JP2004137596A - Granulation treatment method for sintering raw material containing maramamba ore - Google Patents
Granulation treatment method for sintering raw material containing maramamba ore Download PDFInfo
- Publication number
- JP2004137596A JP2004137596A JP2003208101A JP2003208101A JP2004137596A JP 2004137596 A JP2004137596 A JP 2004137596A JP 2003208101 A JP2003208101 A JP 2003208101A JP 2003208101 A JP2003208101 A JP 2003208101A JP 2004137596 A JP2004137596 A JP 2004137596A
- Authority
- JP
- Japan
- Prior art keywords
- raw material
- ore
- mass
- sintering raw
- granulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002994 raw material Substances 0.000 title claims abstract description 199
- 238000005245 sintering Methods 0.000 title claims abstract description 156
- 238000005469 granulation Methods 0.000 title claims abstract description 120
- 230000003179 granulation Effects 0.000 title claims abstract description 109
- 238000000034 method Methods 0.000 title claims abstract description 64
- 229920000642 polymer Polymers 0.000 claims abstract description 122
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 101
- 150000001875 compounds Chemical class 0.000 claims abstract description 96
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 claims abstract description 62
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims abstract description 60
- 229910052742 iron Inorganic materials 0.000 claims abstract description 50
- 150000003839 salts Chemical class 0.000 claims abstract description 46
- 239000007787 solid Substances 0.000 claims abstract description 33
- 238000002156 mixing Methods 0.000 claims abstract description 32
- 239000002253 acid Substances 0.000 claims abstract description 31
- 229920001515 polyalkylene glycol Polymers 0.000 claims abstract description 19
- 229920000877 Melamine resin Polymers 0.000 claims abstract description 14
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 claims abstract description 14
- KVBGVZZKJNLNJU-UHFFFAOYSA-M naphthalene-2-sulfonate Chemical compound C1=CC=CC2=CC(S(=O)(=O)[O-])=CC=C21 KVBGVZZKJNLNJU-UHFFFAOYSA-M 0.000 claims abstract description 13
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 claims abstract description 13
- 125000003118 aryl group Chemical group 0.000 claims abstract description 12
- IIACRCGMVDHOTQ-UHFFFAOYSA-N sulfamic acid Chemical compound NS(O)(=O)=O IIACRCGMVDHOTQ-UHFFFAOYSA-N 0.000 claims abstract description 11
- 239000000178 monomer Substances 0.000 claims description 83
- 239000003979 granulating agent Substances 0.000 claims description 70
- 239000000203 mixture Substances 0.000 claims description 51
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 claims description 21
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 21
- 125000003827 glycol group Chemical group 0.000 claims description 16
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 15
- 230000000379 polymerizing effect Effects 0.000 claims description 13
- 241000270311 Crocodylus niloticus Species 0.000 claims description 3
- 238000001354 calcination Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 abstract description 37
- 239000003795 chemical substances by application Substances 0.000 abstract description 12
- 239000008187 granular material Substances 0.000 abstract description 9
- 238000010586 diagram Methods 0.000 abstract description 2
- 239000002245 particle Substances 0.000 description 121
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 92
- 239000007864 aqueous solution Substances 0.000 description 71
- 239000000843 powder Substances 0.000 description 36
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 30
- 239000000243 solution Substances 0.000 description 29
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 18
- 238000006243 chemical reaction Methods 0.000 description 18
- 230000000052 comparative effect Effects 0.000 description 18
- 239000006185 dispersion Substances 0.000 description 17
- -1 and peridotite Substances 0.000 description 15
- LCPVQAHEFVXVKT-UHFFFAOYSA-N 2-(2,4-difluorophenoxy)pyridin-3-amine Chemical compound NC1=CC=CN=C1OC1=CC=C(F)C=C1F LCPVQAHEFVXVKT-UHFFFAOYSA-N 0.000 description 13
- CHQMHPLRPQMAMX-UHFFFAOYSA-L sodium persulfate Substances [Na+].[Na+].[O-]S(=O)(=O)OOS([O-])(=O)=O CHQMHPLRPQMAMX-UHFFFAOYSA-L 0.000 description 13
- ROOXNKNUYICQNP-UHFFFAOYSA-N ammonium persulfate Chemical compound [NH4+].[NH4+].[O-]S(=O)(=O)OOS([O-])(=O)=O ROOXNKNUYICQNP-UHFFFAOYSA-N 0.000 description 12
- 230000000694 effects Effects 0.000 description 11
- 238000006116 polymerization reaction Methods 0.000 description 11
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 10
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 10
- 238000009835 boiling Methods 0.000 description 10
- 239000008188 pellet Substances 0.000 description 10
- 239000003505 polymerization initiator Substances 0.000 description 10
- KOUDKOMXLMXFKX-UHFFFAOYSA-N sodium oxido(oxo)phosphanium hydrate Chemical compound O.[Na+].[O-][PH+]=O KOUDKOMXLMXFKX-UHFFFAOYSA-N 0.000 description 10
- 238000003756 stirring Methods 0.000 description 10
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 9
- 239000000292 calcium oxide Substances 0.000 description 9
- 235000012255 calcium oxide Nutrition 0.000 description 9
- 239000002893 slag Substances 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 239000002585 base Substances 0.000 description 8
- 239000003575 carbonaceous material Substances 0.000 description 8
- 229920005610 lignin Polymers 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 7
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 7
- 229910001420 alkaline earth metal ion Inorganic materials 0.000 description 7
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 7
- 238000005507 spraying Methods 0.000 description 7
- 239000002202 Polyethylene glycol Substances 0.000 description 6
- 229910001870 ammonium persulfate Inorganic materials 0.000 description 6
- 239000000428 dust Substances 0.000 description 6
- 239000010419 fine particle Substances 0.000 description 6
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 6
- 229910052595 hematite Inorganic materials 0.000 description 6
- 239000011019 hematite Substances 0.000 description 6
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 6
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 6
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 description 6
- 229920001223 polyethylene glycol Polymers 0.000 description 6
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical compound [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 5
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 5
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 5
- 229920002125 Sokalan® Polymers 0.000 description 5
- 229910001413 alkali metal ion Inorganic materials 0.000 description 5
- 239000007771 core particle Substances 0.000 description 5
- 239000004584 polyacrylic acid Substances 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 235000019738 Limestone Nutrition 0.000 description 4
- 229910019142 PO4 Inorganic materials 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 239000012986 chain transfer agent Substances 0.000 description 4
- 239000013078 crystal Substances 0.000 description 4
- 239000010459 dolomite Substances 0.000 description 4
- 229910000514 dolomite Inorganic materials 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 238000005227 gel permeation chromatography Methods 0.000 description 4
- CPJRRXSHAYUTGL-UHFFFAOYSA-N isopentenyl alcohol Chemical compound CC(=C)CCO CPJRRXSHAYUTGL-UHFFFAOYSA-N 0.000 description 4
- 239000006028 limestone Substances 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- KVBGVZZKJNLNJU-UHFFFAOYSA-N naphthalene-2-sulfonic acid Chemical compound C1=CC=CC2=CC(S(=O)(=O)O)=CC=C21 KVBGVZZKJNLNJU-UHFFFAOYSA-N 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 239000010452 phosphate Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000002411 adverse Effects 0.000 description 3
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 3
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 3
- 239000003830 anthracite Substances 0.000 description 3
- 229910052791 calcium Inorganic materials 0.000 description 3
- 239000011575 calcium Substances 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 239000000446 fuel Substances 0.000 description 3
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 3
- 238000002203 pretreatment Methods 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 2
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- QPUYECUOLPXSFR-UHFFFAOYSA-N 1-methylnaphthalene Chemical compound C1=CC=C2C(C)=CC=CC2=C1 QPUYECUOLPXSFR-UHFFFAOYSA-N 0.000 description 2
- JESXATFQYMPTNL-UHFFFAOYSA-N 2-ethenylphenol Chemical compound OC1=CC=CC=C1C=C JESXATFQYMPTNL-UHFFFAOYSA-N 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- DKIDEFUBRARXTE-UHFFFAOYSA-N 3-mercaptopropanoic acid Chemical compound OC(=O)CCS DKIDEFUBRARXTE-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- 244000179886 Moringa oleifera Species 0.000 description 2
- 239000011398 Portland cement Substances 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical group 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 229910052570 clay Inorganic materials 0.000 description 2
- 239000000571 coke Substances 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 238000006482 condensation reaction Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000009775 high-speed stirring Methods 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 235000013379 molasses Nutrition 0.000 description 2
- 230000003472 neutralizing effect Effects 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- USHAGKDGDHPEEY-UHFFFAOYSA-L potassium persulfate Chemical compound [K+].[K+].[O-]S(=O)(=O)OOS([O-])(=O)=O USHAGKDGDHPEEY-UHFFFAOYSA-L 0.000 description 2
- 239000011044 quartzite Substances 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 2
- 229910052950 sphalerite Inorganic materials 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000009628 steelmaking Methods 0.000 description 2
- 125000000020 sulfo group Chemical group O=S(=O)([*])O[H] 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 239000003643 water by type Substances 0.000 description 2
- 229920003169 water-soluble polymer Polymers 0.000 description 2
- 125000006702 (C1-C18) alkyl group Chemical group 0.000 description 1
- LGXVIGDEPROXKC-UHFFFAOYSA-N 1,1-dichloroethene Chemical group ClC(Cl)=C LGXVIGDEPROXKC-UHFFFAOYSA-N 0.000 description 1
- 229940058015 1,3-butylene glycol Drugs 0.000 description 1
- SCMVPOVMOHQFKU-UHFFFAOYSA-N 1-(aziridin-1-yl)prop-2-en-1-one Chemical compound C=CC(=O)N1CC1 SCMVPOVMOHQFKU-UHFFFAOYSA-N 0.000 description 1
- OOSZCNKVJAVHJI-UHFFFAOYSA-N 1-[(4-fluorophenyl)methyl]piperazine Chemical compound C1=CC(F)=CC=C1CN1CCNCC1 OOSZCNKVJAVHJI-UHFFFAOYSA-N 0.000 description 1
- FCEHBMOGCRZNNI-UHFFFAOYSA-N 1-benzothiophene Chemical compound C1=CC=C2SC=CC2=C1 FCEHBMOGCRZNNI-UHFFFAOYSA-N 0.000 description 1
- KGRVJHAUYBGFFP-UHFFFAOYSA-N 2,2'-Methylenebis(4-methyl-6-tert-butylphenol) Chemical compound CC(C)(C)C1=CC(C)=CC(CC=2C(=C(C=C(C)C=2)C(C)(C)C)O)=C1O KGRVJHAUYBGFFP-UHFFFAOYSA-N 0.000 description 1
- YAJYJWXEWKRTPO-UHFFFAOYSA-N 2,3,3,4,4,5-hexamethylhexane-2-thiol Chemical compound CC(C)C(C)(C)C(C)(C)C(C)(C)S YAJYJWXEWKRTPO-UHFFFAOYSA-N 0.000 description 1
- BDKLKNJTMLIAFE-UHFFFAOYSA-N 2-(3-fluorophenyl)-1,3-oxazole-4-carbaldehyde Chemical compound FC1=CC=CC(C=2OC=C(C=O)N=2)=C1 BDKLKNJTMLIAFE-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- IMSODMZESSGVBE-UHFFFAOYSA-N 2-Oxazoline Chemical compound C1CN=CO1 IMSODMZESSGVBE-UHFFFAOYSA-N 0.000 description 1
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 1
- 125000000022 2-aminoethyl group Chemical group [H]C([*])([H])C([H])([H])N([H])[H] 0.000 description 1
- MLMGJTAJUDSUKA-UHFFFAOYSA-N 2-ethenyl-1h-imidazole Chemical group C=CC1=NC=CN1 MLMGJTAJUDSUKA-UHFFFAOYSA-N 0.000 description 1
- BQBSIHIZDSHADD-UHFFFAOYSA-N 2-ethenyl-4,5-dihydro-1,3-oxazole Chemical compound C=CC1=NCCO1 BQBSIHIZDSHADD-UHFFFAOYSA-N 0.000 description 1
- NEYTXADIGVEHQD-UHFFFAOYSA-N 2-hydroxy-2-(prop-2-enoylamino)acetic acid Chemical compound OC(=O)C(O)NC(=O)C=C NEYTXADIGVEHQD-UHFFFAOYSA-N 0.000 description 1
- AGBXYHCHUYARJY-UHFFFAOYSA-N 2-phenylethenesulfonic acid Chemical compound OS(=O)(=O)C=CC1=CC=CC=C1 AGBXYHCHUYARJY-UHFFFAOYSA-N 0.000 description 1
- LPIQIQPLUVLISR-UHFFFAOYSA-N 2-prop-1-en-2-yl-4,5-dihydro-1,3-oxazole Chemical group CC(=C)C1=NCCO1 LPIQIQPLUVLISR-UHFFFAOYSA-N 0.000 description 1
- KGIGUEBEKRSTEW-UHFFFAOYSA-N 2-vinylpyridine Chemical compound C=CC1=CC=CC=N1 KGIGUEBEKRSTEW-UHFFFAOYSA-N 0.000 description 1
- VFXXTYGQYWRHJP-UHFFFAOYSA-N 4,4'-azobis(4-cyanopentanoic acid) Chemical compound OC(=O)CCC(C)(C#N)N=NC(C)(CCC(O)=O)C#N VFXXTYGQYWRHJP-UHFFFAOYSA-N 0.000 description 1
- KWSLGOVYXMQPPX-UHFFFAOYSA-N 5-[3-(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC=CC(C2=NNN=N2)=C1 KWSLGOVYXMQPPX-UHFFFAOYSA-N 0.000 description 1
- UNPYQHQUDMGKJW-UHFFFAOYSA-N 6-trimethoxysilylhex-1-en-3-one Chemical compound CO[Si](OC)(OC)CCCC(=O)C=C UNPYQHQUDMGKJW-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 244000233967 Anethum sowa Species 0.000 description 1
- 0 CC(C)Oc1c(*)cc(C(C)CC(C)*)cc1OC Chemical compound CC(C)Oc1c(*)cc(C(C)CC(C)*)cc1OC 0.000 description 1
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 229940126062 Compound A Drugs 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- NLDMNSXOCDLTTB-UHFFFAOYSA-N Heterophylliin A Natural products O1C2COC(=O)C3=CC(O)=C(O)C(O)=C3C3=C(O)C(O)=C(O)C=C3C(=O)OC2C(OC(=O)C=2C=C(O)C(O)=C(O)C=2)C(O)C1OC(=O)C1=CC(O)=C(O)C(O)=C1 NLDMNSXOCDLTTB-UHFFFAOYSA-N 0.000 description 1
- 239000005909 Kieselgur Substances 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N N-phenyl amine Natural products NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 1
- PDBIMHIZYUGHGP-UHFFFAOYSA-N P(O)(O)(O)=O.P(=O)(OCCOC(C=C)=O)(OC1=CC=CC=C1)O Chemical compound P(O)(O)(O)=O.P(=O)(OCCOC(C=C)=O)(OC1=CC=CC=C1)O PDBIMHIZYUGHGP-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- NPYPAHLBTDXSSS-UHFFFAOYSA-N Potassium ion Chemical compound [K+] NPYPAHLBTDXSSS-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- QYKIQEUNHZKYBP-UHFFFAOYSA-N Vinyl ether Chemical compound C=COC=C QYKIQEUNHZKYBP-UHFFFAOYSA-N 0.000 description 1
- 238000012726 Water-in-Oil Emulsion Polymerization Methods 0.000 description 1
- LXEKPEMOWBOYRF-UHFFFAOYSA-N [2-[(1-azaniumyl-1-imino-2-methylpropan-2-yl)diazenyl]-2-methylpropanimidoyl]azanium;dichloride Chemical compound Cl.Cl.NC(=N)C(C)(C)N=NC(C)(C)C(N)=N LXEKPEMOWBOYRF-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 125000002947 alkylene group Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 125000004069 aziridinyl group Chemical group 0.000 description 1
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- ZPOLOEWJWXZUSP-AATRIKPKSA-N bis(prop-2-enyl) (e)-but-2-enedioate Chemical compound C=CCOC(=O)\C=C\C(=O)OCC=C ZPOLOEWJWXZUSP-AATRIKPKSA-N 0.000 description 1
- ZPOLOEWJWXZUSP-WAYWQWQTSA-N bis(prop-2-enyl) (z)-but-2-enedioate Chemical compound C=CCOC(=O)\C=C/C(=O)OCC=C ZPOLOEWJWXZUSP-WAYWQWQTSA-N 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- 235000019437 butane-1,3-diol Nutrition 0.000 description 1
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000011280 coal tar Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000000779 depleting effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical compound C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 1
- JWEBAGKDUWFYTO-UHFFFAOYSA-L disodium;hydrogen phosphate;decahydrate Chemical compound O.O.O.O.O.O.O.O.O.O.[Na+].[Na+].OP([O-])([O-])=O JWEBAGKDUWFYTO-UHFFFAOYSA-L 0.000 description 1
- 238000012674 dispersion polymerization Methods 0.000 description 1
- 238000010556 emulsion polymerization method Methods 0.000 description 1
- FWDBOZPQNFPOLF-UHFFFAOYSA-N ethenyl(triethoxy)silane Chemical compound CCO[Si](OCC)(OCC)C=C FWDBOZPQNFPOLF-UHFFFAOYSA-N 0.000 description 1
- NKSJNEHGWDZZQF-UHFFFAOYSA-N ethenyl(trimethoxy)silane Chemical compound CO[Si](OC)(OC)C=C NKSJNEHGWDZZQF-UHFFFAOYSA-N 0.000 description 1
- WOXXJEVNDJOOLV-UHFFFAOYSA-N ethenyl-tris(2-methoxyethoxy)silane Chemical compound COCCO[Si](OCCOC)(OCCOC)C=C WOXXJEVNDJOOLV-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethyl mercaptane Natural products CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- XUCNUKMRBVNAPB-UHFFFAOYSA-N fluoroethene Chemical compound FC=C XUCNUKMRBVNAPB-UHFFFAOYSA-N 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 239000008098 formaldehyde solution Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 229910052598 goethite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- AEIXRCIKZIZYPM-UHFFFAOYSA-M hydroxy(oxo)iron Chemical compound [O][Fe]O AEIXRCIKZIZYPM-UHFFFAOYSA-M 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- BDAGIHXWWSANSR-NJFSPNSNSA-N hydroxyformaldehyde Chemical compound O[14CH]=O BDAGIHXWWSANSR-NJFSPNSNSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910001608 iron mineral Inorganic materials 0.000 description 1
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 239000007764 o/w emulsion Substances 0.000 description 1
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 1
- JRKICGRDRMAZLK-UHFFFAOYSA-L persulfate group Chemical group S(=O)(=O)([O-])OOS(=O)(=O)[O-] JRKICGRDRMAZLK-UHFFFAOYSA-L 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 150000007965 phenolic acids Chemical class 0.000 description 1
- 239000011505 plaster Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920001281 polyalkylene Polymers 0.000 description 1
- 229910001414 potassium ion Inorganic materials 0.000 description 1
- 238000012673 precipitation polymerization Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000007717 redox polymerization reaction Methods 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- XWGJFPHUCFXLBL-UHFFFAOYSA-M rongalite Chemical compound [Na+].OCS([O-])=O XWGJFPHUCFXLBL-UHFFFAOYSA-M 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 229910021487 silica fume Inorganic materials 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 229940087562 sodium acetate trihydrate Drugs 0.000 description 1
- 229940074545 sodium dihydrogen phosphate dihydrate Drugs 0.000 description 1
- BBMHARZCALWXSL-UHFFFAOYSA-M sodium dihydrogenphosphate monohydrate Chemical compound O.[Na+].OP(O)([O-])=O BBMHARZCALWXSL-UHFFFAOYSA-M 0.000 description 1
- 229940079827 sodium hydrogen sulfite Drugs 0.000 description 1
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 1
- 229910001379 sodium hypophosphite Inorganic materials 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 235000010265 sodium sulphite Nutrition 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 229910000018 strontium carbonate Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000001424 substituent group Chemical group 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- NVBFHJWHLNUMCV-UHFFFAOYSA-N sulfamide Chemical compound NS(N)(=O)=O NVBFHJWHLNUMCV-UHFFFAOYSA-N 0.000 description 1
- 239000001117 sulphuric acid Substances 0.000 description 1
- 235000011149 sulphuric acid Nutrition 0.000 description 1
- 238000010558 suspension polymerization method Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- CIHOLLKRGTVIJN-UHFFFAOYSA-N tert‐butyl hydroperoxide Chemical compound CC(C)(C)OO CIHOLLKRGTVIJN-UHFFFAOYSA-N 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 230000008016 vaporization Effects 0.000 description 1
- NLVXSWCKKBEXTG-UHFFFAOYSA-N vinylsulfonic acid Chemical compound OS(=O)(=O)C=C NLVXSWCKKBEXTG-UHFFFAOYSA-N 0.000 description 1
- 239000010456 wollastonite Substances 0.000 description 1
- 229910052882 wollastonite Inorganic materials 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Manufacture And Refinement Of Metals (AREA)
Abstract
【課題】安価でかつ資源的にも豊富なマラマンバ鉱石を焼結原料として多量に使用する際に、特殊な設備を用いた事前造粒等を必要とせずに焼結鉱の製造における成品歩留および生産性を良好に維持できる焼結原料の造粒処理方法を提供する。
【解決手段】新原料の全質量に対する配合割合で5質量%〜50質量%のマラマンバ鉱石を含む製鉄用焼結原料に、カルボキシル基および/またはその塩含有高分子化合物、酸基およびポリアルキレングリコール鎖を有する化合物、β−ナフタレンスルホン酸塩ホルマリン縮合物、メラミンスルホン酸塩ホルマリン縮合物、芳香族アミノスルホン酸ポリマー、リグニンスルホン酸変性物からなる群より選ばれる少なくとも一種の高分子化合物を含む造粒処理剤を、前記製鉄用焼結原料の全質量に対し、固形分換算で0.001質量%〜1質量%の割合で添加して造粒する。
【選択図】 なし[PROBLEMS] When using a large amount of inexpensive and resource-rich Maramamba ore as a sintering raw material, the product yield in the production of sintered ore without the need for prior granulation using special equipment. And a method for granulating a sintering raw material capable of maintaining good productivity.
A sintering raw material for ironmaking containing 5% to 50% by mass of maramanba ore in a mixing ratio based on the total mass of a new raw material, a carboxyl group and / or a salt-containing polymer compound, an acid group and a polyalkylene glycol. Containing at least one polymer compound selected from the group consisting of a compound having a chain, a β-naphthalene sulfonate formalin condensate, a melamine sulfonate formalin condensate, an aromatic aminosulfonic acid polymer, and a ligninsulfonic acid modified product. A granulation agent is added at a ratio of 0.001% by mass to 1% by mass in terms of solid content with respect to the total mass of the sintering raw material for iron making to granulate.
