JP2004131860A - Polyester conjugated fiber - Google Patents
Polyester conjugated fiber Download PDFInfo
- Publication number
- JP2004131860A JP2004131860A JP2002295822A JP2002295822A JP2004131860A JP 2004131860 A JP2004131860 A JP 2004131860A JP 2002295822 A JP2002295822 A JP 2002295822A JP 2002295822 A JP2002295822 A JP 2002295822A JP 2004131860 A JP2004131860 A JP 2004131860A
- Authority
- JP
- Japan
- Prior art keywords
- polyester
- composite fiber
- fiber
- polyesters
- polyester composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229920000728 polyester Polymers 0.000 title claims abstract description 108
- 239000000835 fiber Substances 0.000 title claims abstract description 80
- 239000004744 fabric Substances 0.000 claims abstract description 7
- 239000002131 composite material Substances 0.000 claims description 64
- 150000003609 titanium compounds Chemical class 0.000 claims description 26
- -1 polyethylene terephthalate Polymers 0.000 claims description 20
- 239000002253 acid Substances 0.000 claims description 12
- 150000008064 anhydrides Chemical class 0.000 claims description 9
- 125000003118 aryl group Chemical group 0.000 claims description 9
- 150000001875 compounds Chemical class 0.000 claims description 9
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 7
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 7
- 238000002788 crimping Methods 0.000 abstract description 5
- 229920000642 polymer Polymers 0.000 description 20
- 208000012886 Vertigo Diseases 0.000 description 17
- 238000009987 spinning Methods 0.000 description 17
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 14
- 238000000034 method Methods 0.000 description 11
- 238000006068 polycondensation reaction Methods 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- 239000010936 titanium Substances 0.000 description 8
- 229910052719 titanium Inorganic materials 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 6
- 239000007795 chemical reaction product Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 239000011574 phosphorus Substances 0.000 description 6
- 229910052698 phosphorus Inorganic materials 0.000 description 6
- 238000005809 transesterification reaction Methods 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 5
- 238000009940 knitting Methods 0.000 description 5
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 4
- 229910052787 antimony Inorganic materials 0.000 description 4
- 238000005452 bending Methods 0.000 description 4
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 3
- FPCJKVGGYOAWIZ-UHFFFAOYSA-N butan-1-ol;titanium Chemical compound [Ti].CCCCO.CCCCO.CCCCO.CCCCO FPCJKVGGYOAWIZ-UHFFFAOYSA-N 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000009941 weaving Methods 0.000 description 3
- YZTJKOLMWJNVFH-UHFFFAOYSA-N 2-sulfobenzene-1,3-dicarboxylic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1S(O)(=O)=O YZTJKOLMWJNVFH-UHFFFAOYSA-N 0.000 description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- UJMDYLWCYJJYMO-UHFFFAOYSA-N benzene-1,2,3-tricarboxylic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1C(O)=O UJMDYLWCYJJYMO-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000007809 chemical reaction catalyst Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 238000002074 melt spinning Methods 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 230000008719 thickening Effects 0.000 description 2
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 2
- SRPWOOOHEPICQU-UHFFFAOYSA-N trimellitic anhydride Chemical compound OC(=O)C1=CC=C2C(=O)OC(=O)C2=C1 SRPWOOOHEPICQU-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- LLJFNWVJKMVHIL-UHFFFAOYSA-N (2-methoxy-2-oxoethyl)phosphonic acid Chemical compound COC(=O)CP(O)(O)=O LLJFNWVJKMVHIL-UHFFFAOYSA-N 0.000 description 1
- ISPYQTSUDJAMAB-UHFFFAOYSA-N 2-chlorophenol Chemical compound OC1=CC=CC=C1Cl ISPYQTSUDJAMAB-UHFFFAOYSA-N 0.000 description 1
- MMINFSMURORWKH-UHFFFAOYSA-N 3,6-dioxabicyclo[6.2.2]dodeca-1(10),8,11-triene-2,7-dione Chemical group O=C1OCCOC(=O)C2=CC=C1C=C2 MMINFSMURORWKH-UHFFFAOYSA-N 0.000 description 1
- BFWNTVZEALLTGQ-UHFFFAOYSA-N 3-methoxy-3-oxo-2-phenyl-2-phosphonopropanoic acid Chemical compound COC(=O)C(C(O)=O)(P(O)(O)=O)C1=CC=CC=C1 BFWNTVZEALLTGQ-UHFFFAOYSA-N 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 125000000118 dimethyl group Chemical group [H]C([H])([H])* 0.000 description 1
- BTVWZWFKMIUSGS-UHFFFAOYSA-N dimethylethyleneglycol Natural products CC(C)(O)CO BTVWZWFKMIUSGS-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- XGZNHFPFJRZBBT-UHFFFAOYSA-N ethanol;titanium Chemical compound [Ti].CCO.CCO.CCO.CCO XGZNHFPFJRZBBT-UHFFFAOYSA-N 0.000 description 1
- 239000002657 fibrous material Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- OJURWUUOVGOHJZ-UHFFFAOYSA-N methyl 2-[(2-acetyloxyphenyl)methyl-[2-[(2-acetyloxyphenyl)methyl-(2-methoxy-2-oxoethyl)amino]ethyl]amino]acetate Chemical compound C=1C=CC=C(OC(C)=O)C=1CN(CC(=O)OC)CCN(CC(=O)OC)CC1=CC=CC=C1OC(C)=O OJURWUUOVGOHJZ-UHFFFAOYSA-N 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical group CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- HKJYVRJHDIPMQB-UHFFFAOYSA-N propan-1-olate;titanium(4+) Chemical compound CCCO[Ti](OCCC)(OCCC)OCCC HKJYVRJHDIPMQB-UHFFFAOYSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 125000001273 sulfonato group Chemical group [O-]S(*)(=O)=O 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- DPNUIZVZBWBCPB-UHFFFAOYSA-J titanium(4+);tetraphenoxide Chemical compound [Ti+4].[O-]C1=CC=CC=C1.[O-]C1=CC=CC=C1.[O-]C1=CC=CC=C1.[O-]C1=CC=CC=C1 DPNUIZVZBWBCPB-UHFFFAOYSA-J 0.000 description 1
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 1
- GGUBFICZYGKNTD-UHFFFAOYSA-N triethyl phosphonoacetate Chemical compound CCOC(=O)CP(=O)(OCC)OCC GGUBFICZYGKNTD-UHFFFAOYSA-N 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Landscapes
- Multicomponent Fibers (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、互いに固有粘度が異なる2種類のポリエステルポリマーがサイドバイサイド型に貼り合わされたポリエステル複合繊維に関する。さらに詳しくは、本発明は、品質斑(毛羽)がの少なく、かつ好ましい白度を有する太細の潜在捲縮性ポリエステル複合繊維に関するものである。
【0002】
【従来の技術】
固有粘度の異なるポリエステルをサイドバイサイドに複合したポリエステル複合繊維は潜在捲縮性能を有する繊維素材として衣料用布帛に使用されている。布帛に適度なストレッチ性を付与するポリエステル複合繊維を得るためには、2種のポリエステルの固有粘度差を可能な限り大きくし、繊維にしたときの熱収縮差を大きくして潜在捲縮性を充分に付与しておくことが必要である。しかし、2種類のポリエステルに固有粘度差があると、吐出糸条の屈曲、ピクツキ、旋回等が進行し、ついには吐出糸条が紡糸口金面に付着して断糸するという現象が起こる。このような異常吐出現象が起こると、紡糸運転に支障をきたすのみならず、正常な複合が妨げられ、繊維軸方向に貼り合わせ斑が発生したり、ピクツキ、旋回等異常吐出を経た吐出ポリマー糸条が冷却・固化の過程で繊維構造斑を内在し、得られたポリエステル複合繊維は品質斑(毛羽)が多いものとなる。
【0003】
このような問題を改善するため、従来、極めて限定された寸法の円弧状スリットを極めて限定された間隔で同一円周上に配置した紡糸口金を使用して、粘度の異なるポリエステルを溶融紡糸してサイドバイサイドに複合する方法などが提案されている(例えば、特許文献1参照)。確かにこのような極めて限定された吐出孔を有する溶融紡糸口金を用いれば、2種類のポリエステルの固有粘度差があっても、紡糸初期においては、吐出ポリマーの屈曲、ピクツキ、旋回等が少なくなり、品質斑の少ないポリエステル複合繊維を得ることができる。しかしながら、紡糸時間の経過とともに、紡糸吐出孔周辺に異物が発生し始め、時間と共に蓄積量が多くなり、吐出糸条の屈曲、ピクツキ、旋回等が進行し、ポリエステル複合繊維の品質斑(毛羽)が発生するようになる。特に、このような特殊な吐出孔形状を有する紡糸口金を使用した場合、吐出孔周辺異物の蓄積がより早く出現し、短時間内に、ポリエステル複合繊維は品質斑(毛羽)の多いものとなる。
【0004】
しかも、このような吐出状態で紡糸引き取りされた未延伸複合糸を、さらに低温および低倍率で延伸を行う不均一延伸工程にかけた場合、通常の均一延伸に比較して、極めて延伸時の毛羽発生が極めて多くなり、得られた太細複合繊維は製品として使用できない品質のものとなるといった問題がある。
【0005】
また一方で、衣料としたとき鮮明な色合いとすることができる、白度に優れた繊維の要求が高くなっている。
【0006】
【特許文献1】
特開2000−144518号公報
【0007】
【発明が解決しようとする課題】
本発明は、上記従来技術を背景になされたもので、その目的は、品質斑(毛羽)が少なく、かつ好ましい白度を有する太細潜在捲縮性ポリエステル複合繊維を提供することにある。
【0008】
【課題を解決するための手段】
本発明者らは、上記従来技術に鑑み、鋭意検討を重ねた結果、本発明を完成するに至った。
【0009】
すなわち、本発明の目的は、互いに固有粘度差の異なる2種類のポリエステルポリマーがサイドバイサイド型に貼り合わされ、下記(a)〜(b)の要件を同時に満足するポリエステル複合繊維によって達成される。
【0010】
(a)繊維の長さ方向に太繊度部と細繊度部を有し、毛羽数が0.1個/106m以下であり、
(b)繊維を筒網地編地として測定したカラーL*値とカラーb*値との差(L*−b*)が80以上である。
【0011】
【発明の実施の形態】
以下本発明の実施形態について詳細に説明する。
本発明でいうポリエステルとは、主たる繰り返し単位としてエチレンテレフタレート単位が85モル%以上、好ましくは95モル%以上からなるポリエステルである。 サイドバイサイド貼り合せ成分の一方あるいは両方が、テレフタル酸成分および/またはエチレングリコール成分以外の成分を少量(通常は、テレフタル酸成分またはエチレングリコール成分に対して20モル%以下)共重合したものであっても良い。
【0012】
ポリエチレンテレフタレートに共重合できる金属スルホネート基を有する芳香族ジカルボン酸としては、5−ナトリウムスルホイソフタル酸、5−カリウムスルホイソフタル酸、5−リチウムスルホイソフタル酸、4−ナトリウムスルホイソフタル酸、4−ナトリウムスルホ−2,6−ナフタレンジカルボン酸などが挙げられるが、特に5−ナトリウムスルホイソフタル酸が好ましく用いられる。
【0013】
また、イソフタル酸、アジピン酸、セバシン酸、4−ブタンジオール、1,6−へキサンジオール、ジエチレングリコール、ポリエチレングリコールなどの共重合成分を少量(5モル%程度以下)含有してもよい。
【0014】
本発明のポリエステル複合繊維は、互いに固有粘度が異なる上記のポリエステル2種が溶融紡糸されサイドバイサイド型に貼り合わされた繊維横断面を有する。2種のポリエステルの固有粘度差は、0.1〜0.4、より好ましくは0.15〜0.30、であることが望ましい。固有粘度差が0.1未満の場合は、貼り合わせ成分間の熱収縮差が不充分であり、複合繊維としての潜在捲縮性能が不充分となる場合がある。なお、ここで潜在捲縮性能とは、実施例に記載した方法で測定した「捲縮率(%)」が1.5%以上であることをいう。固有粘度差が0.4を越える場合は、2成分の貼り合わせ不良が発生したり、吐出ポリマーの屈曲、ピクツキ、旋回等が激しくなったりして、得られた複合繊維の品質が劣ったものとなることがある。また、低粘度サイドのポリエステルの固有粘度は0.4〜0.7および高粘度サイドのポリエステルの固有粘度は0.6〜0.9の範囲とするとポリマー吐出状態がより安定するので好ましい。
【0015】
次に、本発明のポリエステル複合繊維は、(a)繊維の長さ方向に太繊度部と細繊度部を有し、毛羽数が0.1個/106m以下という要件を満たしている。通常、固有粘度差の異なる2種類のポリエステルがサイドバイサイド型に貼り合わされた未延伸複合糸を、低温および低倍率で延伸を行って得た太細ポリエステル複合繊維は、極めて毛羽の多いものとなる。毛羽数が0.1個/106mを越える太細ポリエステル複合繊維は織編工程の通過性が悪く、織編工程で使用困難となる。しかし、本発明のポリエステル複合繊維は(a)繊維の長さ方向に太繊度部と細繊度部を有するにもかかわらず、毛羽数が0.1個/106m以下である。なお、「繊維の長さ方向に太繊度部と細繊度部を有する」とは、ツェルベーガーウースター社製のイブネステスターで測定した繊度斑(以下U%あるいは太細効果と称する場合もある)が2.5%以上の場合をいう。U%が2.5%以上のポリエステル複合繊維は織編物とした場合、優れたスパナイズ感触(綿織編物に類似した感触)をもたらす。さらに、毛羽数が0.06個/106m以下となれば織編工程の通過性はより良好となる。
【0016】
次に、本発明のポリエステル複合繊維は、(b)繊維を筒網地編地として測定したカラーL*値とカラーb*値との差(L*−b*)が80以上である。L*−b*が80未満の場合は、布帛にした時黄色味が強く、衣料用として好ましい白度の範囲から外れた色合いとなる。なお、L*−b*が100を越える場合は、青味が強くなり、染色時の色合わせが難しくなるので好ましくない。
【0017】
本発明においては、このような特性を有するポリエステル複合繊維を構成し、互いに固有粘度が異なる2種類のポリエステルとして、いずれも実質的にアンチモン(Sb)を含まず、ポリエステルに可溶なチタン化合物および下記一般式(I)で表されるホスホネート化合物を使用して合成されたポリエチレンテレフタレート系ポリエステルを使用する。
【0018】
【化4】
【0019】
アンチモン(Sb)を含まないポリエステルに可溶なチタン化合物を重縮合触媒として、上記ホスホネート化合物とともに使用して合成されたポリエチレンテレフタレート系ポリエステルを複合紡糸することによって、吐出糸条の屈曲、ピクツキ、旋回等を劇的に低減せしめ、冷却・固化の過程で繊維構造斑を内在しない未延伸複合糸が得られ、低温・低倍率延伸によって品質均斉性(毛羽の少ない)に優れ、かつ好ましい白度を有する太細潜在捲縮性ポリエステル複合繊維を得ることができる。
【0020】
このようなアンチモン(Sb)を含まないポリエステルに可溶なチタン化合物としては、下記一般式(II)で表されるチタン化合物を好ましく用いることができる。
【0021】
【化5】
【0022】
一般式(II)で表されるチタン化合物において、R3、R3’、R3’’、R3’’’がそれぞれ同一もしくは異なって、アルキル基及び/又はフェニル基であれば特に限定されないが、テトライソプロポキシチタン、テトラプロポキシチタン、テトラ−n−ブトキシチタン、テトラエトキシチタン、テトラフェノキシチタン、オクタアルキルトリチタネート、ヘキサアルキルジチタネートなどが好ましく用いられる。
【0023】
また、上記一般式(II)で表されるチタン化合物と下記一般式(III)で表される化合物との反応生成物も本発明のポリエステルの重縮合触媒として好ましく用いることができる。
【0024】
【化6】
【0025】
一般式(III)で表される化合物は、芳香族多価カルボン酸又はその無水物であり、フタル酸、トリメリット酸、ヘミメリット酸、ピロメリット酸及びこれらの無水物を好ましくあげることができる。上記チタン化合物と芳香族多価カルボン酸又はその無水物とを反応させる場合には、溶媒に芳香族多価カルボン酸又はその無水物の一部を溶解し、これにチタン化合物を滴下して、0〜200℃の温度で少なくとも30分間反応させれば良い。
【0026】
このようなチタン化合物あるいはチタン化合物と芳香族多価カルボン酸又はその無水物との反応生成物は、ポリエステルポリマー中に可溶であり、このような化合物を、ポリエステルを構成する全ジカルボン酸成分を基準として、チタン金属元素として2〜15ミリモル%となるように重縮合工程で添加することが好ましい。なお、ここで言う”ポリマー中に可溶なチタン化合物”とは、二酸化チタン粒子に含まれるチタンは含まないことを示し、”チタン金属元素量”とは、エステル交換反応による第1段階反応を行う場合は、エステル交換反応触媒として使用されたチタン化合物と重縮合反応触媒として使用されたチタン化合物との合計量を示す。
【0027】
該チタン化合物あるいはチタン化合物と芳香族多価カルボン酸又はその無水物との反応生成物は、全添加量の一部及び/又はその全量をエステル交換反応開始前に反応系内に添加され、エステル交換反応と重縮合反応触媒とに兼用する方法が好ましく採用される。
【0028】
前記一般式(I)で表されるホスホネート化合物として、ホスホン酸のジメチルエステル、ジエチルエステル、ジプロピルエステル及びジブチルエステルを挙げることができ、具体的にはカルボメトキシメタンホスホン酸、カルボエトキシメタンホスホン酸、カルボプロポキシメタンホスホン酸、カルボブトキシメタンホスホン酸、カルボメトキシ−ホスホノ−フェニル酢酸、カルボエトキシ−ホスホノ−フェニル酢酸、カルボプロポキシ−ホスホノ−フェニル酢酸、カルボブトキシ−ホスホノ−フェニル酢酸等のジメチルエステル、ジエチルエステル、ジプロピルエステル及びジブチルエステルが挙げられる。
【0029】
上記のホスホネート化合物は、通常安定剤として使用されるリン化合物に比較して、チタン化合物との反応が比較的緩やかに進行するので、反応中における、チタン化合物の触媒活性持続時間が長く、結果として、該チタン化合物のポリエステルへの添加量を少なくすることができ、また、本発明のように触媒に対し多量に安定剤を添加する場合であっても、ポリエステルの熱安定性を損ない難い特性を有している。
【0030】
これら、ホスホネート化合物の添加時期は、ポリエステル製造時における、エステル交換反応が実質的に終了した後であればいつでもよく、例えば、重縮合反応を開始する以前の大気圧下でも、重縮合反応を開始した後の減圧下でも、重縮合反応の末期でもまた、重縮合反応の終了後、すなわちポリマーを得た後に添加してもよい。
【0031】
本発明において、用いられるホスホネート化合物の添加量は、リン化合物のリン元素量として、本発明のチタン化合物のチタン金属元素量に対し、2〜15倍モル当量添加するのが好ましい。リン元素量がチタン金属元素量に対して2倍モル当量未満の場合、ポリエステルの色相が著しく黄味を帯び、白度向上剤としてコバルト(Co)化合物添加の必要性が生ずることがあり好ましくない。また、リン元素量がチタン金属元素量に対して15倍モル当量を越えるとポリエステルの重合反応性が低下するので好ましくない。
【0032】
このようなチタン化合物あるいはチタン化合物と芳香族多価カルボン酸又はその無水物との反応生成物および前記のホスホネート化合物とを用いて合成されたポリエチレンテレフタレート系ポリエステルの溶融紡糸においては、ポリマー吐出孔周辺への異物蓄積が長期間にわたりほとんど発生せず、安定したポリマー吐出状態で複合紡糸が可能となる。すなわち、該ポリエステルの固有粘度差が大きくなっても、複合紡糸時のポリマー吐出が長期間にわたって安定しており、細化斑を内在することなく、品質均斉性(毛羽などの少ない)に優れ、かつ好ましい白度を有する太細潜在捲縮性ポリエステル複合繊維を得ることができる。
【0033】
さらに、このようなチタン化合物あるいはチタン化合物と芳香族多価カルボン酸又はその無水物との反応生成物および前記のホスホネート化合物を使用して得られたポリエチレンテレフタレート系ポリエステルからなるポリエステル複合繊維は、白度向上剤としてCo化合物を添加しなくても、衣料用として好ましい白度を有している。
また、Sb、Co等の重金属を含まない本発明のポリエステル複合繊維においては、繊維加工処理排液中の重金属負荷が低減するという、利点も発現する。
【0034】
次に、2種類のポリエステルの貼り合わせ重量比(高粘度サイド/低粘度サイド)は40/60〜60/40、より好ましくは55/45〜45/55、の範囲にするのが適当である。高粘度サイドのポリエステル重量比率が60を越える場合には、得られるポリエステル複合繊維の潜在捲縮性が低下する傾向にあり、一方、低粘度サイドのポリエステル重量比率が60を越える場合は、繊維の強度が低くなったり、毛羽が増える傾向がある。
【0035】
次に、本発明のポリエステル複合繊維の貼り合わせ横断面形態はサイドバイサイド型とする必要があるが、横断面全体としては、図1に示すように、円形、多葉形あるいは中空存在形の何れであっても良い。特に、図1の(D)に示すように、高粘度サイドの横断面に、0.5〜15%、より好ましくは1〜10%の面積(対総横断面積)を占める中空部を設けると、ポリマー吐出状態がより安定する。なお、中空率が15%を越える場合は、中空破れなどの貼り合わせ不良が起こることがある。
【0036】
なお、本発明のポリエステル複合繊維の総繊度は30〜200dtex、単糸繊度は2〜15dtexの範囲が好ましい。また、強度は2.0〜5.0cN/dtexの範囲、伸度は30〜50%の範囲が衣料用途での加工性、実用性の面から好ましい。
【0037】
このような特性を有する本発明のポリエステル複合繊維は、前述の方法で得られた固有粘度の異なる2種のポリエチレンテレフタレート系ポリエステルを各々常法で乾燥し、2基の溶融押出機(スクリュウーエクストルーダー)を装備した通常の複合紡糸設備で、溶融し、通常のサイドバイサイド型複合紡糸口金(中空複合繊維の場合は中空形成性吐出孔を穿設した紡糸口金を使用する)を用いて、2種のポリマー流を複合し、冷却、固化後、油剤を付与して紡糸引き取りし、延伸することで製造することができる。このとき紡糸引き取りし、一旦未延伸複合糸として巻き取った後、延伸を別途行っても良く、紡糸引き取り後、一旦巻取ることなく、連続して延伸を行っても良い。溶融紡糸温度は、275〜300℃の範囲が、紡糸安定性の観点より、好ましい。紡糸引き取り速度は、1000〜2000m/minの範囲が好ましい。
【0038】
次に該未延伸複合糸の延伸は、通常の均一延伸に比較し、低倍率および低温の条件で行われる。延伸予熱温度は、使用するポリエステルのガラス転移温度近傍が望ましく、延伸倍率は使用するポリエステルの自然延伸倍率近傍で、ポリエステル複合繊維の伸度が30〜50%の範囲となるように設定するのが望ましい。
【0039】
【実施例】
以下、実施例により、本発明を更に具体的に説明する。なお、実施例における各項目は次の方法で測定した。
【0040】
(1)固有粘度
オルソクロロフェノールを溶媒として使用し35℃で測定した。
【0041】
(2)ポリマー吐出状態
複合紡糸中に、紡糸口金より吐出されているポリマーの吐出状態を観察し、次の基準で吐出状態を格付けした。複合紡糸開始1時間後、3日後および、7日後に観察を行った。
レベル1:吐出糸条がほぼ一定の流下線を描いて、安定に走行している
レベル2:吐出糸条に小さな屈曲、ピクツキ、旋回等が見られる
レベル3:吐出糸条が大きく屈曲、ピクツキあるいは旋回している。一部ポリマーが紡糸口金面に接触し、断糸が頻発している。
【0042】
(3)貼り合わせ重量比
ポリエステル複合繊維を任意の繊維横断面方向に切り取り、市販の顕微鏡にて倍率750倍で繊維横断面を写真撮影し、構成単糸横断面全てについて、2種のポリエステル横断面が各々占める面積を測定し、その比率(高粘度サイド占有面積/低粘度サイド占有面積)を「貼り合わせ重量比」(測定した全単糸横断面についての平均値)とした。
【0043】
(4)中空率(%)
前項のポリエステル複合繊維断面顕微鏡写真で、各単糸横断面の中空部面積(A)および横断面を囲む面積(B)を測定し、下記式で計算し、測定した全単糸横断面についての平均値を中空率(%)とした。
中空率(%)=A/B×100
(5)太細効果(U%)
ツェルベーガーウースター社製のUSTER TESTER 4型を用い400m/minの走行速度で測定した。
【0044】
(6)捲縮率(%)
極細仮撚加工糸に0.044cN/dtex(50mg/デニール)の張力を掛けてカセ枠に巻き取り、約3300dtexのカセを作る。カセ作成後、カセの一端に0.00177cN/dtex+0.177cN/dtex(2mg/デニール+200mg/デニール)の荷重を負荷し、1分間経過後の長さL0(cm)を測定する。次いで、0.177cN/dtex(200mg/デニール)の荷重を除去した状態で、100℃の沸水中にて20分間処理する。沸水処理後0.00177cN/dtex(2mg/デニール)の荷重を除去し、24時間自由な状態で自然乾燥する。自然乾燥した試料に、再び0.00177cN/dtex+0.177cN/dtex(2mg/デニール+200mg/デニール)の荷重を負荷し、1分間経過後の長さL1(cm)を測定する。次いで、0.177cN/dtex(200mg/デニール)の荷重を除去し、1分間経過後の長さL2を測定し、次の算式で捲縮率(%)を算出した。この測定を10回実施し、その平均値で表した。
捲縮率(%)=[(L1−L2)/L0]×100
なお、測定は10回行い、その平均値を求めた。
【0045】
(7)毛羽数(個/106m)
パッケージ巻き(あるいはパーン巻き)としたポリエステル複合繊維250個を、毛羽検出装置付きの整経機に掛けて、400m/minの速度で、42時間整経引き取りした。整経機が停止するごとに、目視で毛羽の有無を確認し、確認された毛羽の全個数を繊維糸条長106m当たりに換算し、毛羽数とした。
【0046】
(8)L*−b*値
ポリエステル繊維を12ゲージ丸編機で30cm長の筒編みとし、マクベス社製カラー測定装置(Macbeth COLOR−EYE)を用い、L*値、b*値を測定し、その差を(L*−b*)値とした。
【0047】
(9)強度・伸度
JIS−L1013に準拠して測定した。
【0048】
[実施例1]
テレフタル酸ジメチル100部とエチレングリコール70部との混合物に、テトラ−n−ブトキシチタン0.0088部を加圧反応が可能なステンレス製容器に仕込み、0.07MPaの加圧を行い140℃から240℃に昇温しながらエステル交換反応させた後、トリエチルホスホノアセテート0.035部を添加し、エステル交換反応を終了させた。その後、反応生成物を重合容器に移し、285℃まで昇温し、26.67Pa以下の高真空で重縮合反応を行って、固有粘度0.63のポリエステルを得た。また、同様の操作を行い固有粘度0.43のポリエステルを得た。
【0049】
得られた2種のポリエステルをペレット状となし、常法で乾燥した後、2基の溶融押出機(スクリュウーエクストルーダー)を装備した複合紡糸機に導入し、溶融し、280℃に保たれたスピンブロックに装備された複合紡糸パックに導入し、複合紡糸口金にて2つのポリマー流を貼り合わせ重量比が50/50のサイドバイサイド型中実断面(図1(A))となるように複合しつつ吐出し、冷却・固化し、油剤を付与して、1500m/minの速度で紡糸引き取りし、未延伸複合糸を得た。該未延伸複合糸を、予熱温度80℃、延伸倍率2.0で延伸しつつ、接触型ヒーターにて150℃で熱セットして600m/minで巻取り、120dtex/24filamentsのポリエステル複合繊維を得た。
【0050】
本例においては、表1から明らかなように、紡糸口金吐出孔周辺に異物の蓄積が認められず、ポリマー吐出状態は長期間にわたり安定であった。得られたポリエステル複合繊維は、充分な潜在捲縮性能(捲縮率(%))および太細効果(U%)を有しており、かつ毛羽が少なく、衣料用として好ましい白度を有していた。
【0051】
【表1】
【0052】
[比較例1]
3酸化アンチモン(Sb2O3)を重合触媒として、テレフタル酸ジメチルとエチレングリコールとを常法にて重縮合し、固有粘度0.63および0.43のポリエステルを得た。2種のポリエステルを実施例1と同じ方法、条件で複合紡糸、延伸を行い、120dtex/24filamentsのポリエステル複合繊維を得た。本例においては、表1から明らかなように、紡糸時間の経過にともなう紡糸口金吐出孔周辺異物の成長により、吐出糸条の屈曲、ピクツキおよび旋回が認められた。得られたポリエステル複合繊維は毛羽が多く、衣料用として使用できる品質を有していなかった。
【0053】
[実施例2〜3、比較例2]
ポリエステルに可溶なチタン化合物として使用するトリメリット酸チタンを下記の方法で合成した。
【0054】
無水トリメリット酸のエチレングリコール溶液(0.2重量%)にテトラブトキシチタンを無水トリメリット酸に対して1/2モル添加し、空気中常圧下で80℃に保持して60分間反応させて、その後、常温に冷却し、10倍量のアセトンによって生成触媒を再結晶化させ、析出物をろ紙によって濾過し、100℃で2時間乾燥させて、目的とするトリメリット酸チタン(以下TMTと称することがある)を得た。
【0055】
得られたTMT0.016部をチタン化合物として用い、リン化合物を各々、表2に示す化合物(比較例2は無し)および添加量に変更した以外は、実施例1と同じ方法、条件で固有粘度0.63および0.43のポリエステルを得た。2種のポリエステルを実施例1と同じ方法、条件で複合紡糸、延伸を行い、120dtex/24filamentsのポリエステル複合繊維を得た。表2から明らかなように、実施例2〜3においては、紡糸口金吐出孔周辺に異物の蓄積が認められず、ポリマー吐出状態は長期間にわたり安定であり、得られたポリエステル複合繊維は、充分な潜在捲縮性能(捲縮率(%))および太細効果(U%)を有しており、かつ毛羽が少なく、衣料用として好ましい白度を有していた。本発明の範囲のリン化合物を使用しない比較例2において、得られたポリエステル複合繊維の毛羽は少なかったが、L*−b*値が低く、黄色味が強く衣料用として好ましくない色合いとなった。
【0056】
【表2】
【0057】
[実施例4〜5]
貼り合わせ重量比を各々表3に示す値とする以外は実施例1と同じ方法、条件でポリエステル複合糸を得た。表3から明らかなように、いずれの例ののポリエステル複合繊維とも、充分な潜在捲縮性能(捲縮率(%))および太細効果(U%)を有しており、かつ毛羽が少なく、衣料用として好ましい白度を有していた。
【0058】
【表3】
【0059】
[実施例6〜8]
ポリエステル複合繊維の横断面を図1(D)に示す形状とし、中空率を各々表4に示す値とする以外は実施例1と同じ方法、条件でポリエステル複合糸を得た。表4から明らかなように、いずれの例ののポリエステル複合繊維とも、充分な潜在捲縮性能(捲縮率(%))および太細効果(U%)を有しており、かつ毛羽が少なく、かつ衣料用として好ましい白度を有していた。
【0060】
【表4】
【0061】
【発明の効果】
本発明によれば、品質斑(毛羽)が少なく、好ましい白度を有する太細潜在捲縮性ポリエステル複合繊維を提供することができ、かかる複合繊維からは極めて品位の高い衣料を得ることができる。
【図面の簡単な説明】
【図1】本発明のポリエステル複合繊維の横断面を例示した模式図。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a polyester composite fiber in which two types of polyester polymers having different intrinsic viscosities are bonded in a side-by-side type. More specifically, the present invention relates to a thick and latently crimpable polyester composite fiber having less unevenness in quality (fuzz) and preferable whiteness.
[0002]
[Prior art]
Polyester composite fibers in which polyesters having different intrinsic viscosities are compounded side by side are used in clothing fabrics as a fiber material having latent crimp performance. In order to obtain a polyester composite fiber that imparts an appropriate stretch property to the fabric, the difference in intrinsic viscosity between the two polyesters is made as large as possible, and the difference in heat shrinkage when the fiber is made is increased to increase the potential crimpability. It is necessary to provide enough. However, if there is a difference in intrinsic viscosity between the two polyesters, the discharge yarn will bend, spike, turn, etc., and eventually, a phenomenon will occur in which the discharge yarn adheres to the spinneret surface and breaks. When such an abnormal discharge phenomenon occurs, not only does the spinning operation be hindered, but also the normal compounding is disturbed, and the discharge polymer yarn that has undergone abnormal discharge such as sticking unevenness in the fiber axis direction, pitting, turning, etc. The fiber has unevenness in fiber structure in the process of cooling and solidifying, and the obtained polyester composite fiber has many unevenness in quality (fuzz).
[0003]
In order to improve such a problem, conventionally, melt-spun polyesters having different viscosities using a spinneret in which arc-shaped slits of extremely limited dimensions are arranged on the same circumference at extremely limited intervals. A side-by-side composite method has been proposed (for example, see Patent Document 1). Certainly, if a melt spinneret having such a very limited discharge hole is used, even if there is a difference in the intrinsic viscosity of the two types of polyester, in the initial stage of spinning, the bending, the picture, and the rotation of the discharged polymer will be reduced. Thus, it is possible to obtain a polyester composite fiber having less unevenness in quality. However, as the spinning time elapses, foreign substances begin to be generated around the spinning discharge hole, and the accumulated amount increases with time, and the discharge yarn is bent, spiked, swirled, etc., and the quality unevenness (fluff) of the polyester composite fiber. Will occur. In particular, when a spinneret having such a special discharge hole shape is used, the accumulation of foreign matters around the discharge holes appears more quickly, and the polyester composite fiber has a lot of quality unevenness (fluff) within a short time. .
[0004]
Moreover, when the undrawn composite yarn spun in such a discharged state is subjected to a non-uniform drawing step of drawing at a lower temperature and a lower magnification, the generation of fluff at the time of drawing is extremely large as compared with the normal uniform drawing. And the obtained thick and thin conjugate fiber has a quality that cannot be used as a product.
[0005]
On the other hand, there is an increasing demand for fibers having excellent whiteness, which can provide a clear color when used as clothing.
[0006]
[Patent Document 1]
JP 2000-144518 A
[Problems to be solved by the invention]
The present invention has been made on the background of the above-mentioned prior art, and an object of the present invention is to provide a thin latently crimpable polyester composite fiber having less unevenness in quality (fuzz) and preferable whiteness.
[0008]
[Means for Solving the Problems]
The present inventors have conducted intensive studies in view of the above-described conventional technology, and as a result, completed the present invention.
[0009]
That is, the object of the present invention is achieved by a polyester conjugate fiber in which two types of polyester polymers having different intrinsic viscosities are bonded in a side-by-side type and simultaneously satisfy the following requirements (a) to (b).
[0010]
(A) having a thick fine portion and a fine fine portion in the length direction of the fiber, the number of fluff is 0.1 / 10 6 m or less;
(B) The difference (L * -b * ) between the color L * value and the color b * value measured using the fiber as a tubular net knitted fabric is 80 or more.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
The polyester in the present invention is a polyester comprising ethylene terephthalate units as a main repeating unit in an amount of 85 mol% or more, preferably 95 mol% or more. One or both of the side-by-side bonding components are copolymers of components other than the terephthalic acid component and / or the ethylene glycol component in a small amount (usually 20 mol% or less based on the terephthalic acid component or the ethylene glycol component). Is also good.
[0012]
Examples of the aromatic dicarboxylic acid having a metal sulfonate group that can be copolymerized with polyethylene terephthalate include 5-sodium sulfoisophthalic acid, 5-potassium sulfoisophthalic acid, 5-lithium sulfoisophthalic acid, 4-sodium sulfoisophthalic acid, and 4-sodium sulfo acid. Examples thereof include -2,6-naphthalenedicarboxylic acid, and 5-sodium sulfoisophthalic acid is particularly preferably used.
[0013]
Further, a small amount (about 5 mol% or less) of a copolymer component such as isophthalic acid, adipic acid, sebacic acid, 4-butanediol, 1,6-hexanediol, diethylene glycol, or polyethylene glycol may be contained.
[0014]
The polyester composite fiber of the present invention has a fiber cross section in which the above two polyesters having different intrinsic viscosities are melt-spun and bonded in a side-by-side type. The difference in intrinsic viscosity between the two polyesters is preferably 0.1 to 0.4, more preferably 0.15 to 0.30. When the intrinsic viscosity difference is less than 0.1, the heat shrinkage difference between the bonding components is insufficient, and the latent crimp performance as a conjugate fiber may be insufficient. Here, the latent crimp performance means that the “crimp rate (%)” measured by the method described in the examples is 1.5% or more. If the intrinsic viscosity difference exceeds 0.4, the resulting composite fiber is inferior in quality due to poor bonding of the two components, or intensified bending, tingling, or turning of the discharged polymer. It may be. Further, it is preferable that the intrinsic viscosity of the polyester on the low viscosity side is in the range of 0.4 to 0.7 and the intrinsic viscosity of the polyester on the high viscosity side is in the range of 0.6 to 0.9, because the state of discharging the polymer is more stable.
[0015]
Next, the polyester conjugate fiber of the present invention satisfies the requirement that (a) the fiber has a fine size portion and a fine size portion in the length direction of the fiber, and the number of fluff is 0.1 pieces / 10 6 m or less. Usually, a thick polyester composite fiber obtained by drawing an undrawn composite yarn in which two types of polyesters having different intrinsic viscosities are bonded in a side-by-side type at a low temperature and a low magnification has a very large amount of fluff. Thick polyester composite fibers having a number of fluffs exceeding 0.1 / 10 6 m have poor permeability in the weaving and knitting step, and are difficult to use in the weaving and knitting step. However, the polyester conjugate fiber of the present invention (a) has a fluff count of 0.1 / 10 6 m or less despite having a large fine portion and a fine fine portion in the length direction of the fiber. In addition, "having a fine fineness portion and a fine fineness portion in the fiber length direction" means fineness unevenness (hereinafter sometimes referred to as U% or thinness effect) measured with an Evenness Tester manufactured by Zellberger Worcester. ) Is 2.5% or more. A polyester conjugate fiber having a U% of 2.5% or more gives an excellent spanning feel (feel similar to cotton woven fabric) when woven or knitted. Furthermore, when the number of fluffs is 0.06 / 10 6 m or less, the passability of the weaving and knitting process is further improved.
[0016]
Next, in the polyester composite fiber of the present invention, the difference (L * -b * ) between the color L * value and the color b * value measured using the fiber (b) as a tubular knitted fabric is 80 or more. When L * -b * is less than 80, the fabric has a strong yellowish tinge and has a color out of the range of whiteness preferable for clothing. When L * -b * exceeds 100, the bluish tint becomes strong and color matching at the time of dyeing becomes difficult, which is not preferable.
[0017]
In the present invention, a polyester compound soluble in the polyester, which does not substantially contain antimony (Sb), and which is composed of two types of polyesters having a polyester conjugate fiber having such properties and having different intrinsic viscosities. A polyethylene terephthalate-based polyester synthesized using a phosphonate compound represented by the following general formula (I) is used.
[0018]
Embedded image
[0019]
By bending a polyethylene terephthalate-based polyester synthesized by using a titanium compound soluble in polyester containing no antimony (Sb) as a polycondensation catalyst together with the above phosphonate compound, the discharge yarn is bent, spiked, and swirled. In the process of cooling and solidification, an undrawn composite yarn without fiber structure unevenness is obtained, and it is excellent in quality uniformity (less fluff) by low-temperature and low-magnification drawing, and has good whiteness. A thick latent and crimpable polyester composite fiber having the same can be obtained.
[0020]
As such a titanium compound soluble in a polyester not containing antimony (Sb), a titanium compound represented by the following general formula (II) can be preferably used.
[0021]
Embedded image
[0022]
In the titanium compound represented by the general formula (II), there is no particular limitation as long as R 3 , R 3 ′, R 3 ″, and R 3 ″ are the same or different and are an alkyl group and / or a phenyl group. However, tetraisopropoxytitanium, tetrapropoxytitanium, tetra-n-butoxytitanium, tetraethoxytitanium, tetraphenoxytitanium, octaalkyltrititanate, hexaalkyldititanate and the like are preferably used.
[0023]
Further, a reaction product of a titanium compound represented by the above general formula (II) and a compound represented by the following general formula (III) can also be preferably used as the polyester polycondensation catalyst of the present invention.
[0024]
Embedded image
[0025]
The compound represented by the general formula (III) is an aromatic polycarboxylic acid or an anhydride thereof, and preferably includes phthalic acid, trimellitic acid, hemi-mellitic acid, pyromellitic acid and anhydrides thereof. . When reacting the titanium compound with an aromatic polycarboxylic acid or an anhydride thereof, a part of the aromatic polycarboxylic acid or an anhydride thereof is dissolved in a solvent, and the titanium compound is added dropwise thereto, The reaction may be performed at a temperature of 0 to 200 ° C. for at least 30 minutes.
[0026]
The reaction product of such a titanium compound or a titanium compound and an aromatic polycarboxylic acid or an anhydride thereof is soluble in a polyester polymer, and such a compound is converted into a whole dicarboxylic acid component constituting the polyester. As a standard, it is preferable to add the titanium metal element in the polycondensation step so as to be 2 to 15 mmol%. Here, “the titanium compound soluble in the polymer” means that the titanium contained in the titanium dioxide particles is not contained, and “the amount of the titanium metal element” means that the first step reaction by the transesterification reaction is performed. When the reaction is performed, the total amount of the titanium compound used as the transesterification catalyst and the titanium compound used as the polycondensation reaction catalyst is shown.
[0027]
The titanium compound or the reaction product of the titanium compound and the aromatic polycarboxylic acid or its anhydride is added to the reaction system before the start of the transesterification reaction, and a part of the total amount and / or the whole amount is added to the reaction system. A method which is used for both the exchange reaction and the polycondensation reaction catalyst is preferably employed.
[0028]
Examples of the phosphonate compound represented by the general formula (I) include dimethyl ester, diethyl ester, dipropyl ester and dibutyl ester of phosphonic acid, and specific examples thereof include carbomethoxymethanephosphonic acid and carboethoxymethanephosphonic acid. Dimethyl esters such as carbopropoxymethanephosphonic acid, carbobutoxymethanephosphonic acid, carbomethoxy-phosphono-phenylacetic acid, carboethoxy-phosphono-phenylacetic acid, carbopropoxy-phosphono-phenylacetic acid, carbbutoxy-phosphono-phenylacetic acid, diethyl Esters, dipropyl esters and dibutyl esters.
[0029]
Since the above-mentioned phosphonate compound proceeds relatively slowly with the titanium compound as compared with the phosphorus compound usually used as a stabilizer, the duration of the catalytic activity of the titanium compound during the reaction is long, and as a result, In addition, the amount of the titanium compound added to the polyester can be reduced, and even when a large amount of a stabilizer is added to the catalyst as in the present invention, the property that the thermal stability of the polyester is not easily impaired is reduced. Have.
[0030]
These phosphonate compounds may be added at any time after the transesterification reaction is substantially completed during the production of the polyester.For example, the polycondensation reaction can be started even at atmospheric pressure before the start of the polycondensation reaction. It may be added under reduced pressure after the reaction, at the end of the polycondensation reaction, or after the completion of the polycondensation reaction, that is, after the polymer is obtained.
[0031]
In the present invention, the amount of the phosphonate compound used is preferably 2 to 15 times the molar equivalent of the titanium metal element of the titanium compound of the present invention as the phosphorus element of the phosphorus compound. If the amount of phosphorus element is less than twice the molar equivalent to the amount of titanium metal element, the hue of the polyester becomes remarkably yellowish, which may require the addition of a cobalt (Co) compound as a whiteness improver, which is not preferable. . On the other hand, if the amount of the phosphorus element exceeds 15 times the molar equivalent of the amount of the titanium metal element, the polymerization reactivity of the polyester decreases, which is not preferable.
[0032]
In the melt spinning of a polyethylene terephthalate-based polyester synthesized using such a titanium compound or a reaction product of the titanium compound and an aromatic polycarboxylic acid or an anhydride thereof and the above-mentioned phosphonate compound, a polymer discharge hole is formed. Foreign matter is hardly accumulated for a long period of time, and composite spinning can be performed in a stable polymer discharge state. That is, even if the difference in the intrinsic viscosity of the polyester is large, the polymer ejection during the composite spinning is stable for a long period of time, and without uniform thinning, excellent quality uniformity (less fluff, etc.) In addition, a thick and thin latently crimpable polyester composite fiber having a preferable whiteness can be obtained.
[0033]
Further, the polyester composite fiber comprising the titanium compound or the reaction product of the titanium compound and the aromatic polycarboxylic acid or its anhydride and the polyethylene terephthalate-based polyester obtained by using the phosphonate compound is white. Even if a Co compound is not added as a degree improver, the whiteness is favorable for clothing.
In addition, the polyester composite fiber of the present invention that does not contain heavy metals such as Sb and Co also has the advantage of reducing the heavy metal load in the effluent from fiber processing.
[0034]
Next, the bonding weight ratio (high-viscosity side / low-viscosity side) of the two polyesters is suitably in the range of 40/60 to 60/40, more preferably 55/45 to 45/55. . When the weight ratio of the polyester on the high viscosity side exceeds 60, the latent crimpability of the obtained polyester composite fiber tends to decrease, while when the weight ratio of the polyester on the low viscosity side exceeds 60, the fiber There is a tendency for strength to decrease and fluff to increase.
[0035]
Next, the bonded cross-sectional form of the polyester composite fiber of the present invention needs to be a side-by-side type, but as a whole cross-section, as shown in FIG. There may be. In particular, as shown in FIG. 1D, when a hollow portion occupying an area of 0.5 to 15%, more preferably 1 to 10% (to the total cross-sectional area) is provided in the cross section of the high viscosity side. As a result, the polymer ejection state becomes more stable. If the hollow ratio exceeds 15%, bonding failure such as tearing of the hollow may occur.
[0036]
The total fineness of the polyester composite fiber of the present invention is preferably in the range of 30 to 200 dtex, and the single yarn fineness is preferably in the range of 2 to 15 dtex. Further, the strength is preferably in the range of 2.0 to 5.0 cN / dtex, and the elongation is preferably in the range of 30 to 50% from the viewpoint of workability and practicality in clothing use.
[0037]
The polyester conjugate fiber of the present invention having such properties can be obtained by drying two kinds of polyethylene terephthalate-based polyesters having different intrinsic viscosities obtained by the above-described method, respectively, and drying the same by two ordinary melt extruders (screw extruder). ), Using a normal side-by-side type composite spinneret (in the case of a hollow composite fiber, use a spinneret having a hollow forming discharge hole), and using two types of spinnerets. It can be produced by combining a polymer stream, cooling and solidifying, applying an oil agent, spinning and drawing, and stretching. At this time, after the spinning take-up and once winding as an undrawn composite yarn, stretching may be performed separately, or after the spinning take-up, continuous drawing may be performed without winding once. The melt spinning temperature is preferably in the range of 275 to 300 ° C from the viewpoint of spinning stability. The spinning speed is preferably in the range of 1000 to 2000 m / min.
[0038]
Next, the drawing of the undrawn composite yarn is performed at a lower magnification and a lower temperature as compared with normal uniform drawing. The drawing preheating temperature is desirably near the glass transition temperature of the polyester to be used, and the drawing ratio is set so as to be near the natural drawing ratio of the polyester to be used and the elongation of the polyester composite fiber to be in the range of 30 to 50%. desirable.
[0039]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. Each item in the examples was measured by the following method.
[0040]
(1) Intrinsic viscosity Orthochlorophenol was used as a solvent and measured at 35 ° C.
[0041]
(2) Polymer discharge state During composite spinning, the discharge state of the polymer discharged from the spinneret was observed, and the discharge state was rated based on the following criteria. Observations were made 1 hour, 3 days, and 7 days after the start of composite spinning.
Level 1: The discharge yarn draws a substantially constant downward line and runs stably. Level 2: The discharge yarn shows a small bend, tingling, turning, etc. Level 3: The discharge yarn is greatly bent, tingling Or it is turning. A part of the polymer comes into contact with the spinneret surface, and the yarn breaks frequently.
[0042]
(3) Laminated weight ratio Polyester conjugate fiber is cut in any fiber cross-section direction, a cross-section of the fiber is photographed at a magnification of 750 times with a commercially available microscope, and two types of polyester cross-sections are obtained for all the constituent single-thread cross-sections. The area occupied by each surface was measured, and the ratio (area occupied by high-viscosity side / area occupied by low-viscosity side) was defined as "lamination weight ratio" (average value for all measured single-cross-sections).
[0043]
(4) Hollow ratio (%)
In the micrograph of the cross section of the polyester composite fiber in the preceding paragraph, the area of the hollow portion (A) and the area (B) surrounding the cross section of each cross section of each single yarn were measured and calculated by the following formula. The average value was taken as the hollow ratio (%).
Hollow ratio (%) = A / B × 100
(5) Thickness effect (U%)
The measurement was performed at a running speed of 400 m / min using a USTER TESTER 4 manufactured by Zellberger Worcester.
[0044]
(6) Crimp rate (%)
A tension of 0.044 cN / dtex (50 mg / denier) is applied to the ultra-fine false twisted yarn and wound around a skewer frame to make a skein of about 3300 dtex. After the cassette is made, a load of 0.00177 cN / dtex + 0.177 cN / dtex (2 mg / denier + 200 mg / denier) is applied to one end of the cassette, and the length L 0 (cm) after 1 minute is measured. Next, in a state where the load of 0.177 cN / dtex (200 mg / denier) is removed, treatment is performed in boiling water at 100 ° C. for 20 minutes. After the boiling water treatment, the load of 0.00177 cN / dtex (2 mg / denier) is removed, and the mixture is naturally dried in a free state for 24 hours. A load of 0.00177 cN / dtex + 0.177 cN / dtex (2 mg / denier + 200 mg / denier) is again applied to the naturally dried sample, and the length L 1 (cm) after one minute has elapsed is measured. Then removed load of 0.177cN / dtex (200mg / denier), a length L 2 measured after a lapse of 1 minute was calculated crimp ratio by the following formula (%). This measurement was performed 10 times, and the result was represented by the average value.
Crimp rate (%) = [(L 1 −L 2 ) / L 0 ] × 100
The measurement was performed 10 times, and the average value was obtained.
[0045]
(7) Number of fluff (pcs / 10 6 m)
250 pieces of the polyester composite fiber wound in a package (or wrapped in a pan) were set on a warping machine equipped with a fluff detecting device and warped at a speed of 400 m / min for 42 hours. Each time the warper was stopped, the presence or absence of fluff was visually checked, and the total number of the confirmed fluff was converted to a fiber yarn length of 10 6 m, which was defined as the number of fluff.
[0046]
(8) L * -b * value The polyester fiber was formed into a cylindrical knitting machine having a length of 30 cm with a 12 gauge circular knitting machine, and the L * value and b * value were measured using a color measuring device (Macbeth COLOR-EYE) manufactured by Macbeth. , And the difference was defined as (L * −b * ) value.
[0047]
(9) Strength / elongation Measured in accordance with JIS-L1013.
[0048]
[Example 1]
To a mixture of 100 parts of dimethyl terephthalate and 70 parts of ethylene glycol, 0.0088 part of tetra-n-butoxytitanium was charged into a stainless steel container capable of performing a pressure reaction, and pressurized at 0.07 MPa to 140 ° C to 240 ° C. After transesterification while raising the temperature to ° C, 0.035 parts of triethylphosphonoacetate was added to terminate the transesterification reaction. Thereafter, the reaction product was transferred to a polymerization vessel, heated to 285 ° C., and subjected to a polycondensation reaction under a high vacuum of 26.67 Pa or less to obtain a polyester having an intrinsic viscosity of 0.63. The same operation was performed to obtain a polyester having an intrinsic viscosity of 0.43.
[0049]
The resulting two types of polyester were formed into pellets, dried in a conventional manner, introduced into a composite spinning machine equipped with two melt extruders (screw extruders), melted, and kept at 280 ° C. The mixture is introduced into a composite spin pack equipped on a spin block, and the two polymer streams are stuck together by a composite spinneret to form a composite having a 50/50 weight ratio of a side-by-side solid section (FIG. 1 (A)). Then, the mixture was discharged, cooled and solidified, an oil agent was applied, and the yarn was drawn off at a speed of 1500 m / min to obtain an undrawn composite yarn. The undrawn composite yarn is stretched at a preheating temperature of 80 ° C. and a draw ratio of 2.0, and is heat-set at 150 ° C. with a contact heater and wound at 600 m / min to obtain a polyester composite fiber of 120 dtex / 24 filaments. Was.
[0050]
In this example, as apparent from Table 1, no accumulation of foreign matter was observed around the spinneret discharge hole, and the polymer discharge state was stable for a long period of time. The obtained polyester composite fiber has sufficient latent crimping performance (crimp rate (%)) and thickening effect (U%), has little fuzz, and has a whiteness preferable for clothing. I was
[0051]
[Table 1]
[0052]
[Comparative Example 1]
Using antimony trioxide (Sb 2 O 3 ) as a polymerization catalyst, dimethyl terephthalate and ethylene glycol were polycondensed by a conventional method to obtain polyesters having intrinsic viscosities of 0.63 and 0.43. The two kinds of polyesters were subjected to composite spinning and stretching under the same method and conditions as in Example 1 to obtain a polyester composite fiber of 120 dtex / 24 filaments. In this example, as is apparent from Table 1, bending, spikes and swirling of the discharged yarn were recognized due to the growth of foreign matter around the spinneret discharge hole with the lapse of spinning time. The obtained polyester composite fiber had many fluffs and did not have a quality that could be used for clothing.
[0053]
[Examples 2 and 3, Comparative Example 2]
Titanium trimellitate used as a titanium compound soluble in polyester was synthesized by the following method.
[0054]
To a solution of trimellitic anhydride in ethylene glycol (0.2% by weight) was added 1/2 mole of tetrabutoxytitanium to trimellitic anhydride, and the mixture was allowed to react at 80 ° C. under normal pressure in air for 60 minutes. Thereafter, the mixture is cooled to room temperature, the produced catalyst is recrystallized with 10 times the amount of acetone, and the precipitate is filtered through filter paper and dried at 100 ° C. for 2 hours to obtain a target titanium trimellitate (hereinafter referred to as TMT). Sometimes).
[0055]
Intrinsic viscosity was obtained in the same manner and under the same conditions as in Example 1 except that 0.016 parts of the obtained TMT was used as a titanium compound, and the phosphorus compounds were changed to the compounds shown in Table 2 (no comparison example 2) and the amount added. Polyesters of 0.63 and 0.43 were obtained. The two kinds of polyesters were subjected to composite spinning and stretching under the same method and conditions as in Example 1 to obtain a polyester composite fiber of 120 dtex / 24 filaments. As is clear from Table 2, in Examples 2 and 3, no accumulation of foreign matter was observed around the spinneret discharge hole, and the polymer discharge state was stable for a long period of time. It had excellent latent crimping performance (crimp rate (%)) and thick and thin effect (U%), and had little fuzz, and had a whiteness preferable for clothing. In Comparative Example 2 in which the phosphorus compound in the range of the present invention was not used, the obtained polyester composite fiber had a small amount of fluff, but had a low L * -b * value and had a strong yellowish tint, which was undesirable for clothing. .
[0056]
[Table 2]
[0057]
[Examples 4 and 5]
A polyester composite yarn was obtained in the same manner and under the same conditions as in Example 1 except that the bonding weight ratios were set to the values shown in Table 3. As is evident from Table 3, all of the polyester composite fibers of Examples have sufficient latent crimping performance (crimp rate (%)) and a thin effect (U%), and have less fuzz. And had a whiteness preferable for clothing.
[0058]
[Table 3]
[0059]
[Examples 6 to 8]
A polyester composite yarn was obtained in the same manner and under the same conditions as in Example 1 except that the cross section of the polyester composite fiber was shaped as shown in FIG. As is clear from Table 4, all of the polyester composite fibers of the examples have sufficient latent crimping performance (crimp rate (%)) and thickening effect (U%), and have less fuzz. And had a whiteness preferable for clothing.
[0060]
[Table 4]
[0061]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, the thin latent crimpable polyester composite fiber which has few unevenness | quality unevenness (fuzz) and has favorable whiteness can be provided, and an extremely high quality clothing can be obtained from such a composite fiber. .
[Brief description of the drawings]
FIG. 1 is a schematic view illustrating a cross section of a polyester composite fiber of the present invention.
Claims (6)
(a)繊維の長さ方向に太繊度部と細繊度部を有し、毛羽数が0.1個/106m以下であり、
(b)繊維を筒網地編地として測定したカラーL*値とカラーb*値との差(L*−b*)が80以上である。A polyester composite fiber in which two types of polyesters having different intrinsic viscosities are bonded in a side-by-side type, and simultaneously satisfy the following requirements (a) and (b).
(A) having a thick fine portion and a fine fine portion in the length direction of the fiber, the number of fluff is 0.1 / 10 6 m or less;
(B) The difference (L * -b * ) between the color L * value and the color b * value measured using the fiber as a tubular net knitted fabric is 80 or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002295822A JP2004131860A (en) | 2002-10-09 | 2002-10-09 | Polyester conjugated fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002295822A JP2004131860A (en) | 2002-10-09 | 2002-10-09 | Polyester conjugated fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004131860A true JP2004131860A (en) | 2004-04-30 |
Family
ID=32285963
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002295822A Pending JP2004131860A (en) | 2002-10-09 | 2002-10-09 | Polyester conjugated fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004131860A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006183163A (en) * | 2004-12-27 | 2006-07-13 | Teijin Fibers Ltd | Polyester latently crimpable conjugated fiber |
CN113039315A (en) * | 2018-09-18 | 2021-06-25 | 埃克森美孚化学专利公司 | Bicomponent fibers and nonwovens produced therefrom |
-
2002
- 2002-10-09 JP JP2002295822A patent/JP2004131860A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006183163A (en) * | 2004-12-27 | 2006-07-13 | Teijin Fibers Ltd | Polyester latently crimpable conjugated fiber |
CN113039315A (en) * | 2018-09-18 | 2021-06-25 | 埃克森美孚化学专利公司 | Bicomponent fibers and nonwovens produced therefrom |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2000078839A1 (en) | Polylactic acid resin, textile products obtained therefrom, and processes for producing textile products | |
US20060210797A1 (en) | Modified cross-section polyester fibers | |
TW567257B (en) | Polytrimethyleneterephthalate modified cross section yarn | |
TWI583835B (en) | Core-sheath composite fiber and manufacturing method of the same | |
JP2005273116A (en) | Conjugate fiber and method for producing the same | |
JP2004137319A (en) | Copolyester composition and conjugate fiber obtained from the same | |
JP4884286B2 (en) | Thermal adhesive polyester filament | |
JP2004131860A (en) | Polyester conjugated fiber | |
JP2019049088A (en) | Potential trachychromatic polyester fiber, trachychromatic polyester fiber, method for producing trachychromatic polyester fiber, and woven knitted fabric | |
JP2004218156A (en) | Latently crimpable polyester conjugate fiber | |
KR20050092747A (en) | Polyester fibers having deformed section | |
JP5220393B2 (en) | Polyester composite long fiber | |
JP2004044022A (en) | Polyester conjugate fiber | |
JP3973566B2 (en) | Easy fibrillar polyester fiber | |
JP2002161436A (en) | Cationic dyeable polytrimethylene terephthalate fiber | |
JP2004218139A (en) | Method for producing conjugated false twist textured yarn | |
JP2008013868A (en) | Antistatic polyester fiber and method for producing the same | |
JP5290891B2 (en) | Core sheath-type composite monofilament for screens | |
JP2004256965A (en) | Method for producing composite false-twist yarn | |
JP3973575B2 (en) | Easy fibrillar polyester fiber | |
JP4180750B2 (en) | Split polyester composite fiber | |
JP2005048339A (en) | Method and apparatus for producing polylactic acid filament nonwoven fabric | |
JP2004052131A (en) | Method for producing polyester undrawn fiber | |
JP4950935B2 (en) | Screen filament monofilament | |
JP2006183163A (en) | Polyester latently crimpable conjugated fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Effective date: 20050816 Free format text: JAPANESE INTERMEDIATE CODE: A712 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050825 |
|
A977 | Report on retrieval |
Effective date: 20070621 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20070626 |
|
A521 | Written amendment |
Effective date: 20070802 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A02 | Decision of refusal |
Effective date: 20070911 Free format text: JAPANESE INTERMEDIATE CODE: A02 |