JP2004137982A - Internal combustion engine - Google Patents
Internal combustion engine Download PDFInfo
- Publication number
- JP2004137982A JP2004137982A JP2002304036A JP2002304036A JP2004137982A JP 2004137982 A JP2004137982 A JP 2004137982A JP 2002304036 A JP2002304036 A JP 2002304036A JP 2002304036 A JP2002304036 A JP 2002304036A JP 2004137982 A JP2004137982 A JP 2004137982A
- Authority
- JP
- Japan
- Prior art keywords
- intake
- exhaust
- valve
- internal combustion
- combustion engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Exhaust Silencers (AREA)
- Valve Device For Special Equipments (AREA)
- Characterised By The Charging Evacuation (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、自動車などに搭載される内燃機関に関し、吸排気弁の開時期、閉時期を独立に制御する動弁機構を備えた内燃機関に関する。
【従来の技術】
【0002】
従来、吸気通路の長さおよび断面積を機関回転数に応じて変更することにより、吸気通路内の圧力変動を利用して種々の機関回転数領域で吸入効率を高め、出力の向上を図るものが知られている(例えば、特許文献1参照)。
【0003】
つまり、内燃機関の作動に伴い吸気が間欠的に行われることに起因して吸気通路内に圧力振動が生じるので、その圧力波のうちの正圧波を適正なタイミングでシリンダ内に導入すれば吸入効率を高めることができる。そして、正圧波をシリンダ内に導入するタイミングは吸気通路の長さによって調整することができるため、エンジンの運転状態の変化に応じて吸気通路の長さを変えることにより、種々の運転領域において、上記現象によるいわゆる吸気の動的効果すなわち慣性効果や脈動効果を有効に利用し、吸入効率を高めることができる。なお、このような吸気の動的効果は吸気通路の断面積を変えることによっても調整することができる。
【0004】
ところで、従来はこの種の装置では吸気弁の開閉時期は一定とし、ピストン下死点より所定タイミングだけ遅れたところで吸気弁を閉じるようにしている。このような条件下では、吸気通路の長さまたは断面積の調整によってできるだけ正圧波による動的効果を高めようと同調を行っても、内燃機関の運転状態にたとえば機関回転数の変化に伴ってシリンダ内圧力の特性が変化することにより、低回転時には吸気弁が閉じられる前にシリンダ内圧力が上昇して吹き返しを生じ、高回転時には逆にシリンダ内圧力が低くてなお吸気の導入が可能な状態で吸気弁が閉じられてしまうことになるため、広い回転数域にわたって吸気の動的効果を高めるのは難しかった。
【0005】
一方、吸気通路の長さおよび断面積が固定されている場合の吸入効率改善手段としては、吸気弁の開閉時期とくに閉弁時期を内燃機関の運転状態に応じて調整する方法がある。この方法による場合、シリンダ内圧力と吸気弁直前の吸気通路内圧力とが等しくなる時点で吸気弁が閉じられるように、内燃機関の運転状態に応じて吸気弁の少なくとも閉弁時期を制御すればよい。ただしこの場合、吸気通路の長さおよび断面積との関係で、吸気通路内に生じる正圧波が最も有効に利用されるような同調状態となるのは特定の運転領域に限られ、これ以外の領域では上記正圧波による動的効果が低下する。従って吸気弁の開閉時期の調整によっても吸入効率の向上には限界がある。
【0006】
そこで特許文献2では、吸気通路の長さおよび断面積の両方を内燃機関の運転状態に応じて調整するとともに、これに対応づけて吸気弁の閉弁時期を制御することで、吸入慣性効果の更なる向上を図っている。
【0007】
一方、排気通路の長さおよび断面積を運転状態に応じて変更することにより排気脈動効果を利用して速やかに燃焼室内の排気を行う技術(例えば、特許文献3,特許文献4参照)も知られている。
【0008】
また、このような排気通路の長さおよび断面積の両方を内燃機関の運転状態に応じて調整する機構に、排気弁の開閉時期を可変とした動弁機構を組み合わせた技術(例えば、特許文献5参照)も知られている。
【0009】
【特許文献1】
特開昭48‐58214号公報
【特許文献2】
特開昭60‐164610号公報
【特許文献3】
実公平58‐49381号公報
【特許文献4】
特開平11‐107789号公報
【特許文献5】
特開平3‐9026号公報
【発明が解決しようとする課題】
【0010】
内燃機関では、吸入効率の向上,排気の促進を図るために、吸気弁直前の吸気通路内圧力が排気弁直後の排気通路内圧力より高い状態のとき、排気弁の閉時期、吸気弁の開時期を調整することで、吸気弁と排気弁が共に開くオーバーラップ状態とすることが好ましい。
【0011】
しかしながら、特許文献2に記載の吸気弁の開閉時期を可変とした動弁機構は吸気弁の開弁時期は閉弁時期に連動して調整されるもので、吸気弁の開時期を吸気弁の閉時期と独立して任意に設定できないため、上記タイミングでは吸気弁を開くことができず、吸入効率の向上、排気の促進には限界がある。
【0012】
また、排気弁の開時期も、排気効果を高め、吸入効率の向上を図るためには、前記オーバーラップ状態の時に排気負圧波が同期するよう、また他の気筒からのブローダウンによる正圧波が同期しないようにすることが好ましい。
【0013】
しかしながら、特許文献5に記載の排気弁の開閉時期を可変とした動弁機構も排気弁の開弁時期は閉弁時期に連動して調整されるもので、排気弁の開閉時期を独立して任意に設定できないため、吸入効率の向上、排気の促進には限界がある。
【0014】
本発明はこのような事情に鑑み、内燃機関の吸気系及び排気系における慣性効果及び脈動効果を最も効果的に利用することを目的とする。
【課題を解決するための手段】
【0015】
上記した目的を達成するために請求項1に記載の発明に係る内燃機関は、吸気通路形状を可変制御する吸気通路形状可変機構を備えた内燃機関において、気筒の吸排気弁の開時期及び閉時期を独立に制御する動弁機構を備え、可変制御された吸気通路形状と吸排気弁の開時期及び閉時期を相互に関連づけて制御することを特徴としている。
【0016】
このように構成された内燃機関では、吸排気弁の開時期及び閉時期を、可変制御された吸気通路形状に対応させて各々任意に設定できるため、内燃機関の吸気系及び排気系における慣性効果および脈動効果を最も効果的に利用することが可能である。
【0017】
また請求項2に記載の発明に係る内燃機関は、排気通路形状を可変制御する排気通路形状可変機構を備えた内燃機関において、気筒の吸排気弁の開時期及び閉時期を独立に制御する動弁機構を備え、可変制御された排気通路形状と吸排気弁の開時期及び閉時期を相互に関連づけて制御することを特徴としている。
【0018】
このように構成された内燃機関では、吸排気弁の開時期及び閉時期を、可変制御された排気通路形状に対応させて各々任意に設定できるため、内燃機関の吸気系及び排気系における慣性効果および脈動効果を最も効果的に利用することが可能である。
【0019】
また請求項3に記載の発明に係る内燃機関は、吸気通路形状を可変制御する吸気通路形状可変機構と、排気通路形状を可変制御する排気通路形状可変機構とを備えた内燃機関において、気筒の吸排気弁の開時期及び閉時期を独立に制御する動弁機構を備え、可変制御された吸気通路形状及び排気通路形状と吸排気弁の開時期及び閉時期を相互に関連づけて制御することを特徴としている
【0020】
このように構成された内燃機関では、吸排気弁の開時期及び閉時期を、可変制御された吸気通路形状及び排気通路形状に対応させて各々任意に設定できるため、内燃機関の吸気系及び排気系における慣性効果および脈動効果を最も効果的に利用することが可能である。
【発明の実施の形態】
【0021】
以下、本発明に係る内燃機関の具体的な実施態様について図面に基づいて説明する。
【0022】
図1は、本実施の形態に係る内燃機関とその吸排気系の概略構成を示す図である。図1に示す内燃機関1は、4つの気筒21を備えた直列4気筒の4サイクルガソリンエンジンである。
【0023】
内燃機関1は、4つの気筒21及び冷却水路1Cが形成されたシリンダブロック1bと、このシリンダブロック1bの上部に固定されたシリンダヘッド1aとを備えている。
【0024】
前記シリンダブロック1bには、機関出力軸たるクランクシャフト23が回転自在に支持され、このクランクシャフト23は、各気筒21内に摺動自在に装填されたピストン22と連結されている。
【0025】
各気筒21のピストン22上方には、ピストン22の頂面とシリンダヘッド1aの壁面とに囲まれた燃焼室24が形成されている。前記シリンダヘッド1aには、燃焼室24に臨むように点火栓25が取り付けられ、この点火栓25には、該点火栓25に駆動電流を印加するためのイグナイタ25aが接続されている。
【0026】
前記シリンダヘッド1aには、2つの吸気ポート26の開口端と2つの排気ポート27の開口端とが燃焼室24に臨むよう形成されるとともに、その噴孔が吸気ポート26に臨むよう燃料噴射弁32が取り付けられている。
【0027】
一方、吸気ポート26には吸気管長可変機構33、排気ポート27には排気管長可変機構34が取り付けられている。
【0028】
ここで、吸気管長可変機構33と排気管長可変機構34の具体的な構成について述べる。尚、吸気管長可変機構33と排気管長可変機構34とは同様な構成であるため、吸気管長可変機構33のみを例に挙げて説明する。この吸気管長可変機構33の外観が図2に示され、吸気管長可変装置33の構造を説明するための分解図が図3に示されている。
【0029】
この吸気管長可変機構の構造について説明すれば、図中35は例えば4本の管体36が横方向(管長方向と直角な方向)に並行に結合されてなる吸気管である。
【0030】
これら各管体36の一端部がそれぞれ吸気ポート端に接続され、他端部がシリンダヘッド1aから離れる方向に延びている。各管体36の他端部は、図3に示されるように下方向に向かう円弧をなす扇型に形成され、各先端部を下向きに開口させてある。なお、扇型部36aの円弧中心を挟んだ反対側となる管体36の下部には、扇型部36aの開口周壁と線対象をなす周壁で形成された結合座36bが形成してある。
【0031】
こうした吸気管35の他端部となる扇型部36aには、開口を覆うように、サージタンク37が接続されている。すなわち、サージタンク37は、図3にも示されるように吸気管35の管長方向の断面が、扇型部36aと同一な円弧をもつほぼ半円形状に形成され、かつ上部が開口し、その他の部分が閉塞された、箱型のタンク37aから構成してある。
【0032】
このタンク37aが、扇型部36と結合座36bと連続して円弧をなすよう、吸気管35の他端部に組み合わされ、同吸気管35の他端部にほぼ半円筒形のサージ室を形成している。
【0033】
タンク37aの端壁の一方には、結合座36b寄りに位置して、エアクリーナ(図示しない)につながる吸気パイプ38が連通接続され、エアクリーナからの空気をタンク37a内を通じてエンジンの燃焼室24へ導けるようにしてある。
【0034】
また吸気管35の他端部となる各扇型部36a内には、補助ポート体39が摺動自在に嵌合され、吸気通路の有効長を変えられるようにしてある。具体的には、補助ポート体39は、図3に示されるように扇型部36aの円弧中心を基準とした、同扇形部36a内に挿脱可能な扇形形状をなした4つの摺動口体39aから形成されている。これら摺動口体39aは扇形部36aにならって横方向に配置してある。
【0035】
そして、これら摺動口体39aの中心側が、サージタンク37と扇型部36aとの円弧中心を貫通し、これら両端壁で回転自在に支持してある回転軸40の外周部分に連結されている。
【0036】
これにより、各摺動口体39aは、回転軸40を支点として、各扇型部36a内に挿脱自在に支持され、回転軸40を中心とした摺動口体39aの回転変位を利用して、吸気通路の有効長を変えられるようにしてある。
【0037】
また回転軸40の軸端には、例えばステップモータ41の出力軸(図示しない)が接続され、ステップモータ41を駆動源とした各摺動口体39a(補助ポート39)の回動変位にしたがって、吸気通路の有効長を無段階的に可変できるようにしてある。
【0038】
つまり、可変機構を構成している。なお、吸気通路の有効長は、本実施例では例えば図4に示されるような補助ポート体39の大部分が扇型部36a内に挿入されて、エンジンの高回転運転領域に適した最も短くなる有効長L1から、逆に補助ポート体39の大部分が扇型部36aからサージタンク37内へ移動して、図6に示されるようなエンジンの低回転運転領域に適した最も長くなる有効長L3までの範囲において変えられるようにしてある。
【0039】
以上、吸気管長可変機構33について詳細に説明したが、排気管長可変機構34についても全く同様である。
【0040】
一方、前記シリンダヘッド1aには、前記吸気ポート26の各開口端を開閉する吸気弁28が進退自在に設けられている。各吸気弁28には、励磁電流が印加されたときに発生する電磁力を利用して前記吸気弁28を進退駆動する電磁駆動機構30(以下、吸気側電磁駆動機構30と記す)が取り付けられている。
【0041】
前記シリンダヘッド1aには、前記排気ポート27の各開口端を開閉する排気弁29が進退自在に設けられている。各排気弁29には、励磁電流が印加されたときに発生する電磁力を利用して前記排気弁29を進退駆動する電磁駆動機構31(以下、排気側電磁駆動機構31と記す)が取り付けられている。
【0042】
ここで、吸気側電磁駆動機構30と排気側電磁駆動機構31の具体的な構成について述べる。尚、吸気側電磁駆動機構30と排気側電磁駆動機構31とは同様な構成であるため、排気側電磁駆動機構31のみを例に挙げて説明する。
【0043】
図7は、排気側電磁駆動機構31の構成を示す断面図である。図7において内燃機関1のシリンダヘッド1aは、シリンダブロック1bの上面に固定されるロアヘッド10と、このロアヘッド10の上面に設けられたアッパヘッド11とを備えている。
【0044】
前記ロアヘッド10には、各気筒21に対応した排気ポート27が形成され、各排気ポート27の燃焼室24側の開口端には、排気弁29の弁体29aが着座するための弁座12が設けられている。
【0045】
ロアヘッド10には、各排気ポート27の内壁面からこのロアヘッド10の上面にかけて断面円形の貫通孔が形成され、この貫通孔には、この貫通孔に挿通される排気弁29の弁軸29bを進退自在に保持する筒状のバルブガイド13が挿入されている。
【0046】
アッパヘッド11には、第1コア301及び第2コア302が嵌入される断面円形のコア取付孔14が設けられ、このコア取付孔14は前記バルブガイド13と軸心が同一となる位置にある。コア取付孔14は下部が径大に形成され、その上部の径小部14aと下部の径大部14bを備えている。
【0047】
前記径小部14aには、軟磁性体からなる環状の第1コア301と第2コア302とが所定の間隙303を介して軸方向に直列に嵌挿されている。これらの第1コア301の上端と第2コア302の下端には、それぞれフランジ301aとフランジ302aが形成されており、第1コア301は上方から、また第2コア302は下方からそれぞれコア取付孔14に嵌挿され、フランジ301aとフランジ302aがコア取付孔14の縁部に当接することにより第1コア301と第2コア302の位置決めがされて、前記間隙303が所定の距離に保持されるようになっている。
【0048】
第1コア301の上方には、筒状のアッパキャップ305が設けられている。このアッパキャップ305は、その下端に形成されたフランジ部305aにボルト304を貫通させてアッパヘッド11上部に固定されている。この場合、フランジ部305aを含むアッパキャップ305の下端が第1コア301の上面周縁部に当接した状態で固定されることになり、その結果、第1コア301がアッパヘッド11に固定されることになる。
【0049】
一方、第2コア302の下部には、コア取付孔14の径大部14bと略同径の外径を有する環状体からなるロアキャップ307が設けられている。このロアキャップ307にはボルト306が貫通し、そのボルト306により前記径小部14aと径大部14bの段部における下向きの段差面に固定されている。
この場合、ロアキャップ307が第2コア302の下面周縁部に当接した状態で固定されることになり、その結果、第2コア302がアッパヘッド11に固定されることになる。
【0050】
前記第1コア301の前記間隙302側の面に形成された溝部には、第1の電磁コイル308が把持されており、前記第2コア302の間隙303側の面に形成された溝部には第2の電磁コイル309が把持されている。その際、第1の電磁コイル308と第2の電磁コイル309とは、前記間隙303を介して向き合う位置に配置されている。
【0051】
前記303には、該前記303の内径より径小な外径を有する環状の軟磁性体からなるアーマチャ311が配置されている。このアーマチャ311の中空部には、該アーマチャ311の軸心に沿って上下方向に延出した円柱状のアーマチャシャフト310が固定されている。このアーマチャシャフト310は、その上端が前記第1コア301の中空部を通ってその上方のアッパキャップ305内まで至るとともに、その下端が第2コア302の中空部を通ってその下方の径大部14b内に至るよう形成され、前記第1コア301及び前記第2コア302によって軸方向へ進退自在に保持されている。
【0052】
前記アッパキャップ305内に延出したアーマチャシャフト310の上端部には、円板状のアッパリテーナ312が接合されるとともに、前記アッパキャップ305の上部開口部にはアジャストボルト313が螺着され、これらアッパリテーナ312とアジャストボルト313との間には、アッパスプリング314が介在している。尚、前記アジャストボルト313と前記アッパスプリング314との当接面には、前記アッパキャップ305の内径と略同径の外径を有するスプリングシート315が介装されている。
【0053】
一方、前記径大部14b内に延出したアーマチャシャフト310の下端部には、排気弁29の弁軸29bの上端部が当接している。前記弁軸29bの上端部の外周には、円板状のロアリテーナ29cが接合されており、そのロアリテーナ29cの下面とロアヘッド10の上面との間には、ロアスプリング316が介在している。
【0054】
このように構成された排気側電磁駆動弁機構31では、第1の電磁コイル308及び第2の電磁コイル309に励磁電流が印加されていないときは、アッパスプリング314からアーマチャシャフト310に対して下方向(すなわち、排気弁29を開弁させる方向)への付勢力が作用するとともに、ロアスプリング316から排気弁29に対して上方向(すなわち、排気弁29を閉弁させる方向)への付勢力が作用し、その結果、アーマチャシャフト310及び排気弁29が互いに当接して所定の位置に弾性支持された状態、いわゆる中立状態に保持されることになる。
【0055】
尚、アッパスプリング314とロアスプリング316の付勢力は、前記アーマチャ311の中立位置が前記間隙303において前記第1コア301と前記コア302との中間位置に一致するよう設定されており、構成部品の初期公差や経年変化等によってアーマチャ311の中立位置が前記した中間位置からずれた場合には、アーマチャ311の中立位置が前記した中間位置と一致するようアジャストボルト313によって調整することが可能になっている。
【0056】
また、前記アーマチャシャフト310及び前記弁軸29bの軸方向の長さは、前記アーマチャ311が前記間隙303の中間位置に位置するときに、前記弁体29aが全開側変位端と全閉側変位端との中間の位置(以下、中間位置と称する)となるように設定されている。
【0057】
前記した排気側電磁駆動機構31では、第1の電磁コイル308に励磁電流が印加されると、第1コア301と第1の電磁コイル308とアーマチャ311との間に、アーマチャ311を第1コア301側へ変位させる方向の電磁力が発生し、第2の電磁コイル309に励磁電流が印加されると、第2コア302と第2の電磁コイル309とアーマチャ311との間にアーマチャ311を前記第2コア302側に変位させる方向の電磁力が発生する。
【0058】
従って、上記した排気側電磁駆動機構31では、第1の電磁コイル308と第2の電磁コイル309とに交互に励磁電流が印加されることにより、アーマチャ311が進退動作し、以って弁体29aが開閉駆動されることになる。その際、第1の電磁コイル308及び第2の電磁コイル309に対する励磁電流の印加タイミングと励磁電流の大きさを変更することにより、排気弁29の開閉タイミングを制御することが可能となる。
【0059】
このように構成された内燃機関1には、該内燃機関の運転状態を制御するための電子制御ユニット(ECU)42が併設されている。
【0060】
前記ECU42は、互いにバスで接続されたCPU43、CPU43が実行するプログラム、テーブル(ルックアップテーブル、マップ)、及び定数等を予め記憶したROM44、CPU43が必要に応じてデータを一時的に格納するRAM45、電源が投入された状態でデータを格納するとともに同格納したデータを電源が遮断されている間も保持するバックアップRAM46、並びにADコンバータを含むインターフェース47等からなるマイクロコンピュータである。
【0061】
インターフェース47は、空気流量計測手段であって吸気管35に配置された熱線式エアフローメータ(図示せず)、エンジン回転数センサ48等と接続されていて、これらのセンサからの信号をCPU43に供給するようになっている。また、インターフェース47は、イグナイタ25a、吸気側電磁駆動機構30、排気側電磁駆動機構31、吸気管長可変機構33、排気管長可変機構34、燃料噴射弁32等と接続されていて、CPU43の指示に応じてこれらに駆動信号を送出するようになっている。
【0062】
熱線式エアフローメータは、吸気通路内を通過する吸入空気の質量流量を計測し、同質量流量を表わすGnを発生するようになっている。エンジン回転数センサ48は、内燃機関1の回転数を検出し、エンジン回転数NEを表わす信号を発生するとともに、各気筒の絶対クランク角度を検出し得るようになっている。
【0063】
次に、上述のように構成された吸気側電磁駆動機構30、排気側電磁駆動機構31、吸気管長可変機構33,排気管長可変機構34の作動について説明する。ECU42のCPU43は、図8にフローチャートにより示したプログラムを所定時間の経過毎に繰り返し実行するようになっている。従って、所定のタイミングになると、CPU43はステップ100から処理を開始し、ステップ105にてエンジン回転数NE,機関負荷として空気流量Gnを上述した各センサから取りこむ。
【0064】
次いで、CPUはステップ110に進み、図9に示すエンジン回転数NE及び空気流量Gnと吸気管長との関係を規定したマップと、上記ステップ105にて取り込んだ実際のエンジン回転数NE、空気流量Gnとに基づいて、その運転領域に適した吸気通路の有効長を決定し、補助ポート体39に指令を与える。
【0065】
上記ステップ110にて使用するマップは、内燃機関の全運転領域にわたって吸入効率を高める効果を奏する吸気通路の有効長が得られるように定められている。
【0066】
すなわち、ECU42は、熱線式エアフローメータ及びエンジン回転数センサ48からの検知信号から、エンジンが高負荷高回転運転領域であると判定すると、ステップモータ41の駆動から、図4に示されるように補助ポート体39は、大部分が扇型部36a内に挿入されるように回動変位して位置決められる。
【0067】
すると、吸気通路の有効長は、高回転で慣性過給が得られる最も短い有効長L1に可変される。これにより、大量の空気が、吸気パイプ38、補助ポート体39、吸気管35、吸気ポート26を経て、燃焼室24へ供給される。
【0068】
また、ECU42が、熱線式エアフローメータ及びエンジン回転数センサ48からの検知信号から、エンジンが中負荷中回転運転領域であると判定すると、ステップモータ41の駆動から、図5に示されるように補助ポート体39は、中程のサージタンク37内へ突き出るように回動変位して位置決められる。
【0069】
すると、吸気通路の有効長は、中回転域で慣性過給が得られる中程度の有効長L2に可変される。これにより、中回転運転領域に適した慣性過給が働き、大量の空気が、先に述べたのと同じ経路を経て燃焼室24に供給される。
【0070】
また、熱線式エアフローメータ及びエンジン回転数センサ48からの検知信号から、エンジンが低負荷低回転運転領域であると判定すると、ステップモータ41の駆動から、図6に示されるように補助ポート体39は、大部分がサージタンク37内に突き出るように回動変位して位置決められる。
【0071】
すると、吸気通路の有効長は、低回転域で慣性過給が得られる最も長い有効長L3に可変される。これにより、低回転運転域に適した慣性過給が働き、大量の空気が、先に述べたのと同じ経路を経て燃焼室24に供給される。
【0072】
次いで、CPUはステップ115に進み、吸気管長可変機構33と同様、図10に示すエンジン回転数NE及び空気流量Gnと排気管長との関係を規定したマップと、上記ステップ105にて取り込んだ実際の実際のエンジン回転数NE、空気流量Gnとに基づいて、その運転領域に適した排気管長を決定し、排気管長可変機構34の補助ポート体(図示せず)に指令を与える。
【0073】
次いで、CPUはステップ120に進み、図11に示す吸気管長及び排気管長とエンジン回転数NE及び空気流量Gnと吸排気弁の開閉時期との関係を規定したマップと、上記ステップ105にて取り込んだ実際のエンジン回転数NE及び空気流量Gnとに基づいて、その時の吸気管長、排気管長及び運転領域に適した吸排気弁の開閉時期VTを決定し、吸気側電磁駆動機構30、排気側電磁駆動機構31に指令を与え、ステップ125に進み本ルーチンを終了する。
【0074】
上記ステップ120にて使用するマップは、内燃機関の全運転領域にわたって吸気管長、排気管長及び運転領域に応じたシリンダ内圧力の変化を考慮したうえで、内燃機関の吸気系及び排気系における慣性効果及び脈動効果を最も効果的に利用できる吸排気弁の開閉時期が得られるように定められている。
【0075】
換言すると、吸気管長及び排気管長の変化に伴ってシリンダ内圧力の特性が変化するため、吸気管長と排気管長の組み合わせ毎に、吸排気弁の開閉時期VTとエンジン回転数NE及び空気流量Gnとの関係を規定したマップを使用している。
【0076】
これにより、吸気管長及び排気管長が変化しても、シリンダ内圧力と吸気弁直前の吸気通路内圧力とが等しくなる時点で吸気弁が閉じられるため、吸入効率は向上する。
【0077】
また、図12に示すように、吸気管長及び排気管長が変化しても、吸気弁直前の吸気通路内圧力が排気弁直後の排気通路内圧力より高い状態のとき、吸気弁と排気弁が共に開くオーバーラップ状態となり、吸入効率の向上,排気の促進を図られる。
【0078】
更に、吸気管長及び排気管長が変化しても、オーバーラップ状態の時に排気負圧波が同期するように、また他の気筒からのブローダウンによる正圧波が同期しないように排気弁が開かれるため、掃気効果及び吸入過給効果を高めることができる。
【0079】
尚、吸排気管の開閉時期の変化に比べて、吸気管長及び排気管長の変化は遅いため、図13に示すように吸排気管の開閉時期を吸気管長及び排気管長の変化に合わせて徐々に変化させれば、吸気管長、排気管長が変化する過渡時においても、最適な時期に吸排気弁を開閉できる。
【0080】
以上説明したように、上記実施形態によれば、吸気管長及び排気管長の変化に伴って変化するシリンダ内圧の変化に合わせた最適な時期で吸排気弁を開閉するため、内燃機関の吸気系及び排気系における慣性効果および脈動効果を最も効果的に利用することができる。
【0081】
なお、本発明は上記実施形態に限定されることはなく、本発明の範囲内において種々の変形例を採用することができる。例えば、上記実施例は、吸気通路形状可変機構と排気通路形状可変機構を共に備えていたが、片方のみ備えた内燃機関としてもよい。
【0082】
【発明の効果】
内燃機関の吸気系及び排気系における慣性効果および脈動効果を最も効果的に利用することができる。
【図面の簡単な説明】
【図1】本発明に係る内燃機関の一実施態様を示す断面図
【図2】吸気管長可変機構の外観を示す斜視図
【図3】吸気管長可変機構の構造を説明するための分解斜視図
【図4】吸気管長可変機構によって、吸気通路の有効長が高負荷高回転運転領域に適した長さに定められたときを示す断面図
【図5】吸気管長可変機構によって、吸気通路の有効長が中負荷中回転運転領域に適した長さに定められたときを示す断面図
【図6】吸気管長可変機構によって、吸気通路の有効長が低負荷低回転運転領域に適した長さに定められたときを示す断面図
【図7】排気側電磁駆動機構の構成を示す断面図
【図8】吸気管長可変機構、排気管長可変機構、吸気側電磁駆動機構、排気側電磁駆動機構の制御ルーチンを示すフローチャート図
【図9】エンジン回転数及び空気流量と吸気管長との関係を規定したマップ
【図10】エンジン回転数及び空気流量と排気管長との関係を規定したマップ
【図11】吸気管長及び排気管長とエンジン回転数及び空気流量と吸排気弁の開閉時期との関係を規定したマップ
【図12】吸気管長及び排気管長の変化に伴う吸排気弁の開閉時期の切換と内燃機関の吸気通路内圧力と排気通路内圧力の変化とを示すグラフ
【図13】吸気管長及び排気管長の変化と吸排気弁の開閉時期の変化の時間的関係を示す説明図
【符号の説明】
1…内燃機関
26…吸気ポート
27…排気ポート
28…吸気弁
29…排気弁
30…吸気側電磁駆動機構
31…排気側電磁駆動機構
33…吸気管長可変機構
34…排気管長可変機構
42…ECU
48…エンシ゛ン回転数センサ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an internal combustion engine mounted on an automobile or the like, and more particularly to an internal combustion engine provided with a valve operating mechanism for independently controlling the opening and closing timings of intake and exhaust valves.
[Prior art]
[0002]
Conventionally, by changing the length and cross-sectional area of an intake passage in accordance with the engine speed, pressure fluctuations in the intake passage are used to increase suction efficiency in various engine speed regions, thereby improving output. Is known (for example, see Patent Document 1).
[0003]
In other words, since pressure oscillation occurs in the intake passage due to intermittent intake air accompanying the operation of the internal combustion engine, if a positive pressure wave of the pressure waves is introduced into the cylinder at an appropriate timing, the suction Efficiency can be increased. And since the timing of introducing the positive pressure wave into the cylinder can be adjusted by the length of the intake passage, by changing the length of the intake passage according to the change in the operating state of the engine, in various operating regions, The so-called dynamic effect of intake, that is, the inertial effect and the pulsation effect, caused by the above phenomenon can be effectively used to increase the intake efficiency. Note that such a dynamic effect of intake can also be adjusted by changing the sectional area of the intake passage.
[0004]
Conventionally, in this type of apparatus, the opening / closing timing of the intake valve is fixed, and the intake valve is closed at a time later than the piston bottom dead center by a predetermined timing. Under such conditions, even if tuning is performed to increase the dynamic effect of the positive pressure wave as much as possible by adjusting the length or cross-sectional area of the intake passage, the operating state of the internal combustion engine changes with the change in engine speed, for example. Due to the change in the characteristics of the cylinder pressure, the cylinder pressure increases before the intake valve is closed at low revolutions, causing a blowback, and at high revolutions, the cylinder pressure is low, so intake can still be introduced. Since the intake valve would be closed in this state, it was difficult to enhance the dynamic effect of intake over a wide rotation speed range.
[0005]
On the other hand, as a means for improving the suction efficiency when the length and the cross-sectional area of the intake passage are fixed, there is a method of adjusting the opening / closing timing of the intake valve, particularly the closing timing, in accordance with the operating state of the internal combustion engine. According to this method, at least the closing timing of the intake valve is controlled in accordance with the operation state of the internal combustion engine so that the intake valve is closed at the time when the pressure in the cylinder and the pressure in the intake passage immediately before the intake valve become equal. Good. However, in this case, due to the relationship between the length and the cross-sectional area of the intake passage, the tuning state in which the positive pressure wave generated in the intake passage is most effectively used is limited to a specific operating region. In the region, the dynamic effect due to the positive pressure wave is reduced. Therefore, there is a limit in improving the suction efficiency even by adjusting the opening / closing timing of the intake valve.
[0006]
In
[0007]
On the other hand, there is also known a technique for quickly exhausting a combustion chamber using an exhaust pulsation effect by changing the length and cross-sectional area of an exhaust passage according to an operating state (for example, see Patent Documents 3 and 4). Have been.
[0008]
In addition, a technique that combines a mechanism that adjusts both the length and the cross-sectional area of such an exhaust passage in accordance with the operating state of an internal combustion engine with a valve operating mechanism that allows the opening and closing timing of an exhaust valve to be varied (for example, see Patent Document 1) 5) is also known.
[0009]
[Patent Document 1]
JP-A-48-58214
[Patent Document 2]
JP 60-164610 A
[Patent Document 3]
Japanese Utility Model Publication No. 58-49381
[Patent Document 4]
JP-A-11-107789
[Patent Document 5]
JP-A-3-9026
[Problems to be solved by the invention]
[0010]
In an internal combustion engine, when the pressure in the intake passage immediately before the intake valve is higher than the pressure in the exhaust passage immediately after the exhaust valve, the closing timing of the exhaust valve and the opening of the intake valve are increased in order to improve the intake efficiency and promote the exhaust. By adjusting the timing, it is preferable that the intake valve and the exhaust valve be in an overlapped state in which both are opened.
[0011]
However, in the valve mechanism described in
[0012]
Also, in order to enhance the exhaust effect and improve the suction efficiency, the opening timing of the exhaust valve is adjusted so that the exhaust negative pressure waves are synchronized in the overlap state, and the positive pressure waves due to blowdown from other cylinders are generated. It is preferable not to synchronize.
[0013]
However, in the valve mechanism described in Patent Document 5 in which the opening and closing timing of the exhaust valve is made variable, the opening timing of the exhaust valve is adjusted in conjunction with the closing timing, and the opening and closing timing of the exhaust valve is independently controlled. Since it cannot be set arbitrarily, there is a limit in improving the suction efficiency and promoting the exhaust.
[0014]
In view of such circumstances, an object of the present invention is to utilize an inertial effect and a pulsating effect in an intake system and an exhaust system of an internal combustion engine most effectively.
[Means for Solving the Problems]
[0015]
In order to achieve the above object, an internal combustion engine according to the present invention is provided with an intake passage shape variable mechanism for variably controlling an intake passage shape. A valve mechanism for independently controlling the timing is provided, and the shape of the intake passage that is variably controlled and the opening and closing timings of the intake and exhaust valves are controlled in association with each other.
[0016]
In the internal combustion engine configured as described above, the opening timing and the closing timing of the intake and exhaust valves can be arbitrarily set in accordance with the shape of the intake passage that is variably controlled. And the pulsation effect can be used most effectively.
[0017]
According to a second aspect of the present invention, there is provided an internal combustion engine having an exhaust passage shape variable mechanism for variably controlling an exhaust passage shape, wherein the opening and closing timings of the intake and exhaust valves of the cylinder are independently controlled. A valve mechanism is provided to control the exhaust passage shape variably controlled and the opening and closing timings of the intake and exhaust valves in association with each other.
[0018]
In the internal combustion engine configured as described above, the opening timing and the closing timing of the intake and exhaust valves can be arbitrarily set in accordance with the shape of the variably controlled exhaust passage. And the pulsation effect can be used most effectively.
[0019]
According to a third aspect of the present invention, there is provided an internal combustion engine including an intake passage shape variable mechanism for variably controlling an intake passage shape and an exhaust passage shape variable mechanism for variably controlling an exhaust passage shape. A valve operating mechanism that independently controls the opening and closing timings of the intake and exhaust valves is provided, and the variable control of the intake and exhaust passage shapes and the opening and closing timings of the intake and exhaust valves are controlled in association with each other. Features
[0020]
In the internal combustion engine configured as described above, the opening timing and the closing timing of the intake and exhaust valves can be arbitrarily set in accordance with the intake passage shape and the exhaust passage shape that are variably controlled. Inertia and pulsation effects in the system can be most effectively exploited.
BEST MODE FOR CARRYING OUT THE INVENTION
[0021]
Hereinafter, specific embodiments of the internal combustion engine according to the present invention will be described with reference to the drawings.
[0022]
FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine according to the present embodiment and an intake and exhaust system thereof. The
[0023]
The
[0024]
A
[0025]
Above the
[0026]
In the
[0027]
On the other hand, a variable intake
[0028]
Here, a specific configuration of the intake pipe
[0029]
Describing the structure of the variable intake pipe length mechanism,
[0030]
One end of each of the
[0031]
A
[0032]
This
[0033]
An
[0034]
An
[0035]
The center side of the sliding
[0036]
Thereby, each sliding
[0037]
An output shaft (not shown) of, for example, a
[0038]
That is, it constitutes a variable mechanism. In this embodiment, the effective length of the intake passage is the shortest suitable for the high-speed operation region of the engine in which most of the
[0039]
The variable intake
[0040]
On the other hand, an
[0041]
An
[0042]
Here, a specific configuration of the intake-side
[0043]
FIG. 7 is a cross-sectional view illustrating the configuration of the exhaust-side
[0044]
An
[0045]
The
[0046]
The upper head 11 is provided with a
[0047]
An annular
[0048]
Above the
[0049]
On the other hand, a
In this case, the
[0050]
A first
[0051]
An
[0052]
A disc-shaped
[0053]
On the other hand, the lower end of the
[0054]
In the exhaust-side electromagnetically driven
[0055]
The biasing force of the
[0056]
The length of the
[0057]
In the above-described exhaust side
[0058]
Therefore, in the above-described exhaust-side
[0059]
An electronic control unit (ECU) 42 for controlling the operation state of the internal combustion engine is provided in the
[0060]
The ECU 42 is connected to a
[0061]
The
[0062]
The hot wire air flow meter measures the mass flow rate of the intake air passing through the intake passage and generates Gn representing the same mass flow rate. The
[0063]
Next, the operation of the intake-side
[0064]
Next, the CPU proceeds to step 110, where a map defining the relationship between the engine speed NE and the air flow rate Gn and the intake pipe length shown in FIG. 9 and the actual engine speed NE and the air flow rate Gn captured in step 105 are described. Based on the above, the effective length of the intake passage suitable for the operation region is determined, and a command is given to the
[0065]
The map used in step 110 is determined so as to obtain the effective length of the intake passage that has the effect of increasing the intake efficiency over the entire operation range of the internal combustion engine.
[0066]
That is, when the ECU 42 determines that the engine is in the high-load and high-speed operation range based on the detection signals from the hot-wire air flow meter and the
[0067]
Then, the effective length of the intake passage is changed to the shortest effective length L1 at which inertia supercharging can be obtained at a high speed. Thereby, a large amount of air is supplied to the
[0068]
When the ECU 42 determines from the detection signals from the hot-wire type air flow meter and the
[0069]
Then, the effective length of the intake passage is changed to a medium effective length L2 at which inertial supercharging is obtained in the middle rotation range. As a result, inertia supercharging suitable for the medium rotation operation region works, and a large amount of air is supplied to the
[0070]
When the engine is determined to be in the low-load and low-speed operation region based on the detection signals from the hot wire air flow meter and the
[0071]
Then, the effective length of the intake passage is changed to the longest effective length L3 at which inertial supercharging is obtained in the low rotation speed range. As a result, inertia supercharging suitable for the low-speed operation range operates, and a large amount of air is supplied to the
[0072]
Next, the CPU proceeds to step 115, similarly to the intake pipe
[0073]
Next, the CPU proceeds to step 120, and fetches in step 105 the map defining the relationship between the intake pipe length and exhaust pipe length, the engine speed NE, the air flow rate Gn, and the opening / closing timing of the intake / exhaust valve shown in FIG. Based on the actual engine speed NE and the air flow rate Gn, the intake / exhaust valve opening / closing timing VT suitable for the intake pipe length, exhaust pipe length and operating region at that time is determined, and the intake-side
[0074]
The map used in step 120 described above takes into account the inertial effect in the intake system and the exhaust system of the internal combustion engine, taking into account the change in the cylinder pressure according to the intake pipe length, the exhaust pipe length and the operation area over the entire operation area of the internal combustion engine. In addition, the opening and closing timing of the intake / exhaust valve that can use the pulsation effect most effectively is determined.
[0075]
In other words, since the characteristics of the pressure in the cylinder change with the change in the intake pipe length and the exhaust pipe length, the opening / closing timing VT of the intake / exhaust valve, the engine speed NE, and the air flow rate Gn are determined for each combination of the intake pipe length and the exhaust pipe length. Use a map that defines the relationship.
[0076]
Thus, even if the intake pipe length and the exhaust pipe length change, the intake valve is closed when the pressure in the cylinder becomes equal to the pressure in the intake passage immediately before the intake valve, so that the suction efficiency is improved.
[0077]
Also, as shown in FIG. 12, even if the intake pipe length and the exhaust pipe length change, when the pressure in the intake passage immediately before the intake valve is higher than the pressure in the exhaust passage immediately after the exhaust valve, both the intake valve and the exhaust valve The overlapping state is opened, so that the suction efficiency is improved and the exhaust is promoted.
[0078]
Furthermore, even if the intake pipe length and the exhaust pipe length change, the exhaust valve is opened so that the exhaust negative pressure wave is synchronized in the overlap state and the positive pressure wave due to blowdown from other cylinders is not synchronized. The scavenging effect and the suction supercharging effect can be enhanced.
[0079]
Since the change in the intake pipe length and the exhaust pipe length is slower than the change in the intake and exhaust pipe open / close timing, the open / close timing of the intake / exhaust pipe is gradually changed in accordance with the change in the intake pipe length and the exhaust pipe length as shown in FIG. Thus, the intake and exhaust valves can be opened and closed at the optimal time even during transition when the intake pipe length and the exhaust pipe length change.
[0080]
As described above, according to the above-described embodiment, the intake and exhaust valves are opened and closed at an optimal timing according to the change in the cylinder internal pressure that changes with the change in the intake pipe length and the exhaust pipe length. The inertia effect and the pulsation effect in the exhaust system can be used most effectively.
[0081]
Note that the present invention is not limited to the above embodiment, and various modifications can be adopted within the scope of the present invention. For example, in the above embodiment, both the intake passage shape variable mechanism and the exhaust passage shape variable mechanism are provided, but an internal combustion engine having only one of them may be used.
[0082]
【The invention's effect】
The inertia effect and the pulsation effect in the intake system and the exhaust system of the internal combustion engine can be used most effectively.
[Brief description of the drawings]
FIG. 1 is a sectional view showing an embodiment of an internal combustion engine according to the present invention.
FIG. 2 is a perspective view showing an appearance of a variable intake pipe length mechanism.
FIG. 3 is an exploded perspective view for explaining a structure of a variable intake pipe length mechanism.
FIG. 4 is a cross-sectional view showing a case where the effective length of the intake passage is set to a length suitable for a high-load, high-speed operation region by a variable intake pipe length mechanism;
FIG. 5 is a cross-sectional view showing a case where the effective length of the intake passage is set to a length suitable for a medium-load / medium-speed rotation operation region by the intake pipe length variable mechanism.
FIG. 6 is a cross-sectional view showing a case where the effective length of the intake passage is set to a length suitable for a low-load low-speed operation region by the intake pipe length variable mechanism.
FIG. 7 is a sectional view showing a configuration of an exhaust-side electromagnetic drive mechanism.
FIG. 8 is a flowchart illustrating a control routine of a variable intake pipe length mechanism, a variable exhaust pipe length mechanism, an intake-side electromagnetic drive mechanism, and an exhaust-side electromagnetic drive mechanism.
FIG. 9 is a map defining a relationship between an engine speed, an air flow rate, and an intake pipe length.
FIG. 10 is a map defining a relationship between an engine speed, an air flow rate, and an exhaust pipe length.
FIG. 11 is a map defining the relationship between the intake pipe length and exhaust pipe length, the engine speed, the air flow rate, and the opening / closing timing of the intake / exhaust valve.
FIG. 12 is a graph showing switching of the opening and closing timings of intake and exhaust valves with changes in intake pipe length and exhaust pipe length, and changes in the pressure in the intake passage and the pressure in the exhaust passage of the internal combustion engine.
FIG. 13 is an explanatory diagram showing a temporal relationship between a change in intake pipe length and exhaust pipe length and a change in opening / closing timing of an intake / exhaust valve.
[Explanation of symbols]
1. Internal combustion engine
26 ... intake port
27… Exhaust port
28 ... intake valve
29… Exhaust valve
30 ... intake side electromagnetic drive mechanism
31 ... Exhaust side electromagnetic drive mechanism
33… Variable intake pipe length mechanism
34… Variable exhaust pipe length mechanism
42 ... ECU
48 ... Engine rotation speed sensor
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002304036A JP4385585B2 (en) | 2002-10-18 | 2002-10-18 | Internal combustion engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002304036A JP4385585B2 (en) | 2002-10-18 | 2002-10-18 | Internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004137982A true JP2004137982A (en) | 2004-05-13 |
JP4385585B2 JP4385585B2 (en) | 2009-12-16 |
Family
ID=32451585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002304036A Expired - Lifetime JP4385585B2 (en) | 2002-10-18 | 2002-10-18 | Internal combustion engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4385585B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7444975B2 (en) | 2006-02-14 | 2008-11-04 | Mazda Motor Corporation | Control of engine intake system |
US8220263B2 (en) | 2007-11-13 | 2012-07-17 | Toyota Jidosha Kabushiki Kaisha | Control apparatus for internal combustion engine |
JP2013047465A (en) * | 2011-08-29 | 2013-03-07 | Toyota Motor Corp | Control device for diesel engine |
-
2002
- 2002-10-18 JP JP2002304036A patent/JP4385585B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7444975B2 (en) | 2006-02-14 | 2008-11-04 | Mazda Motor Corporation | Control of engine intake system |
US8220263B2 (en) | 2007-11-13 | 2012-07-17 | Toyota Jidosha Kabushiki Kaisha | Control apparatus for internal combustion engine |
JP2013047465A (en) * | 2011-08-29 | 2013-03-07 | Toyota Motor Corp | Control device for diesel engine |
Also Published As
Publication number | Publication date |
---|---|
JP4385585B2 (en) | 2009-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4168872B2 (en) | Control device for internal combustion engine | |
JP4186613B2 (en) | Intake control device for internal combustion engine | |
JP4007123B2 (en) | Control device for internal combustion engine | |
JP2004211614A (en) | Internal combustion engine and control method of valve timing | |
JPH09222018A (en) | Variable intake device for internal combustion engine | |
JP2006046293A (en) | Intake control device for internal combustion engine | |
JP4696946B2 (en) | Engine intake control device | |
JP3627601B2 (en) | Engine intake air amount control device | |
JP2007218114A5 (en) | ||
JP3601386B2 (en) | Engine intake air control system | |
JP4385585B2 (en) | Internal combustion engine | |
JP4003567B2 (en) | Intake control device for internal combustion engine | |
JP4577326B2 (en) | Stop control device and stop control system for internal combustion engine | |
JP4053634B2 (en) | DOHC engine variable valve timing system | |
JP4258453B2 (en) | Intake control device for internal combustion engine | |
JP5076983B2 (en) | Engine fuel injection control device | |
JP2001234769A (en) | Internal combustion engine with variable valve mechanism | |
JPH062550A (en) | Intake control device for internal combustion engine | |
JP4020065B2 (en) | Control device for internal combustion engine | |
JP2001295673A (en) | Internal combustion engine with split intake system | |
JP4063194B2 (en) | Idle speed control device for internal combustion engine | |
JP5316505B2 (en) | Noise reduction control device for internal combustion engine | |
JP2008115829A (en) | Control device and control method of reciprocation type internal combustion engine | |
JP3536519B2 (en) | Intake valve control device and control method for internal combustion engine | |
JP2010229911A (en) | Control device for variable valve mechanism |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050926 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080201 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080311 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080422 |
|
RD02 | Notification of acceptance of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7422 Effective date: 20080422 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080812 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20081014 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090224 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090422 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090908 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090921 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121009 Year of fee payment: 3 |