
When the cross section of the evaluation sample cut out from this was observed, the expanded polyolefin resin particles (B) were slightly deformed, but the expanded polyolefin resin particles (B), and the expanded polyolefin resin particles (B) and the polystyrene resin were observed. The expanded particles (C) were hardly fused and were discontinuously dispersed. In addition, the polystyrene-based resin foamed particles (C) were three-dimensionally network-like foamed bodies (A), although they were spread as a whole.
[0073]
Using the evaluation sample, a dynamic compression test was performed under the condition of a weight of 80 kg. Load F at 20% strain obtained in the dynamic compression test 20% Is 13.35 kN, load F at 60% strain 60% Was 19.68 kN. The load F at the time of 60% strain 60% And load F at 20% strain 20% And the ratio (F 60% / F 20% ) Was 1.47.
[0074]
(Example 4)
C-1 was used as the expanded particles (C) made of a polystyrene resin, and B-4 was used as the expanded particles (B) made of a polyolefin resin, and only B-4 was previously subjected to a pressure of 0.2 MPa with air in a pressure vessel. For 16 hours to give foaming power.
[0075]
The foamed polystyrene-based resin particles (C) and the foamed polyolefin-based resin particles (B) are mixed at a volume fraction of 35:65, and the mixture is filled in a mold having a length of 320 mm × width of 320 mm × thickness of 60 mm. For 10 seconds to obtain a thermoplastic resin foam molded article. The density of the foam molded article was 151 g / L.
[0076]
When the cross section of the evaluation sample cut out from this was observed, the expanded polyolefin resin particles (B) and the expanded polyolefin resin particles (B) and the expanded polystyrene resin particles (C) were hardly fused to each other. Was dispersed. Further, the expanded polystyrene resin particles (C) were formed into a three-dimensionally reticulated foam (A) so as to fill the gaps between the expanded polyolefin resin particles (B).
[0077]
Using the evaluation sample, a dynamic compression test was performed under the condition of a weight of 80 kg. Load F at 20% strain obtained in the dynamic compression test 20% Is the load F at 22.23 kN and 60% strain. 60% Was 22.56 kN. The load F at the time of 60% strain 60% And load F at 20% strain 20% And the ratio (F 60% / F 20% ) Was 1.01.
[0078]
(Example 5)
C-1 was used as the expanded particles (C) made of a polystyrene resin, and B-1 was used as the expanded particles (B) made of a polyolefin resin, and only B-1 was previously subjected to a pressure of 0.2 MPa with air in a pressure vessel. For 16 hours to give foaming power.
[0079]
The foamed polystyrene resin particles (C) and the foamed polyolefin resin particles (B) are mixed at a volume fraction of 65:35, and the mixture is filled in a mold having a length of 320 mm × width of 320 mm × thickness of 60 mm. The mixture was heated and fused with water vapor for 10 seconds to obtain a thermoplastic resin foam molded article. The density of the foam molded article was 153 g / L.
[0080]
When the cross section of the evaluation sample cut out from this was observed, the expanded polyolefin resin particles (B) and the expanded polyolefin resin particles (B) and the expanded polystyrene resin particles (C) were hardly fused to each other. Was dispersed. In addition, the expanded polystyrene resin particles (C) have a high volume fraction, so that the expanded polyolefin resin particles (B) float in the polystyrene resin foam rather than filling the gaps between the expanded polyolefin resin particles (B). It had a structure like that.
[0081]
Using the evaluation sample, a dynamic compression test was performed under the condition of a weight of 80 kg. Load F at 20% strain obtained in the dynamic compression test 20% Is the load F at 17.55 kN and 60% strain. 60% Was 26.76 kN. The load F at the time of 60% strain 60% And load F at 20% strain 20% And the ratio (F 60% / F 20% ) Was 1.52.
[0082]
(Example 6)
C-1 was used as the expanded particles (C) made of a polystyrene resin, and B-1 was used as the expanded particles (B) made of a polyolefin resin, and only B-1 was previously subjected to a pressure of 0.2 MPa with air in a pressure vessel. For 16 hours to give foaming power.
[0083]
The foamed polystyrene-based resin particles (C) and the foamed polyolefin-based resin particles (B) are mixed at a volume fraction of 50:50, and the mixture is filled into a mold having a length of 320 mm × width of 320 mm × thickness of 60 mm. The mixture was heated and fused with water vapor for 10 seconds to obtain a thermoplastic resin foam molded article. The density of the foam molded article was 150 g / L.
[0084]
When the cross section of the evaluation sample cut out from this was observed, the expanded polyolefin resin particles (B) and the expanded polyolefin resin particles (B) and the expanded polystyrene resin particles (C) were hardly fused to each other. Was dispersed. Further, the expanded polystyrene resin particles (C) were formed into a three-dimensionally reticulated foam (A) so as to fill the gaps between the expanded polyolefin resin particles (B).
[0085]
Using the evaluation sample, a dynamic compression test was performed under the condition of a weight of 70 kg. Load F at 20% strain obtained in the dynamic compression test 20% Is the load F at 15.53 kN and 60% strain. 60% Was 14.80 kN. The load F at the time of 60% strain 60% And load F at 20% strain 20% And the ratio (F 60% / F 20% ) Was 0.95.
[0086]
(Example 7)
C-1 was used as the expanded particles (C) made of a polystyrene resin, and B-1 was used as the expanded particles (B) made of a polyolefin resin, and only B-1 was previously subjected to a pressure of 0.2 MPa with air in a pressure vessel. For 16 hours to give foaming power.
[0087]
The foamed polystyrene-based resin particles (C) and the foamed polyolefin-based resin particles (B) are mixed at a volume fraction of 20:80, and the mixture is filled in a mold having a length of 320 mm × width of 320 mm × thickness of 60 mm. The mixture was heated and fused with water vapor for 10 seconds to obtain a thermoplastic resin foam molded article. The density of the foam molded article was 145 g / L.
[0088]
When the cross section of the evaluation sample cut out from this was observed, the expanded polyolefin resin particles (B) and the expanded polyolefin resin particles (B) and the expanded polystyrene resin particles (C) were hardly fused to each other. Was dispersed. Further, the expanded polystyrene resin particles (C) were formed into a three-dimensionally reticulated foam (A) so as to fill the gaps between the expanded polyolefin resin particles (B).
[0089]
Using the evaluation sample, a dynamic compression test was performed under the condition of a weight of 80 kg. Load F at 20% strain obtained in the dynamic compression test 20% Is 12.69 kN, load F at 60% strain 60% Was 18.44 kN. The load F at the time of 60% strain 60% And load F at 20% strain 20% And the ratio (F 60% / F 20% ) Was 1.25.
[0090]
(Example 8)
C-1 was used as the expanded particles (C) made of a polystyrene-based resin, and B-1 was used as the expanded particles (B) made of a polyolefin-based resin.
[0091]
The foamed polystyrene-based resin particles (C) and the foamed polyolefin-based resin particles (B) are mixed at a volume fraction of 35:65, and the mixture is filled in a mold having a length of 320 mm × width of 320 mm × thickness of 60 mm. For 10 seconds to obtain a thermoplastic resin foam molded article. The density of the foam molded article was 147 g / L.
[0092]
When the cross section of the evaluation sample cut out from this was observed, the expanded polyolefin resin particles (B) and the expanded polyolefin resin particles (B) and the expanded polystyrene resin particles (C) were hardly fused to each other. Was dispersed. Further, the expanded polystyrene resin particles (C) were formed into a three-dimensionally reticulated foam (A) so as to fill the gaps between the expanded polyolefin resin particles (B).
[0093]
Using the evaluation sample, a dynamic compression test was performed under the condition of a weight of 80 kg. Load F at 20% strain obtained in the dynamic compression test 20% Is 13.80 kN, load F at 60% strain 60% Was 15.10 kN. The load F at the time of 60% strain 60% And load F at 20% strain 20% And the ratio (F 60% / F 20% ) Was 1.09.
[0094]
(Example 9)
C-1 was used as the expanded particles (C) made of a polystyrene resin, and B-4 was used as the expanded particles (B) made of a polyolefin resin, and only B-4 was previously subjected to a pressure of 0.2 MPa with air in a pressure vessel. For 16 hours to give foaming power.
[0095]
The foamed polystyrene-based resin particles (C) and the foamed polyolefin-based resin particles (B) are mixed at a volume fraction of 35:65, and the mixture is filled in a mold having a length of 320 mm × width 320 mm × thickness 60 mm. The mixture was heated and fused with water vapor for 10 seconds to obtain a thermoplastic resin foam molded article. The density of the foam molded article was 152 g / L.
[0096]
When the cross section of the evaluation sample cut out from this was observed, the expanded polyolefin resin particles (B) and the expanded polyolefin resin particles (B) and the expanded polystyrene resin particles (C) were hardly fused to each other. Was dispersed. Further, the expanded polystyrene resin particles (C) were formed into a three-dimensionally reticulated foam (A) so as to fill the gaps between the expanded polyolefin resin particles (B).
[0097]
Using the evaluation sample, a dynamic compression test was performed under the condition of a weight of 80 kg. Load F at 20% strain obtained in the dynamic compression test 20% Is the load F at 21.51 kN and 60% strain. 60% Was 23.13 kN. The load F at the time of 60% strain 60% And load F at 20% strain 20% And the ratio (F 60% / F 20% ) Was 1.07.
[0098]
(Comparative Example 1)
C-1 was used as the expanded particles (C) made of the polystyrene resin, and the expanded particles (B) made of the polyolefin resin were used alone without mixing.
[0099]
The foamed polystyrene resin particles (C) were filled in a mold having a length of 320 mm × a width of 320 mm × a thickness of 60 mm, and heated and fused with steam of 0.12 MPa for 10 seconds to obtain a thermoplastic resin foam molded article. The density of the foam molded article was 161 g / L.
[0100]
Observation of the cross section of the evaluation sample cut out from this revealed that it was naturally a foam (A) containing only the polystyrene resin foam particles (C).
[0101]
Using the evaluation sample, a dynamic compression test was performed under the condition of a weight of 80 kg. Since the load generated only by this sample was very high, the longitudinal dimension of the evaluation sample was set to 50 mm, and the load was calculated by multiplying the obtained measured value by 2. Load F at 20% strain obtained in the dynamic compression test 20% Is the load F at 25.80 kN and 60% strain. 60% Was 48.08 kN. The load F at the time of 60% strain 60% And load F at 20% strain 20% And the ratio (F 60% / F 20% ) Was 1.86.
[0102]
(Comparative Example 2)
C-2 was used as the expanded particles (C) made of the polystyrene resin, and the expanded particles (B) made of the polyolefin resin were used alone without mixing.
[0103]
The foamed polystyrene resin particles (C) were filled in a mold having a length of 320 mm × a width of 320 mm × a thickness of 60 mm, and heated and fused with steam of 0.12 MPa for 10 seconds to obtain a thermoplastic resin foam molded article. The density of the foam molded article was 85 g / L.
[0104]
Observation of the cross section of the evaluation sample cut out from this revealed that it was naturally a foam (A) containing only the polystyrene resin foam particles (C).
[0105]
Using the evaluation sample, a dynamic compression test was performed under the condition of a weight of 70 kg. Load F at 20% strain obtained in the dynamic compression test 20% Is 9.30 kN, load F at 60% strain 60% Was 16.21 kN. The load F at the time of 60% strain 60% And load F at 20% strain 20% And the ratio (F 60% / F 20% ) Was 1.74.
[0106]
(Comparative Example 3)
B-1 was used as the polyolefin-based resin expanded particles (B), and the polystyrene-based resin expanded particles (C) were used alone without mixing. B-1 was given foaming power by pressurizing it with air at a pressure of 0.2 MPa for 16 hours in a pressure vessel in advance.
[0107]
The foamed polyolefin-based resin particles (B) were filled in a mold having a length of 320 mm × a width of 320 mm × a thickness of 60 mm, and heated and fused with 0.32 MPa steam for 10 seconds to obtain a thermoplastic resin foam molded article. The density of the foam molded article was 145 g / L.
[0108]
Observation of the cross section of the evaluation sample cut out from this revealed that it was naturally a foam of only the polyolefin resin foamed particles (B).
[0109]
Using the evaluation sample, a dynamic compression test was performed under the condition of a weight of 80 kg. Load F at 20% strain obtained in the dynamic compression test 20% Is the load F at 11.35 kN and 60% strain. 60% Was 29.00 kN. The load F at the time of 60% strain 60% And load F at 20% strain 20% And the ratio (F 60% / F 20% ) Was 2.56.
[0110]
(Comparative Example 4)
B-2 was used as the polyolefin-based resin expanded particles (B), and the polystyrene-based resin expanded particles (C) were used alone without mixing. B-2 was previously foamed by applying a pressure of 0.2 MPa for 16 hours with air in a pressure vessel.
[0111]
The foamed polyolefin-based resin particles (B) were filled in a mold having a length of 320 mm × a width of 320 mm × a thickness of 60 mm, and heated and fused with 0.32 MPa steam for 10 seconds to obtain a thermoplastic resin foam molded article. The density of the foam molded article was 80 g / L.
[0112]
Observation of the cross section of the evaluation sample cut out from this revealed that it was naturally a foam of only the polyolefin resin foamed particles (B).
[0113]
Using the evaluation sample, a dynamic compression test was performed under the conditions of a weight of 40 kg. Load F at 20% strain obtained in the dynamic compression test 20% Is 5.14 kN, load F at 60% strain 60% Was 9.87 kN. The load F at the time of 60% strain 60% And load F at 20% strain 20% And the ratio (F 60% / F 20% ) Was 1.92.
[0114]
(Comparative Example 5)
C-1 was used as the expanded particles (C) made of a polystyrene resin, and B-1 was used as the expanded particles (B) made of a polyolefin resin, and only B-1 was previously subjected to a pressure of 0.2 MPa with air in a pressure vessel. For 16 hours to give foaming power.
[0115]
The foamed polystyrene resin particles (C) and the foamed polyolefin resin particles (B) are mixed at a volume fraction of 35:65, and the mixture is filled into a mold having a length of 320 mm × width of 320 mm × thickness of 60 mm. The mixture was heated and fused with water vapor for 10 seconds to obtain a thermoplastic resin foam molded article. The density of the foam molded article was 149 g / L.
[0116]
Observation of the cross section of the evaluation sample cut out from this shows that the polyolefin-based resin foamed particles (B) are fused together to form a three-dimensional network-like foam continuously, and the polystyrene-based resin foam Particles (C) were present.
[0117]
Using the evaluation sample, a dynamic compression test was performed under the condition of a weight of 80 kg. Load F at 20% strain obtained in the dynamic compression test 20% Is 13.92 kN, load F at 60% strain 60% Was 25.00 kN. The load F at the time of 60% strain 60% And load F at 20% strain 20% And the ratio (F 60% / F 20% ) Was 1.80.
[0118]
(Comparative Example 6)
C-2 was used as the expanded particles (C) made of a polystyrene-based resin, and B-2 was used as the expanded particles (B) made of a polyolefin-based resin, and only B-2 was previously subjected to a pressure of 0.2 MPa with air in a pressure vessel. For 16 hours to give foaming power.
[0119]
The foamed polystyrene-based resin particles (C) and the foamed polyolefin-based resin particles (B) are mixed at a volume fraction of 30:70, and the mixture is filled in a mold having a length of 320 mm × width of 320 mm × thickness of 60 mm. The mixture was heated and fused with water vapor for 10 seconds to obtain a thermoplastic resin foam molded article. The density of the foam molded article was 82 g / L.
[0120]
Observation of the cross section of the evaluation sample cut out from this shows that the polyolefin-based resin foamed particles (B) are fused together to form a three-dimensional network-like foam continuously, and the polystyrene-based resin foam Particles (C) were present.
[0121]
Using the evaluation sample, a dynamic compression test was performed under the condition of a weight of 30 kg. Load F at 20% strain obtained in the dynamic compression test 20% Is 4.16 kN, load F at 60% strain 60% Was 9.98 kN. The load F at the time of 60% strain 60% And load F at 20% strain 20% And the ratio (F 60% / F 20% ) Was 2.40.
[0122]
Table 1 summarizes the results of the above Examples and Comparative Examples. From the results shown in Table 1, it can be seen that the use of the thermoplastic resin foam molded article of the present invention provides an energy absorbing material having an extremely high energy absorption efficiency, which cannot be obtained with a single resin type. Therefore, the effect of the present invention is clear.
[Table 1]
Figure 2004142260
[0123]
【The invention's effect】
When a thermoplastic resin foam molded article is used as an energy absorbing material for absorbing impact energy, the load generated by the impact largely depends on the strain because the energy absorbing mechanism is conversion into deformation stress. That is, the deformation stress at low strain is small, but the deformation stress at high strain is considerably large. This is a problem particularly when the thickness of the energy absorbing material cannot be increased, and when a large impact is applied, the impact load increases, and there is a fear that the protected object may be damaged.
[0124]
The present inventors have devised a thermoplastic resin foam molded article in which a high-strength polystyrene resin foam is used as a skeleton, and polyolefin resin foam particles that are hardly compatible with the skeleton are dispersed in the polystyrene resin foam.
[0125]
The thermoplastic resin foam molded article of the present invention can increase the impact load at the time of low distortion due to the effect of the high-strength polystyrene resin. In addition, at the time of high strain, the polyolefin resin foam particles dispersed in the foam are cracked, and the polystyrene resin foam skeleton is broken, so that an increase in impact load can be avoided. As a result, an energy absorbing material having a constant impact load from low strain to high strain and having extremely high energy absorption efficiency is obtained.
[0126]
According to the present invention, for example, as a core material of a side impact pad of a car or a pedestrian protection bumper that has been attracting attention in recent years, a large impact load is not generated even if the thickness is not so large, and excellent recyclability and excellent moldability. It becomes possible to obtain a thermoplastic resin foam molded article.
[0127]
In addition, the present inventors focused on the properties of polystyrene resin that can be molded at relatively low heating temperature and the properties of polyolefin resin that requires a higher heating temperature for molding, and compared each with the state of expanded particles. A method was devised for use in in-mold foam molding under conditions that the polystyrene resin was fused and the polyolefin resin was not fused.
[0128]
By using the manufacturing method according to the present invention, an energy absorbing material having extremely high energy absorption efficiency can be easily manufactured.
[Brief description of the drawings]
FIG. 1 shows dynamics of a thermoplastic resin foam molded article according to the present invention (Example 1), a polystyrene resin foam (Comparative Example 1), and a polyolefin resin foam (Comparative Example 3). 4 shows an impact load-strain curve obtained by a compression test.
FIG. 2 is a cross-sectional view (image) of a thermoplastic resin foam molded article according to the present invention. The cross-section ellipse is a polyolefin resin foam particle. The surrounding gray area is a polystyrene resin foam

Claims (10)

ポリスチレン系樹脂からなる発泡体(A)中に、ポリオレフィン系樹脂発泡粒子(B)が分散している熱可塑性樹脂発泡成形体。A foamed thermoplastic resin article in which foamed polyolefin-based resin particles (B) are dispersed in a foamed body (A) made of a polystyrene-based resin. ポリスチレン系樹脂からなる発泡体(A)を構成するポリスチレン系樹脂が、スチレン0〜70重量%、α−メチルスチレン10〜80重量%、アクリロニトリル5〜50重量%の単量体組成の共重合体であることを特徴とする請求項1記載の熱可塑性樹脂発泡成形体。A copolymer having a monomer composition of a polystyrene resin constituting a foam (A) made of a polystyrene resin, which is composed of 0 to 70% by weight of styrene, 10 to 80% by weight of α-methylstyrene, and 5 to 50% by weight of acrylonitrile. The foamed thermoplastic resin article according to claim 1, wherein: ポリスチレン系樹脂からなる発泡体(A)を構成するポリスチレン系樹脂が、α−メチルスチレン50〜80重量%、アクリロニトリル20〜50重量%の単量体組成の共重合体であることを特徴とする請求項1、あるいは請求項2記載の熱可塑性樹脂発泡成形体。The polystyrene-based resin constituting the foam (A) made of a polystyrene-based resin is a copolymer having a monomer composition of 50 to 80% by weight of α-methylstyrene and 20 to 50% by weight of acrylonitrile. The foamed thermoplastic resin article according to claim 1 or 2. ポリオレフィン系樹脂発泡粒子(B)を構成するポリオレフィン系樹脂がポリプロピレン系樹脂であることを特徴とする請求項1〜3のいずれか1項に記載の熱可塑性樹脂発泡成形体。The foamed thermoplastic resin article according to any one of claims 1 to 3, wherein the polyolefin resin constituting the foamed polyolefin resin particles (B) is a polypropylene resin. ポリスチレン系樹脂からなる発泡体(A)の割合が10〜80体積%、及びポリオレフィン系樹脂発泡粒子(B)の割合が90〜20体積%である事を特徴とする請求項1〜4のいずれか1項に記載の熱可塑性樹脂発泡成形体。The ratio of the foam (A) made of a polystyrene resin is 10 to 80% by volume, and the ratio of the foamed polyolefin resin particles (B) is 90 to 20% by volume. 4. The thermoplastic resin foam according to claim 1. ポリスチレン系樹脂からなる発泡体(A)が三次元的に網目状の構造を持つ、請求項1〜5のいずれか1項に記載の熱可塑性樹脂発泡成形体。The thermoplastic resin foam molded article according to any one of claims 1 to 5, wherein the foam (A) made of a polystyrene resin has a three-dimensional network structure. ポリオレフィン系樹脂発泡粒子(B)同士、及びポリオレフィン系樹脂発泡粒子(B)とポリスチレン系樹脂からなる発泡体(A)が、部分的、もしくは完全に融着しておらず、非連続に分散している請求項1〜6のいずれか1項に記載の熱可塑性樹脂発泡成形体。The foamed polyolefin-based resin particles (B) and the foamed polyolefin-based resin (B) and the foamed polystyrene-based resin (A) are not partially or completely fused, and are discontinuously dispersed. The foamed thermoplastic resin article according to any one of claims 1 to 6, wherein 動的圧縮試験に基づく60%歪み時の荷重(F60%)と、同20%歪み時の荷重(F20%)との比(F60%/F20%)が、1.60以下であることを特徴とする請求項1〜7のいずれか1項に記載の熱可塑性樹脂発泡成形体。Dynamic compression load of 60% strain when based on testing (F 60%), the ratio between the 20% strain when the load (F 20%) (F 60 % / F 20%) is 1.60 or less The thermoplastic resin foam molded article according to any one of claims 1 to 7, which is provided. 密度が50g/L以上であることを特徴とする請求項1〜8のいずれか1項に記載の熱可塑性樹脂発泡成形体。The thermoplastic resin foam molded article according to any one of claims 1 to 8, wherein the density is 50 g / L or more. ポリスチレン系樹脂からなる発泡粒子(C)と、ポリオレフィン系樹脂発泡粒子(B)とを混合した状態で成形金型内に充填し、ついで成形金型内に加熱媒体を導いて、ポリスチレン系樹脂発泡粒子(C)同士は融着するが、ポリオレフィン系樹脂発泡粒子(B)同士は融着しない条件下で型内成形することを特徴とする、熱可塑性樹脂発泡成形体の製造方法。The foamed particles (C) made of a polystyrene resin and the polyolefin resin foamed particles (B) are mixed and charged into a molding die, and then a heating medium is introduced into the molding die to expand the polystyrene resin. A method for producing a foamed thermoplastic resin article, characterized in that the particles (C) are fused together but the polyolefin-based resin foamed particles (B) are not fused together in an in-mold molding.
JP2002310111A 2002-10-24 2002-10-24 Thermoplastic resin foam molding and method for producing the same Expired - Fee Related JP4202716B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002310111A JP4202716B2 (en) 2002-10-24 2002-10-24 Thermoplastic resin foam molding and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002310111A JP4202716B2 (en) 2002-10-24 2002-10-24 Thermoplastic resin foam molding and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004142260A true JP2004142260A (en) 2004-05-20
JP4202716B2 JP4202716B2 (en) 2008-12-24

Family

ID=32455727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002310111A Expired - Fee Related JP4202716B2 (en) 2002-10-24 2002-10-24 Thermoplastic resin foam molding and method for producing the same

Country Status (1)

Country Link
JP (1) JP4202716B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006240284A (en) * 2005-02-01 2006-09-14 Kaneka Corp Thermoplastic resin in-mold foamed molded product
WO2007099833A1 (en) * 2006-02-28 2007-09-07 Sekisui Plastics Co., Ltd. Styrene-modified polypropylene resin particle, expandable styrene-modified polypropylene resin particle, styrene-modified polypropylene resin foam particle, styrene-modified polypropylene resin foam molded body, and their production methods
WO2008069013A1 (en) * 2006-12-05 2008-06-12 Kaneka Corporation Resin foam suitable as energy absorption material
JP2012025347A (en) * 2010-07-27 2012-02-09 Sekisui Plastics Co Ltd Exterior material for automobile
JP2013010355A (en) * 2005-02-01 2013-01-17 Kaneka Corp Thermoplastic resin in-mold foamed molded product, and method for manufacturing the same
EP3202836A4 (en) * 2014-09-29 2018-05-09 Kaneka Corporation Expandable thermoplastic resin particles, thermoplastic pre-expanded particles, and thermoplastic expansion-molded article
WO2018105394A1 (en) * 2016-12-07 2018-06-14 三菱電機株式会社 Foamed heat-insulating material production method and foamed heat-insulating material

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013010355A (en) * 2005-02-01 2013-01-17 Kaneka Corp Thermoplastic resin in-mold foamed molded product, and method for manufacturing the same
JP2006240284A (en) * 2005-02-01 2006-09-14 Kaneka Corp Thermoplastic resin in-mold foamed molded product
WO2007099833A1 (en) * 2006-02-28 2007-09-07 Sekisui Plastics Co., Ltd. Styrene-modified polypropylene resin particle, expandable styrene-modified polypropylene resin particle, styrene-modified polypropylene resin foam particle, styrene-modified polypropylene resin foam molded body, and their production methods
JPWO2007099833A1 (en) * 2006-02-28 2009-07-16 積水化成品工業株式会社 Styrene-modified polypropylene resin particles, expandable styrene-modified polypropylene resin particles, styrene-modified polypropylene resin foam particles, styrene-modified polypropylene resin foam moldings, and methods for producing them
JP2011058008A (en) * 2006-02-28 2011-03-24 Sekisui Plastics Co Ltd Styrene-modified polypropylene-based resin particle, foamable styrene-modified polypropylene-based resin particle, styrene-modified polypropylene-based resin foamed particle, styrene-modified polypropylene-based resin foamed molded product, and production methods therefor
JP4718597B2 (en) * 2006-02-28 2011-07-06 積水化成品工業株式会社 Styrene-modified polypropylene resin particles, expandable styrene-modified polypropylene resin particles, styrene-modified polypropylene resin foam particles, styrene-modified polypropylene resin foam moldings
US8329294B2 (en) 2006-02-28 2012-12-11 Sekisui Plastics Co., Ltd. Styrene-modified polypropylene type resin particle, foamable styrene-modified polypropylene type resin particle, styrene-modified polypropylene type resin foamed particle, styrene-modified polypropylene type resin foamed molded product, and production methods thereof
WO2008069013A1 (en) * 2006-12-05 2008-06-12 Kaneka Corporation Resin foam suitable as energy absorption material
JP2012025347A (en) * 2010-07-27 2012-02-09 Sekisui Plastics Co Ltd Exterior material for automobile
EP3202836A4 (en) * 2014-09-29 2018-05-09 Kaneka Corporation Expandable thermoplastic resin particles, thermoplastic pre-expanded particles, and thermoplastic expansion-molded article
US10563056B2 (en) 2014-09-29 2020-02-18 Kaneka Corporation Expandable thermoplastic resin particles, thermoplastic pre-expanded particles, and thermoplastic expansion-molded article
WO2018105394A1 (en) * 2016-12-07 2018-06-14 三菱電機株式会社 Foamed heat-insulating material production method and foamed heat-insulating material
JPWO2018105394A1 (en) * 2016-12-07 2019-07-18 三菱電機株式会社 Method for producing foam insulation and foam insulation

Also Published As

Publication number Publication date
JP4202716B2 (en) 2008-12-24

Similar Documents

Publication Publication Date Title
CN102471516B (en) Polypropylene-based resin foamed particles and foamed particle molded products
KR101168192B1 (en) Expanded polypropylene resin beads, method of producing foam molding of expanded polypropylene resin beads and foam molding obtained by the method
JP5399146B2 (en) Polypropylene resin foamed particles and foamed particle molded body comprising the foamed particles
US8592495B2 (en) Thermoplastic resin composite bead production method, expandable thermoplastic resin composite bead, expanded thermoplastic resin composite bead, and foamed molded article formed from expanded thermoplastic resin composite beads
JP6620387B2 (en) Propylene-based resin expanded particles and expanded molded articles
WO2007099833A1 (en) Styrene-modified polypropylene resin particle, expandable styrene-modified polypropylene resin particle, styrene-modified polypropylene resin foam particle, styrene-modified polypropylene resin foam molded body, and their production methods
US11732101B2 (en) Polypropylene-based resin expanded beads and polypropylene-based resin expanded beads molded article
KR20190077360A (en) Expanded particles and their molded bodies
JP5314411B2 (en) Method for producing polypropylene resin expanded particle molded body, and molded body
JP4202716B2 (en) Thermoplastic resin foam molding and method for producing the same
JP7252859B2 (en) Expanded polypropylene resin particles and expanded polypropylene resin particles
EP1016690B1 (en) Water-containing polypropylene resin composition and pre-expanded particles made thereof
TW201343759A (en) Composite resin particles, expandable composite resin particles, pre-expanded particles, molded foam, and core material for bumper
JP2000095891A (en) Production of pre-expanded particle of polyolefin-based resin composition
JP4283822B2 (en) Manufacturing method of core material for automobile bumper
JP6405265B2 (en) Fender
JPH1199531A (en) Core material for automobile bumper
JP2021001255A (en) Polypropylene resin foam particles and polypropylene resin foam particle compact
JPWO2008069013A1 (en) Resin foam suitable for energy absorber
JP3550897B2 (en) Polypropylene resin foam molding
JP3571636B2 (en) Shock absorber
JP2007320275A (en) Method for manufacturing inmold molded foam using polypropylene preliminary foamed particles
KR20250086682A (en) Polypropylene resin foam particles and method for producing the same
JP2023148536A (en) Foamed particle and foamed particle molding
WO2023189114A1 (en) Expanded beads, and expanded bead molded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050906

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070125

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081009

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees