JP2004134552A - High coercive force anisotropic magnet and method of manufacturing the same - Google Patents
High coercive force anisotropic magnet and method of manufacturing the same Download PDFInfo
- Publication number
- JP2004134552A JP2004134552A JP2002297065A JP2002297065A JP2004134552A JP 2004134552 A JP2004134552 A JP 2004134552A JP 2002297065 A JP2002297065 A JP 2002297065A JP 2002297065 A JP2002297065 A JP 2002297065A JP 2004134552 A JP2004134552 A JP 2004134552A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- hddr
- coercive force
- heat treatment
- magnet
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 239000000843 powder Substances 0.000 claims abstract description 51
- 238000010438 heat treatment Methods 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims abstract description 14
- 229910001404 rare earth metal oxide Inorganic materials 0.000 claims abstract description 9
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 6
- 239000000956 alloy Substances 0.000 claims abstract description 6
- 239000013078 crystal Substances 0.000 claims description 10
- 229910001172 neodymium magnet Inorganic materials 0.000 claims description 7
- 229910052689 Holmium Inorganic materials 0.000 claims description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- 229910052771 Terbium Inorganic materials 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 229910052692 Dysprosium Inorganic materials 0.000 claims description 4
- 238000010521 absorption reaction Methods 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 239000011261 inert gas Substances 0.000 claims description 2
- 239000011812 mixed powder Substances 0.000 claims 2
- 238000003795 desorption Methods 0.000 claims 1
- 239000000203 mixture Substances 0.000 abstract description 9
- 238000011946 reduction process Methods 0.000 abstract 1
- 230000008859 change Effects 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 5
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 238000006356 dehydrogenation reaction Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 229910000521 B alloy Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 150000002910 rare earth metals Chemical group 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Landscapes
- Powder Metallurgy (AREA)
- Hard Magnetic Materials (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、Nd−Fe−B系磁石材料の高保磁力化を目的とした高保磁力異方性磁石の製造方法に関する。
【0002】
【従来の技術】
従来から、Nd−Fe−B系合金に対して水素吸収・脱水素処理を行って結晶粒径を微細化し、保磁力を発現して得られるHDDR法が開発され、磁石性能の高性能化を実現している。このHDDR粉末は異方性を示すNd−Fe−B系磁石粉末であり、この特徴を生かしてボンド磁石を中心として、磁石の高性能化を可能としている。
このHDDR法はNd2Fe14B相を有する母合金に850℃程度で水素を吸収させることによって、
Nd2Fe14B → NdH2 + α−Fe + Fe2B
なる相分解を発生させ、その後、真空中で強制的に脱水素反応によって、
NdH2 + α−Fe + Fe2B → Nd2Fe14B
なる再結合を生じさせて、Nd2Fe14B相結晶の微細化をもとに,保磁力を発現させるものである。
【0003】
一方、Nd−Fe−B系磁石の高保磁力化は、その一部をDyで置換することによってDy2Fe14B化合物を生成させ、Dy2Fe14B化合物の巨大な結晶磁気異方性を利用して高保磁力材料が開発されている(非特許文献1参照)。この手法は種々のNd−Fe−B系磁石材料に適用されており、特に焼結磁石において効果が大きい。
【0004】
また、HDDR粉末とDyH2の混合物の熱処理により保磁力の上昇を図る技術も開発されている(非特許文献2参照)。
【0005】
【非特許文献1】
J. Magn. Magn. Mater., 61, (1986), 363−369.
【0006】
【非特許文献2】
Proc. 16th Int. Workshop REM and their appolications, pp.813−819.
【0007】
【発明が解決しようとする課題】
しかしながら、異方性を有するHDDR粉末に、非特許文献1に記載のNd−Fe−B系磁石の一部をDyで置換しDy2Fe14B化合物を生成させる技術を適用した場合、Dy2Fe14B相は水素との反応性が小さく、HDDR法のプロセスである水素吸収分解及び脱水素再結合反応が阻害されるため、高保磁力を有するDy含有のNd−Fe−B系微細結晶を作製して高保磁力を得ることが困難であった。
【0008】
また、非特許文献2に記載のHDDR粉末とDyH2の混合物の熱処理では、僅かな保磁力の上昇しか得られないという問題があった。
【0009】
本発明は、上述の課題に鑑み、HDDR法を用いた磁石粉末に対して、HDDR粉末の保磁力を向上させて、磁石の使用温度の限界を向上させ、耐熱性の向上を図ることを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するため、HDDR粉末と希土類酸化物とを混合し、引き続き加熱処理を加えることにより上記課題を解決するに至った。
【0011】
【発明の効果】
本願発明にあっては、HDDR粉末の保磁力は希土類置換を自由に行うことができなかったため保磁力の大幅な増加は認められなかったが、希土類酸化物を混合し、これに対して加熱処理を行うことにより保磁力が飛躍的に増大することができる。更にこの粉末を用いた高保磁力異方性磁石の使用温度範囲をより高温にシフトすることが可能となり、産業上の適用範囲が飛躍的に拡大することができる。
【0012】
【発明の実施の形態】
以下、本発明における高保磁力異方性磁石の製造方法について実施例をもとに説明するが、本発明は実施例に限定されるものではない。
【0013】
(実施例1)
Nd12.6Fe63.1Co17.4B6.5Zr0.1Ga0.3 組成母合金に対してH2フロー及びロータリポンプによる減圧処理を850℃で行うことにより得られたHDDR粉末に対して、Dy2O3粉末を5wt%混合した粉末をArフロー中で0.5時間の熱処理を行いHDDR粉末+Dy2O3試料Aを作成した。この試料AとHDDR粉末のみの試料Bの保磁力HcJの熱処理温度による変化を図1に示す。
【0014】
HDDR粉末のみの試料Bでは保磁力HcJの向上は認められないが、Dy2O3を混合させた粉末である試料Aは600℃〜900℃の温度範囲において顕著な増加を示すことが分かる(請求項1,2に対応)。尚、試料の異方性を示す指標となるJr/Js値は何れの試料においてもほぼ一定値であり、保磁力の増加に伴う異方性の劣化は認められなかった。
【0015】
(実施例2)
Nd1 c .6Fe63.1Co17.4B6.5Zr0.1Ga0.3 組成母合金に対してH2フロー及びロータリポンプによる減圧処理を850℃で行うことにより得られたHDDR粉末に対してDy2O3粉末を10wt%混合した粉末をArフロー中で800℃の熱処理を行い(HDDR粉末+Dy2O3)である試料Cを作成した。この試料Cの保磁力HcJの熱処理時間による変化を図2に示す。
【0016】
保磁時間は1時間以下において10kOe以上の良好な保磁力を示している。これは処理時間が1時間以上になると、元来、HDDR粉末の保磁力を担っている300nm程度の微細結晶粒が結晶成長を起こすことによる保磁力の低下が顕著となると考えられる(請求項5に対応)。
【0017】
(実施例3)
Nd12.6Fe63.1Co17.4B6.5Zr0.1Ga0.3 組成母合金に対してH2フロー及びロータリポンプによる減圧処理を850℃で行うことにより得られたHDDR粉末に対してDy2O3粉末との混合割合を変化させた粉末をArフロー中で800℃、0.3時間の熱処理を行い試料Dを作成した。この試料Dの保磁力HcJのDy2O3粉末の混合量による変化を図3に示す。
【0018】
Dy2O3の混合量が1wt%以上の範囲において、顕著な増加を示すことが分かる。尚、Dy2O3混合量の増加に伴い、残留磁束密度Brは低下する傾向を示すため、上限は10wt%程度が実用的である(請求項3に対応)。また、今回の何れの試料においても、実施例1と同様に保磁力の増加に伴うHDDR粉末の異方性に変化は認められなかった。
【0019】
(各実施例の作用)
上述の各実施例における高保磁力を示すHDDR粉末の作用については、現状では明らかな理由は見いだせていないが、以下の作用が推察される。すなわち、上記各実施例では、HDDR粉末とDy酸化物との混合物に対して加熱処理を行うことによって保磁力が向上する。ここで、酸化物における酸素との結合力が小さい場合には、磁石粉末内のNdが酸素を奪い取り、酸化しやすいため、保磁力の劣化が予想される。従って、上記各実施例において磁石粉末と混合する酸化物は酸素との結合において安定的な物質である必要があるものと考えられる。尚、上述の各実施例ではDy酸化物を用いたが、Tb又はHoのいずれか一種類以上の酸化物を用いてもよい。また、適用する酸化物中のDy又はTb又はHoイオンは熱処理によって適度に解離して、HDDR磁石中のNd元素と反応し、結果的に、HDDR磁石粉末の最表面に磁石化合物と結晶構造に整合性を持ったDy又はTb又はHoの酸化物層を形成し、これによって、磁石粉末の保磁力が向上するものと推察される。
【0020】
尚、熱処理に際しては、真空中又は不活性化ガス雰囲気下で加熱することにより、磁石粉末の過度の酸化を抑制することが効果的である(請求項4に対応)。酸素を含有した雰囲気での熱処理は磁石粉末の大部分を酸化するので、磁石特性を発現しなくなる。
【0021】
また、熱処理時の温度範囲は600〜900℃が効果的であるが、この理由は明確ではない。ただし、600℃より低温においては、磁石化合物最表面の整合層の形成が不十分であり、一方、900℃以上においては、元来、HDDR粉末の保磁力を担っている300nm程度の微細結晶粒が結晶成長を起こすことによる保磁力の低下が顕著となる(請求項5に対応)。
【0022】
上述の作用を仮定した場合に、非特許文献2に報告されているようなHDDR粉末とDyH2の混合物の熱処理に認められる僅かな保磁力の上昇ではなく、HDDR粉末とDy又はTb又はHoのいずれか一種類以上の酸化物とを混合し、引き続き加熱処理を加えることによって、飛躍的な保磁力の増加が認められるものと考えられる。
【図面の簡単な説明】
【図1】実施例1における熱処理温度に伴う保磁力の変化を表す図である。
【図2】実施例2における熱処理時間の変化に伴う保磁力の変化を表す図である。
【図3】実施例3におけるDy2O3混合量の変化に伴う保磁力の変化を表す図である。
【符号の説明】
A 試料(HDDR粉末+Dy2O3)
B 試料(HDDR粉末のみ)
C 試料(HDDR粉末+Dy2O3)
D 試料(HDDR粉末+Dy2O3)[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing a high coercive force anisotropic magnet for the purpose of increasing the coercive force of a Nd—Fe—B-based magnet material.
[0002]
[Prior art]
Conventionally, an NDR-Fe-B alloy is subjected to a hydrogen absorption / dehydrogenation treatment to reduce the crystal grain size and develop an HDDR method that expresses a coercive force. Has been realized. This HDDR powder is an Nd-Fe-B-based magnet powder exhibiting anisotropy, and by utilizing this feature, it is possible to improve the performance of the magnet, especially for a bonded magnet.
In the HDDR method, a mother alloy having a Nd 2 Fe 14 B phase is made to absorb hydrogen at about 850 ° C.
Nd 2 Fe 14 B → NdH 2 + α-Fe + Fe 2 B
Phase decomposition occurs, and then is forcibly dehydrogenated in a vacuum,
NdH 2 + α-Fe + Fe 2 B → Nd 2 Fe 14 B
The recombination is caused to produce a coercive force based on the refinement of the Nd 2 Fe 14 B phase crystal.
[0003]
On the other hand, to increase the coercive force of the Nd—Fe—B based magnet, a Dy 2 Fe 14 B compound is generated by substituting a part of the magnet with Dy, and the huge crystal magnetic anisotropy of the Dy 2 Fe 14 B compound is reduced. A high coercive force material has been developed using the same (see Non-Patent Document 1). This method has been applied to various Nd-Fe-B-based magnet materials, and is particularly effective for sintered magnets.
[0004]
Also, a technique for increasing the coercive force by heat treatment of a mixture of HDDR powder and DyH2 has been developed (see Non-Patent Document 2).
[0005]
[Non-patent document 1]
J. Magn. Magn. Mater. , 61, (1986), 363-369.
[0006]
[Non-patent document 2]
Proc. 16 th Int. Workshop REM and their applications, pp. 813-819.
[0007]
[Problems to be solved by the invention]
However, when the technique of substituting a part of the Nd—Fe—B-based magnet described in Non-Patent Document 1 with Dy and generating a Dy 2 Fe 14 B compound is applied to the HDDR powder having anisotropy, Dy 2 Since the Fe 14 B phase has low reactivity with hydrogen and hinders the hydrogen absorption decomposition and dehydrogenation recombination reactions, which are the processes of the HDDR method, a Dy-containing Nd-Fe-B-based fine crystal having high coercive force is formed. It was difficult to produce and obtain a high coercive force.
[0008]
In addition, the heat treatment of the mixture of HDDR powder and DyH2 described in Non-Patent Document 2 has a problem that only a slight increase in coercive force can be obtained.
[0009]
In view of the above-mentioned problems, an object of the present invention is to improve the coercive force of the HDDR powder with respect to the magnet powder using the HDDR method, to improve the limit of the operating temperature of the magnet, and to improve the heat resistance. And
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the above-mentioned problem has been solved by mixing HDDR powder and a rare earth oxide and then performing a heat treatment.
[0011]
【The invention's effect】
In the invention of the present application, the coercive force of the HDDR powder did not significantly increase because the rare-earth substitution could not be freely performed, but a rare-earth oxide was mixed and heat treatment was performed. , The coercive force can be dramatically increased. Further, the operating temperature range of the high coercive force anisotropic magnet using this powder can be shifted to a higher temperature, and the industrial application range can be greatly expanded.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a method for producing a high coercive force anisotropic magnet according to the present invention will be described based on examples, but the present invention is not limited to the examples.
[0013]
(Example 1)
HDDR obtained by subjecting Nd 12.6 Fe 63.1 Co 17.4 B 6.5 Zr 0.1 Ga 0.3 composition mother alloy to depressurization treatment at 850 ° C. by an H 2 flow and a rotary pump. Powder mixed with 5 wt% of Dy 2 O 3 powder was heat-treated in an Ar flow for 0.5 hour to prepare HDDR powder + Dy 2 O 3 sample A. FIG. 1 shows a change in coercive force HcJ of Sample A and Sample B of HDDR powder alone depending on the heat treatment temperature.
[0014]
No improvement in coercive force HcJ is observed in Sample B containing only the HDDR powder, but it can be seen that Sample A, which is a powder mixed with Dy 2 O 3 , shows a remarkable increase in the temperature range of 600 ° C. to 900 ° C. ( Claims 1 and 2). The Jr / Js value as an index indicating the anisotropy of each sample was almost constant in each sample, and no deterioration of the anisotropy was observed with the increase of the coercive force.
[0015]
(Example 2)
Nd 1 c . HDDR powder obtained by subjecting 6 Fe 63.1 Co 17.4 B 6.5 Zr 0.1 Ga 0.3 composition mother alloy to H 2 flow and depressurizing treatment by a rotary pump at 850 ° C. The powder mixed with 10 wt% of Dy 2 O 3 powder was subjected to a heat treatment at 800 ° C. in an Ar flow to prepare a sample C which was (HDDR powder + Dy 2 O 3 ). FIG. 2 shows a change in coercive force HcJ of Sample C with heat treatment time.
[0016]
The coercive time shows a good coercive force of 10 kOe or more in 1 hour or less. It is considered that when the processing time is 1 hour or longer, the coercive force is significantly reduced due to crystal growth of fine crystal grains of about 300 nm which originally have the coercive force of the HDDR powder. Corresponding to).
[0017]
(Example 3)
HDDR obtained by subjecting Nd 12.6 Fe 63.1 Co 17.4 B 6.5 Zr 0.1 Ga 0.3 composition mother alloy to depressurization treatment at 850 ° C. by an H 2 flow and a rotary pump. Sample D was prepared by heat-treating the powder obtained by changing the mixing ratio of the powder and Dy 2 O 3 powder in an Ar flow at 800 ° C. for 0.3 hours. FIG. 3 shows a change in coercive force HcJ of Sample D depending on the amount of Dy 2 O 3 powder mixed.
[0018]
It can be seen that when the amount of Dy 2 O 3 mixed is 1 wt% or more, a remarkable increase is exhibited. Since the residual magnetic flux density Br tends to decrease with an increase in the amount of Dy 2 O 3 mixed, the upper limit is practically about 10 wt% (corresponding to claim 3). Further, in any of the samples this time, similarly to Example 1, no change was observed in the anisotropy of the HDDR powder with the increase in the coercive force.
[0019]
(Operation of each embodiment)
Regarding the action of the HDDR powder exhibiting a high coercive force in each of the above-mentioned embodiments, no clear reason has been found at present, but the following action is presumed. That is, in each of the above embodiments, the coercive force is improved by performing the heat treatment on the mixture of the HDDR powder and the Dy oxide. Here, when the bonding force of the oxide with oxygen is small, Nd in the magnet powder takes oxygen and is easily oxidized, so that the coercive force is expected to deteriorate. Therefore, it is considered that the oxide mixed with the magnet powder in each of the above embodiments needs to be a stable substance in bonding with oxygen. Although the Dy oxide is used in each of the above-described embodiments, any one or more of Tb and Ho may be used. In addition, Dy or Tb or Ho ions in the oxide to be applied are appropriately dissociated by heat treatment and react with the Nd element in the HDDR magnet, and as a result, the outermost surface of the HDDR magnet powder forms a magnet compound and a crystal structure. It is presumed that a coherent Dy or Tb or Ho oxide layer is formed, thereby improving the coercive force of the magnet powder.
[0020]
In the heat treatment, it is effective to suppress excessive oxidation of the magnet powder by heating in a vacuum or in an inert gas atmosphere (corresponding to claim 4). Heat treatment in an oxygen-containing atmosphere oxidizes most of the magnet powder, so that magnet properties are not exhibited.
[0021]
The effective temperature range for the heat treatment is 600 to 900 ° C., but the reason is not clear. However, when the temperature is lower than 600 ° C., the formation of the matching layer on the outermost surface of the magnet compound is insufficient. On the other hand, when the temperature is 900 ° C. or higher, fine crystal grains of about 300 nm, which originally have a coercive force of the HDDR powder, are used. The remarkable decrease in coercive force due to the crystal growth of the (corresponding to claim 5).
[0022]
When assuming a working described above, rather than the increase of the small coercivity found in heat treatment of the mixture of HDDR powder and DyH 2 as reported in Non-Patent Document 2, the HDDR powder and Dy or Tb or Ho It is considered that a remarkable increase in coercive force can be recognized by mixing with any one or more kinds of oxides and subsequently performing heat treatment.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating a change in coercive force according to a heat treatment temperature in Example 1.
FIG. 2 is a diagram illustrating a change in coercive force with a change in heat treatment time in Example 2.
FIG. 3 is a diagram illustrating a change in coercive force with a change in a Dy 2 O 3 mixture amount in Example 3.
[Explanation of symbols]
A sample (HDDR powder + Dy 2 O 3 )
B sample (HDDR powder only)
C sample (HDDR powder + Dy 2 O 3 )
D sample (HDDR powder + Dy 2 O 3 )
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002297065A JP4029714B2 (en) | 2002-10-10 | 2002-10-10 | High coercivity anisotropic magnet and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002297065A JP4029714B2 (en) | 2002-10-10 | 2002-10-10 | High coercivity anisotropic magnet and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004134552A true JP2004134552A (en) | 2004-04-30 |
JP4029714B2 JP4029714B2 (en) | 2008-01-09 |
Family
ID=32286859
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002297065A Expired - Fee Related JP4029714B2 (en) | 2002-10-10 | 2002-10-10 | High coercivity anisotropic magnet and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4029714B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010258412A (en) * | 2009-03-30 | 2010-11-11 | Tdk Corp | Method of producing rare-earth magnet |
JP2011216618A (en) * | 2010-03-31 | 2011-10-27 | Nitto Denko Corp | High-coercive force anisotropic magnet and method for manufacturing the same |
WO2011145477A1 (en) | 2010-05-19 | 2011-11-24 | 住友電気工業株式会社 | Powder for magnetic member, powder compact, and magnetic member |
US9076584B2 (en) | 2009-12-04 | 2015-07-07 | Sumitomo Electric Industries, Ltd. | Powder for magnet |
US9314843B2 (en) | 2010-04-15 | 2016-04-19 | Sumitomo Electric Industries, Ltd. | Powder for magnet |
-
2002
- 2002-10-10 JP JP2002297065A patent/JP4029714B2/en not_active Expired - Fee Related
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010258412A (en) * | 2009-03-30 | 2010-11-11 | Tdk Corp | Method of producing rare-earth magnet |
US9076584B2 (en) | 2009-12-04 | 2015-07-07 | Sumitomo Electric Industries, Ltd. | Powder for magnet |
US9129730B1 (en) | 2009-12-04 | 2015-09-08 | Sumitomo Electric Industries, Ltd. | Rare-earth-iron-based alloy material |
US9435012B2 (en) | 2009-12-04 | 2016-09-06 | Sumitomo Electric Industries, Ltd. | Method for producing powder for magnet |
JP2011216618A (en) * | 2010-03-31 | 2011-10-27 | Nitto Denko Corp | High-coercive force anisotropic magnet and method for manufacturing the same |
US9314843B2 (en) | 2010-04-15 | 2016-04-19 | Sumitomo Electric Industries, Ltd. | Powder for magnet |
US9460836B2 (en) | 2010-04-15 | 2016-10-04 | Sumitomo Electric Industries, Ltd. | Powder for magnet |
WO2011145477A1 (en) | 2010-05-19 | 2011-11-24 | 住友電気工業株式会社 | Powder for magnetic member, powder compact, and magnetic member |
US9196403B2 (en) | 2010-05-19 | 2015-11-24 | Sumitomo Electric Industries, Ltd. | Powder for magnetic member, powder compact, and magnetic member |
Also Published As
Publication number | Publication date |
---|---|
JP4029714B2 (en) | 2008-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10748684B2 (en) | Rare-earth magnet and method for manufacturing same | |
JP5130270B2 (en) | Magnetic material and motor using the same | |
JP5501828B2 (en) | R-T-B rare earth permanent magnet | |
WO2007119553A1 (en) | Process for producing rare-earth permanent magnet material | |
WO2004064085A1 (en) | Process for producing anisotropic magnet powder | |
CN108257754B (en) | Rare earth magnet and method for producing same | |
JP2013135542A (en) | Sintered magnet motor | |
Okada et al. | Direct preparation of submicron-sized Sm2Fe17 ultra-fine powders by reduction-diffusion technique | |
JP2016111136A (en) | Rare-earth magnet | |
JPWO2002061769A1 (en) | Manufacturing method of permanent magnet | |
JP6007945B2 (en) | Manufacturing method of nanocomposite magnet | |
JP4700578B2 (en) | Method for producing high resistance rare earth permanent magnet | |
KR950020781A (en) | Iron permanent magnet, manufacturing method thereof and iron permanent magnet alloy powder and iron bond magnet for permanent bond magnet | |
JP3822031B2 (en) | Method for producing replacement spring magnet powder | |
CN111052276B (en) | Method for producing R-T-B sintered magnet | |
CN115691928A (en) | Sm-Fe-N magnet | |
JPH01219143A (en) | Sintered permanent magnet material and its production | |
JP4029714B2 (en) | High coercivity anisotropic magnet and manufacturing method thereof | |
JP4725682B2 (en) | Rare earth-iron-manganese-nitrogen magnet powder | |
JP5501833B2 (en) | R-T-B permanent magnet | |
JP3615177B2 (en) | Magnet material and method of manufacturing bonded magnet using the same | |
JP4604528B2 (en) | Rare earth-iron-manganese-nitrogen magnet powder | |
JPH1041114A (en) | Manufacture of powder for high molecular composite type rare earth magnet | |
JPH05105902A (en) | Magnet material for bond magnet | |
JPH04314307A (en) | Manufacturing method of bonded magnet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050829 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20051116 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070622 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070703 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20070829 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20070925 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20071008 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101026 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111026 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121026 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121026 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20131026 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |