JP2004131702A - Resin composition - Google Patents
Resin composition Download PDFInfo
- Publication number
- JP2004131702A JP2004131702A JP2003204026A JP2003204026A JP2004131702A JP 2004131702 A JP2004131702 A JP 2004131702A JP 2003204026 A JP2003204026 A JP 2003204026A JP 2003204026 A JP2003204026 A JP 2003204026A JP 2004131702 A JP2004131702 A JP 2004131702A
- Authority
- JP
- Japan
- Prior art keywords
- resin composition
- fine particles
- inorganic fine
- resin
- composition according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011342 resin composition Substances 0.000 title claims abstract description 24
- 239000004417 polycarbonate Substances 0.000 claims abstract description 23
- 239000002245 particle Substances 0.000 claims abstract description 21
- 239000004925 Acrylic resin Substances 0.000 claims abstract description 20
- 229920000178 Acrylic resin Polymers 0.000 claims abstract description 20
- 229920000515 polycarbonate Polymers 0.000 claims abstract description 11
- 229910052809 inorganic oxide Inorganic materials 0.000 claims abstract 2
- 239000010419 fine particle Substances 0.000 claims description 35
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 31
- 239000011347 resin Substances 0.000 claims description 25
- 229920005989 resin Polymers 0.000 claims description 25
- 239000000377 silicon dioxide Substances 0.000 claims description 15
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 14
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 14
- 238000002156 mixing Methods 0.000 claims description 11
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 4
- 229920001971 elastomer Polymers 0.000 claims description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 2
- 230000005540 biological transmission Effects 0.000 abstract description 4
- 239000012994 photoredox catalyst Substances 0.000 description 12
- 239000000203 mixture Substances 0.000 description 11
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 9
- 238000000034 method Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 239000008119 colloidal silica Substances 0.000 description 4
- 238000000465 moulding Methods 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 230000000704 physical effect Effects 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 239000000806 elastomer Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000012770 industrial material Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 229920000800 acrylic rubber Polymers 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 238000012662 bulk polymerization Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- BXKDSDJJOVIHMX-UHFFFAOYSA-N edrophonium chloride Chemical compound [Cl-].CC[N+](C)(C)C1=CC=CC(O)=C1 BXKDSDJJOVIHMX-UHFFFAOYSA-N 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 229920002776 polycyclohexyl methacrylate Polymers 0.000 description 1
- 229920000120 polyethyl acrylate Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000010558 suspension polymerization method Methods 0.000 description 1
- 238000002076 thermal analysis method Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000001721 transfer moulding Methods 0.000 description 1
- 239000006097 ultraviolet radiation absorber Substances 0.000 description 1
- 230000004580 weight loss Effects 0.000 description 1
Images
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
この発明は樹脂組成物に関し、無機充填材の配合されたアクリル系あるいはポリカーボネート系の樹脂組成物に関する。
【0002】
【従来の技術】
ポリメチルメタクリレート(以下、「PMMA」と略することがある)等のアクリル樹脂あるいはポリカーボネート(以下、「PC」と略することがある)は透明樹脂として知られ工業材料として広く使用されているが、機械的特性、耐熱性や表面特性の改良をして更に優れた工業材料とするため、PMMAやPCへ各種の助剤を配合してその特性向上が図られている。
例えば特開平8−311238号公報には、アクリル樹脂中に当該アクリル樹脂の屈折率の±0.1の屈性率を有する軟化性無機微粒子を分散させることにより、耐磨耗性、耐衝撃性、耐貫通性に優れ、かつ長期にわたって良好な透明性を有する樹脂組成物が提案されている。具体的には、軟化性無機微粒子として粒子径が500μm以下(実施例では10〜200μmのものが例示)の低融点ガラス(シリカ)が例示されている。
本発明に関連する公報として、特開平6−9790号公報、特開平6−128433号公報、特開平10−338781号公報及び特開2001−253987号公報等を参照されたい。
【0003】
【発明が解決しようとする課題】
上記のような方策でアクリル樹脂あるいはポリカーボネートを複合化しもってその改質が試みられてきたが、昨今の樹脂成形体に要求される厳しい規格・特性を十分に満足するもとはいえなかった。
この発明の一の目的は、アクリル樹脂、特にPMMAあるいはPCの透明性(透光性)を維持しつつ樹脂成形体に要求されるその他の特性を向上させることにある。
この発明の他の目的は、アクリル樹脂、特にPMMAあるいはPCの透明性(透光性)を維持しつつ耐熱性及び表面硬度を向上させることにある。
この発明の別の局面によれば、アクリル樹脂、特にPMMAあるいはPCの透明性(透光性)を維持しつつ耐熱性及び表面硬度を向上させ、更に機械的特性及び成型性(従来の成型装置をそのまま使用できること)を維持することを目的とする。
この発明の更に他の局面によれば、安価でかつ安定して入手可能な材料を用いて上記の特性を満足させる樹脂組成物を実現化することを目的とする。
【0004】
本発明者らは上記目的を達成すべく鋭意検討を重ねてきた結果、特定の透明樹脂と無機微粒子とを組み合わせた場合、耐熱性及び表面硬度を十分に向上させつつ機械的特性や成型性を極度に低下させることなく、樹脂の透明性を維持できることを見出した。
本発明者らが見出した透明樹脂と無機微粒子の組み合わせは次の通りである。即ち、アクリル樹脂あるいはポリカーボネートと平均粒径がサブミクロンオーダの無機微粒子との組み合わせである。
【0005】
一般的に、透明樹脂に無機微粒子を配合するにつれ耐熱性や表面硬度は向上するが、その配合量が所定量を超えると白濁が生じて透明性を維持できなくなる。本発明者らの検討によれば、従来例のように粒径がミクロンオーダのシリカを透明樹脂に配合した場合には無機微粒子の配合量が数重量%程度ですら樹脂の透明性を維持できなくなる。更に無機微粒子の配合量を多くすると、樹脂自体が脆くなって機械的特性の点でも問題が生じる。また、樹脂組成物を加熱しても十分な流動性が得られず成型性の点にも支障が生じていた。
換言すれば、アクリル樹脂あるいはPCへ無機微粒子を配合したとき、樹脂組成物の透光性を維持することと耐熱性及び表面硬度(更には、機械的特性及び成型性)を向上させることとはトレードオフの関係にあった。
【0006】
ところが驚くべきことに、無機微粒子として粒径がサブミクロンオーダのものを用いると、アクリル樹脂あるいはPCに対して50重量%好ましくは30重量%まで配合しても透明性が維持できるとともに、機械的特性及び成型性が維持できた。無機微粒子の配合量の増加とともにその耐熱性及び表面硬度が向上することは勿論である。無機微粒子の粒径が極めて小さいことから、その配合量が多くなっても樹脂組成物の表面に肌荒れ(ザラツキ)は生じない。
【0007】
本発明において、透明樹脂にはアクリル樹脂あるいはポリカーボネートを用いた。アクリル樹脂としては、ポリメチルメタクリレート、ポリメチルアクリレート、ポリエチルアクリレート、ポリシクロヘキシルメタクリレートやこれらの共重合体を挙げることができる。
透明樹脂へ平均粒径がサブミクロンオーダの無機微粒子、好ましくは0.1μm以下の球形酸化物粒子を配合させることにより本発明の透明樹脂組成物が得られる。
【0008】
透明樹脂にはこれらの樹脂と相溶性をもつエラストマー等のゴム成分を配合することが可能である。これにより、耐衝撃性が得られる。
また、透明樹脂には、その他界面活性剤、顔料、シランカップリング剤、酸化防止剤、紫外線吸収剤等を配合することが可能である。
【0009】
無機微粒子はその平均粒径がサブミクロンオーダのものとする。このように極微小の無機微粒子を用いることにより、透明樹脂の透明性を維持しつつ、耐熱性及び/又は表面硬度を大きく向上させることができる。これは、従来の常識を越えてかかる無機微粒子を配合しても樹脂自体の機械的特性が維持され、樹脂組成物として実用に耐えうるものになるからである。また、成型性の点においても十分な流動性が確保でき、既存の成型設備をそのまま使用することができる。
無機微粒子は広く使用されている材料であり、安定かつ安価に入手することができる。よって、本発明の樹脂組成物は安価に提供されるものである。また、既存の設備をそのまま使用できるので、本発明の樹脂組成物を用いて形成される樹脂成形体もまた安価な提供が可能となる。
【0010】
このような無機微粒子として、一般に金属酸化物を使用することができるが、中でも安価に入手できるシリカ、アルミナ、チタニア、ジルコニアの1種を単独で又は2種以上を混合して用いることが好ましい。
これら金属酸化物の粒子形状は実質的に球形とすることが好ましい。球形微粒子を用いることにより、透明樹脂中に無機微粒子を均一に分散させることができ、良好な成形性を保つことが可能となる。
無機微粒子の平均粒径はサブミクロンオーダとする。好ましくは、0.1μm以下であり、その下限は特に限定されないが、原材料として入手できる無機微粒子の粒径に規定される。更に好ましくは、0.08〜0.001μmであり、更に更に好ましくは、0.05〜0.005μmである。
【0011】
無機微粒子の配合量は、0.1〜50重量%とすることが好ましい。0.1重量%未満であると無機微粒子の機能が充分に現れず、また50重量%を超えると樹脂が脆くなり、充分な機械的特性を確保できない。無機微粒子の更に好ましい配合量は1〜30重量%である。更に更に好ましくは5〜25重量%である。
【0012】
この発明の透明樹脂−無機微粒子の組成物は、無機微粒子と透明樹脂とを溶液混合法、機械的混合法等の周知の方法で混合して得ることができる。また、無機微粒子存在下で透明樹脂を重合させてもよい。重合法として溶液重合法、懸濁重合法、塊状重合法等の周知の方法を採用することができる。
このようにして得られた樹脂組成物は射出成型機、押出し成型機、トランスファー成型機、伸展ロール等の汎用的な成型機に通常の条件で適用することができる。そして、当該樹脂組成物を原料にしてこれらの成型機を用いて任意の形状の成型体、シート、フィルム等の樹脂成型体を形成することができる。
【0013】
【実施例】
以下、この発明に関するアクリル樹脂およびポリカーボネートに関する実施例について説明する。
【0014】
(A)アクリル樹脂組成物
(1)PMMA−シリカ及び変性PMMA−シリカ組成物の調製
メチルエチルケトン(MEK)にPMMA(住友化学工業(株))を溶解させたPMMA溶液(PMMA含量:15重量%)に、コロイダルシリカ(商品名:MEK−ST(日産化学工業(株)、粒子径:10〜15nm、SiO2含有率:30.5wt%))又はコロイダルシリカ(商品名:MA−ST−M(日産化学工業(株)、粒子径:20〜30nm、SiO2含有率:40.6wt%)を、PMMAに対してシリカ含量がそれぞれ1、3、5、10、15、20、25、30、35、40、45、50重量%になるよう所定量加え、攪拌混合して均一溶液とし、PMMA−シリカ組成物を調整した(HB1およびHB−2)。
また、アクリル系ゴムエラストマーを12重量%含む変性PMMAをMEKに溶解させた変性PMMA溶液(変性PMMA含量:15重量%)に、コロイダルシリカ(MEK−ST)を、変性PMMAに対してシリカ含量が1、3、5、10、15、20、25、30、35、40、45、50wt%になるよう所定量加え、攪拌混合して均一溶液とし、変性PMMA−シリカ組成物を調整した(HB3)。
【0015】
(2)PMMA−シリカ及び変性PMMA−シリカ組成物フィルムの作製
HB1、HB2及びHB3の均一溶液をそれぞれ水平台に置かれた直径90〜95mmのシャーレに約5ml流延し、半日の間、室温で放置して溶媒を揮発させた後、80℃で2日間減圧乾燥させて、それぞれHB1、HB2及びHB3のシリカ含有量の異なる各フィルムを得た。フィルム膜厚は100ミクロンとなるよう調整した。
【0016】
(3)物性測定
(3―1)可視光透過率
日立製作所製、HITACHI200−10型 日立ダブルビーム分光光度計を用いて、可視領域の波長範囲(380nm〜750nm)で測定を行った。
【0017】
(3−2)熱的物性
ガラス転移温度(Tg)は、示差走査熱量測定装置(Mettler社製、TA3000 Thermal Analysis System)を用いて、昇温速度10℃/min、窒素気流下で測定した。
熱分解温度(Td)は、差動形示差熱天秤(理学電気(株)製、TAS−300)を用いて、50ml/minのN2気流下、10℃/minの昇温速度で測定した。
【0018】
(3−3)機械的物性
東洋測器(株)製TENSILON万能型引張試験機(UTM−4型SS−105D−UTM)を用い、引張速度5mm/min、温度20℃にて測定した。破断時の引張強度(Tensile strength at break)、伸び(Elongation at break)、引張弾性率(ヤング率)(Young’s modulus)の各物性値は、各試料につき5個のサンプルを測定して得られた値の平均値である。
【0019】
(3−4)表面硬度
井本製作所製 鉛筆硬度試験機を用いてフィルム表面の鉛筆硬度をJISK−5600に準じて測定した。
【0020】
得られた結果をフィルムの形成性とともに表1および表2にまとめた。
表1において、a)「Condition」はフィルムの状態を示し、フィルムの膜厚は0.07〜0.12mmである。表において「◎」は良好なフィルム状態、「○」は少々脆い状態、「△」は脆い状態を示す。b)「Transpareney」はフィルムの透明性を示し無機微粒子を含まないPMMAフィルムをコントロールとしてそれとの比較を表している。「◎」はコントロールと同程度の透明性、「○」はコントロールよりやや劣る透明性、「△」はコントロールに比べて劣る透明性を示す。C)「Scratch Hardness」は鉛筆硬度をあらわす。
【0021】
(B)ポリカーボネート組成物
次に、この発明のポリカーボネートに関する実施例について説明する。
【0022】
クロルベンゼンにPC(出光石油化学製 ストレートタイプ#2200)を溶解させたPC溶液(PC含量:10重量%)に、コロイダルシリカ(商品名:XBA−ST(日産化学工業(株)、粒子径:10〜20nm、SiO2含有率:30.5重量%)を所定のシリカ含量となるよう加え、既述のPMMAに関する実施例と同様の方法でPC−シリカ組成物を調製し、得られた均一溶液よりフィルムを作製した。
得られたPC組成物の物性をPCと比較し、表3にまとめた。
【表1】
【表2】
【表3】
【0023】
表1〜3の結果から、本発明におけるアクリル樹脂およびポリカーボネート組成物は、透明性を維持しつつ耐熱性及び表面硬度が向上され、更に機械的特性も維持されることが確認できた。
【0024】
この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。
【図面の簡単な説明】
【図1】HB3の可視光透過率を示す図である。
【図2】HB2のTG曲線より得られたTdと5%重量減少温度(Td5)をシリカ粒子の配合量に対してプロットしたものを示す図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a resin composition, and more particularly to an acrylic or polycarbonate resin composition containing an inorganic filler.
[0002]
[Prior art]
Acrylic resin such as polymethyl methacrylate (hereinafter sometimes abbreviated as “PMMA”) or polycarbonate (hereinafter sometimes abbreviated as “PC”) is known as a transparent resin and widely used as an industrial material. In order to improve mechanical properties, heat resistance and surface properties to obtain more excellent industrial materials, PMMA and PC are blended with various auxiliaries to improve the properties.
For example, Japanese Unexamined Patent Publication No. Hei 8-31238 discloses that a softening inorganic fine particle having a refractive index of ± 0.1 of a refractive index of the acrylic resin is dispersed in the acrylic resin to thereby provide abrasion resistance and impact resistance. There has been proposed a resin composition having excellent penetration resistance and good transparency over a long period of time. Specifically, low melting point glass (silica) having a particle diameter of 500 μm or less (in the examples, those having a particle diameter of 10 to 200 μm) is exemplified as the softening inorganic fine particles.
As publications related to the present invention, refer to JP-A-6-9790, JP-A-6-128433, JP-A-10-338781, JP-A-2001-253987, and the like.
[0003]
[Problems to be solved by the invention]
Attempts have been made to modify acrylic resins or polycarbonates by combining them with the above-described measures, but they have not been able to fully satisfy the strict specifications and characteristics required of recent resin molded articles.
An object of the present invention is to improve other properties required for a resin molded body while maintaining the transparency (light transmission) of an acrylic resin, particularly PMMA or PC.
Another object of the present invention is to improve the heat resistance and the surface hardness while maintaining the transparency (light transmission) of an acrylic resin, particularly PMMA or PC.
According to another aspect of the present invention, heat resistance and surface hardness are improved while maintaining transparency (light transmission) of an acrylic resin, particularly PMMA or PC, and mechanical properties and moldability (conventional molding apparatus) Can be used as it is).
According to still another aspect of the present invention, it is an object to realize a resin composition that satisfies the above characteristics by using a material that is inexpensively and stably available.
[0004]
The present inventors have conducted intensive studies to achieve the above object, and as a result, when a specific transparent resin and inorganic fine particles are combined, mechanical properties and moldability while sufficiently improving heat resistance and surface hardness are improved. It has been found that the transparency of the resin can be maintained without extremely lowering it.
The combinations of the transparent resin and the inorganic fine particles found by the present inventors are as follows. That is, a combination of an acrylic resin or polycarbonate and inorganic fine particles having an average particle size on the order of submicrons.
[0005]
Generally, the heat resistance and the surface hardness are improved as the inorganic fine particles are added to the transparent resin. However, if the amount exceeds a predetermined amount, cloudiness occurs and the transparency cannot be maintained. According to the study of the present inventors, when silica having a particle size of micron order is blended with a transparent resin as in the conventional example, the transparency of the resin can be maintained even when the blending amount of the inorganic fine particles is about several percent by weight. Disappears. Further, when the blending amount of the inorganic fine particles is increased, the resin itself becomes brittle, which causes a problem in mechanical characteristics. In addition, even if the resin composition was heated, sufficient fluidity could not be obtained, and there was a problem in moldability.
In other words, when inorganic fine particles are blended into an acrylic resin or PC, maintaining the translucency of the resin composition and improving heat resistance and surface hardness (further, mechanical properties and moldability) mean that There was a trade-off relationship.
[0006]
However, surprisingly, when inorganic fine particles having a particle size on the order of submicron are used, transparency can be maintained even when compounded up to 50% by weight, preferably 30% by weight with respect to acrylic resin or PC, and mechanical properties can be maintained. Characteristics and moldability were maintained. It goes without saying that the heat resistance and the surface hardness are improved as the amount of the inorganic fine particles is increased. Since the particle diameter of the inorganic fine particles is extremely small, even if the amount of the inorganic fine particles is large, the surface of the resin composition is not roughened.
[0007]
In the present invention, acrylic resin or polycarbonate was used as the transparent resin. Examples of the acrylic resin include polymethyl methacrylate, polymethyl acrylate, polyethyl acrylate, polycyclohexyl methacrylate, and copolymers thereof.
The transparent resin composition of the present invention can be obtained by blending inorganic fine particles having an average particle size on the order of submicrons, preferably spherical oxide particles having a particle size of 0.1 μm or less, with the transparent resin.
[0008]
It is possible to blend a rubber component such as an elastomer compatible with these resins into the transparent resin. Thereby, impact resistance is obtained.
Further, it is possible to blend a surfactant, a pigment, a silane coupling agent, an antioxidant, an ultraviolet absorber and the like into the transparent resin.
[0009]
The average particle diameter of the inorganic fine particles is of the order of submicron. By using such ultrafine inorganic fine particles, the heat resistance and / or surface hardness can be greatly improved while maintaining the transparency of the transparent resin. This is because the mechanical properties of the resin itself are maintained even if such inorganic fine particles are blended beyond conventional common sense, and the resin composition can be put to practical use. Also, sufficient fluidity can be ensured in terms of moldability, and existing molding equipment can be used as it is.
Inorganic fine particles are widely used materials and can be obtained stably and at low cost. Therefore, the resin composition of the present invention is provided at low cost. Further, since existing equipment can be used as it is, a resin molded article formed using the resin composition of the present invention can also be provided at low cost.
[0010]
As such inorganic fine particles, metal oxides can be generally used, and among them, it is preferable to use one of silica, alumina, titania, and zirconia which are available at a low cost alone or in combination of two or more.
It is preferable that the particle shape of these metal oxides is substantially spherical. By using spherical fine particles, inorganic fine particles can be uniformly dispersed in a transparent resin, and good moldability can be maintained.
The average particle size of the inorganic fine particles is on the order of submicrons. It is preferably 0.1 μm or less, and the lower limit is not particularly limited, but is defined by the particle size of the inorganic fine particles available as a raw material. More preferably, it is 0.08 to 0.001 μm, and still more preferably, it is 0.05 to 0.005 μm.
[0011]
The amount of the inorganic fine particles is preferably 0.1 to 50% by weight. When the amount is less than 0.1% by weight, the function of the inorganic fine particles does not sufficiently appear, and when the amount exceeds 50% by weight, the resin becomes brittle and sufficient mechanical properties cannot be secured. A more preferable blending amount of the inorganic fine particles is 1 to 30% by weight. Still more preferably, it is 5 to 25% by weight.
[0012]
The transparent resin-inorganic fine particle composition of the present invention can be obtained by mixing the inorganic fine particles and the transparent resin by a known method such as a solution mixing method or a mechanical mixing method. Further, the transparent resin may be polymerized in the presence of the inorganic fine particles. Well-known methods such as a solution polymerization method, a suspension polymerization method and a bulk polymerization method can be employed as the polymerization method.
The resin composition thus obtained can be applied to general-purpose molding machines such as an injection molding machine, an extrusion molding machine, a transfer molding machine, and an extension roll under ordinary conditions. Using the resin composition as a raw material, a resin molded article such as a molded article, a sheet, or a film having an arbitrary shape can be formed by using these molding machines.
[0013]
【Example】
Examples of the acrylic resin and polycarbonate according to the present invention will be described below.
[0014]
(A) Acrylic resin composition (1) Preparation of PMMA-silica and modified PMMA-silica compositions PMMA solution in which PMMA (Sumitomo Chemical Co., Ltd.) is dissolved in methyl ethyl ketone (MEK) (PMMA content: 15% by weight) Colloidal silica (trade name: MEK-ST (Nissan Chemical Industries, Ltd., particle diameter: 10 to 15 nm, SiO 2 content: 30.5 wt%)) or colloidal silica (trade name: MA-ST-M ( (Nissan Chemical Industry Co., Ltd., particle diameter: 20 to 30 nm, SiO 2 content: 40.6 wt%), and PMMA having a silica content of 1, 3, 5, 10, 15, 20, 25, 30, 30, respectively. Predetermined amounts were added so as to be 35, 40, 45, and 50% by weight, followed by stirring and mixing to obtain a uniform solution, and a PMMA-silica composition was prepared (HB1 and HB-2).
In addition, a modified PMMA solution (modified PMMA content: 15% by weight) in which modified PMMA containing an acrylic rubber elastomer containing 12% by weight was dissolved in MEK, colloidal silica (MEK-ST) and silica content with respect to the modified PMMA were used. 1, 3, 5, 10, 15, 20, 25, 30, 35, 40, 45, and 50 wt% were added in predetermined amounts and mixed by stirring to obtain a uniform solution, and a modified PMMA-silica composition was prepared (HB3 ).
[0015]
(2) Preparation of PMMA-silica and modified PMMA-silica composition films About 5 ml of a uniform solution of HB1, HB2 and HB3 was cast on a 90-95 mm diameter petri dish placed on a horizontal table, and room temperature was maintained for half a day. , And dried under reduced pressure at 80 ° C for 2 days to obtain films having different silica contents of HB1, HB2 and HB3. The film thickness was adjusted to be 100 microns.
[0016]
(3) Measurement of physical properties (3-1) Visible light transmittance The measurement was performed in the visible wavelength range (380 nm to 750 nm) using a Hitachi Double Beam Spectrophotometer HITACHI 200-10 manufactured by Hitachi, Ltd.
[0017]
(3-2) Thermal properties Glass transition temperature (T g), differential scanning calorimeter (Mettler Co., TA3000 Thermal Analysis System) using a
The thermal decomposition temperature ( Td ) was measured using a differential type differential thermobalance (manufactured by Rigaku Denki Co., Ltd., TAS-300) at a heating rate of 10 ° C./min under an N 2 gas flow of 50 ml / min. did.
[0018]
(3-3) Mechanical properties Measured at a tensile speed of 5 mm / min and a temperature of 20 ° C. using a TENSILON universal tensile tester (UTM-4 type SS-105D-UTM) manufactured by Toyo Sokki Co., Ltd. The physical properties of Tensile strength at break, Elongation at break, and Tensile modulus (Young's modulus) (Young's modulus) were obtained by measuring five samples for each sample. It is the average of the given values.
[0019]
(3-4) Surface Hardness The pencil hardness of the film surface was measured using a pencil hardness tester manufactured by Imoto Seisakusho in accordance with JIS K-5600.
[0020]
The obtained results are summarized in Tables 1 and 2 together with the film formability.
In Table 1, a) "Condition" indicates the state of the film, and the thickness of the film is 0.07 to 0.12 mm. In the table, “◎” indicates a good film state, “○” indicates a slightly brittle state, and “△” indicates a brittle state. b) "Transparney" indicates the transparency of the film and shows a comparison with a PMMA film containing no inorganic fine particles as a control. “◎” indicates the same level of transparency as the control, “○” indicates slightly lower transparency than the control, and “△” indicates lower transparency than the control. C) "Scratch Hardness" represents pencil hardness.
[0021]
(B) Polycarbonate composition Next, examples relating to the polycarbonate of the present invention will be described.
[0022]
Colloidal silica (trade name: XBA-ST (Nissan Chemical Industry Co., Ltd., particle diameter: 10) was dissolved in a PC solution (PC content: 10% by weight) in which PC (straight type # 2200 manufactured by Idemitsu Petrochemical) was dissolved in chlorobenzene. to 20 nm, SiO 2 content: 30.5 wt%) was added to a a predetermined silica content, in the same manner as in example relates aforementioned PMMA PC- silica composition was prepared, resulting homogeneous solution A film was prepared from the film.
The physical properties of the obtained PC composition were compared with those of PC and are summarized in Table 3.
[Table 1]
[Table 2]
[Table 3]
[0023]
From the results of Tables 1 to 3, it was confirmed that the acrylic resin and the polycarbonate composition in the present invention had improved heat resistance and surface hardness while maintaining transparency, and also maintained mechanical properties.
[0024]
The present invention is not limited to the description of the embodiment and the example of the above invention. Various modifications are included in the present invention without departing from the scope of the claims and within the scope of those skilled in the art.
[Brief description of the drawings]
FIG. 1 is a view showing the visible light transmittance of HB3.
FIG. 2 is a diagram showing a plot of T d and 5% weight loss temperature (T d5 ) obtained from a TG curve of HB2 with respect to a blending amount of silica particles.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2003204026A JP2004131702A (en) | 2002-08-09 | 2003-07-30 | Resin composition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002232258 | 2002-08-09 | ||
JP2003204026A JP2004131702A (en) | 2002-08-09 | 2003-07-30 | Resin composition |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004131702A true JP2004131702A (en) | 2004-04-30 |
Family
ID=32300937
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003204026A Pending JP2004131702A (en) | 2002-08-09 | 2003-07-30 | Resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004131702A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010077270A (en) * | 2008-09-25 | 2010-04-08 | Panasonic Electric Works Co Ltd | Thermoplastic resin composition |
JP2010077269A (en) * | 2008-09-25 | 2010-04-08 | Panasonic Electric Works Co Ltd | Thermoplastic resin extruded molding |
JP2010077272A (en) * | 2008-09-25 | 2010-04-08 | Panasonic Electric Works Co Ltd | Thermoplastic resin injection molded body |
JP2010222543A (en) * | 2009-03-25 | 2010-10-07 | Panasonic Electric Works Co Ltd | Thermoplastic resin film and thermoplastic resin molding |
US7868117B2 (en) | 2006-10-31 | 2011-01-11 | Nidek Co., Ltd. | Resin composition and production method thereof |
JP2020075458A (en) * | 2018-11-09 | 2020-05-21 | 旭化成株式会社 | Molded article |
US10723861B2 (en) | 2016-05-20 | 2020-07-28 | Sumitomo Chemical Company, Limited | Injection molded body |
-
2003
- 2003-07-30 JP JP2003204026A patent/JP2004131702A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7868117B2 (en) | 2006-10-31 | 2011-01-11 | Nidek Co., Ltd. | Resin composition and production method thereof |
JP2010077270A (en) * | 2008-09-25 | 2010-04-08 | Panasonic Electric Works Co Ltd | Thermoplastic resin composition |
JP2010077269A (en) * | 2008-09-25 | 2010-04-08 | Panasonic Electric Works Co Ltd | Thermoplastic resin extruded molding |
JP2010077272A (en) * | 2008-09-25 | 2010-04-08 | Panasonic Electric Works Co Ltd | Thermoplastic resin injection molded body |
JP2010222543A (en) * | 2009-03-25 | 2010-10-07 | Panasonic Electric Works Co Ltd | Thermoplastic resin film and thermoplastic resin molding |
US10723861B2 (en) | 2016-05-20 | 2020-07-28 | Sumitomo Chemical Company, Limited | Injection molded body |
JP2020075458A (en) * | 2018-11-09 | 2020-05-21 | 旭化成株式会社 | Molded article |
JP7100565B2 (en) | 2018-11-09 | 2022-07-13 | 旭化成株式会社 | Mold |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102250458B (en) | Poly carbonate resin composition and moulded product thereof | |
CN101896539B (en) | Method of preparing a transparent polymer material comprising a thermoplastic polycarbonate and mineral nanoparticles | |
TW200831606A (en) | Polycarbonate resin composition and plastic article | |
WO2011052737A1 (en) | Polycarbonate resin composition, polycarbonate resin molded article, and manufacturing method therefor | |
JP5305645B2 (en) | Polycarbonate resin composition, polycarbonate resin molded article and method for producing the same | |
FR2940306A1 (en) | ARMORED POLYESTER RESIN COMPOSITION OF GLASS FIBERS, AND MOLD PRODUCT USING THE SAME | |
JPH11343349A (en) | Resinous window and its production | |
JP6528190B2 (en) | Transparent ABS resin composition | |
JP2009102588A (en) | Polycarbonate resin composition, polycarbonate resin molded article and method for producing the same | |
JPH0790167A (en) | Light-diffusing resin composition | |
Chandra et al. | Fracture behavior and optical properties of melt compounded semi-transparent polycarbonate (PC)/alumina nanocomposites | |
TW201925343A (en) | Liquid crystalline resin composition for sliding wear resistant member and sliding wear resistant member using same | |
JP2004131702A (en) | Resin composition | |
CN101759988B (en) | Thermoplastic resin composition and molded product made using the same | |
CN1626573A (en) | Thermoplastic molding composition having high clarity | |
US20080125530A1 (en) | Use of a synthetic wax oxidate as processing aid for transparent polar polymers | |
KR20170080173A (en) | Polycarbonate-based resin composition and molded article using the same | |
JP3391557B2 (en) | Liquid crystal polyester resin composition and lamp reflector | |
WO2004015007A1 (en) | Resin composition | |
JP3598578B2 (en) | Liquid crystal polyester resin composition and molding method using the same | |
CN111117201B (en) | High-hardness PC (polycarbonate) photodiffusion material and preparation method thereof | |
JPH06228424A (en) | Reinforced aromatic polycarbonate resin composition | |
JP5167595B2 (en) | Transparent plastic member and composite plastic member containing zirconia fine particles | |
JP4474938B2 (en) | Inorganic compound resin dispersion, molded pellets and molded products | |
KR20050049205A (en) | Thermotropic liquid crystalline polymer resin composition and molding product thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060622 |
|
A977 | Report on retrieval |
Effective date: 20081210 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20081216 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A521 | Written amendment |
Effective date: 20090210 Free format text: JAPANESE INTERMEDIATE CODE: A523 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090317 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20090804 |