[Selection diagram] None
Description
【0001】
【発明の属する技術分野】
本発明は、製鉄用焼結鉱の製造における焼結原料の事前処理に関わり、特に焼結原料の一部としてマラマンバ鉱石を配合して焼結鉱を製造する際の焼結原料の造粒処理に関するものである。
【0002】
【従来の技術】
一般に、高炉製鉄法の主原料として用いられる焼結鉱は、以下のように製造される。先ず、焼結原料の主原料となる約10mm以下の鉄鉱石粉に、石灰石、ドロマイト、転炉スラグ、蛇紋岩、珪石、かんらん岩などの副原料、コークス粉、無煙炭などの炭材を配合後、ドラムミキサー、ペレタイザー、アイリッヒミキサー等の造粒機で適量水分となるように水分添加量を調節しながら混合、造粒を行ない、焼結原料を擬似粒子化する。ここで、擬似粒子は、主に、粒径0.5mm以下の微粉粒子が粒径1〜3mmの核粒子に付着した構造となっており、焼結原料をこのような擬似粒子とすることにより焼結原料充填層(焼結ベッド)中の微粉粒子による通気性悪化を抑制し、焼結機の生産性向上を図ることができる。
【0003】
したがって、焼結原料の造粒処理工程では、焼結原料中の微粉粒子を核粒子の周りに付着させる度合い、つまり、焼結原料の擬似粒化性を向上させること、造粒で得られた擬似粒子が焼結ベッドにおいて焼結反応までの湿潤帯、乾燥帯等で崩壊し難いこと等が求められる。また、一般に、このような焼結原料の擬似粒化性や擬似粒子の強度(崩壊し難さ)は焼結原料の配合原料の粒度構成、特に、焼結原料の主要部分を占める鉄鉱石の粒度構成や鉱石銘柄によって大きく左右されることが知られている。
【0004】
一方、焼結原料の主要原料である鉄鉱石は、成分、特性が多種多様な銘柄の鉄鉱石が世界には存在し、一般的にはこれらの複数銘柄の鉄鉱石を鉄含有原料として焼結原料中に配合して使用している。このような鉄鉱石のうち、これまで焼結原料として多く使用されてきた良質なヘマタイト鉱石は、世界の鉄鉱石資源をみても枯渇の方向にあり、現状の生産が続くと主要鉱山は近年中にも掘り尽くしてしまうと予測されており、これに替わる銘柄の鉄鉱石の利用が望まれている。
【0005】
このような中で、近年、将来の主要な焼結用原料として、良質なヘマタイト鉱石に比べて、安価でかつ資源的にも豊富なマラマンバ鉱石が焼結原料として注目されている。
【0006】
マラマンバ鉱石とは、豪州のマラマンバ鉄鉱床から産出する鉄鉱石の総称であり、ゲーサイト(Fe2O3・H2O)とマータイト(マグネタイト構造を有するFe2O3)を主要鉄鉱物とし、表1に示す産地銘柄名(通称名)でウェストアンジェラス鉱がその代表的な鉄鉱石である。
【0007】
【表1】
【0008】
その化学組成は、表1に示すように、例えば、豪州のブロックマン鉄鉱床から産出される主要鉱石である良質なヘマタイト主要鉱石と比較して結晶水含有量が5%程度と高く、マラマンバ鉱石と同様に結晶水含有量が多い鉱石として知られているピソライト鉱と比較してSiO2等の脈石成分が3%程度と低いこと、また粒度0.25mm以下の微粉鉄鉱石が多いため擬似粒化性が悪いことを特徴とする。
【0009】
現在、豪州のマラマンバ鉄鉱床の一部はすでに開発され、一部焼結原料として使用されているが、従来は、その性状、特に、造粒性の悪さから焼結工程での成品歩留や生産性を低下させるおそれがあるため、その配合量は10%程度以下とし、その他の鉱石としてブロックマン鉄鉱床から産出する良質なヘマタイト主要鉱石を配合して使用してきた。しかしながら、上述のように、日本の鉱石輸入主要国である豪州でも、ブロックマン鉱床の良質なヘマタイト主要鉱石の枯渇に伴い、ピソライト鉱床のみならず、マラマンバ鉱床に生産が移行する動きがあり、マラマンバ鉱石が今後の豪州産鉄鉱石の主力となることが予想され、マラマンバ鉱を多量に配合した焼結原料の造粒性向上が望まれている。
【0010】
上記問題を解決するために、例えば、特許文献1には「多孔質の鉄鉱石または鏡鉄鉱のような表面が平滑で、かつ緻密な鉱石を焼結原料の一部として使用するに際し、通常の造粒ラインにおけるミキサーによる混合、造粒を行う前に、該多孔質の鉄鉱石または鏡鉄鉱のような表面が平滑で緻密な鉱石を別ラインで各々個別にその物理性状に適した造粒を施し、しかる後他の一般銘柄鉱石と共にミキサーで混合、造粒することを特徴とする焼結原料の予備処理方法」が記載されている。
【0011】
また特許文献2には、「多孔質の鉄鉱石(例えば豪州産マラマンバ鉱石)を焼結原料の一部として用いる際に、通常の造粒ラインにおけるミキサーによる混合、造粒を行なう前に、該多孔質の鉄鉱石を別ラインで含水処理を施し、しかる後他の一般銘柄鉱石と共にミキサーで混合・造粒することを特徴とする焼結原料の予備処理方法」が開示されている。
【0012】
また、特許文献3には、「焼結原料を混合・造粒して事前処理する造粒ラインを、鉄鉱石・コークス等の主原料群を処理するCaO成分の低い一方の造粒ラインと、その他の鉱石等のその他原料群を処理するCaO成分の高い他方の造粒ラインとのニ系列造粒ラインに分けてなり、前記他方の造粒ラインにおけるその他原料群の鉱石に、マラマンバ鉱等の高結晶水の微粉鉱石を使用すると共に、前記両造粒ラインに生石灰を分割添加し、主原料群およびその他原料群を生石灰をバインダーとして造粒することを特徴とする焼結原料の事前処理方法」が記載されている。
【0013】
特許文献4には、軟質/多孔性鉄鉱石を焼結原料の一部として用いる際に、砂糖あるいは糖蜜等の添加剤を添加することで、軟質/多孔性鉄鉱石への水の吸収を抑制する方法が開示されている。
【0014】
また、特許文献8には、結晶水を多く含有するリモナイト鉱石などを石灰粉やスケールとともに混合し、リグニンスルホン酸を有効成分として含むパルプ廃液を添加して造粒した後、残りの原料と混合し、その後再度造粒する方法が開示されており、マラマンバ鉱石の使用が例示されている。
【0015】
【特許文献1】
特開昭52−49905号公報(公開日1977年4月21日)
【0016】
【特許文献2】
特開昭52−49906号公報(公開日1977年4月21日)
【0017】
【特許文献3】
特開平5−9601号公報(公開日1993年1月19日)
【0018】
【特許文献4】
特表平10−502417号公報(公開日1998年3月3日)
【0019】
【特許文献5】
特開昭63−149333号公報(公開日1988年6月22日)
【0020】
【特許文献6】
特開昭63−149334号公報(公開日1988年6月22日)
【0021】
【特許文献7】
特開昭63−149336号公報(公開日1988年6月22日)
【0022】
【特許文献8】
特開平5−25556号公報(公開日1993年2月2日)
【0023】
【非特許文献1】
坂本登、外4名,「高炉用新塊成鉱の製造条件に関する基礎的検討及び品質の評価」,鉄と鋼,社団法人 日本鉄鉱協会,第73年(1987)第11号,p62
【0024】
【発明が解決しようとする課題】
高結晶水・低脈石鉄鉱石は多孔質で造粒性が他の一般鉄鉱石より劣るので、特許文献1記載のように別ラインで個別にその物理性状に適した造粒を施すことは有効であるが、製造コストの上昇を招くと共に、造粒物全体の強度を大幅に向上できない欠点がある。また、特許文献2記載のような含水処理を施すことも有効であるが、造粒物全体の強度を大幅に向上することは難しく、0.25mm以下の微粉の悪影響を抑制できない欠点がある。
【0025】
また、特許文献3記載の方法では、複数の鉱石槽に加えて副原料槽、石灰石槽、バインダー槽を新たに設置して事前に造粒するので、新たな造粒処理設備を設置するに等しい極めて大きな設備投資が必要になる欠点がある。
【0026】
特許文献4記載の方法では、砂糖あるいは糖蜜等の添加剤を添加添加剤として使用すると、これらは一般に高価であるために製造コストの上昇を招くと共に、造粒物の強度を大幅に向上できない欠点がある。
【0027】
特許文献8記載の方法では、リグニンスルホン酸の造粒性の向上効果は十分ではないため、マラマンバ鉱石を多く配合した場合、生産性が著しく低下することになる。
【0028】
また、従来のマラマンバ鉱の使用例としては、日本鋼管(株)福山製鉄所においてHPS法(非特許文献1)の適用により多量のマラマンバ鉱を使用した実績はあるが、特許文献5、特許文献6および特許文献7等で開示されるHPS法は、造粒工程に皿型造粒設備を導入し、従来以上の石灰石を添加することで粒径の小さい微粉鉱石の多量使用を可能とした技術であり、既設のドラムミキサーを中心とする造粒を考慮した方法ではない。また、既設焼結機への皿型造粒設備の導入には莫大な設備投資及びランニングコストを要するものである。
【0029】
以上の特許文献等で開示されているような従来の焼結原料の造粒処理方法では、他の鉱石に比べて造粒性が悪いマラマンバ鉱石を多量に配合した焼結原料への適用は困難であり、実用性は低いものである。
【0030】
さらに、発明者らの調査から、マラマンバ鉱石は、高結晶水・低脈石鉄鉱石である他に、多孔質であり水を吸収しやすい性質を有することが判っている。
【0031】
このような多孔質のマラマンバ鉱石を多量に使用した場合、焼結原料の造粒時に水の添加量を増加することである程度はその擬似粒化性を改善することができるが、焼結時に水の蒸発潜熱の増加に起因して燃料原単位が悪化し、焼結ベッドの燃焼帯下方にある水分凝縮帯で結露する水分量が増加し、通気抵抗が増加するために生産効率および成品歩留が低下するという問題も生じる。
【0032】
本発明は、上記の問題点に鑑みなされたものであり、その目的は、安価でかつ資源的にも豊富なマラマンバ鉱石を焼結原料として多量に使用する際に、特殊な設備を用いた事前造粒等を必要とせずに焼結鉱の製造における成品歩留および生産性を良好に維持できる焼結原料の造粒処理方法を提供することにある。
【0033】
【課題を解決するための手段】
本発明のマラマンバ鉱石を含む焼結原料の造粒処理方法は、上記課題を解決するために、マラマンバ鉱石を含む製鉄用焼結原料の造粒処理方法において、新原料の全質量に対する配合割合で5質量%〜50質量%のマラマンバ鉱石を含む製鉄用焼結原料に、カルボキシル基及び/またはその塩含有高分子化合物、酸基およびポリアルキレングリコール鎖を有する化合物、β−ナフタレンスルホン酸塩ホルマリン縮合物、メラミンスルホン酸塩ホルマリン縮合物、芳香族アミノスルホン酸ポリマー、リグニンスルホン酸変性物からなる群より選ばれる少なくとも一種の高分子化合物を含む造粒処理剤を、前記製鉄用焼結原料の全質量に対し、固形分換算で0.001質量%〜1質量%の割合で添加して造粒することを特徴としている。
【0034】
上記の構成により、カルボキシル基及び/またはその塩含有高分子化合物、酸基およびポリアルキレングリコール鎖を有する化合物、β−ナフタレンスルホン酸塩ホルマリン縮合物、メラミンスルホン酸塩ホルマリン縮合物、芳香族アミノスルホン酸ポリマー、リグニンスルホン酸変性物からなる群より選ばれる少なくとも一種の高分子化合物によって、微粉の凝集物を破壊、分散し、前記微粉の凝集物に取り込まれている水を開放する、すなわち、従来有効に使用できなかった水を、焼結原料全体に行き渡らせることができ、水を効率よく使用することができる。さらに、微粉も同時に分散し、焼結原料間の接点に再凝集するので、微粉による固体架橋が形成される。マラマンバ鉱石の微粉は上記高分子化合物により、分散されやすいため、これにより、マラマンバ鉱石を含む焼結原料の造粒処理が可能となり、強固な擬似粒子を造ることができる。
【0035】
よって、上記の構成によれば、高結晶水・低脈石鉄鉱石で多孔質であり、微粉鉄鉱石が多い難造粒性のマラマンバ鉱石を多量に配合しても、その造粒性を低下することなく、さらには造粒性を向上する焼結原料の事前処理ができ、焼結機の生産効率を高め、焼結鉱の製造コストを格段に低減できる。
【0036】
本発明のマラマンバ鉱石を含む焼結原料の造粒処理方法は、上記課題を解決するために、前記カルボキシル基及び/またはその塩含有高分子化合物は、カルボキシル基及び/またはその塩含有単量体を含む単量体組成物を重合してなる高分子化合物であることを特徴としている。
【0037】
上記の構成により、前記カルボキシル基及び/またはその塩含有高分子化合物は、微粉の凝集物を破壊、分散し、取り込まれている水を開放する、すなわち、従来有効に使用できなかった水を、焼結原料全体に行き渡らせることができ、水をより効率よく使用することができる。
【0038】
本発明のマラマンバ鉱石を含む焼結原料の造粒処理方法は、上記課題を解決するために、前記単量体組成物は、カルボキシル基及び/またはその塩含有単量体を30モル%以上含むことを特徴としている。
【0039】
上記の構成により、前記カルボキシル基含有単量体を30モル%以上含む単量体組成物を重合してなる高分子は、微粉の凝集物を破壊、分散し、取り込まれている水を開放する、すなわち、従来有効に使用できなかった水を、焼結原料全体に行き渡らせることができ、水をさらに効率よく使用することができる。
【0040】
本発明のマラマンバ鉱石を含む焼結原料の造粒処理方法は、上記課題を解決するために、前記カルボキシル基及び/またはその塩含有高分子化合物は、アクリル酸を必須成分として重合して得られる高分子化合物であることを特徴としている。
【0041】
上記の構成により、前記ポリアクリル酸系高分子化合物は、微粉の凝集物を破壊、分散し、取り込まれている水を開放する、すなわち、従来有効に使用できなかった水を、焼結原料全体に行き渡らせることができ、水をさらに一層効率よく使用することができる。
【0042】
本発明のマラマンバ鉱石を含む焼結原料の造粒処理方法は、上記課題を解決するために、前記単量体組成物が、アクリル酸および/またはアクリル酸塩を全単量体成分に対し、30モル%〜100モル%含有することを特徴としている。
【0043】
【発明の実施の形態】
以下、本発明を実施するための形態について詳述する。
【0044】
本発明の製鉄用焼結原料の造粒処理方法において、焼結原料中の新原料の全質量に対するマラマンバ鉱石の配合割合を5質量%〜50質量%に限定する。
【0045】
図1には、何れも造粒後の含有水分が7質量%(一定)となるように、水分添加のみで造粒した場合および後述する本発明の造粒処理剤と水分を添加した場合におけるそれぞれの新原料の全質量に対するマラマンバ鉱石の配合割合(質量%)とGI−0.25(0.25mm以下の擬似粒子のGI指数)(%)との関係を示す。また、図2には、図1の同様の条件での新原料の全質量に対するマラマンバ鉱石の配合割合(質量%)と焼結鉱の生産率(t/d/m2)との関係をそれぞれ示す。
【0046】
なお、図1におけるGI−0.25(%)は、以下の式で求められる造粒後の平均粒径が0.25mm以下の擬似粒子のGI指数を示し、製鉄研究第288号(1976)9頁に開示されている評価方法であり、GI指数が大きいほど、核粒子の周りに付着する微粉粒子の割合が多く、焼結機の生産効率を向上させることができる。
【0047】
GI−0.25(%)=(造粒前の0.25mm以下の原料の比率−造粒後の0.25mm以下の原料の比率)/(造粒前の0.25mm以下の原料の比率)×100
また、図1および図2における新原料とは、所定の粒度以下、例えば5mm以下の焼結鉱粉である返鉱、および、コークス粉、無煙炭などの炭材を除いた焼結原料を示す。
【0048】
図1および図2から、本発明の造粒処理剤の添加により通常の水分添加のみの造粒に比べて擬似粒子のGI指数および焼結鉱の生産率は共に顕著に向上するが、焼結原料中の新原料の全質量に対するマラマンバ鉱石の配合割合(質量%)が50質量%を超えると、通常の水分添加のみの造粒時の擬似粒子のGI指数および焼結鉱の生産率より低下するため、本発明では、焼結原料中の新原料の全質量に対するマラマンバ鉱石の配合割合(質量%)の上限値を50質量%と規定する。
【0049】
なお、図1及び図2から明らかなようにさらに造粒時の擬似粒子のGI指数および焼結鉱の生産率の向上の点からは上記マラマンバ鉱石の配合割合(質量%)の上限は、好ましくは40質量%以下、特に好ましくは30質量%以下である。
【0050】
一方、焼結原料中の新原料の全質量に対するマラマンバ鉱石の配合割合(質量%)の低下は、造粒時の擬似粒子のGI指数および焼結鉱の生産率の向上の点からは好ましいが、安価でかつ資源的にも豊富なマラマンバ鉱石を焼結原料として多量に使用することによる将来的な原料の安定供給および経済的メリットが得られなくなるため、現状の焼結操業を阻害しないマラマンバ鉱石の配合割合を基準として、その下限を5質量%とした。さらに好ましくは10質量%とするのが良い。
【0051】
なお、新原料(炭材および返鉱を除く焼結原料、すなわち、鉱石と、ダストを含む副原料である)中に配合するマラマンバ鉱石以外の鉄鉱石は、特に限定する必要はなく、具体的には、例えば、ニューマン鉱石、ローブリバー鉱石、カラジャス鉱石、ハマスレー鉱石、クドレムクPF(ペレットフィード)、リオドセ鉱石等を配合することができる。
【0052】
本実施の形態では、上記新原料中に配合する鉄鉱石として、マラマンバ粉鉱、ニューマン粉鉱、ローブリバー粉鉱、カラジャス粉鉱、ハマスレー粉鉱、ハマスレー粉鉱、リオドセ粉鉱等の粉鉱を用いるものとする。
【0053】
また、焼結原料中の新原料の全質量に対する上記鉄鉱石の配合量は、通常、50質量%〜90質量%の範囲内であるが、本発明においては特に限定されるものではない。
【0054】
また、焼結原料には、一般に、上記鉄鉱石および副原料からなる新原料と、炭材および返鉱が配合される。ここで、副原料としては、具体的には、例えば、石灰石、ドロマイト、転炉スラグなどの含CaO副原料、蛇紋岩、珪岩、かんらん岩などの含SiO2副原料、ダストが挙げられる。また、炭材は、焼結時の燃料として使用され、具体的には、例えば、粉コークス、無煙炭等が挙げられる。本発明では、これら鉄鉱石、副原料、炭材の種類は特に限定されるものではない。
【0055】
本発明の製鉄用原料の造粒処理方法において、上記のマラマンバ鉱石を含む製鉄用焼結原料に添加する造粒処理剤を、カルボキシル基及び/またはその塩含有高分子化合物、酸基およびポリアルキレングリコール鎖を有する化合物、β−ナフタレンスルホン酸塩ホルマリン縮合物、メラミンスルホン酸塩ホルマリン縮合物、芳香族アミノスルホン酸ポリマー、リグニンスルホン酸変性物からなる群(以下、「高分子化合物群A」という)より選ばれる少なくとも一種の高分子化合物を含むものに限定し、かつ、上記焼結原料の全質量に対する上記造粒処理剤の添加割合を、固形分換算で0.001質量%〜1質量%に限定する。
【0056】
なお、造粒処理剤の固形分は、例えば、造粒処理剤を窒素雰囲気下、130℃で3時間乾燥した前後の質量から簡単に計算することができる。
【0057】
図3には、焼結原料中の新原料の全質量に対するマラマンバ鉱石の配合割合が15質量%の場合および50質量%の場合における、焼結原料の全質量に対する造粒処理剤の添加割合(固形分換算)とGI−0.25(0.25mm以下の擬似粒子のGI指数)との関係を示す。
【0058】
図3から、少なくとも本発明の造粒処理剤を、焼結原料の全質量に対し、固形分換算で0.001質量%以上の割合で、焼結原料に添加することにより通常の水分添加のみの造粒(マラマンバ配合なしの条件でGI−0.25=80%)に比べて擬似粒子のGI−0.25は顕著に向上する。したがって、本発明では、焼結原料の全質量に対する造粒処理剤の添加割合(質量%)の下限を、固形分換算で0.001質量%と規定する。なお、図3から明らかなように、焼結原料中の新原料の全質量に対するマラマンバ鉱石の配合割合が増加するとともに、所定のGI−0.25を得るためには、本発明の造粒処理剤の添加割合を増加する必要があり、例えば、焼結原料中の新原料の全質量に対するマラマンバ鉱石の配合割合が50質量%の場合は、焼結原料の全質量に対する造粒処理剤の添加割合が、固形分換算で0.01質量%以上となるように、マラマンバ鉱石の配合割合の増加に応じて造粒処理剤の添加割合を調整するのが好ましい。
【0059】
一方、焼結原料の全質量に対する造粒処理剤の添加割合が、固形分換算で1質量%を超えると、造粒過多となって適正な擬似粒子の形成を阻害し、焼結時の燃料となるコークス粉などの炭材を内装した焼結原料の塊となってしまい、該焼結原料の塊内部への通気性およびそれによる炭材の燃焼を阻害し焼結されなくなる等の悪影響が生じる。したがって、本発明では、焼結原料の全質量に対する造粒処理剤の添加割合の上限を、固形分換算で1質量%に限定する。さらに好ましくは、固形分換算で0.5質量%とするのがよい。
【0060】
なお、造粒処理剤の添加量の下限値は、焼結原料の鉱石の造粒性や、水分添加量、使用する造粒機等によっても左右されるが、経済性の観点からは、できるだけ少量となるように設計することが望ましい。
【0061】
上記本発明の造粒処理剤のうち、カルボキシル基及び/またはその塩含有高分子化合物は、例えば、カルボキシル基及び/またはその塩含有単量体を単独で、あるいは、該カルボキシル基及び/またはその塩含有単量体と共重合可能なその他の単量体をさらに含む単量体組成物を、重合開始剤の存在下で(共)重合することにより得ることができる。
【0062】
上記カルボキシル基及び/またはその塩含有単量体としては、具体的には、例えば、(メタ)アクリル酸、マレイン酸、無水マレイン酸、イタコン酸、フマル酸、クロトン酸、アクリルアミドグリコール酸およびこれらの塩等が挙げられるが、特に限定されるものではない。これらカルボキシル基含有単量体は、一種類のみを用いてもよく、二種類以上を適宜組み合わせて用いてもよい。上記例示のカルボキシル基含有単量体のなかでも、マレイン酸、(メタ)アクリル酸およびこれらの塩がより好ましく、アクリル酸、およびアクリル酸の塩が特に好ましい。
【0063】
上記カルボキシル基含有単量体としてカルボキシル基含有単量体の塩を使用する場合、その塩基としては、特に限定されるものではないが、カリウムイオン、ナトリウムイオン等のアルカリ金属イオン;カルシウムイオン等のアルカリ土類金属イオン;アンモニウム、1級〜4級アミン等の窒素含有塩基;等が挙げられる。
【0064】
上記カルボキシル基及び/またはその塩含有高分子化合物のなかでも、アクリル酸及び/またはその塩を(共)重合することによって得られるものが、添加量が少なくても効果が得られる傾向にあることからより好ましく、上記カルボキシル基及び/またはその塩含有高分子化合物としては、(a)ポリアクリル酸、(b)ポリアクリル酸が含有するカルボキシル基の一部あるいは全部がナトリウム、カリウム、カルシウム、アンモニアからなる群より選ばれる少なくとも一種で中和されたポリアクリル酸塩からなる群より選ばれる少なくとも一種のポリアクリル酸系ポリマーであることがより好ましい。アクリル酸および/またはアクリル酸塩を全単量体に占める割合が、30モル%〜100モル%となるように(共)重合することが好ましく、50モル%〜100モル%とすることがより好ましく、70モル%〜100モル%とすることがさらに好ましく、90モル%〜100モル%とすることが最も好ましい。
【0065】
カルボキシル基及び/またはその塩含有高分子化合物は、上記カルボキシル基及び/またはその塩含有単量体に由来する構成単位を含むと共に、上記カルボキシル基及び/またはその塩含有単量体と共重合可能なその他の単量体に由来する構成単位を含んでいてもよい。すなわち、上記単量体組成物は、カルボキシル基及び/またはその塩含有単量体の他に、必要に応じて、該カルボキシル基及び/またはその塩含有単量体と共重合可能なその他の単量体を含んでいてもよい。単量体組成物がその他の単量体を含む場合においては、該単量体組成物は、カルボキシル基及び/またはその塩含有単量体を30モル%以上含んでいることがより好ましい。
【0066】
上記その他の単量体(以下、共重合性単量体と記す)としては、具体的には、例えば、ビニルスルホン酸、スチレンスルホン酸、スルホエチル(メタ)アクリレート等のスルホ基含有単量体;2−(メタ)アクリロイルオキシエチルアシッドホスフェート、2−(メタ)アクリロイルオキシプロピルアシッドホスフェート、2−(メタ)アクリロイルオキシ−3−クロロプロピルアシッドホスフェート、2−(メタ)アクリロイルオキシエチルフェニルホスフェート等の酸性リン酸エステル基含有単量体;ビニルフェノール等の石炭酸系単量体;等の酸基含有単量体、およびその塩、ポリエチレングリコールモノメタアクリル酸エステル、メトキシポリエチレングリコールモノメタクリル酸エステル、メトキシポリエチレングリコールモノアクリル酸エステル等のポリアルキレングリコール(メタ)アクリル酸エステル;3−メチル−3−ブテン−1−オールにエチレンオキサイドを付加してなるポリアルキレングリコールモノアルケニルエーテル単量体;アリルアルコールにエチレンオキサイドを付加してなるポリエチレングリコールモノエテニルエーテル単量体;無水マレイン酸にポリエチレングリコールを付加してなるマレイン酸ポリエチレングリコールハーフエステル;等のポリアルキレングリコール鎖含有単量体が挙げられる。上記ポリアルキレングリコール鎖含有単量体のなかでも、エチレンオキサイド換算で5モル以上、100モル以下、好適には10モル以上、100モル以下の鎖長のポリアルキレングリコール鎖を含有する単量体が、入手が容易であり、また、擬似粒化性を向上させる上でより好ましく、また、重合性の面からも良好である。その他の例として、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸(N,N−ジメチルアミノエチル)、(メタ)アクリル酸(N,N−ジエチルアミノエチル)、(メタ)アクリル酸アミノエチル等の、炭素数1〜18の(メタ)アクリル酸アルキルエステル;(メタ)アクリルアミド、N−メチル(メタ)アクリルアミド、N−エチル(メタ)アクリルアミド、N,N−ジメチル(メタ)アクリルアミド等の、(メタ)アクリルアミドおよびその誘導体;酢酸ビニル;(メタ)アクリロニトリル;N−ビニル−2−ピロリドン、ビニルピリジン、ビニルイミダゾール等の塩基含有単量体;N−メチロール(メタ)アクリルアミド、N−ブトキシメチル(メタ)アクリルアミド等の、架橋性を有する(メタ)アクリルアミド系単量体;ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ−(メタ)アクリロイルプロピルトリメトキシシラン、ビニルトリス(2−メトキシエトキシ)シラン、アリルトリエトキシシラン等の、加水分解性を有する基がケイ素原子に直結しているシラン系単量体;グリシジル(メタ)アクリレート、グリシジルエーテル(メタ)アクリレート等のエポキシ基含有単量体;2−イソプロペニル−2−オキサゾリン、2−ビニル−2−オキサゾリン等のオキサゾリン基含有単量体;2−アジリジニルエチル(メタ)アクリレート、(メタ)アクリロイルアジリジン等のアジリジン基含有単量体;フッ化ビニル、フッ化ビニリデン、塩化ビニル、塩化ビニリデン等のハロゲン基含有単量体;(メタ)アクリル酸と、エチレングリコール、ジエチレングリコール、プロピレングリコール、1,3−ブチレングリコール、ネオペンチルグリコール、1,6−ヘキサンジオール、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等の多価アルコールとのエステル化物等の、分子内に不飽和基を複数有する多官能(メタ)アクリル酸エステル;メチレンビス(メタ)アクリルアミド等の、分子内に不飽和基を複数有する多官能(メタ)アクリルアミド;ジアリルフタレート、ジアリルマレエート、ジアリルフマレート等の、分子内に不飽和基を複数有する多官能アリル化合物;アリル(メタ)アクリレート;ジビニルベンゼン;等が挙げられるが、特に限定されるものではない。これら共重合性単量体は、必要に応じて、一種類を用いてもよく、また、二種類以上を用いてもよい。
【0067】
さらに、上記単量体組成物には、分子量の調節を目的として、連鎖移動剤を添加することもできる。該連鎖移動剤としては、具体的には、例えば、メルカプトエタノール、メルカプトプロピオン酸、t−ドデシルメルカプタン等のメルカプト基含有化合物;四塩化炭素;イソプロピルアルコール;トルエン;次亜リン酸ナトリウム;等の化合物が挙げられる。これら連鎖移動剤は、必要に応じて、一種類を用いてもよく、また、二種類以上を用いてもよい。これら連鎖移動剤の使用量は特に限定されるものではない。
【0068】
カルボキシル基及び/またはその塩含有高分子化合物は、上記単量体組成物を重合させることによって得られる。重合方法は、特に限定されるものではなく、従来公知の種々の重合方法、例えば、水中油型乳化重合法、油中水型乳化重合法、懸濁重合法、分散重合法、沈澱重合法、溶液重合法、水溶液重合法、塊状重合法等を採用することができる。上記例示の重合方法のなかでも、生産コストの低減並びに安全性等の観点から、水溶液重合法がより好ましい。
【0069】
重合方法に用いられる重合開始剤は、熱または酸化還元反応によって分解し、ラジカル分子を発生させる化合物であればよい。また、水溶液重合法を採用する場合においては、水溶性を備えた重合開始剤が好ましい。該重合開始剤としては、具体的には、例えば、過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム等の過硫酸塩類;2,2’−アゾビス−(2−アミジノプロパン)二塩酸塩、2,2’−アゾビス−2−メチルプロピオンアミジン塩酸塩、4,4’−アゾビス−(4−シアノペンタン酸)等の水溶性アゾ化合物;過酸化水素等の熱分解性開始剤;過酸化水素およびアスコルビン酸、t−ブチルハイドロパーオキサイドおよびロンガリット、過硫酸カリウムおよび金属塩、過硫酸アンモニウムおよび亜硫酸水素ナトリウム、等の組み合わせからなるレドックス系重合開始剤;等が挙げられるが、特に限定されるものではない。これら重合開始剤は、一種類のみを用いてもよく、また、二種類以上を併用してもよい。尚、重合開始剤の使用量は、単量体組成物の組成や重合反応の条件等に応じて適宜設定すればよい。
【0070】
反応温度や反応時間等の重合条件は、単量体組成物の組成や、重合開始剤の種類等に応じて適宜設定すればよい。水溶液重合法を採用する場合における単量体組成物の反応系への供給方法としては、例えば、一括添加法、分割添加法、成分滴下法、パワーフィード法、多段滴下法等を行うことができるが、特に限定されるものではない。重合反応は常圧下、減圧下、加圧下の何れで行ってもよい。
【0071】
上記カルボキシル基及び/またはその塩含有高分子化合物の合成に際し、水溶液重合法を採用した場合に得られるポリマー水溶液中に含まれる、上記カルボキシル基及び/またはその塩含有高分子化合物を含む不揮発分の濃度は、特に限定されるものではないが、70質量%以下であることがより好ましい。不揮発分の濃度が70質量%を越えるポリマー水溶液は、粘度が高くなり、焼結原料と均一に混ざるまでの時間が長くなってしまう。
【0072】
本発明に係る上記カルボキシル基及び/またはその塩含有高分子化合物は、「質量平均分子量(重量平均分子量)/数平均分子量」で表される分散度が、1.2以上、12.0以下の範囲内であることが好ましいが、特に限定されるものではない。分散度が1.2未満であると、造粒後の焼結原料の強度が低下する傾向にある。一方、分散度が12.0より大きくても、十分な造粒効果が得られないおそれがある。
【0073】
また、上記カルボキシル基及び/またはその塩含有高分子化合物における数平均分子量は、500以上、20000以下の範囲内であることが好ましいが、特に限定されるものではない。数平均分子量が500未満あるいは20000より大きい場合、十分な造粒効果が得られないおそれがある。
【0074】
また、上記酸基およびポリアルキレングリコール鎖を有する化合物は、例えば、上記ポリアルキレングリコール鎖を有する単量体と酸基含有単量体を必須成分とする単量体組成物を重合して得ることができる。酸基含有単量体としては、上記カルボキシル基含有単量体、上記スルホ基含有単量体、上記酸性リン酸エステル含有単量体、石油酸系単量体が挙げられる。また、その他の成分として、上記共重合性単量体を含んでいてもよい。また、酸基およびポリアルキレングリコール鎖を有する化合物は、例えば、ポリアルキレングリコール鎖を有する化合物存在下で、上記酸基含有単量体を重合することによっても得ることができる。酸基およびポリアルキレングリコール鎖を有する化合物は、カルボキシル基含有高分子化合物と同様の重合方法で得ることができるが、この際に前述した連鎖移動剤や重合開始剤が使用できる。本発明で酸基とは、酸型の構造のもの及び/または酸が中和された構造のものを示す。従って、本発明で酸基及びポリアルキレングリコール鎖を有する化合物とは、酸基の一部あるいは全部が中和されている構造のものを含む。
【0075】
また、上記β−ナフタレンスルホン酸塩ホルマリン縮合物は、コールタール留分のナフタリン油に濃硫酸を反応させ、スルホン化したものをホルムアルデヒドで縮合反応させたものであり、例えば、下記一般式(1)
【0076】
【化1】
【0077】
(式中、R1、R2はそれぞれ独立して水素原子、CH3原子、またはCH2CH3基を表し、Mはアルカリ金属イオン、アルカリ土類金属イオン、または窒素含有塩基を表し、pは1〜10000の正数を表す)
で表される構造を有している。
【0078】
なお、ここで使用されるナフタリン油の成分は、一般に、ナフタリン、チオナフテン、メチルナフタリン等の混合物であることが多い。上記β−ナフタレンスルホン酸塩ホルマリン縮合物としては、従来公知のβ−ナフタレンスルホン酸塩ホルマリン縮合物、例えば市販のβ−ナフタレンスルホン酸塩ホルマリン縮合物を使用することができ、その製造条件等は、特に限定されるものではない。
【0079】
また、上記メラミンスルホン酸塩ホルマリン縮合物は、ホルムアルデヒド水溶液にメラミンを縮合反応させ、これを亜硫酸ナトリウムでスルホン化した水溶性高分子化合物であり、例えば、下記一般式(2)
【0080】
【化2】
【0081】
(式中、Mはアルカリ金属イオン、アルカリ土類金属イオン、または窒素含有塩基を表し、qは1〜10000の正数を表す)
で表される構造単位を有している。上記メラミンスルホン酸塩ホルマリン縮合物もまた、従来公知のメラミンスルホン酸塩ホルマリン縮合物、例えば市販のメラミンスルホン酸塩ホルマリン縮合物を使用することができ、その製造条件等は、特に限定されるものではない。
【0082】
また、上記芳香族アミノスルホン酸ポリマーは、アニリンをスルホン化したアミノベンゼンスルホン酸とフェノールとをホルムアルデヒドを用いて縮合させた水溶性高分子化合物であり、例えば、下記一般式(3)
【0083】
【化3】
【0084】
(式中、Mはアルカリ金属イオン、アルカリ土類金属イオン、または窒素含有塩基を表し、r、sはそれぞれ独立して1〜10000の正数を表す)
で表される構造単位を有している。上記芳香族アミノスルホン酸ポリマーもまた、従来公知の芳香族アミノスルホン酸ポリマー、例えば市販の芳香族アミノスルホン酸ポリマーを使用することができ、この製造条件等は、特に限定されるものでない。
【0085】
さらに、上記リグニンスルホン酸変性物は、パルプ廃液に濃硫酸を作用させて得られたリグニンスルホン酸を変性し、β−ナフタレンスルホン酸等と複合化したポリマーであり、例えば、下記一般式(4)
【0086】
【化4】
【0087】
(式中、R3はβ−ナフタレンスルホン酸塩ホルマリン縮合物に由来する塩、またはCOOH基を表し、Mは金属イオン、アルカリ土類金属イオン、または窒素含有塩基を表し、tは1〜10000の正数を表す)
で表される構造単位を有している。上記リグニンスルホン酸変性物もまた、従来公知のリグニンスルホン酸変性物、例えば市販のリグニンスルホン酸変性物を使用することができ、その製造条件等は、特に限定されるものではない。該リグニンスルホン酸変性物は、単なるリグニンスルホン酸より優れた分散性を有している。
【0088】
上記一般式(1)〜(4)において、Mで表される置換基のうち、アルカリ金属イオンとしては、具体的には、例えば、カリウム、ナトリウム等のアルカリ金属のイオンが挙げられる。また、アルカリ土類金属イオンとしては、具体的には、例えば、カルシウム等のアルカリ土類金属イオンが挙げられる。また、窒素含有塩基としては、アンモニウム、1級〜4級のアミン等が挙げられる。
【0089】
上記酸およびポリアルキレングリコール鎖を有する化合物、β−ナフタレンスルホン酸塩ホルマリン縮合物、メラミンスルホン酸塩ホルマリン縮合物、芳香族アミノスルホン酸ポリマー、およびリグニンスルホン酸変性物の数平均分子量は300以上、10万以下であることがより好ましい。また、数平均分子量の下限値は500であることがさらに好ましく、上限値は2万であることがさらに好ましい。上記数平均分子量が300未満の場合、擬似粒化性が低下する傾向にあり、10万を超える場合、粘度が高くなりすぎ、上記高分子化合物が、鉄鉱石に十分に廻らなくなり、擬似粒化性が低下するおそれがある。
【0090】
本発明によれば、マラマンバ鉱石を含む焼結原料を造粒処理する際に、上記高分子化合物群Aに属する高分子化合物を含む造粒処理剤を添加する工程を含むことで、微粉の凝集物を破壊、分散し、前記微粉の凝集物に取り込まれている水を開放する、すなわち、従来有効に使用できなかった水を、焼結原料全体に行き渡らせることができ、水を効率よく使用することができる。さらに、微粉も同時に分散し、焼結原料粒子間の接点に再凝集するので、微粉による固体架橋が形成される。これにより、マラマンバ鉱石を含む焼結原料の造粒処理が可能となり、強固な擬似粒子を造ることができる。
【0091】
上記造粒処理剤は、上記高分子化合物Aを必須成分とし、好ましくはさらに水を含有する。上記造粒処理剤の、上記高分子化合物群Aに属する高分子化合物の含有量は、0.01質量%〜70質量%の範囲内であることが好ましい。また、水の含有量としては、30質量%〜99.99質量%の範囲内であることが好ましい。
【0092】
もちろん、焼結原料だけではなく、ペレット原料(鉄鉱石、副原料、燃料等)に対する事前処理として本発明を用いることができる。その場合、ペレット原料に対する造粒処理剤の添加量は、特に限定されるものではないが、ペレット原料の全質量に対し、固形分換算で、下限値がより好ましくは0.01質量%であり、さらに好ましくは0.03質量%であり、上限値がより好ましくは5質量%であり、さらに好ましくは1質量%である。固形分換算で5質量%を超えて造粒処理剤を添加すると、造粒過多となってペレット原料の大きな塊ができてしまい、該ペレット原料の粒径のバラツキが大きくなる等の悪影響が出てしまう。また、使用する造粒処理剤の添加量の下限値は、ペレット原料の造粒性や、使用する造粒機等によって左右されるが、できるだけ少量となるように設計することが望ましい。
【0093】
さらに、上記造粒処理剤は、上記高分子化合物群Aに属する高分子化合物が有する性能、特に、該高分子化合物群Aに属する高分子化合物を、マラマンバ鉱石を含む焼結原料の造粒に用いた場合における擬似粒化性の向上効果を阻害しない範囲内で、必要に応じて、他の成分、例えば生石灰等の従来公知の、他の造粒添加剤等と併用しても構わない。
【0094】
さらに、上記造粒処理剤は、擬似粒子の付着粉の付着力を増し、焼結ベッドにおける水分凝縮帯等の崩壊を抑制し、得られる焼結鉱の生産率を向上する目的で、上記高分子化合物群Aに属する高分子化合物が有する性能、特に該高分子化合物群Aに属する高分子化合物を、マラマンバ鉱石を含む焼結原料の造粒に用いた場合における擬似粒化性の向上効果を阻害しない範囲内で、平均粒径200μm以下の微粉を併用することができる。適当な微粉としては、炭酸カルシウム、カオリンクレー、シリカ、硅砂、タルク、ベントナイト、ドロマイト粉末、ドロマイトプラスタ、炭酸マグネシウム、シリカフューム、無水石膏、セリサイト、モンモリナイト、シラス、シラスバルーン、珪藻土、焼成珪藻土、シリコンカーバイド、黄色酸化鉄、炭酸ストロンチウム、炭酸バリウム、黒鉛、ワラストナイト、クレカスフェアー、カーボンブラック、トナー、べんがら、粉砕蛇紋岩、高炉スラグ、転炉スラグ、活性白土、ポルトランドセメント等のセメント、粉砕珪石、酸化マグネシウム、焼成ヒル石、ペレットフィード等の鉄鉱石、製鉄所で発生するダスト、製鉄所以外のプロセスで発生するダスト、具体的には、フライアッシュや重油灰等の火力発電所で発生するダスト、製銅プロセスで発生するカラミ鉄精鉱や銅スラグ、アルミナ製造工程で排出される赤泥、その他、排煙脱硫石膏やアスベスト粉塵等の無機あるいは有機微粒子が挙げられる。上記微粉の平均粒径は、好ましくは50μm以下であり、さらに好ましくは25μm以下であり、最も好ましくは15μm以下である。
【0095】
本発明は、例えば、難造粒性の焼結原料等を、予め選択的に混合及び/または造粒処理した後、残りの焼結原料に添加して造粒処理する方法を用いてもよい。該造粒処理方法は、高分子化合物や、擬似粒子の崩壊抑制剤としての微粒子の添加量を低減できる傾向にある点で好ましい。但し、該造粒処理方法を採用する場合、処理工程が増加したり、予備処理工程の設備が必要となる。
【0096】
本発明は以下に述べる各実施例に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施例にそれぞれ開示された技術手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
【0097】
【実施例】
以下、実施例および比較例により、本発明をさらに詳細に説明するが、本発明はこれらにより何ら限定されるものではない。尚、実施例および比較例に記載の「部」は「質量部」を示し、「%」は「質量%」を示す。また、以下に記載の実施例および比較例における焼結原料並びにペレット原料は、全て、絶乾状態のものを使用した。
【0098】
本発明おける数平均分子量、質量平均分子量、分散度、平均粒径、GI指数、生産率は、下記方法により測定した。
【0099】
(数平均分子量、質量平均分子量、分散度)
高分子化合物の数平均分子量並びに質量平均分子量は、GPC(ゲルパーミエーションクロマトグラフィー)で測定した。測定条件は以下の通りである。
【0100】
ポンプ:「L−7110」(株式会社日立製作所製)
キャリア液:リン酸水素二ナトリウム十二水和物34.5gおよびリン酸二水素ナトリウム二水和物46.2gに超純水を加えて全量を5000gとした水溶液
流速:0.5ml/min
カラム:水系GPCカラム「GF−7MHQ」(昭和電工株式会社製)1本
検出器:紫外線(UV)検出器「L−7400」(株式会社日立製作所製)、波長214nm
分子量標準サンプル:ポリアクリル酸ナトリウム(創和科学株式会社製)
分析サンプルは、高分子化合物が固形分で0.1%となるように上記キャリア液で希釈することにより調製した。
【0101】
また、高分子化合物の分散度は、上記測定条件により測定した質量平均分子量並びに数平均分子量に基づいて、以下の計算式
分散度=質量平均分子量/数平均分子量
により算出した。
【0102】
ただし、実施例6、7で得られる高分子化合物については、以下の測定条件を適用した。
【0103】
機種:Waters LCM1
キャリア液:水10999g、アセトニトリル6001gの混合液に酢酸ナトリウム三水和物115.6gを溶解し、さらに30%水酸化ナトリウム水溶液でPH6.0に調節した水溶液
流速:0.8ml/min
カラム:水系GPCカラム「TSKgel GuardColumnSWXL+G4000SWXL+G3000SWXL+G2000SWXL」(東ソー株式会社製)
カラム温度:35℃
検出器:Waters 410 示差屈折検出器
分子量標準サンプル:ポリエチレングリコール
分析サンプルは、高分子化合物が固形分で0.1%となるように上記キャリア液で希釈することにより調製した。
【0104】
(平均粒径、GI指数)
造粒操作を行って得られた擬似粒子を80℃のオーブンで1時間乾燥した後、ふるいを用いて分級することにより、その粒度(擬似粒度)並びに平均粒径を求めた。造粒された擬似粒子のGI指数とは、製鉄研究第288号(1976)9頁に開示されている評価方法の一つであり、核粒子の周りに付着する微粉粒子の割合を示す。この割合が大きいほど、微粉粒子を核粒子の周りに付着させる効果に優れ、焼結機の生産効率を向上させることができる。以下の測定においては、造粒後の平均粒径が0.25mm以下の擬似粒子のGI指数を求めた。また、0.25mm以下の擬似粒子のGI指数(擬似粒化指数)は以下の式により計算した。
【0105】
0.25mm以下の擬似粒子のGI指数=(造粒前の0.25mm以下の原料の比率−造粒後の0.25mm以下の原料の比率)/(造粒前の0.25mm以下の原料の比率)×100
(成品歩留及び生産率)
成品歩留は、焼結鍋試験において、焼結鉱(シンターケーキ)50kgを2mの高さから鉄板上に5回落下させたときの、粒径5mm以上の粒度を有する粒子の割合を測定することにより評価した。
【0106】
焼結鉱の生産率は、以下の式
生産率(t/day/m2)=
成品歩留評価後の粒径5mm以上の粒度を有する粒子の総質量(重量)(t)/焼結時間(day)/焼結機(鍋)の表面積(m2)
により算出した。
【0107】
〔実施例1〕
攪拌機およびコンデンサを備えた容量5Lのセパラブルフラスコ(SUS316製)に、イオン交換水805.5部および連鎖移動剤としての45%次亜リン酸ナトリウム一水和物水溶液40.1部を仕込み、攪拌下、系の沸点(100℃)まで昇温した。
【0108】
続いて、上記セパラブルフラスコ内に、カルボキシル基含有単量体としての80%アクリル酸水溶液2126.1部、並びに、重合開始剤としての15%過硫酸ナトリウム水溶液112.4部および45%次亜リン酸ナトリウム一水和物水溶液160.2部を滴下した。上記アクリル酸水溶液、過硫酸ナトリウム水溶液、次亜リン酸ナトリウム一水和物水溶液は、それぞれ別々の滴下口より滴下した。アクリル酸水溶液は180分間で滴下した。過硫酸ナトリウム水溶液は185分間で滴下した。次亜リン酸ナトリウム一水和物水溶液は180分間で滴下した。滴下時間中、反応温度は系の沸点を維持した。滴下終了後、同温度に5分間保持した後、中和剤としての48%水酸化ナトリウム水溶液1889.0部を60分間かけて滴下することにより、ポリマー水溶液を得た。このようにして得られたポリマー水溶液中の重合体(高分子化合物)の数平均分子量、分散度を算出したところ、数平均分子量は2100、質量平均分子量6200、分散度は2.93であった。
【0109】
また、得られたポリマー水溶液を固形分換算で35部となるように採取し、これをイオン交換水で希釈し、5250部にすることにより本発明にかかる造粒処理剤(1)を得た。
【0110】
一方、表2に示す組成を有する、マラマンバ鉱石を含有する焼結原料を調製した。マラマンバ鉱石としてはウエストアンジェラスを使用した。
【0111】
【表2】
【0112】
上記の焼結原料70000部をドラムミキサーに投入し、回転速度24min−1で1分間、予備攪拌した。その後、同回転速度で攪拌しながら、該焼結原料に、予め調製した本発明にかかる造粒処理剤(1)5250部を霧吹きを用いて約1.5分間かけて噴霧した。焼結原料に対するカルボキシル基含有高分子化合物の割合は0.05%であった。噴霧後、さらに同回転速度で3分間攪拌することにより、造粒操作を行った。
【0113】
得られたそれぞれの擬似粒子に含まれる水分を測定すると共に、造粒物を80℃のオーブンで1時間乾燥し、該擬似粒子をふるいを用いて分級することにより、造粒後の平均粒径が0.25mm以下の擬似粒子のGI指数を求めた。
【0114】
〔実施例2〕
攪拌機およびコンデンサを備えた容量5Lのセパラブルフラスコ(SUS316製)に、イオン交換水805.5部を仕込み、攪拌下、系の沸点(100℃)まで昇温した。
【0115】
続いて、上記セパラブルフラスコ内に、80%アクリル酸水溶液2126.1部、並びに、15%過硫酸ナトリウム水溶液112.4部、および45%次亜リン酸ナトリウム一水和物水溶液88.5部を滴下した。上記アクリル酸水溶液、過硫酸ナトリウム水溶液、次亜リン酸ナトリウム一水和物水溶液は、それぞれ別々の滴下口より滴下した。アクリル酸水溶液は180分間で滴下した。過硫酸ナトリウム水溶液は185分間で滴下した。次亜リン酸ナトリウム一水和物水溶液は180分間で滴下した。滴下時間中、反応温度は系の沸点を維持した。滴下終了後、同温度に5分間保持した後、48%水酸化ナトリウム水溶液1889.0部を60分間かけて滴下することにより、ポリマー水溶液を得た。このようにして得られたポリマー水溶液中の重合体(高分子化合物)の数平均分子量、分散度を算出したところ、数平均分子量は2900、質量平均分子量12200、分散度は4.21であった。
【0116】
また、得られたポリマー水溶液を固形分換算で35部となるように採取し、これをイオン交換水で希釈し、5250部にすることにより本発明にかかる造粒処理剤(2)を得た。
【0117】
その後、実施例1において、造粒処理剤(1)に代えてこの造粒処理剤(2)を用いて実施例1と同様の操作により造粒を行い、得られた擬似粒子をふるいを用いて分級することにより、造粒後の平均粒径が0.25mm以下の擬似粒子のGI指数を求めた。
【0118】
〔実施例3〕
攪拌機およびコンデンサを備えた容量5Lのセパラブルフラスコ(SUS316製)に、イオン交換水805.5部、および45%次亜リン酸ナトリウム一水和物水溶液40.1部を仕込み、攪拌下、系の沸点(100℃)まで昇温した。
【0119】
続いて、上記セパラブルフラスコ内に、80%メタクリル酸水溶液2126.1部、並びに、15%過硫酸ナトリウム水溶液112.4部、および45%次亜リン酸ナトリウム一水和物水溶液160.2部を滴下した。上記メタクリル酸水溶液、過硫酸ナトリウム水溶液、次亜リン酸ナトリウム一水和物水溶液は、それぞれ別々の滴下口より滴下した。アクリル酸水溶液は180分間で滴下した。過硫酸ナトリウム水溶液は185分間で滴下した。次亜リン酸ナトリウム一水和物水溶液は180分間で滴下した。滴下時間中、反応温度は系の沸点を維持した。滴下終了後、同温度に10分間保持した後、48%水酸化ナトリウム水溶液1595.1部を60分間かけて滴下することにより、ポリマー水溶液を得た。このようにして得られたポリマー水溶液中の重合体(高分子化合物)の数平均分子量、分散度を算出したところ、数平均分子量は1900、質量平均分子量6300、分散度は3.31であった。
【0120】
また、得られたポリマー水溶液を固形分換算で35部となるように採取し、これをイオン交換水で希釈し、5250部にすることにより本発明にかかる造粒処理剤(3)を得た。
【0121】
その後、実施例1において、造粒処理剤(1)に代えてこの造粒処理剤(3)を用いて実施例1と同様の操作により造粒を行い、得られた擬似粒子をふるいを用いて分級することにより、造粒後の平均粒径が0.25mm以下の擬似粒子のGI指数を求めた。
【0122】
〔実施例4〕
攪拌機およびコンデンサを備えた容量1Lのセパラブルフラスコ(SUS316製)に、イオン交換水355部、無水マレイン酸98部、および水酸化ナトリウム80部を仕込んで中和させ、攪拌下、系の沸点(100℃)まで昇温した。
【0123】
続いて、上記セパラブルフラスコ内に、40%アクリル酸水溶液180部、並びに、10%過硫酸ナトリウム水溶液、および14%過酸化水素水溶液100部を滴下した。上記アクリル酸水溶液、過硫酸ナトリウム水溶液、過酸化水素水溶液は、それぞれ別々の滴下口より4時間かけて滴下した。滴下時間中、反応温度は系の沸点を維持した。滴下終了後、同温度に60分間保持した後、49%水酸化ナトリウム水溶液57部を60分間かけて滴下することにより、ポリマー水溶液を得た。このようにして得られたポリマー水溶液中の重合体(高分子化合物)の数平均分子量、分散度を算出したところ、数平均分子量は1200、質量平均分子量5900、分散度は4.94であった。
【0124】
また、得られたポリマー水溶液を固形分換算で35部となるように採取し、これをイオン交換水で希釈し、5250部にすることにより本発明にかかる造粒処理剤(4)を得た。
【0125】
その後、実施例1において、造粒処理剤(1)に代えてこの造粒処理剤(4)を用いて実施例1と同様の操作により造粒を行い、得られた擬似粒子をふるいを用いて分級することにより、造粒後の平均粒径が0.25mm以下の擬似粒子のGI指数を求めた。
【0126】
〔実施例5〕
攪拌機およびコンデンサを備えた容量1Lのセパラブルフラスコ(SUS316製)に、イオン交換水1400部を仕込み、攪拌下、系の沸点(100℃)まで昇温した。
【0127】
続いて、上記セパラブルフラスコ内に、80%アクリル酸水溶液578.5部、および15%過硫酸アンモニウム水溶液62.5部をそれぞれ別々の滴下口より2時間かけて滴下した。滴下時間中、反応温度は系の沸点を維持した。滴下終了後、同温度に120分間保持した後、48%水酸化ナトリウム水溶液353部を60分間かけて滴下することにより、ポリマー水溶液を得た。このようにして得られたポリマー水溶液中の重合体(高分子化合物)の数平均分子量、分散度を算出したところ、数平均分子量は4900、質量平均分子量48200、分散度は9.84であった。
【0128】
また、得られたポリマー水溶液を固形分換算で35部となるように採取し、これをイオン交換水で希釈し、5250部にすることにより本発明にかかる造粒処理剤(5)を得た。
【0129】
その後、実施例1において、造粒処理剤(1)に代えてこの造粒処理剤(5)を用いて実施例1と同様の操作により造粒を行い、得られた擬似粒子をふるいを用いて分級することにより、造粒後の平均粒径が0.25mm以下の擬似粒子のGI指数を求めた。
【0130】
〔実施例6〕
攪拌機およびコンデンサを備えた容量1Lのセパラブルフラスコ(SUS316製)に、無水マレイン酸196部、イオン交換水110.7部、水酸化ナトリウム48%水溶液333.3部を仕込み、攪拌下、系の沸点(100℃)まで昇温した。
【0131】
続いて、上記セパラブルフラスコ内に、60%アクリル酸水溶液560.78部、および10%過硫酸ナトリウム水溶液200部、35%過酸化水素水6.65部をそれぞれ別々の滴下口より5時間かけて滴下し、ポリマー水溶液を得た。このようにして得られたポリマー水溶液中の重合体(高分子化合物)の数平均分子量、分散度を測定したところ、数平均分子量は5260、質量平均分子量81000、分散度は15.4であった。
【0132】
また、得られたポリマー水溶液を固形分換算で35部となるように採取し、これをイオン交換水で希釈し、5250部にすることにより本発明にかかる造粒処理剤(6)を得た。
【0133】
その後、実施例1において、造粒処理剤(1)に代えてこの造粒処理剤(6)を用いて実施例1と同様の操作により造粒を行い、得られた擬似粒子をふるいを用いて分級することにより、造粒後の平均粒径が0.25mm以下の擬似粒子のGI指数を求めた。
【0134】
〔実施例7〕
温度計、撹拌機、滴下ロート、窒素導入管および還流冷却器を備えたガラス製の反応容器にイオン交換水1698部を仕込み、撹拌下に反応容器内を窒素置換し、窒素雰囲気下で80℃まで加熱した。一方、メトキシポリエチレングリコールモノメタクリル酸エステル(エチレンオキシドの平均付加モル数=25)1668部、メタクリル酸332部およびイオン交換水500部を混合し、この混合物にさらにメルカプトプロピオン酸16.7部を均一に混合することにより、単量体混合物水溶液を調製した。
【0135】
次いで、この単量体混合物水溶液と、10%過硫酸アンモニウム水溶液とをそれぞれ滴下ロートに仕込み、この単量体混合物水溶液と、10%過硫酸アンモニウム水溶液184部とを上記反応容器内のイオン交換水に4時間で滴下した。滴下終了後、上記反応容器内の反応溶液に、さらに、10%過硫酸アンモニウム水溶液46部を1時間で滴下した。その後、上記反応容器内の反応溶液を、1時間引き続いて80℃に温度を維持し、重合反応を完結させた。
【0136】
その後、この反応溶液を30%水酸化ナトリウム水溶液で中和しての高分子化合物を含む、質量平均分子量が23800、不揮発分の濃度が43.2%であるポリマー水溶液を得た。
【0137】
また、得られたポリマー水溶液を固形分換算で35部となるように採取し、これをイオン交換水で希釈し、5250部にすることにより本発明にかかる造粒処理剤(7)を得た。
【0138】
その後、実施例1において、造粒処理剤(1)に代えてこの造粒処理剤(7)を用いて実施例1と同様の操作により造粒を行い、得られた擬似粒子をふるいを用いて分級することにより、造粒後の平均粒径が0.25mm以下の擬似粒子のGI指数を求めた。
【0139】
〔実施例8〕
温度計、撹拌機、滴下ロート、窒素導入管および還流冷却器を備えたガラス製の反応容器に、イオン交換水1291部と、3−メチル−3−ブテン−1−オールにエチレンオキサイドを平均50モル付加してなる、ポリアルキレングリコールモノアルケニルエーテル単量体1812部と、無水マレイン酸188部とを仕込み、反応溶液とした。次いで、この反応溶液を60℃に昇温した。
【0140】
続いて、この反応溶液に、「NC−32W」(商品名;日宝化学社製、2,2’−アゾビス−2−メチルプロピオンアミジン塩酸塩の87%濃度品)の15%水溶液50部を加えて7時間攪拌し、さらに温度を80℃まで上昇した後、1時間攪拌して重合反応を完結させた。
【0141】
その後、この反応溶液を30%水酸化ナトリウム水溶液で中和して不揮発分の濃度が55.1%であるポリマー水溶液を得た。高分子量体の質量平均分子量は26200であった。
【0142】
また、得られたポリマー水溶液を固形分換算で35部となるように採取し、これをイオン交換水で希釈し、5250部にすることにより本発明にかかる造粒処理剤(8)を得た。
【0143】
その後、実施例1において、造粒処理剤(1)に代えてこの造粒処理剤(8)を用いて実施例1と同様の操作により造粒を行い、得られた擬似粒子をふるいを用いて分級することにより、造粒後の平均粒径が0.25mm以下の擬似粒子のGI指数を求めた。
【0144】
〔実施例9〕
β−ナフタレンスルホン酸ホルマリン縮合物である「マイティー150」(商品名;花王株式会社製、不揮発分40.1%)を固形分換算で35部となるように採取し、これをイオン交換水で希釈し、5250部にすることにより本発明にかかる造粒処理剤(9)を得た。
【0145】
その後、実施例1において、造粒処理剤(1)に代えてこの造粒処理剤(9)を用いて実施例1と同様の操作により造粒を行い、得られた擬似粒子をふるいを用いて分級することにより、造粒後の平均粒径が0.25mm以下の擬似粒子のGI指数を求めた。
【0146】
〔実施例10〕
メラミンスルホン酸塩ホルマリン縮合物である「メルメントF10」(商品名;SKW社製、粉体品)を固形分換算で35部となるように採取し、これをイオン交換水で希釈し、5250部にすることにより本発明にかかる造粒処理剤(10)を得た。
【0147】
その後、実施例1において、造粒処理剤(1)に代えてこの造粒処理剤(10)を用いて実施例1と同様の操作により造粒を行い、得られた擬似粒子をふるいを用いて分級することにより、造粒後の平均粒径が0.25mm以下の擬似粒子のGI指数を求めた。
【0148】
〔実施例11〕
実施例1の焼結原料70000部をドラムミキサーに投入し、さらに重質炭酸カルシウム(スーパーSS、丸尾カルシウム製)1400部を投入し、回転速度24min−1で1分間、予備攪拌した。その後、同回転速度で攪拌しながら、該焼結原料に、予め調製した造粒処理剤(1)5250部を霧吹きを用いて約1.5分間かけて噴霧した。焼結原料に対する高分子化合物の割合は0.05%であった。噴霧後、さらに同回転速度で3分間攪拌することにより、造粒操作を行った。
【0149】
得られたそれぞれの擬似粒子の造粒物を80℃のオーブンで1時間乾燥し、該擬似粒子をふるいを用いて分級することにより、造粒後の平均粒径が0.25mm以下の擬似粒子のGI指数を求めた。
【0150】
〔実施例12〕
実施例1において、表2に示す焼結原料の配合から表3に示す焼結原料の配合に変更し、それに伴い新原料の全質量に対するマラマンバの配合割合を15質量%から50質量%に変更した条件で、それ以外は、実施例1と同様の操作により造粒を行なった。すなわち、実施例1と同じ焼結原料70000部に水5250部を添加することにより造粒操作を行なった。次いで、実施例1と同様の操作により、得られた擬似粒子の平均粒径が0.25mm以下の粒子のGI指数を求めた。
【0151】
【表3】
【0152】
〔比較例1〕
実施例1において、造粒処理剤(1)に代えて水5250部を用いた以外は、実施例1と同様の操作により造粒を行った。すなわち、実施例1と同じ焼結原料70000部に水5250部を添加することにより造粒操作を行った。次いで、実施例1と同様の操作により、得られた擬似粒子の平均粒径が0.25mm以下の擬似粒子のGI指数を求めた。
【0153】
〔比較例2〕
生石灰1400部と水5900部とを併用し、これを比較用の造粒処理剤(a)として、実施例1の造粒処理剤(1)5250部の代わりに用いる他は実施例1と同様にして造粒を行った。次いで、実施例1と同様の操作により、得られた擬似粒子の平均粒径が0.25mm以下の擬似粒子のGI指数を求めた。
【0154】
〔比較例3〕
砂糖350部にイオン交換水を添加して、5565部とし、これを比較用の造粒処理剤(b)として、実施例1の造粒処理剤(1)5250部の代わりに用いる他は実施例1と同様にして造粒を行った。次いで、実施例1と同様の操作により、得られた擬似粒子の平均粒径が0.25mm以下の擬似粒子のGI指数を求めた。
【0155】
〔比較例4〕
カルボキシル基含有単量体を含まないアルキレンオキサイドユニット含有高分子化合物である、数平均分子量2万のポリエチレングリコール35部に、イオン交換水を添加して、5250部とした。これを比較用の造粒処理剤(c)として、実施例1の造粒処理剤(1)5250部の代わりに用いる他は実施例1と同様にして造粒を行った。次いで、実施例1と同様の操作により、得られた擬似粒子の平均粒径が0.25mm以下の擬似粒子のGI指数を求めた。
【0156】
〔比較例5〕
表4に示す組成を有する、マラマンバ鉱石を含有しない焼結原料を調製した。
【0157】
【表4】
【0158】
表4に示す焼結原料70000部をドラムミキサーに投入し、回転速度24min−1で1分間、予備攪拌した。その後、同回転速度で攪拌しながら、該焼結原料に、イオン交換水5250部を霧吹きを用いて約1.5分間かけて噴霧した。噴霧後、さらに同回転速度で3分間攪拌することにより、造粒操作を行った。
【0159】
得られたそれぞれの擬似粒子の造粒物を80℃のオーブンで1時間乾燥し、該擬似粒子をふるいを用いて分級することにより、造粒後の平均粒径が0.25mm以下の擬似粒子のGI指数を求めた。
【0160】
〔比較例6〕
実施例1において、表2に示す焼結原料の配合から表5に示す焼結原料の配合に変更し、それに伴い新原料の全質量に対するマラマンバの配合割合を15質量%から60質量%に変更した条件で、それ以外は、実施例1と同様の操作により造粒を行なった。すなわち、実施例1と同じ焼結原料70000部に水5250部を添加することにより造粒操作を行なった。次いで、実施例1と同様の操作により、得られた擬似粒子の平均粒径が0.25mm以下の擬似粒子のGI指数を求めた。
【0161】
【表5】
【0162】
〔比較例7〕
実施例1において、造粒処理剤(1)の添加量を、焼結原料に対するカルボキシル基含有高分子化合物の割合で、0.0005質量%に代えた以外は、実施例1と同様の操作により造粒を行なった。次いで、実施例1と同様の操作により、得られた擬似粒子の平均粒径が0.25mm以下の擬似粒子のGI指数を求めた。
【0163】
〔比較例8〕
実施例1において、造粒処理剤(1)の添加量を、焼結原料に対するカルボキシル基含有高分子化合物の割合を1.05質量%に代えた以外は、実施例1と同様の操作により造粒を行なった。ついで、実施例1と同様の操作により、得られた擬似粒子の平均粒径が0.25mm以下の擬似粒子のGI指数を求めた。
【0164】
上記実施例1〜12および比較例1〜8で得られた擬似粒子のGI指数を表6にまとめた。
【0165】
【表6】
【0166】
表6から分かるように、本発明にかかるカルボキシル基含有高分子化合物を含有する造粒処理剤を用いることにより、GI指数、すなわち、焼結原料の造粒性を大きく向上させることができることがわかる。
【0167】
また、この結果から、本発明にかかるカルボキシル基含有高分子化合物を含有する造粒処理剤を用いることにより、造粒性が著しく向上することから、生産効率が向上する。
【0168】
また、比較例1〜4は、造粒処理剤がカルボキシル基含有高分子化合物を含有していない。そのため、本発明の好ましい範囲から外れているので、GI指数が低くなった。また、比較例5から、本発明は、赤鉄鉱針鉄鉱鉱石を含まない焼結原料における現状の造粒処理方法と比較しても有効であることがわかる。
【0169】
上記実施例1、12および比較例6〜8で得られた擬似粒子のGI指数および焼結鉱の生産率を表7にまとめた。ここで、(t/d/m2)は、焼結機1m2当たり、1日に何t焼結鉱を生産できるかを示す。
【0170】
【表7】
【0171】
表7の実施例1、12から分かるように、本発明で規定する新原料の全質量に対する配合割合で5質量%〜50質量%のマラマンバ鉱石を含む製鉄用原料に、本発明にかかるカルボキシル基含有高分子化合物を含有する造粒処理剤を、本発明で規定する前記製鉄用焼結原料の全質量に対し、固形分換算で0.001質量%〜1質量%の割合で添加することにより、GI指数、すなわち、焼結原料の造粒性および焼結鉱の生産率を大きく向上させることができることがわかる。
【0172】
一方、比較例6〜8は、新原料の全質量に対するマラマンバ鉱石の配合割合、または、焼結原料の全質量に対する造粒処理剤の添加割合の何れかが、本発明で規定する範囲から外れているため、本発明にかかるカルボキシル基含有高分子化合物を造粒処理剤として添加した場合でも、GI指数および焼結鉱の生産率が低くなった。
【0173】
〔実施例13〕
表8に示す組成を有する配合(A)の焼結原料14113部および配合(B)の焼結原料55887部の、計70000部の焼結原料(製鉄用原料)を調製した。
【0174】
【表8】
【0175】
なお、表8中、「MBRPF」とは、ブラジル鉱山のMBR社から供給されるペレットフィードである。また、篩上、篩下のハマスレー粉鉱とは、それぞれ、網目3mmの篩上に残ったハマスレー粉鉱(すなわち、粒径が3mmを超えるハマスレー粉鉱)、網目3mmの篩を通過したハマスレー粉鉱(すなわち、粒径が3mm以下のハマスレー粉鉱)を示す。
【0176】
次いて、表8に示す配合(A)、配合(B)の焼結原料にそれぞれ水を添加し、それぞれ、15509部(含水量9質量%)、59454部(含水量6質量%)に調整した(以下、上記の焼結原料を、それぞれ焼結原料(A)、焼結原料(B)と記す)。
【0177】
一方、カルボキシル基及び/またはその塩を有する高分子化合物として、質量平均分子量6000のポリアクリル酸ナトリウム水溶液を、不揮発分4.8%となるように予め調整することにより本発明にかかる造粒処理剤(11)を得た。
【0178】
その後、焼結原料(A)15509部(含水量9質量%)および平均粒径10μmに粉砕した高炉スラグ350部(微粒子)を、回転するパン部とアジテーター部とを有する高速攪拌ミキサー(「アイリッヒミキサ」(型番R05T;日本アイリッヒ株式会社製))に投入し、該高速撹拌ミキサー内の焼結原料組成物に、上記造粒処理剤(11)181部を霧吹きを用いて約40秒間かけて噴霧(添加)して選択造粒物を得た。このとき、パン部の回転速度は30min−1、アジテーター部の回転速度は450min−1であった。その後、上記選択造粒物16040部と、焼結原料(B)59454部(含水量6質量%)と、生石灰350部とをドラムミキサーに投入し、回転速度24min−1で1分間、予備撹拌した。その後、同回転速度で攪拌しながら、上記ドラムミキサー内の焼結原料組成物に、水500部を霧吹きを用いて約1.5分間かけて噴霧(添加)した。噴霧後、さらに同回転速度で3分間攪拌することにより、造粒操作(擬似粒化)を行った。焼結原料に対するポリアクリル酸ナトリウムの割合は0.0125%であった。
【0179】
また、得られた擬似粒子を50kgスケールの鍋試験にて焼結を行い、焼結鉱を得た。該試験に用いた焼結鍋の直径は300mm、層厚は600mmであり、吸引負圧は9.8kPa(一定)とした。得られた焼結鉱の生産率を測定した。これらの結果をまとめて表9に示す。
【0180】
〔実施例14〕
実施例13において、平均粒径10μmに粉砕した高炉スラグ350部に代えて、平均粒径13μmに粉砕した普通ポルトランドセメント350部を微粒子として使用すると共に、予め不揮発分4.8%に調整した質量平均分子量6000のポリアクリル酸ナトリウム水溶液181部に代えて、β−ナフタレンスルホン酸ホルマリン縮合物である「マイティ150」(商品名;花王株式会社製、不揮発分40.1%)を予め不揮発分13.2%に調整した水溶液199部を本発明にかかる造粒処理剤(12)として使用した以外は、実施例13と同様にして焼結鉱の生産率を測定した。これらの結果をまとめて表9に示す。
【0181】
〔実施例15〕
実施例13において、平均粒径10μmに粉砕した高炉スラグ350部に代えて、平均粒径10μmのトナー(「imagioトナータイプ7」(商品名;株式会社リコー製ブラックトナー))350部を使用すると共に、予め不揮発分4.8%に調整した質量平均分子量6000のポリアクリル酸ナトリウム水溶液181部に代えて、β−ナフタレンスルホン酸ホルマリン縮合物である「マイティ150」(商品名;花王株式会社製、不揮発分40.1%)を予め不揮発分13.2%に調整した水溶液199部を本発明にかかる造粒処理剤(13)として使用した以外は、実施例13と同様にして焼結鉱の生産率を測定した。これらの結果をまとめて表9に示す。
【0182】
〔比較例9〕
実施例13において、平均粒径10μmに粉砕した高炉スラグ350部を使用せず、予め不揮発分4.8%に調整した質量平均分子量6000のポリアクリル酸ナトリウム水溶液181部に代えて水172部を使用し、生石灰の使用量を、350部から840部に変更し、上記ドラムミキサー内の焼結原料組成物に噴霧する水の量を、500から700部に変更した以外は、実施例13と同様にして焼結鉱の生産率を測定した。これらの結果をまとめて表9に示す。
【0183】
【表9】
【0184】
表9の結果から分かるように、本発明で規定する新原料の全質量に対する配合割合で5質量%〜50質量%のマラマンバ鉱石を含む製鉄用原料に、本発明にかかる造粒処理剤を、本発明で規定する前記製鉄用焼結原料の全質量に対し、固形分換算で0.001質量%〜1質量%の割合で添加すると共に、上記造粒処理剤が微粉(微粒子)を含むことにより、焼結鉱の生産率を大きく向上させることができることがわかる。
【0185】
【発明の効果】
本発明のマラマンバ鉱石を含む焼結原料の造粒処理方法は、以上のように、マラマンバ鉱石を含む製鉄用焼結原料の造粒処理方法において、新原料の全質量に対する配合割合で5質量%〜50質量%のマラマンバ鉱石を含む製鉄用焼結原料に、カルボキシル基及び/またはその塩含有高分子化合物、酸基およびポリアルキレングリコール鎖を有する化合物、β−ナフタレンスルホン酸塩ホルマリン縮合物、メラミンスルホン酸塩ホルマリン縮合物、芳香族アミノスルホン酸ポリマー、リグニンスルホン酸変性物からなる群より選ばれる少なくとも一種の高分子化合物を含む造粒処理剤を、前記製鉄用焼結原料の全質量に対し、固形分換算で0.001質量%〜1質量%の割合で添加して造粒する構成である。
【0186】
それゆえ、カルボキシル基及び/またはその塩含有高分子化合物、酸基およびポリアルキレングリコール鎖を有する化合物、β−ナフタレンスルホン酸塩ホルマリン縮合物、メラミンスルホン酸塩ホルマリン縮合物、芳香族アミノスルホン酸ポリマー、リグニンスルホン酸変性物からなる群より選ばれる少なくとも一種の高分子化合物によって、微粉の凝集物を破壊、分散し、前記微粉の凝集物に取り込まれている水を開放する、すなわち、従来有効に使用できなかった水を、焼結原料全体に行き渡らせることができ、水を効率よく使用することができる。さらに、微粉も同時に分散し、焼結原料粒子間の接点に再凝集するので、微粉による固体架橋が形成される。これにより、マラマンバ鉱石を含む焼結原料の造粒処理が可能となり、強固な擬似粒子を造ることができるという効果を奏する。
【0187】
よって、本発明によると、高結晶水・低脈石鉄鉱石で多孔質であり、微粉鉄鉱石が多い難造粒性のマラマンバ鉱石を多量に配合しても、その造粒性を低下することなく、さらには造粒性を向上する焼結原料の事前処理ができ、焼結機の生産効率を高め、焼結鉱の製造コストを格段に低減できるという効果を奏する。
【0188】
本発明のマラマンバ鉱石を含む焼結原料の造粒処理方法は、以上のように、前記カルボキシル基及び/またはその塩含有高分子化合物は、カルボキシル基及び/またはその塩含有単量体を含む単量体組成物を重合してなる高分子化合物である構成である。
【0189】
それゆえ、前記カルボキシル基及び/またはその塩含有高分子化合物は、微粉の凝集物を破壊、分散し、取り込まれている水を開放する、すなわち、従来有効に使用できなかった水を、焼結原料全体に行き渡らせることができ、水をより効率よく使用することができるという効果を奏する。
【0190】
本発明のマラマンバ鉱石を含む焼結原料の造粒処理方法は、以上のように、前記単量体組成物は、カルボキシル基含有単量体を30モル%以上含む構成である。
【0191】
それゆえ、前記カルボキシル基含有単量体を30モル%以上含む単量体組成物を重合してなる高分子は、微粉の凝集物を破壊、分散し、取り込まれている水を開放する、すなわち、従来有効に使用できなかった水を、焼結原料全体に行き渡らせることができ、水をさらに効率よく使用することができるという効果を奏する。
【0192】
本発明のマラマンバ鉱石を含む焼結原料の造粒処理方法は、以上のように、前記カルボキシル基及び/またはその塩含有高分子化合物は、アクリル酸を必須成分として重合して得られる高分子化合物である構成である。
【0193】
それゆえ、前記ポリアクリル酸系高分子化合物は、微粉の凝集物を破壊、分散し、取り込まれている水を開放する、すなわち、従来有効に使用できなかった水を、焼結原料全体に行き渡らせることができ、水をさらに一層効率よく使用することができるという効果を奏する。
【0194】
本発明のマラマンバ鉱石を含む焼結原料の造粒処理方法は、以上のように、前記単量体組成物が、アクリル酸および/またはアクリル酸塩を全単量体成分に対し、30モル%〜100モル%含有する構成である。
【図面の簡単な説明】
【図1】新原料の全質量に対するマラマンバ鉱石の配合割合(質量%)とGI−0.25(0.25mm以下の擬似粒子のGI指数)(%)との関係を示す図である。
【図2】新原料の全質量に対するマラマンバ鉱石の配合割合(質量%)と焼結鉱の生産率(t/d/m2)との関係を示す図である。
【図3】焼結原料の全質量に対する造粒処理剤の添加割合(固形分換算)とGI−0.25(0.25mm以下の擬似粒子のGI指数)との関係を示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a pretreatment of a sintering raw material in the production of a sintered ore for iron making, and in particular, a granulation treatment of a sintering raw material when producing a sinter by mixing a maramamba ore as a part of the sintering raw material. It is about.
[0002]
[Prior art]
Generally, a sintered ore used as a main raw material of the blast furnace iron making method is manufactured as follows. First, iron ore powder of about 10 mm or less, which is the main raw material of the sintering raw material, is blended with auxiliary materials such as limestone, dolomite, converter slag, serpentine, quartzite, and peridotite, and carbon materials such as coke powder and anthracite. Then, mixing and granulation are performed with a granulator such as a drum mixer, a pelletizer, an Eirich mixer or the like while adjusting the amount of water added so as to obtain an appropriate amount of water, and the sintering raw material is converted into pseudo particles. Here, the pseudo particles mainly have a structure in which fine powder particles having a particle size of 0.5 mm or less adhere to core particles having a particle size of 1 to 3 mm. Deterioration of air permeability due to fine powder particles in the sintering material packed layer (sintering bed) can be suppressed, and productivity of the sintering machine can be improved.
[0003]
Therefore, in the sintering raw material granulation treatment step, the degree of adhesion of the fine powder particles in the sintering raw material around the core particles, that is, to improve the pseudo-granulation property of the sintering raw material, obtained by granulation It is required that the pseudo particles hardly collapse in a wet zone, a dry zone, or the like up to the sintering reaction in the sintering bed. In general, the quasi-granularity of such a sintering raw material and the strength (hardness of collapse) of the quasi-granule are determined by the particle size composition of the compounding raw material of the sintering raw material, particularly, the iron ore which occupies a main part of the sintering raw material. It is known that it greatly depends on the particle size composition and the ore brand.
[0004]
On the other hand, iron ore, which is the main raw material for sintering, has a variety of brands of iron ore with various components and properties in the world. Used in raw materials. Of these iron ores, high-quality hematite ore, which has been used as a raw material for sintering, is depleting even in view of the world's iron ore resources. It is expected that they will be digged up, and it is hoped that alternative brands of iron ore will be used.
[0005]
Under these circumstances, in recent years, as a sintering raw material, Maramamba ore, which is inexpensive and resource-rich compared to high-quality hematite ore, has been attracting attention as a main sintering raw material in the future.
[0006]
Maramamba ore is a general term for iron ore produced from the Maramamba iron ore deposit in Australia. 2 O 3 ・ H 2 O) and Martite (Fe with magnetite structure) 2 O 3 ) Is the main iron mineral, and West Angelas ore is a typical iron ore with the locality name (common name) shown in Table 1.
[0007]
[Table 1]
[0008]
As shown in Table 1, for example, the chemical composition has a high water content of crystallization of about 5% as compared with high quality hematite main ore, which is a main ore produced from the Brockmann iron deposit in Australia, As compared with pisolite ore, which is also known as an ore having a high crystallization water content, 2 Gangue components are as low as about 3%, and the quasi-granulation property is poor due to the large amount of fine iron ore having a particle size of 0.25 mm or less.
[0009]
Currently, a part of the Mara Mamba iron deposit in Australia has already been developed and partially used as a raw material for sintering.However, conventionally, due to its properties, particularly poor granulation properties, product yield in the sintering process and Since there is a risk of lowering the productivity, the blending amount is set to about 10% or less, and high quality main hematite ore produced from the Brockmann iron deposit is blended and used as other ores. However, as mentioned above, in Australia, which is a major ore importing country in Japan, the depletion of high quality hematite ore in the Brockman deposit has led to a shift in production not only to the pisolite deposit but also to the Maramamba deposit. Ore is expected to become the mainstay of iron ore from Australia in the future, and it is desired to improve the granulation properties of sintering raw materials containing a large amount of maramamba ore.
[0010]
In order to solve the above-mentioned problem, for example,
[0011]
Patent Document 2 also states that “when using porous iron ore (for example, Maramanba ore from Australia) as a part of a sintering raw material, the mixture is mixed and granulated by a mixer in a usual granulation line. A pretreatment method for a sintering raw material, wherein a porous iron ore is subjected to a water-containing treatment in a separate line, and then mixed and granulated with a mixer together with other general brand ores.
[0012]
Patent Literature 3 discloses that “a granulation line for mixing and granulating sintering raw materials and performing pre-treatment, a granulation line for processing a main raw material group such as iron ore and coke, and one granulation line with a low CaO component, The other raw material group such as other ores is divided into a two-series granulation line with the other granulation line having a high CaO component for processing. The ore of the other raw material group in the other granulation line includes, for example, maramamba ore. A method for pre-treating a sintering raw material, comprising using fine ore of high crystal water and adding quick lime to both of the granulation lines in a divided manner, and granulating a main raw material group and other raw material groups using quick lime as a binder. Is described.
[0013]
Patent Document 4 discloses that when soft / porous iron ore is used as a part of a sintering raw material, an additive such as sugar or molasses is added to suppress water absorption into soft / porous iron ore. A method for doing so is disclosed.
[0014]
Patent Literature 8 discloses that limonite ore containing a large amount of water of crystallization is mixed with lime powder and scale, pulp waste liquid containing ligninsulfonic acid as an active ingredient is added, granulated, and then mixed with the remaining raw materials. Then, a method of re-granulation is disclosed, and the use of maramamba ore is exemplified.
[0015]
[Patent Document 1]
JP-A-52-49905 (publication date: April 21, 1977)
[0016]
[Patent Document 2]
JP-A-52-49906 (publication date: April 21, 1977)
[0017]
[Patent Document 3]
JP-A-5-9601 (publication date: January 19, 1993)
[0018]
[Patent Document 4]
Japanese Unexamined Patent Publication No. Hei 10-502417 (published March 3, 1998)
[0019]
[Patent Document 5]
JP-A-63-149333 (publication date: June 22, 1988)
[0020]
[Patent Document 6]
JP-A-63-149334 (publication date: June 22, 1988)
[0021]
[Patent Document 7]
JP-A-63-149336 (publication date: June 22, 1988)
[0022]
[Patent Document 8]
JP-A-5-25556 (publication date: February 2, 1993)
[0023]
[Non-patent document 1]
Noboru Sakamoto and four others, "Basic study on production conditions of new agglomerate for blast furnace and evaluation of quality", Iron and Steel, Japan Iron Ore Association, 73rd (1987) No. 11, p62
[0024]
[Problems to be solved by the invention]
Since high-crystal water / low-gangue iron ore is porous and inferior in granulation property to other general iron ores, it is not possible to individually perform granulation suitable for its physical properties on another line as described in
[0025]
In addition, in the method described in Patent Literature 3, an auxiliary material tank, a limestone tank, and a binder tank are newly installed in addition to a plurality of ore tanks and granulation is performed in advance, which is equivalent to installing new granulation processing equipment. There is a disadvantage that an extremely large capital investment is required.
[0026]
In the method described in Patent Document 4, when additives such as sugar or molasses are used as additives, these are generally expensive, so that the production cost is increased and the strength of the granulated product cannot be significantly improved. There is.
[0027]
In the method described in Patent Document 8, the effect of improving the granulation properties of lignin sulfonic acid is not sufficient. Therefore, when a large amount of maramamba ore is added, the productivity is significantly reduced.
[0028]
In addition, as an example of conventional use of maramamba ore, Nippon Kokan Co., Ltd. Fukuyama Works has a proven track record of using a large amount of maramamba ore by applying the HPS method (Non-Patent Document 1). No. 6 and Patent Document 7, etc., the HPS method introduces a dish-type granulation equipment in the granulation process, and adds a limestone more than before so that a large amount of fine ore having a small particle diameter can be used. However, this is not a method that takes into consideration granulation mainly using an existing drum mixer. In addition, introduction of dish-type granulation equipment into an existing sintering machine requires enormous equipment investment and running costs.
[0029]
In the conventional method of granulating a sintering raw material as disclosed in the above patent documents, it is difficult to apply the method to a sintering raw material in which a large amount of malamamba ore, which has poor granulation properties compared to other ores, is blended. And its practicality is low.
[0030]
Further, from the investigations of the inventors, it has been found that the maramamba ore is porous and easily absorbs water, in addition to being highly crystalline water and low gangue iron ore.
[0031]
When a large amount of such a porous Maramamba ore is used, the pseudo-granulation property can be improved to some extent by increasing the amount of water added during granulation of the sintering raw material. The unit consumption of fuel deteriorates due to the increase in latent heat of vaporization, the amount of water condensed in the water condensation zone below the combustion zone of the sintering bed increases, and the air flow resistance increases, resulting in production efficiency and product yield. Is also reduced.
[0032]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and has as its object the purpose of using a special facility when a large amount of inexpensive and resource-rich Maramamba ore is used as a sintering raw material. An object of the present invention is to provide a method for granulating a sintering raw material which can maintain good product yield and productivity in the production of sintered ore without requiring granulation or the like.
[0033]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the method for granulating a sintering raw material containing maramamba ore according to the present invention comprises: A carboxyl group and / or a salt-containing polymer compound thereof, a compound having an acid group and a polyalkylene glycol chain, a β-naphthalene sulfonate formalin condensation are added to a sintering raw material for ironmaking containing 5% by mass to 50% by mass of maramamba ore. Product, a melamine sulfonate formalin condensate, an aromatic aminosulfonic acid polymer, and a granulating agent containing at least one polymer compound selected from the group consisting of ligninsulfonic acid-modified products. It is characterized in that it is added at a ratio of 0.001% by mass to 1% by mass in terms of the solid content with respect to the mass and granulated.
[0034]
With the above constitution, a carboxyl group and / or a salt-containing polymer compound, a compound having an acid group and a polyalkylene glycol chain, a β-naphthalene sulfonate formalin condensate, a melamine sulfonate formalin condensate, an aromatic amino sulfone Acid polymer, at least one polymer compound selected from the group consisting of modified lignin sulfonic acid, breaks and disperses aggregates of fine powder, releases water incorporated in the aggregate of fine powder, Water that could not be used effectively can be spread over the entire sintering raw material, and water can be used efficiently. Further, the fine powder is also dispersed at the same time and re-agglomerated at the contact between the sintering raw materials, so that solid cross-linking by the fine powder is formed. The fine powder of the maramamba ore is easily dispersed by the above-mentioned polymer compound, so that the sintering raw material containing the maramamba ore can be granulated, and strong pseudo particles can be produced.
[0035]
Therefore, according to the above configuration, even when a large amount of hard-to-granulate Maramamba ore, which is porous with high crystal water and low gangue iron ore and contains a large amount of fine iron ore, is mixed, the granulation property is reduced. In addition, the pretreatment of the sintering raw material for further improving the granulation property can be performed, the production efficiency of the sintering machine can be increased, and the production cost of the sinter can be significantly reduced.
[0036]
In order to solve the above-mentioned problems, the method for granulating a sintering raw material containing maramamba ore according to the present invention is characterized in that the polymer compound containing a carboxyl group and / or a salt thereof contains a monomer containing a carboxyl group and / or a salt thereof. Is a polymer compound obtained by polymerizing a monomer composition containing
[0037]
According to the above configuration, the carboxyl group and / or a salt-containing polymer compound breaks down the aggregates of the fine powder, disperses and releases the incorporated water, that is, water that could not be used effectively conventionally, It can be spread over the entire sintering raw material, and water can be used more efficiently.
[0038]
In order to solve the above-mentioned problems, in the method of the present invention for granulating a sintering raw material containing maramamba ore, the monomer composition contains a carboxyl group and / or a salt-containing monomer thereof in an amount of 30 mol% or more. It is characterized by:
[0039]
With the above configuration, the polymer obtained by polymerizing the monomer composition containing the carboxyl group-containing monomer in an amount of 30 mol% or more breaks and disperses the aggregates of the fine powder, and releases the incorporated water. That is, water that could not be used effectively conventionally can be spread over the entire sintering raw material, and water can be used more efficiently.
[0040]
According to the method for granulating a sintering raw material containing maramamba ore of the present invention, in order to solve the above problems, the carboxyl group and / or its salt-containing polymer compound is obtained by polymerizing acrylic acid as an essential component. It is a high molecular compound.
[0041]
With the above configuration, the polyacrylic acid-based polymer compound breaks down and disperses the aggregates of the fine powder and releases the water that has been taken in. And water can be used even more efficiently.
[0042]
In order to solve the above-mentioned problems, the method for granulating a sintering raw material containing maramamba ore of the present invention is characterized in that the monomer composition is obtained by converting acrylic acid and / or acrylate to all monomer components. It is characterized by containing 30 mol% to 100 mol%.
[0043]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments for carrying out the present invention will be described in detail.
[0044]
In the method for granulating a sintering raw material for ironmaking of the present invention, the blending ratio of the maramamba ore to the total mass of the new raw material in the sintering raw material is limited to 5% by mass to 50% by mass.
[0045]
FIG. 1 shows a case where granulation is performed only by adding water and a case where a granulating agent of the present invention described later and water are added so that the water content after granulation is 7 mass% (constant). The relationship between the blending ratio (mass%) of the maramamba ore and the GI-0.25 (GI index of pseudo particles of 0.25 mm or less) (%) based on the total mass of each new raw material is shown. FIG. 2 shows the mixing ratio (mass%) of the maramamba ore to the total mass of the new raw material and the production rate of the sinter (t / d / m) under the same conditions as in FIG. 2 ) Are shown below.
[0046]
In addition, GI-0.25 (%) in FIG. 1 indicates a GI index of pseudo particles having an average particle size of 0.25 mm or less after granulation obtained by the following equation, and is shown in Ironmaking Research No. 288 (1976). This is an evaluation method disclosed on page 9, where the larger the GI index is, the larger the ratio of fine powder particles adhering around the core particles is, and the production efficiency of the sintering machine can be improved.
[0047]
GI−0.25 (%) = (Ratio of raw material of 0.25 mm or less before granulation−Ratio of raw material of 0.25 mm or less after granulation) / (Ratio of raw material of 0.25 mm or less before granulation) ) × 100
In addition, the new raw material in FIGS. 1 and 2 refers to a sinter raw material which is a sintered ore powder having a predetermined particle size or less, for example, 5 mm or less, and a sinter raw material excluding carbon materials such as coke powder and anthracite.
[0048]
From FIG. 1 and FIG. 2, the addition of the granulating agent of the present invention significantly improves both the GI index of pseudo-particles and the production rate of sintered ore, as compared with ordinary granulation with only addition of water. When the blending ratio (mass%) of the maramamba ore with respect to the total mass of the new raw material in the raw material exceeds 50 mass%, the GI index of the pseudo-particles and the production rate of the sintered ore at the time of normal granulation only with water addition are reduced. Therefore, in the present invention, the upper limit of the blending ratio (mass%) of the maramamba ore with respect to the total mass of the new raw material in the sintering raw material is defined as 50 mass%.
[0049]
In addition, as is clear from FIGS. 1 and 2, the upper limit of the blending ratio (mass%) of the maramamba ore is preferably from the viewpoint of improving the GI index of the pseudo-particles during granulation and the production rate of the sintered ore. Is at most 40% by mass, particularly preferably at most 30% by mass.
[0050]
On the other hand, a decrease in the blending ratio (% by mass) of the maramamba ore with respect to the total mass of the new raw material in the sintering raw material is preferable from the viewpoint of improving the GI index of the pseudo particles during granulation and the production rate of the sinter. The use of a large amount of inexpensive and resource-rich Maramamba ore as a sintering raw material makes it impossible to obtain a stable supply of raw materials and economic merit in the future, so that it does not hinder the current sintering operation The lower limit was set to 5% by mass based on the blending ratio of. More preferably, it is good to be 10 mass%.
[0051]
The iron ore other than the maramamba ore blended in the new raw material (sintering raw material excluding the carbonaceous material and the returned ore, that is, the ore and the auxiliary raw material containing the dust) is not particularly limited. For example, Newman ore, Loeb River ore, Karajas ore, Hamasley ore, Kudremuk PF (pellet feed), Riodose ore, and the like can be blended.
[0052]
In the present embodiment, fine iron ores such as Maramamba ore, Newman ore, Loeb River ore, Karajas ore, Hamazley ore, Hamasley ore, and Riodose ore are used as iron ores in the new raw material. Shall be used.
[0053]
Further, the compounding amount of the iron ore with respect to the total mass of the new raw material in the sintering raw material is usually in the range of 50% by mass to 90% by mass, but is not particularly limited in the present invention.
[0054]
In addition, the sintering raw material is generally blended with a new raw material comprising the iron ore and the auxiliary raw material, a carbonaceous material and a returned ore. Here, as the auxiliary material, specifically, for example, CaO-containing auxiliary materials such as limestone, dolomite, converter slag, and SiO-containing such as serpentine, quartzite, peridotite, etc. 2 Auxiliary raw materials and dust are listed. The carbonaceous material is used as a fuel at the time of sintering, and specific examples thereof include coke breeze and anthracite. In the present invention, the types of the iron ore, the auxiliary material, and the carbonaceous material are not particularly limited.
[0055]
In the method for granulating a raw material for ironmaking of the present invention, the granulation treatment agent to be added to the sintering raw material for ironmaking containing the above-mentioned maramamba ore comprises a carboxyl group and / or a salt-containing polymer compound, an acid group and a polyalkylene. A group consisting of a compound having a glycol chain, a β-naphthalene sulfonate formalin condensate, a melamine sulfonate formalin condensate, an aromatic aminosulfonic acid polymer, and a ligninsulfonic acid modified product (hereinafter referred to as “polymer compound group A”) ), And the proportion of the granulating agent to the total mass of the sintering raw material is 0.001% by mass to 1% by mass in terms of solid content. Limited to.
[0056]
The solid content of the granulating agent can be easily calculated from, for example, the mass before and after the granulating agent is dried at 130 ° C. for 3 hours in a nitrogen atmosphere.
[0057]
FIG. 3 shows the addition ratio of the granulating agent to the total mass of the sintering raw material when the mixing ratio of the maramamba ore to the total mass of the new raw material in the sintering raw material was 15 mass% and 50 mass% ( The relationship between GI-0.25 (solid index) and GI-0.25 (GI index of pseudo particles of 0.25 mm or less) is shown.
[0058]
From FIG. 3, it can be seen that adding at least the granulating agent of the present invention to the sintering raw material in a ratio of 0.001% by mass or more in terms of solid content with respect to the total mass of the sintering raw material allows only normal water addition. GI-0.25 of the pseudo particles is remarkably improved as compared with the granulation of No. (GI-0.25 = 80% under the condition where no maramamba is added). Therefore, in the present invention, the lower limit of the addition ratio (% by mass) of the granulating agent to the total mass of the sintering raw material is defined as 0.001% by mass in terms of solid content. In addition, as is clear from FIG. 3, in order to increase the mixing ratio of the maramamba ore to the total mass of the new raw material in the sintering raw material, and to obtain a predetermined GI-0.25, the granulation treatment of the present invention is required. It is necessary to increase the addition ratio of the granulating agent, for example, when the blending ratio of Maramamba ore is 50% by mass with respect to the total mass of the new raw material in the sintering raw material, It is preferable to adjust the addition ratio of the granulating agent in accordance with the increase in the mixing ratio of the maramamba ore so that the ratio becomes 0.01% by mass or more in terms of solid content.
[0059]
On the other hand, if the addition ratio of the granulating agent to the total mass of the sintering raw material exceeds 1% by mass in terms of solid content, the granulation becomes excessive and the formation of appropriate pseudo particles is hindered. It becomes a lump of a sintering raw material in which a carbon material such as coke powder is contained, and the adverse effects such as air permeability into the lump of the sintering material and the inhibition of the burning of the carbon material, thereby preventing sintering, etc. Occurs. Therefore, in the present invention, the upper limit of the addition ratio of the granulating agent to the total mass of the sintering raw material is limited to 1% by mass in terms of solid content. More preferably, the content is 0.5% by mass in terms of solid content.
[0060]
In addition, the lower limit of the amount of the granulating agent added depends on the granulating properties of the ore as a sintering raw material, the amount of water added, the granulator used, and the like. It is desirable to design it to have a small amount.
[0061]
Among the granulation treatment agents of the present invention, the carboxyl group and / or a salt-containing polymer compound is, for example, a carboxyl group and / or a salt-containing monomer alone, or the carboxyl group and / or a salt thereof. It can be obtained by (co) polymerizing a monomer composition further containing another monomer copolymerizable with the salt-containing monomer in the presence of a polymerization initiator.
[0062]
Specific examples of the carboxyl group and / or its salt-containing monomer include (meth) acrylic acid, maleic acid, maleic anhydride, itaconic acid, fumaric acid, crotonic acid, acrylamidoglycolic acid and the like. Examples thereof include salts, but are not particularly limited. One of these carboxyl group-containing monomers may be used alone, or two or more of them may be used in appropriate combination. Among the carboxyl group-containing monomers exemplified above, maleic acid, (meth) acrylic acid and salts thereof are more preferable, and acrylic acid and salts of acrylic acid are particularly preferable.
[0063]
When a salt of a carboxyl group-containing monomer is used as the carboxyl group-containing monomer, the base is not particularly limited, but may be an alkali metal ion such as potassium ion or sodium ion; Alkaline earth metal ions; ammonium; nitrogen-containing bases such as primary to quaternary amines; and the like.
[0064]
Among the above-mentioned high molecular compounds containing a carboxyl group and / or a salt thereof, those obtained by (co) polymerizing acrylic acid and / or a salt thereof tend to be effective even with a small amount of addition. More preferably, the polymer compound containing a carboxyl group and / or a salt thereof includes (a) polyacrylic acid, and (b) a part or all of the carboxyl group contained in polyacrylic acid is sodium, potassium, calcium, or ammonia. More preferably, it is at least one polyacrylic acid-based polymer selected from the group consisting of polyacrylates neutralized with at least one selected from the group consisting of: It is preferable that (co) polymerization is performed so that the ratio of acrylic acid and / or acrylate to all monomers is 30 mol% to 100 mol%, and more preferably 50 mol% to 100 mol%. Preferably, it is more preferably 70 mol% to 100 mol%, most preferably 90 mol% to 100 mol%.
[0065]
The polymer compound containing a carboxyl group and / or a salt thereof contains a structural unit derived from the monomer containing a carboxyl group and / or a salt thereof, and is copolymerizable with the monomer containing a carboxyl group and / or a salt thereof. May contain structural units derived from other monomers. That is, in addition to the carboxyl group and / or its salt-containing monomer, the above-mentioned monomer composition may optionally contain other monomer copolymerizable with the carboxyl group and / or its salt-containing monomer. May be included. When the monomer composition contains other monomers, the monomer composition more preferably contains a carboxyl group and / or a salt-containing monomer thereof in an amount of 30 mol% or more.
[0066]
Specific examples of the other monomer (hereinafter, referred to as a copolymerizable monomer) include, for example, sulfo group-containing monomers such as vinyl sulfonic acid, styrene sulfonic acid, and sulfoethyl (meth) acrylate; Acids such as 2- (meth) acryloyloxyethyl acid phosphate, 2- (meth) acryloyloxypropyl acid phosphate, 2- (meth) acryloyloxy-3-chloropropyl acid phosphate, and 2- (meth) acryloyloxyethyl phenyl phosphate Phosphoric acid ester group-containing monomers; phenolic acid monomers such as vinyl phenol; acid group-containing monomers such as, and salts thereof, polyethylene glycol monomethacrylate, methoxypolyethylene glycol monomethacrylate, methoxypolyethylene Glycol monoa Polyalkylene glycol (meth) acrylates such as lylic acid ester; polyalkylene glycol monoalkenyl ether monomer obtained by adding ethylene oxide to 3-methyl-3-buten-1-ol; ethylene oxide to allyl alcohol Polyalkylene glycol chain-containing monomers such as polyethylene glycol monoethenyl ether monomer added; maleic anhydride polyethylene glycol half ester obtained by adding polyethylene glycol to maleic anhydride. Among the polyalkylene glycol chain-containing monomers, a monomer containing a polyalkylene glycol chain having a chain length of 5 mol or more and 100 mol or less, preferably 10 mol or more and 100 mol or less in terms of ethylene oxide is preferred. It is easily available, is more preferable in improving pseudo-granulation properties, and is also good in terms of polymerizability. As other examples, for example, methyl (meth) acrylate, ethyl (meth) acrylate, hydroxyethyl (meth) acrylate, (N, N-dimethylaminoethyl) (meth) acrylate, (meth) acrylic acid ( C1-C18 alkyl (meth) acrylates such as N, N-diethylaminoethyl) and aminoethyl (meth) acrylate; (meth) acrylamide, N-methyl (meth) acrylamide, N-ethyl (meth) ) (Meth) acrylamide and its derivatives, such as acrylamide and N, N-dimethyl (meth) acrylamide; vinyl acetate; (meth) acrylonitrile; base-containing monomers such as N-vinyl-2-pyrrolidone, vinylpyridine, vinylimidazole Form: N-methylol (meth) acrylamide, N-butoxymethyl (meth) Crosslinkable (meth) acrylamide monomers such as acrylamide; vinyltrimethoxysilane, vinyltriethoxysilane, γ- (meth) acryloylpropyltrimethoxysilane, vinyltris (2-methoxyethoxy) silane, allyltriethoxy A silane-based monomer having a hydrolyzable group directly bonded to a silicon atom such as silane; an epoxy-containing monomer such as glycidyl (meth) acrylate and glycidyl ether (meth) acrylate; 2-isopropenyl- Oxazoline group-containing monomers such as 2-oxazoline and 2-vinyl-2-oxazoline; aziridine group-containing monomers such as 2-aziridinylethyl (meth) acrylate and (meth) acryloylaziridine; vinyl fluoride, fluorine Halogen such as vinylidene chloride, vinyl chloride and vinylidene chloride Group-containing monomers; (meth) acrylic acid, ethylene glycol, diethylene glycol, propylene glycol, 1,3-butylene glycol, neopentyl glycol, 1,6-hexanediol, trimethylolpropane, pentaerythritol, dipentaerythritol Polyfunctional (meth) acrylate having a plurality of unsaturated groups in the molecule, such as an esterified product with a polyhydric alcohol such as methylene bis (meth) acrylamide; (Meth) acrylamide; polyfunctional allyl compounds having a plurality of unsaturated groups in the molecule, such as diallyl phthalate, diallyl maleate and diallyl fumarate; allyl (meth) acrylate; divinylbenzene; and the like, but are particularly limited. Not something. One of these copolymerizable monomers may be used, or two or more thereof may be used, if necessary.
[0067]
Further, a chain transfer agent can be added to the monomer composition for the purpose of controlling the molecular weight. Specific examples of the chain transfer agent include mercapto group-containing compounds such as mercaptoethanol, mercaptopropionic acid and t-dodecylmercaptan; carbon tetrachloride; isopropyl alcohol; toluene; sodium hypophosphite; Is mentioned. One of these chain transfer agents may be used, if necessary, or two or more thereof may be used. The use amount of these chain transfer agents is not particularly limited.
[0068]
The polymer compound containing a carboxyl group and / or a salt thereof can be obtained by polymerizing the above monomer composition. The polymerization method is not particularly limited, and conventionally known various polymerization methods, for example, an oil-in-water emulsion polymerization method, a water-in-oil emulsion polymerization method, a suspension polymerization method, a dispersion polymerization method, a precipitation polymerization method, A solution polymerization method, an aqueous solution polymerization method, a bulk polymerization method, or the like can be employed. Among the polymerization methods exemplified above, an aqueous solution polymerization method is more preferable from the viewpoints of reduction of production cost, safety and the like.
[0069]
The polymerization initiator used in the polymerization method may be a compound that is decomposed by heat or an oxidation-reduction reaction to generate a radical molecule. When the aqueous solution polymerization method is employed, a polymerization initiator having water solubility is preferable. Specific examples of the polymerization initiator include, for example, persulfates such as sodium persulfate, potassium persulfate, and ammonium persulfate; 2,2′-azobis- (2-amidinopropane) dihydrochloride; Water-soluble azo compounds such as' -azobis-2-methylpropionamidine hydrochloride, 4,4'-azobis- (4-cyanopentanoic acid); thermally decomposable initiators such as hydrogen peroxide; hydrogen peroxide and ascorbic acid , T-butyl hydroperoxide and Rongalit, potassium persulfate and metal salt, redox polymerization initiator comprising a combination of ammonium persulfate and sodium hydrogen sulfite; and the like, but are not particularly limited. One type of these polymerization initiators may be used alone, or two or more types may be used in combination. The amount of the polymerization initiator may be appropriately set according to the composition of the monomer composition, the conditions of the polymerization reaction, and the like.
[0070]
The polymerization conditions such as the reaction temperature and the reaction time may be appropriately set according to the composition of the monomer composition, the type of the polymerization initiator, and the like. As a method for supplying the monomer composition to the reaction system when the aqueous solution polymerization method is employed, for example, a batch addition method, a split addition method, a component dropping method, a power feed method, a multistage dropping method, or the like can be performed. However, there is no particular limitation. The polymerization reaction may be performed under normal pressure, reduced pressure, or increased pressure.
[0071]
In synthesizing the carboxyl group and / or its salt-containing polymer compound, the nonvolatile component containing the carboxyl group and / or its salt-containing polymer compound contained in the aqueous polymer solution obtained when the aqueous solution polymerization method is employed. The concentration is not particularly limited, but is more preferably 70% by mass or less. A polymer aqueous solution having a non-volatile component concentration exceeding 70% by mass has a high viscosity, and the time required for uniformly mixing with the sintering raw material is prolonged.
[0072]
The carboxyl group and / or its salt-containing polymer compound according to the present invention has a dispersity represented by “mass average molecular weight (weight average molecular weight) / number average molecular weight” of 1.2 or more and 12.0 or less. It is preferably within the range, but is not particularly limited. If the degree of dispersion is less than 1.2, the strength of the sintered raw material after granulation tends to decrease. On the other hand, if the degree of dispersion is larger than 12.0, there is a possibility that a sufficient granulating effect cannot be obtained.
[0073]
The number-average molecular weight of the carboxyl group and / or its salt-containing polymer compound is preferably in the range of 500 to 20,000, but is not particularly limited. When the number average molecular weight is less than 500 or more than 20,000, there is a possibility that a sufficient granulating effect cannot be obtained.
[0074]
Further, the compound having an acid group and a polyalkylene glycol chain can be obtained, for example, by polymerizing a monomer composition containing a monomer having the polyalkylene glycol chain and an acid group-containing monomer as essential components. Can be. Examples of the acid group-containing monomer include the above-mentioned carboxyl group-containing monomer, the above-mentioned sulfo group-containing monomer, the above-mentioned acidic phosphate ester-containing monomer, and petroleum acid-based monomers. Further, the above-mentioned copolymerizable monomer may be contained as another component. The compound having an acid group and a polyalkylene glycol chain can also be obtained, for example, by polymerizing the above-mentioned acid group-containing monomer in the presence of a compound having a polyalkylene glycol chain. The compound having an acid group and a polyalkylene glycol chain can be obtained by the same polymerization method as that for the carboxyl group-containing polymer compound. In this case, the above-described chain transfer agent and polymerization initiator can be used. In the present invention, the acid group has an acid type structure and / or an acid neutralized structure. Therefore, the compound having an acid group and a polyalkylene glycol chain in the present invention includes those having a structure in which a part or all of the acid group is neutralized.
[0075]
The β-naphthalene sulfonate formalin condensate is obtained by reacting concentrated sulfuric acid with naphthalene oil of a coal tar fraction and subjecting the sulfonated product to a condensation reaction with formaldehyde. For example, the following general formula (1) )
[0076]
Embedded image
[0077]
(Where R 1 , R 2 Are each independently a hydrogen atom, CH 3 Atom or CH 2 CH 3 Represents a group, M represents an alkali metal ion, an alkaline earth metal ion, or a nitrogen-containing base, and p represents a positive number of 1 to 10000)
Has a structure represented by
[0078]
The component of the naphthalene oil used here is generally a mixture of naphthalene, thionaphthene, methylnaphthalene and the like in many cases. As the β-naphthalene sulfonate formalin condensate, a conventionally known β-naphthalene sulfonate formalin condensate, for example, a commercially available β-naphthalene sulfonate formalin condensate can be used. It is not particularly limited.
[0079]
Further, the melamine sulfonate formalin condensate is a water-soluble polymer compound obtained by subjecting melamine to a condensation reaction with an aqueous formaldehyde solution and sulfonating it with sodium sulfite. For example, the following general formula (2)
[0080]
Embedded image
[0081]
(Wherein, M represents an alkali metal ion, an alkaline earth metal ion, or a nitrogen-containing base, and q represents a positive number of 1 to 10,000)
Has a structural unit represented by As the melamine sulfonate formalin condensate, a conventionally known melamine sulfonate formalin condensate, for example, a commercially available melamine sulfonate formalin condensate can be used, and the production conditions and the like are particularly limited. is not.
[0082]
The aromatic aminosulfonic acid polymer is a water-soluble polymer compound obtained by condensing aniline sulfonated aminobenzenesulfonic acid and phenol with formaldehyde. For example, the following general formula (3)
[0083]
Embedded image
[0084]
(Wherein, M represents an alkali metal ion, an alkaline earth metal ion, or a nitrogen-containing base, and r and s each independently represent a positive number of 1 to 10,000)
Has a structural unit represented by As the aromatic aminosulfonic acid polymer, a conventionally known aromatic aminosulfonic acid polymer, for example, a commercially available aromatic aminosulfonic acid polymer can be used, and the production conditions and the like are not particularly limited.
[0085]
Further, the lignin sulfonic acid-modified product is a polymer obtained by modifying lignin sulfonic acid obtained by causing concentrated sulphuric acid to act on pulp waste liquor and complexing it with β-naphthalene sulfonic acid or the like. )
[0086]
Embedded image
[0087]
(Where R 3 Represents a salt derived from a β-naphthalene sulfonate formalin condensate, or a COOH group, M represents a metal ion, an alkaline earth metal ion, or a nitrogen-containing base, and t represents a positive number of 1 to 10,000)
Has a structural unit represented by As the ligninsulfonic acid-modified product, a conventionally known ligninsulfonic acid-modified product, for example, a commercially available ligninsulfonic acid-modified product can be used, and the production conditions and the like are not particularly limited. The modified lignin sulfonic acid has better dispersibility than simple lignin sulfonic acid.
[0088]
In the above general formulas (1) to (4), among the substituents represented by M, specific examples of the alkali metal ion include ions of alkali metals such as potassium and sodium. In addition, specific examples of the alkaline earth metal ion include an alkaline earth metal ion such as calcium. Examples of the nitrogen-containing base include ammonium, primary to quaternary amines, and the like.
[0089]
The compound having an acid and a polyalkylene glycol chain, a β-naphthalene sulfonate formalin condensate, a melamine sulfonate formalin condensate, an aromatic aminosulfonic acid polymer, and a ligninsulfonic acid modified product have a number average molecular weight of 300 to 100,000. It is more preferred that: The lower limit of the number average molecular weight is more preferably 500, and the upper limit is more preferably 20,000. If the number average molecular weight is less than 300, the pseudo-granulation property tends to decrease, and if it exceeds 100,000, the viscosity becomes too high, and the high-molecular compound does not sufficiently flow into the iron ore, resulting in pseudo-granulation. May be reduced.
[0090]
According to the present invention, when granulating a sintering raw material containing Maramanba ore, a step of adding a granulating agent containing a polymer compound belonging to the polymer compound group A is included, whereby agglomeration of fine powder is performed. Breaking down and dispersing the material, releasing the water incorporated in the agglomerates of the fine powder, that is, water that could not be used effectively before can be distributed throughout the sintering raw material, and water can be used efficiently. can do. Further, the fine powder is also dispersed at the same time and re-agglomerated at the contact points between the sintering raw material particles, so that solid crosslinking is formed by the fine powder. Thereby, the granulation treatment of the sintering raw material including the maramamba ore becomes possible, and strong pseudo particles can be produced.
[0091]
The granulating agent contains the polymer compound A as an essential component, and preferably further contains water. The content of the polymer compound belonging to the polymer compound group A in the granulation treatment agent is preferably in the range of 0.01% by mass to 70% by mass. Further, the content of water is preferably in the range of 30% by mass to 99.99% by mass.
[0092]
Of course, the present invention can be used as a pretreatment not only for the sintering raw material but also for the pellet raw material (iron ore, auxiliary raw material, fuel, etc.). In this case, the amount of the granulating agent added to the pellet raw material is not particularly limited, but the lower limit is more preferably 0.01% by mass in terms of solid content, based on the total mass of the pellet raw material. , More preferably 0.03% by mass, and the upper limit is more preferably 5% by mass, and still more preferably 1% by mass. If the granulating agent is added in excess of 5% by mass in terms of solid content, the granulation becomes excessive and large lumps of pellet raw material are formed, which has an adverse effect such as a large variation in the particle diameter of the pellet raw material. Would. The lower limit of the amount of the granulating agent to be used depends on the granulating properties of the raw material for pellets, the granulator used, and the like, but it is desirable to design as small as possible.
[0093]
Furthermore, the above-mentioned granulating agent is used for granulation of a sintering raw material containing Maramamba ore, in which the polymer compound belonging to the polymer compound group A has the performance, particularly, the polymer compound belonging to the polymer compound group A. If necessary, it may be used in combination with other components, for example, other conventionally known granulation additives such as quicklime, as long as the effect of improving the pseudo-granulation property is not impaired.
[0094]
Furthermore, the above-mentioned granulating agent increases the adhesive force of the adhering powder of the pseudo particles, suppresses the collapse of the water condensation zone and the like in the sintering bed, and improves the productivity of the obtained sintered ore. The performance possessed by the polymer compound belonging to the molecular compound group A, in particular, the effect of improving the pseudo-granulation property when the polymer compound belonging to the polymer compound group A is used for granulation of a sintering raw material containing Maramamba ore. Fine powder having an average particle size of 200 μm or less can be used together within a range that does not inhibit the fine particles. Suitable fine powders include calcium carbonate, kaolin clay, silica, silica sand, talc, bentonite, dolomite powder, dolomite plaster, magnesium carbonate, silica fume, anhydrous gypsum, sericite, montmorinite, shirasu, shirasu balloon, diatomaceous earth, calcined diatomaceous earth, silicon Carbide, yellow iron oxide, strontium carbonate, barium carbonate, graphite, wollastonite, crecas sphere, carbon black, toner, red iron, crushed serpentine, blast furnace slag, converter slag, activated clay, cement such as Portland cement, crushed Iron ore such as silica stone, magnesium oxide, calcined hillstone, and pellet feed, dust generated in steelworks, dust generated in processes other than steelworks, specifically generated in thermal power plants such as fly ash and heavy oil ash Dust, copper making professional Karami iron ore concentrate and copper slag generated in the scan, red mud discharged by alumina production processes, other, and inorganic or organic fine particles such as flue gas desulphurization gypsum and asbestos dust. The average particle size of the fine powder is preferably 50 μm or less, more preferably 25 μm or less, and most preferably 15 μm or less.
[0095]
The present invention may use, for example, a method of selectively mixing and / or granulating hard-to-granulate sintering raw materials in advance, and then adding the remaining raw materials to granulation. . The granulation treatment method is preferable in that the amount of the polymer compound or fine particles serving as a disintegration inhibitor for pseudo particles tends to be reduced. However, when the granulation method is employed, the number of processing steps increases or equipment for a preliminary processing step is required.
[0096]
The present invention is not limited to the embodiments described below, and various modifications can be made within the scope of the claims, and embodiments obtained by appropriately combining the technical means disclosed in the different embodiments. Is also included in the technical scope of the present invention.
[0097]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto. In the Examples and Comparative Examples, “parts” indicates “parts by mass”, and “%” indicates “% by mass”. Further, the sintering raw materials and pellet raw materials in the following Examples and Comparative Examples were all in a dry state.
[0098]
The number average molecular weight, mass average molecular weight, dispersity, average particle size, GI index, and production rate in the present invention were measured by the following methods.
[0099]
(Number average molecular weight, mass average molecular weight, degree of dispersion)
The number average molecular weight and mass average molecular weight of the polymer compound were measured by GPC (gel permeation chromatography). The measurement conditions are as follows.
[0100]
Pump: "L-7110" (manufactured by Hitachi, Ltd.)
Carrier liquid: an aqueous solution in which ultrapure water was added to 34.5 g of disodium hydrogen phosphate decahydrate and 46.2 g of sodium dihydrogen phosphate dihydrate to make the total amount 5000 g
Flow rate: 0.5 ml / min
Column: One aqueous GPC column "GF-7MHQ" (manufactured by Showa Denko KK)
Detector: Ultraviolet (UV) detector "L-7400" (manufactured by Hitachi, Ltd.), wavelength 214 nm
Molecular weight standard sample: sodium polyacrylate (manufactured by Sowa Kagaku Co., Ltd.)
The analysis sample was prepared by diluting the polymer compound with the above carrier liquid so that the solid content of the polymer compound was 0.1%.
[0101]
In addition, the degree of dispersion of the polymer compound, based on the mass average molecular weight and the number average molecular weight measured under the above measurement conditions, the following formula
Dispersion degree = mass average molecular weight / number average molecular weight
Was calculated by
[0102]
However, the following measurement conditions were applied to the polymer compounds obtained in Examples 6 and 7.
[0103]
Model: Waters LCM1
Carrier solution: An aqueous solution obtained by dissolving 115.6 g of sodium acetate trihydrate in a mixed solution of 10999 g of water and 6001 g of acetonitrile, and further adjusting the pH to 6.0 with a 30% aqueous sodium hydroxide solution.
Flow rate: 0.8ml / min
Column: Water-based GPC column “TSKgel GuardColumnSWXL + G4000SWXL + G3000SWXL + G2000SWXL” (manufactured by Tosoh Corporation)
Column temperature: 35 ° C
Detector: Waters 410 differential refraction detector
Molecular weight standard sample: polyethylene glycol
The analysis sample was prepared by diluting the polymer compound with the above carrier liquid so that the solid content of the polymer compound was 0.1%.
[0104]
(Average particle size, GI index)
After the pseudo particles obtained by performing the granulation operation were dried in an oven at 80 ° C. for 1 hour, the particles were classified using a sieve to determine the particle size (pseudo particle size) and the average particle size. The GI index of the granulated pseudo particles is one of the evaluation methods disclosed in Iron and Steel Research No. 288 (1976), page 9, and indicates the ratio of fine powder particles adhering around core particles. The larger the ratio is, the more excellent the effect of adhering the fine powder particles around the core particles is, and it is possible to improve the production efficiency of the sintering machine. In the following measurements, the GI index of pseudo particles having an average particle size after granulation of 0.25 mm or less was determined. The GI index (pseudo-granulation index) of the pseudo-particles having a size of 0.25 mm or less was calculated by the following equation.
[0105]
GI index of pseudo particles of 0.25 mm or less = (Ratio of raw material of 0.25 mm or less before granulation−Ratio of raw material of 0.25 mm or less after granulation) / (raw material of 0.25 mm or less before granulation) Ratio) x 100
(Product yield and production rate)
The product yield measures the ratio of particles having a particle size of 5 mm or more when 50 kg of sinter (sinter cake) is dropped five times from a height of 2 m onto an iron plate in a sinter pot test. It was evaluated by:
[0106]
The production rate of sinter is calculated by the following formula.
Production rate (t / day / m 2 ) =
Total mass (weight) of particles having a particle size of 5 mm or more after product yield evaluation (t) / sintering time (day) / surface area of sintering machine (pan) (m) 2 )
Was calculated by
[0107]
[Example 1]
A 5 L separable flask (manufactured by SUS316) equipped with a stirrer and a condenser was charged with 805.5 parts of ion-exchanged water and 40.1 parts of a 45% aqueous solution of sodium hypophosphite monohydrate as a chain transfer agent. Under stirring, the temperature was raised to the boiling point of the system (100 ° C.).
[0108]
Subsequently, 2126.1 parts of an 80% aqueous solution of acrylic acid as a carboxyl group-containing monomer, 112.4 parts of a 15% aqueous solution of sodium persulfate as a polymerization initiator and 45% 160.2 parts of an aqueous solution of sodium phosphate monohydrate was added dropwise. The aqueous acrylic acid solution, the aqueous sodium persulfate solution, and the aqueous sodium hypophosphite monohydrate solution were respectively dropped from separate dropping ports. The acrylic acid aqueous solution was dropped in 180 minutes. The aqueous solution of sodium persulfate was added dropwise over 185 minutes. The aqueous solution of sodium hypophosphite monohydrate was added dropwise over 180 minutes. During the dropping time, the reaction temperature maintained the boiling point of the system. After completion of the dropwise addition, the mixture was maintained at the same temperature for 5 minutes, and 1889.0 parts of a 48% aqueous sodium hydroxide solution as a neutralizing agent was added dropwise over 60 minutes to obtain a polymer aqueous solution. When the number average molecular weight and the degree of dispersion of the polymer (polymer compound) in the polymer aqueous solution thus obtained were calculated, the number average molecular weight was 2,100, the mass average molecular weight was 6,200, and the degree of dispersion was 2.93. .
[0109]
Further, the obtained polymer aqueous solution was collected so as to be 35 parts in terms of solid content, and was diluted with ion-exchanged water to make 5250 parts, whereby a granulating agent (1) according to the present invention was obtained. .
[0110]
On the other hand, a sintering raw material having a composition shown in Table 2 and containing maramamba ore was prepared. West Angelas was used as Mara Mamba ore.
[0111]
[Table 2]
[0112]
70,000 parts of the above sintering raw material were put into a drum mixer, and the rotation speed was 24 min. -1 For 1 minute. Thereafter, 5250 parts of the granulating agent (1) prepared in advance according to the present invention was sprayed onto the sintering raw material for about 1.5 minutes while spraying at the same rotation speed using a spray. The ratio of the carboxyl group-containing polymer compound to the sintering raw material was 0.05%. After spraying, a granulation operation was performed by further stirring at the same rotation speed for 3 minutes.
[0113]
The moisture content of each of the obtained pseudo particles is measured, and the granulated material is dried in an oven at 80 ° C. for 1 hour, and the pseudo particles are classified using a sieve, thereby obtaining an average particle size after granulation. The GI index of pseudo particles having a particle size of 0.25 mm or less was determined.
[0114]
[Example 2]
805.5 parts of ion-exchanged water was charged into a 5-liter separable flask (manufactured by SUS316) equipped with a stirrer and a condenser, and the temperature was raised to the boiling point (100 ° C.) of the system with stirring.
[0115]
Subsequently, into the separable flask, 2126.1 parts of an 80% aqueous solution of acrylic acid, 112.4 parts of an aqueous solution of 15% sodium persulfate, and 88.5 parts of an aqueous solution of 45% sodium hypophosphite monohydrate Was dropped. The aqueous acrylic acid solution, the aqueous sodium persulfate solution, and the aqueous sodium hypophosphite monohydrate solution were respectively dropped from separate dropping ports. The acrylic acid aqueous solution was dropped in 180 minutes. The aqueous solution of sodium persulfate was added dropwise over 185 minutes. The aqueous solution of sodium hypophosphite monohydrate was added dropwise over 180 minutes. During the dropping time, the reaction temperature maintained the boiling point of the system. After completion of the dropwise addition, the mixture was maintained at the same temperature for 5 minutes, and 1889.0 parts of a 48% aqueous sodium hydroxide solution was added dropwise over 60 minutes to obtain a polymer aqueous solution. When the number average molecular weight and the degree of dispersion of the polymer (polymer compound) in the polymer aqueous solution thus obtained were calculated, the number average molecular weight was 2,900, the mass average molecular weight was 12,200, and the degree of dispersion was 4.21. .
[0116]
Further, the obtained polymer aqueous solution was collected so as to be 35 parts in terms of solid content, and this was diluted with ion-exchanged water to make 5250 parts, whereby a granulating agent (2) according to the present invention was obtained. .
[0117]
Thereafter, in Example 1, granulation is performed by the same operation as in Example 1 using the granulating agent (2) instead of the granulating agent (1), and the obtained pseudo particles are sieved using a sieve. The GI index of pseudo particles having an average particle diameter of 0.25 mm or less after granulation was obtained by classification.
[0118]
[Example 3]
805.5 parts of ion-exchanged water and 40.1 parts of 45% sodium hypophosphite monohydrate aqueous solution were charged into a 5-liter separable flask (manufactured by SUS316) equipped with a stirrer and a condenser. (100 ° C.).
[0119]
Subsequently, in the separable flask, 2126.1 parts of an 80% aqueous methacrylic acid solution, 112.4 parts of a 15% aqueous sodium persulfate solution, and 160.2 parts of a 45% aqueous sodium hypophosphite monohydrate solution Was dropped. The methacrylic acid aqueous solution, the sodium persulfate aqueous solution, and the sodium hypophosphite monohydrate aqueous solution were dropped from separate dropping ports. The acrylic acid aqueous solution was dropped in 180 minutes. The aqueous solution of sodium persulfate was added dropwise over 185 minutes. The aqueous solution of sodium hypophosphite monohydrate was added dropwise over 180 minutes. During the dropping time, the reaction temperature maintained the boiling point of the system. After completion of the dropwise addition, the mixture was maintained at the same temperature for 10 minutes, and 1595.1 parts of a 48% aqueous sodium hydroxide solution was added dropwise over 60 minutes to obtain a polymer aqueous solution. When the number average molecular weight and the degree of dispersion of the polymer (polymer compound) in the aqueous polymer solution thus obtained were calculated, the number average molecular weight was 1,900, the mass average molecular weight was 6,300, and the degree of dispersion was 3.31. .
[0120]
Further, the obtained polymer aqueous solution was collected so as to be 35 parts in terms of solid content, and this was diluted with ion-exchanged water to make 5250 parts, whereby the granulating agent (3) according to the present invention was obtained. .
[0121]
Thereafter, in Example 1, granulation is performed by the same operation as in Example 1 using the granulating agent (3) instead of the granulating agent (1), and the obtained pseudo particles are sieved using a sieve. The GI index of pseudo particles having an average particle diameter of 0.25 mm or less after granulation was obtained by classification.
[0122]
[Example 4]
A 1-liter separable flask (manufactured by SUS316) equipped with a stirrer and a condenser was charged with 355 parts of ion-exchanged water, 98 parts of maleic anhydride and 80 parts of sodium hydroxide to neutralize the mixture, and stirred to obtain a boiling point of the system ( (100 ° C.).
[0123]
Subsequently, 180 parts of a 40% aqueous solution of acrylic acid, 100 parts of a 10% aqueous solution of sodium persulfate, and 100 parts of a 14% aqueous solution of hydrogen peroxide were dropped into the separable flask. The aqueous solution of acrylic acid, the aqueous solution of sodium persulfate, and the aqueous solution of hydrogen peroxide were respectively dropped from separate dropping ports over 4 hours. During the dropping time, the reaction temperature maintained the boiling point of the system. After completion of the dropwise addition, the mixture was maintained at the same temperature for 60 minutes, and 57 parts of a 49% aqueous sodium hydroxide solution was added dropwise over 60 minutes to obtain a polymer aqueous solution. When the number average molecular weight and the degree of dispersion of the polymer (polymer compound) in the polymer aqueous solution thus obtained were calculated, the number average molecular weight was 1200, the mass average molecular weight was 5900, and the degree of dispersion was 4.94. .
[0124]
Further, the obtained polymer aqueous solution was collected so as to be 35 parts in terms of solid content, and diluted with ion-exchanged water to make 5250 parts, whereby a granulating agent (4) according to the present invention was obtained. .
[0125]
Thereafter, in Example 1, granulation is performed by the same operation as in Example 1 using the granulating agent (4) instead of the granulating agent (1), and the obtained pseudo particles are sieved using a sieve. The GI index of pseudo particles having an average particle diameter of 0.25 mm or less after granulation was obtained by classification.
[0126]
[Example 5]
1400 parts of ion-exchanged water was charged into a 1-liter separable flask (manufactured by SUS316) equipped with a stirrer and a condenser, and the temperature was raised to the boiling point (100 ° C.) of the system with stirring.
[0127]
Subsequently, 578.5 parts of an 80% aqueous solution of acrylic acid and 62.5 parts of a 15% aqueous solution of ammonium persulfate were respectively dropped into the separable flask from separate dropping ports over 2 hours. During the dropping time, the reaction temperature maintained the boiling point of the system. After completion of the dropwise addition, the mixture was maintained at the same temperature for 120 minutes, and 353 parts of a 48% aqueous sodium hydroxide solution was added dropwise over 60 minutes to obtain a polymer aqueous solution. When the number average molecular weight and the degree of dispersion of the polymer (polymer compound) in the polymer aqueous solution thus obtained were calculated, the number average molecular weight was 4,900, the mass average molecular weight was 48200, and the degree of dispersion was 9.84. .
[0128]
Further, the obtained polymer aqueous solution was collected so as to be 35 parts in terms of solid content, and this was diluted with ion-exchanged water to make 5250 parts, whereby a granulating agent (5) according to the present invention was obtained. .
[0129]
Thereafter, in Example 1, granulation is performed by the same operation as in Example 1 using the granulating agent (5) instead of the granulating agent (1), and the obtained pseudo particles are sieved using a sieve. The GI index of pseudo particles having an average particle diameter of 0.25 mm or less after granulation was obtained by classification.
[0130]
[Example 6]
A 1-liter separable flask (manufactured by SUS316) equipped with a stirrer and a condenser was charged with 196 parts of maleic anhydride, 110.7 parts of ion-exchanged water, and 333.3 parts of a 48% aqueous sodium hydroxide solution. The temperature was raised to the boiling point (100 ° C.).
[0131]
Subsequently, 560.78 parts of a 60% aqueous solution of acrylic acid, 200 parts of a 10% aqueous solution of sodium persulfate, and 6.65 parts of 35% aqueous hydrogen peroxide were separately placed in separate separable flasks for 5 hours. Then, a polymer aqueous solution was obtained. When the number average molecular weight and the degree of dispersion of the polymer (polymer compound) in the aqueous polymer solution thus obtained were measured, the number average molecular weight was 5,260, the mass average molecular weight was 81,000, and the degree of dispersion was 15.4. .
[0132]
Further, the obtained polymer aqueous solution was collected so as to be 35 parts in terms of solid content, diluted with ion-exchanged water, and adjusted to 5250 parts to obtain the granulating agent (6) according to the present invention. .
[0133]
Thereafter, in Example 1, granulation is performed by the same operation as in Example 1 using the granulating agent (6) in place of the granulating agent (1), and the obtained pseudo particles are sieved using a sieve. The GI index of pseudo particles having an average particle diameter of 0.25 mm or less after granulation was obtained by classification.
[0134]
[Example 7]
A glass reactor equipped with a thermometer, a stirrer, a dropping funnel, a nitrogen inlet tube and a reflux condenser was charged with 1698 parts of ion-exchanged water, the inside of the reactor was replaced with nitrogen under stirring, and 80 ° C. under a nitrogen atmosphere. Until heated. On the other hand, 1668 parts of methoxypolyethylene glycol monomethacrylate (average number of moles of ethylene oxide = 25), 332 parts of methacrylic acid, and 500 parts of ion-exchanged water were mixed, and 16.7 parts of mercaptopropionic acid was further uniformly added to the mixture. By mixing, a monomer mixture aqueous solution was prepared.
[0135]
Next, the monomer mixture aqueous solution and the 10% ammonium persulfate aqueous solution were charged into dropping funnels, respectively, and the monomer mixture aqueous solution and 184 parts of the 10% ammonium persulfate aqueous solution were added to ion-exchanged water in the reaction vessel. Dropped in time. After the completion of the dropwise addition, 46 parts of a 10% ammonium persulfate aqueous solution was further added dropwise to the reaction solution in the reaction vessel over 1 hour. Thereafter, the temperature of the reaction solution in the reaction vessel was maintained at 80 ° C. for 1 hour, and the polymerization reaction was completed.
[0136]
Thereafter, a polymer aqueous solution containing a polymer compound obtained by neutralizing the reaction solution with a 30% aqueous sodium hydroxide solution and having a weight average molecular weight of 23,800 and a nonvolatile content of 43.2% was obtained.
[0137]
Further, the obtained polymer aqueous solution was collected so as to be 35 parts in terms of solid content, and diluted with ion-exchanged water to make 5250 parts, whereby a granulating agent (7) according to the present invention was obtained. .
[0138]
Then, in Example 1, granulation is performed by the same operation as in Example 1 using the granulating agent (7) instead of the granulating agent (1), and the obtained pseudo particles are sieved using a sieve. The GI index of pseudo particles having an average particle diameter of 0.25 mm or less after granulation was obtained by classification.
[0139]
Example 8
In a glass reactor equipped with a thermometer, a stirrer, a dropping funnel, a nitrogen inlet tube and a reflux condenser, 1291 parts of ion-exchanged water and 50 parts of 3-methyl-3-buten-1-ol containing ethylene oxide on average were used. A reaction solution was prepared by charging 1812 parts of a polyalkylene glycol monoalkenyl ether monomer obtained by molar addition and 188 parts of maleic anhydride. Next, the reaction solution was heated to 60 ° C.
[0140]
Subsequently, 50 parts of a 15% aqueous solution of "NC-32W" (trade name; 87% concentration of 2,2'-azobis-2-methylpropionamidine hydrochloride, manufactured by Niho Kagaku) was added to the reaction solution. In addition, the mixture was stirred for 7 hours, and after the temperature was further raised to 80 ° C., the mixture was stirred for 1 hour to complete the polymerization reaction.
[0141]
Thereafter, the reaction solution was neutralized with a 30% aqueous sodium hydroxide solution to obtain a polymer aqueous solution having a nonvolatile content of 55.1%. The mass average molecular weight of the high molecular weight product was 26,200.
[0142]
Further, the obtained polymer aqueous solution was collected so as to be 35 parts in terms of solid content, diluted with ion-exchanged water, and adjusted to 5250 parts to obtain the granulating agent (8) according to the present invention. .
[0143]
Thereafter, in Example 1, granulation is performed by the same operation as in Example 1 using the granulating agent (8) in place of the granulating agent (1), and the obtained pseudo particles are sieved using a sieve. The GI index of pseudo particles having an average particle diameter of 0.25 mm or less after granulation was obtained by classification.
[0144]
[Example 9]
“Mighty 150” (trade name; Kao Corporation, nonvolatile content: 40.1%), which is a β-naphthalenesulfonic acid formalin condensate, is collected to 35 parts in terms of solid content, and this is ion-exchanged with water. It was diluted to 5250 parts to obtain a granulating agent (9) according to the present invention.
[0145]
Then, in Example 1, granulation is performed by the same operation as in Example 1 using the granulating agent (9) in place of the granulating agent (1), and the obtained pseudo particles are sieved using a sieve. The GI index of pseudo particles having an average particle size of 0.25 mm or less after granulation was obtained by classification.
[0146]
[Example 10]
A melamine sulfonate formalin condensate, “Merment F10” (trade name; powder product, manufactured by SKW) was collected to be 35 parts in terms of solid content, diluted with ion-exchanged water, and 5250 parts. As a result, a granulating agent (10) according to the present invention was obtained.
[0147]
Thereafter, in Example 1, granulation is performed by the same operation as in Example 1 using the granulating agent (10) in place of the granulating agent (1), and the obtained pseudo particles are sieved using a sieve. The GI index of pseudo particles having an average particle diameter of 0.25 mm or less after granulation was obtained by classification.
[0148]
[Example 11]
70,000 parts of the sintering raw material of Example 1 were charged into a drum mixer, and 1400 parts of heavy calcium carbonate (Super SS, made by Maruo Calcium) were further charged, and the rotation speed was 24 minutes. -1 For 1 minute. Thereafter, while stirring at the same rotation speed, 5250 parts of the granulating agent (1) prepared in advance was sprayed on the sintering raw material using a spray for about 1.5 minutes. The ratio of the polymer compound to the sintering raw material was 0.05%. After spraying, a granulation operation was performed by further stirring at the same rotation speed for 3 minutes.
[0149]
The obtained granules of the pseudo particles are dried in an oven at 80 ° C. for 1 hour, and the pseudo particles are classified using a sieve, whereby the pseudo particles having an average particle size of 0.25 mm or less after granulation are obtained. Was determined.
[0150]
[Example 12]
In Example 1, the composition of the sintering raw material shown in Table 2 was changed to the composition of the sintering raw material shown in Table 3, and accordingly, the mixing ratio of Maramamba to the total mass of the new raw material was changed from 15% by mass to 50% by mass. Granulation was performed under the same conditions as in Example 1 except for the above. That is, a granulation operation was performed by adding 5250 parts of water to 70000 parts of the same sintering raw material as in Example 1. Next, by the same operation as in Example 1, the GI index of particles having an average particle size of 0.25 mm or less was obtained.
[0151]
[Table 3]
[0152]
[Comparative Example 1]
Granulation was performed in the same manner as in Example 1 except that 5250 parts of water was used instead of the granulating agent (1). That is, a granulation operation was performed by adding 5250 parts of water to 70000 parts of the same sintering raw material as in Example 1. Next, by the same operation as in Example 1, the GI index of the pseudo particles having an average particle size of 0.25 mm or less was obtained.
[0153]
[Comparative Example 2]
Same as Example 1 except that 1400 parts of quicklime and 5900 parts of water were used in combination and used as a granulating agent (a) for comparison instead of 5250 parts of the granulating agent (1) of Example 1. And granulated. Next, by the same operation as in Example 1, the GI index of the pseudo particles having an average particle size of 0.25 mm or less was obtained.
[0154]
[Comparative Example 3]
Ion-exchanged water was added to 350 parts of sugar to make 5565 parts, and this was used as a granulating agent (b) for comparison, except that 5250 parts of the granulating agent (1) of Example 1 were used. Granulation was performed in the same manner as in Example 1. Next, by the same operation as in Example 1, the GI index of the pseudo particles having an average particle size of 0.25 mm or less was obtained.
[0155]
[Comparative Example 4]
Deionized water was added to 35 parts of polyethylene glycol having a number average molecular weight of 20,000, which is a polymer compound containing an alkylene oxide unit not containing a carboxyl group-containing monomer, to make 5250 parts. Granulation was performed in the same manner as in Example 1 except that this was used as a comparative granulation treatment agent (c) instead of 5250 parts of the granulation treatment agent (1) of Example 1. Next, by the same operation as in Example 1, the GI index of the pseudo particles having an average particle size of 0.25 mm or less was obtained.
[0156]
[Comparative Example 5]
A sintering raw material having a composition shown in Table 4 and containing no maramamba ore was prepared.
[0157]
[Table 4]
[0158]
70000 parts of the sintering raw material shown in Table 4 were put into a drum mixer, and the rotation speed was 24 min. -1 For 1 minute. Thereafter, 5250 parts of ion-exchanged water was sprayed on the sintering raw material for about 1.5 minutes while spraying at the same rotation speed. After spraying, a granulation operation was performed by further stirring at the same rotation speed for 3 minutes.
[0159]
The obtained granules of the pseudo particles are dried in an oven at 80 ° C. for 1 hour, and the pseudo particles are classified using a sieve, whereby the pseudo particles having an average particle size of 0.25 mm or less after granulation are obtained. Was determined.
[0160]
[Comparative Example 6]
In Example 1, the mixing ratio of the sintering raw materials shown in Table 2 was changed to the mixing ratio of the sintering raw materials shown in Table 5, and the mixing ratio of Maramamba to the total weight of the new raw materials was changed from 15% by mass to 60% by mass. Granulation was performed under the same conditions as in Example 1 except for the above. That is, a granulation operation was performed by adding 5250 parts of water to 70000 parts of the same sintering raw material as in Example 1. Next, by the same operation as in Example 1, the GI index of the pseudo particles having an average particle size of 0.25 mm or less was obtained.
[0161]
[Table 5]
[0162]
[Comparative Example 7]
In Example 1, the same operation as in Example 1 was performed except that the addition amount of the granulating agent (1) was changed to 0.0005% by mass in the ratio of the carboxyl group-containing polymer compound to the sintering raw material. Granulation was performed. Next, by the same operation as in Example 1, the GI index of the pseudo particles having an average particle size of 0.25 mm or less was obtained.
[0163]
[Comparative Example 8]
Example 1 was repeated in the same manner as in Example 1 except that the amount of the granulating agent (1) was changed to 1.05% by mass of the carboxyl group-containing polymer compound relative to the sintering raw material. Granulated. Next, by the same operation as in Example 1, the GI index of the pseudo particles having an average particle size of 0.25 mm or less was obtained.
[0164]
Table 6 summarizes the GI indices of the pseudo particles obtained in Examples 1 to 12 and Comparative Examples 1 to 8.
[0165]
[Table 6]
[0166]
As can be seen from Table 6, by using the granulating agent containing the carboxyl group-containing polymer compound according to the present invention, the GI index, that is, the granulating property of the sintering raw material can be significantly improved. .
[0167]
Further, from the results, the use of the granulating agent containing the carboxyl group-containing polymer compound according to the present invention significantly improves the granulation properties, thereby improving the production efficiency.
[0168]
In Comparative Examples 1 to 4, the granulating agent did not contain a carboxyl group-containing polymer compound. As a result, the GI index was low because the value was out of the preferred range of the present invention. Further, from Comparative Example 5, it can be seen that the present invention is also effective as compared with the current granulation treatment method for a sintering raw material containing no hematite goethite ore.
[0169]
Table 7 summarizes the GI index and the sinter production rate of the pseudo particles obtained in Examples 1 and 12 and Comparative Examples 6 to 8. Here, (t / d / m 2 ) Is a sintering machine 1m 2 Per day and shows how many sintered ores can be produced per day.
[0170]
[Table 7]
[0171]
As can be seen from Examples 1 and 12 of Table 7, the carboxyl group according to the present invention was added to the raw material for ironmaking containing 5% to 50% by mass of maramanba ore in a mixing ratio based on the total mass of the new raw material specified in the present invention. By adding a granulating agent containing the polymer compound in an amount of 0.001% by mass to 1% by mass in terms of solid content with respect to the total mass of the sintering raw material for steelmaking defined in the present invention. , GI index, that is, the granulation property of the sintering raw material and the production rate of the sintered ore can be greatly improved.
[0172]
On the other hand, in Comparative Examples 6 to 8, any one of the mixing ratio of the maramamba ore to the total mass of the new raw material and the addition ratio of the granulating agent to the total mass of the sintering raw material is out of the range specified in the present invention. Therefore, even when the carboxyl group-containing polymer compound according to the present invention was added as a granulating agent, the GI index and the production rate of sinter decreased.
[0173]
[Example 13]
A total of 70,000 parts of sintering raw materials (raw materials for steelmaking) were prepared from 14113 parts of the sintering raw materials of the composition (A) and 55887 parts of the sintering raw materials of the composition (B) having the compositions shown in Table 8.
[0174]
[Table 8]
[0175]
In Table 8, “MBRPF” is a pellet feed supplied from MBR, a Brazilian mine. In addition, on-screen and under-screen Hamasley fine ore, respectively, are Hamasley fine ore remaining on a 3 mm mesh sieve (that is, Hamasley fine ore having a particle size exceeding 3 mm) and Hamasley fine ore passing through a 3 mm mesh sieve. Ore (ie, Hamasley ore with a particle size of 3 mm or less).
[0176]
Subsequently, water was added to each of the sintering raw materials of the formulations (A) and (B) shown in Table 8, and adjusted to 15509 parts (water content 9% by mass) and 59454 parts (water content 6% by mass), respectively. (Hereinafter, the above sintering raw materials are referred to as sintering raw material (A) and sintering raw material (B), respectively).
[0177]
On the other hand, as a polymer compound having a carboxyl group and / or a salt thereof, a granulation treatment according to the present invention is performed by previously adjusting an aqueous solution of sodium polyacrylate having a mass average molecular weight of 6000 so as to have a nonvolatile content of 4.8%. Agent (11) was obtained.
[0178]
Then, a high-speed stirring mixer having a rotating pan part and an agitator part (15509 parts (water content 9% by mass) and blast furnace slag 350 parts (fine particles) pulverized to an average particle diameter of 10 μm) was used. LICH MIXER "(model number R05T; manufactured by Erich Japan Co., Ltd.), and 181 parts of the granulating agent (11) is sprayed on the sintering raw material composition in the high-speed stirring mixer for about 40 seconds by spraying. And sprayed (added) to obtain a selected granulated product. At this time, the rotation speed of the pan is 30 min. -1 The rotation speed of the agitator part is 450min -1 Met. Thereafter, 16040 parts of the above-mentioned selected granulated product, 59454 parts of sintering raw material (B) (water content: 6% by mass), and 350 parts of quicklime are charged into a drum mixer, and the rotation speed is 24 minutes. -1 For 1 minute. Then, while stirring at the same rotation speed, 500 parts of water was sprayed (added) to the sintering raw material composition in the drum mixer over about 1.5 minutes using a spray. After spraying, a granulation operation (pseudo-granulation) was performed by further stirring at the same rotation speed for 3 minutes. The ratio of sodium polyacrylate to the sintering raw material was 0.0125%.
[0179]
The obtained pseudo particles were sintered in a pot test on a 50 kg scale to obtain a sintered ore. The diameter of the sinter pot used in the test was 300 mm, the layer thickness was 600 mm, and the suction negative pressure was 9.8 kPa (constant). The production rate of the obtained sintered ore was measured. Table 9 summarizes these results.
[0180]
[Example 14]
In Example 13, 350 parts of ordinary Portland cement pulverized to an average particle diameter of 13 μm was used as fine particles instead of 350 parts of blast furnace slag pulverized to an average particle diameter of 10 μm, and the mass adjusted in advance to a nonvolatile content of 4.8%. Instead of 181 parts of an aqueous solution of sodium polyacrylate having an average molecular weight of 6000, “Mighty 150” (trade name, manufactured by Kao Corporation, nonvolatile content 40.1%), which is a β-naphthalenesulfonic acid formalin condensate, was previously used as a nonvolatile component 13 The production rate of sintered ore was measured in the same manner as in Example 13 except that 199 parts of the aqueous solution adjusted to 0.2% was used as the granulating agent (12) according to the present invention. Table 9 summarizes these results.
[0181]
[Example 15]
In Example 13, 350 parts of toner (“imagio toner type 7” (trade name; black toner manufactured by Ricoh Co., Ltd.)) having an average particle diameter of 10 μm is used instead of 350 parts of blast furnace slag pulverized to an average particle diameter of 10 μm. In addition, instead of 181 parts of an aqueous solution of sodium polyacrylate having a weight average molecular weight of 6000 previously adjusted to a nonvolatile content of 4.8%, “Mighty 150” (trade name; manufactured by Kao Corporation) which is a condensate of β-naphthalenesulfonic acid formalin , Non-volatile content 40.1%) to sinter ore in the same manner as in Example 13 except that 199 parts of an aqueous solution in which the non-volatile content was previously adjusted to 13.2% was used as the granulating agent (13) according to the present invention. Was measured. Table 9 summarizes these results.
[0182]
[Comparative Example 9]
In Example 13, 172 parts of water was used instead of 350 parts of blast furnace slag pulverized to an average particle diameter of 10 μm, instead of 181 parts of an aqueous solution of sodium polyacrylate having a mass average molecular weight of 6000 previously adjusted to a nonvolatile content of 4.8%. Example 13 except that the amount of quick lime used was changed from 350 parts to 840 parts, and the amount of water sprayed on the sintering raw material composition in the drum mixer was changed from 500 to 700 parts. Similarly, the production rate of the sinter was measured. Table 9 summarizes these results.
[0183]
[Table 9]
[0184]
As can be seen from the results in Table 9, the granulation treatment agent according to the present invention was added to a raw material for ironmaking containing 5% by mass to 50% by mass of maramamba ore in a mixing ratio based on the total mass of the new raw material specified in the present invention, It is added in a ratio of 0.001% by mass to 1% by mass in terms of solid content with respect to the total mass of the sintering raw material for ironmaking specified in the present invention, and the granulating agent contains fine powder (fine particles). Thus, it can be seen that the production rate of sintered ore can be greatly improved.
[0185]
【The invention's effect】
As described above, the method for granulating a sintering raw material containing Mara mamba ore according to the present invention is the same as the method for granulating a sintering raw material for iron making containing the Mara mamba ore in a mixing ratio of 5% by mass with respect to the total mass of the new raw material. A sintering raw material for iron making containing up to 50% by mass of maramamba ore includes a polymer compound containing a carboxyl group and / or a salt thereof, a compound having an acid group and a polyalkylene glycol chain, β-naphthalene sulfonate formalin condensate, melamine Sulfonate formalin condensate, aromatic amino sulfonic acid polymer, granulation treatment agent containing at least one polymer compound selected from the group consisting of lignin sulfonic acid modified, with respect to the total mass of the ironmaking sintering raw material , And granulate by adding at a ratio of 0.001% by mass to 1% by mass in terms of solid content.
[0186]
Therefore, a carboxyl group and / or salt-containing polymer compound, a compound having an acid group and a polyalkylene glycol chain, a β-naphthalene sulfonate formalin condensate, a melamine sulfonate formalin condensate, an aromatic aminosulfonic acid polymer By at least one polymer compound selected from the group consisting of lignin sulfonic acid modified products, the aggregates of the fine powder are destroyed, dispersed, and the water incorporated in the aggregates of the fine powder is released, that is, the conventionally effective The unusable water can be spread over the entire sintering raw material, and the water can be used efficiently. Further, the fine powder is also dispersed at the same time and re-agglomerated at the contact points between the sintering raw material particles, so that solid crosslinking is formed by the fine powder. Thereby, the granulation treatment of the sintering raw material including the maramamba ore becomes possible, and it is possible to produce strong pseudo particles.
[0187]
Therefore, according to the present invention, even when a large amount of hard-to-granulate maramamba ore, which is porous with high crystal water and low gangue ore and contains a large amount of fine iron ore, is mixed, the granulation property is reduced. In addition, it is possible to pre-process the sintering raw material for further improving the granulation property, thereby increasing the production efficiency of the sintering machine and significantly reducing the production cost of the sinter.
[0188]
As described above, the method for granulating a sintering raw material containing maramamba ore according to the present invention is characterized in that the polymer compound containing a carboxyl group and / or a salt thereof contains a monomer containing a carboxyl group and / or a salt thereof. It is a polymer compound obtained by polymerizing the monomer composition.
[0189]
Therefore, the carboxyl group and / or its salt-containing polymer compound breaks down and disperses the aggregates of the fine powder and releases the incorporated water, that is, sinters water that could not be used effectively before. This has the effect of being able to spread over the entire raw material and of being able to use water more efficiently.
[0190]
As described above, the method for granulating a sintering raw material containing maramamba ore of the present invention is configured such that the monomer composition contains a carboxyl group-containing monomer in an amount of 30 mol% or more.
[0191]
Therefore, the polymer obtained by polymerizing the monomer composition containing the carboxyl group-containing monomer in an amount of 30 mol% or more destroys and disperses the aggregates of the fine powder, and releases the incorporated water. Water that could not be used effectively in the past can be distributed throughout the sintering raw material, and the water can be used more efficiently.
[0192]
As described above, the method for granulating a sintering raw material containing maramamba ore of the present invention is characterized in that the polymer compound containing a carboxyl group and / or a salt thereof is obtained by polymerizing acrylic acid as an essential component. The configuration is as follows.
[0193]
Therefore, the polyacrylic acid-based polymer compound destroys and disperses the aggregates of the fine powder and releases the water that has been taken in, that is, water that could not be used effectively before is distributed to the entire sintering raw material. And water can be used even more efficiently.
[0194]
As described above, in the method for granulating a sintering raw material containing maramamba ore of the present invention, the monomer composition contains acrylic acid and / or acrylate in an amount of 30 mol% based on all monomer components. -100 mol%.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the blending ratio (mass%) of maramamba ore and the GI-0.25 (GI index of pseudo particles of 0.25 mm or less) (%) with respect to the total mass of a new raw material.
FIG. 2 shows the blending ratio (mass%) of maramamba ore with respect to the total mass of the new raw material and the production rate of sinter (t / d / m) 2 FIG.
FIG. 3 is a graph showing the relationship between the addition ratio (in terms of solid content) of a granulating agent and GI-0.25 (GI index of pseudo particles of 0.25 mm or less) with respect to the total mass of a sintering raw material.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003208101A JP4159939B2 (en) | 2002-08-21 | 2003-08-20 | Method for granulating sintering raw material containing maramamba ore |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002241229 | 2002-08-21 | ||
JP2003208101A JP4159939B2 (en) | 2002-08-21 | 2003-08-20 | Method for granulating sintering raw material containing maramamba ore |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004137596A true JP2004137596A (en) | 2004-05-13 |
JP4159939B2 JP4159939B2 (en) | 2008-10-01 |
Family
ID=32472565
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003208101A Expired - Fee Related JP4159939B2 (en) | 2002-08-21 | 2003-08-20 | Method for granulating sintering raw material containing maramamba ore |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4159939B2 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005281724A (en) * | 2004-03-26 | 2005-10-13 | Jfe Steel Kk | Method for manufacturing sintered ore, and sintered ore |
JP2007100150A (en) * | 2005-10-03 | 2007-04-19 | Jfe Steel Kk | Method for producing sintered ore |
JP2007100149A (en) * | 2005-10-03 | 2007-04-19 | Jfe Steel Kk | Method for producing sintered ore |
JP2007138244A (en) * | 2005-11-17 | 2007-06-07 | Nippon Steel Corp | Method for producing sintered ore |
JP2007138246A (en) * | 2005-11-17 | 2007-06-07 | Nippon Steel Corp | Pretreatment method and pretreatment apparatus for sintering raw material |
JP2017125247A (en) * | 2016-01-15 | 2017-07-20 | Jfeスチール株式会社 | Method for treating sintering raw material |
CN113443884A (en) * | 2021-06-16 | 2021-09-28 | 国家能源集团煤焦化有限责任公司 | Paste filling material, slurry and preparation method of filling body for goaf |
JP2022092892A (en) * | 2020-12-11 | 2022-06-23 | 花王株式会社 | Additive for the production of fine ore granule |
JP2022092891A (en) * | 2020-12-11 | 2022-06-23 | 花王株式会社 | Additive for production of fine ore granule |
JP2022092893A (en) * | 2020-12-11 | 2022-06-23 | 花王株式会社 | Additive for the production of fine ore granule |
WO2023048162A1 (en) * | 2021-09-22 | 2023-03-30 | 株式会社日本触媒 | Polymer flocculant for ore |
WO2024038643A1 (en) * | 2022-08-15 | 2024-02-22 | Jfeスチール株式会社 | Method for producing sintered ore |
-
2003
- 2003-08-20 JP JP2003208101A patent/JP4159939B2/en not_active Expired - Fee Related
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005281724A (en) * | 2004-03-26 | 2005-10-13 | Jfe Steel Kk | Method for manufacturing sintered ore, and sintered ore |
JP2007100150A (en) * | 2005-10-03 | 2007-04-19 | Jfe Steel Kk | Method for producing sintered ore |
JP2007100149A (en) * | 2005-10-03 | 2007-04-19 | Jfe Steel Kk | Method for producing sintered ore |
JP2007138244A (en) * | 2005-11-17 | 2007-06-07 | Nippon Steel Corp | Method for producing sintered ore |
JP2007138246A (en) * | 2005-11-17 | 2007-06-07 | Nippon Steel Corp | Pretreatment method and pretreatment apparatus for sintering raw material |
JP2017125247A (en) * | 2016-01-15 | 2017-07-20 | Jfeスチール株式会社 | Method for treating sintering raw material |
JP2022092893A (en) * | 2020-12-11 | 2022-06-23 | 花王株式会社 | Additive for the production of fine ore granule |
JP2022092892A (en) * | 2020-12-11 | 2022-06-23 | 花王株式会社 | Additive for the production of fine ore granule |
JP2022092891A (en) * | 2020-12-11 | 2022-06-23 | 花王株式会社 | Additive for production of fine ore granule |
JP7374068B2 (en) | 2020-12-11 | 2023-11-06 | 花王株式会社 | Additives for producing fine ore granules |
JP7374070B2 (en) | 2020-12-11 | 2023-11-06 | 花王株式会社 | Additives for producing fine ore granules |
JP7374069B2 (en) | 2020-12-11 | 2023-11-06 | 花王株式会社 | Additives for producing fine ore granules |
CN113443884A (en) * | 2021-06-16 | 2021-09-28 | 国家能源集团煤焦化有限责任公司 | Paste filling material, slurry and preparation method of filling body for goaf |
WO2023048162A1 (en) * | 2021-09-22 | 2023-03-30 | 株式会社日本触媒 | Polymer flocculant for ore |
WO2024038643A1 (en) * | 2022-08-15 | 2024-02-22 | Jfeスチール株式会社 | Method for producing sintered ore |
Also Published As
Publication number | Publication date |
---|---|
JP4159939B2 (en) | 2008-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100385021C (en) | Granulation treatment method of sintered raw material for ironmaking | |
JP2007191748A (en) | Method for producing charcoal-containing pellets | |
JP4159939B2 (en) | Method for granulating sintering raw material containing maramamba ore | |
WO2002066688A1 (en) | Method of granulation treatment of raw material for iron making and granulation treatment agent for iron making | |
JP4152285B2 (en) | Granulation method for sintered raw materials for iron making | |
JP4190992B2 (en) | Method for granulating sintering raw material containing pisolite ore | |
JP3822115B2 (en) | Granulation treatment agent for iron making and granulation treatment method using the same | |
JP5009529B2 (en) | Production method of charcoal pellets | |
JP4133111B2 (en) | Method for granulating raw materials for iron making | |
JP4204798B2 (en) | Method for granulating raw materials for iron making | |
JP4133766B2 (en) | Method for granulating raw materials for iron making | |
JP3703769B2 (en) | Method for granulating raw materials for iron making | |
JP4152286B2 (en) | Granulation method for sintered raw materials for iron making | |
JP4188027B2 (en) | Method for granulating raw material for iron making and granulating agent for iron making | |
JP4133113B2 (en) | Method for granulating raw materials for iron making | |
JP4191017B2 (en) | Method for producing sintered ore | |
JP2003239024A (en) | Granulation of raw materials for steelmaking | |
JP3792581B2 (en) | Method for granulating raw materials for iron making | |
JP2003073749A (en) | Granulation of raw materials for steelmaking | |
JP4133112B2 (en) | Method for granulating raw materials for iron making | |
JP2004076133A (en) | Granulation agent for steelmaking | |
JP3949032B2 (en) | Method for granulating raw material for iron making and method for transporting granulating agent for iron making | |
JP2004076128A (en) | Granulating agent for iron making and method for producing the same | |
JP2003073747A (en) | Granulating agent for iron making and granulating method using the same | |
JP2004076132A (en) | Granulation agent for steelmaking |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20051222 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070501 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080507 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080618 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20080715 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20080716 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4159939 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110725 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120725 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120725 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130725 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130725 Year of fee payment: 5 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130725 Year of fee payment: 5 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130725 Year of fee payment: 5 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313117 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |