JP2004130233A - Treatment method for high-concentration solution with reverse osmosis membrane - Google Patents
Treatment method for high-concentration solution with reverse osmosis membrane Download PDFInfo
- Publication number
- JP2004130233A JP2004130233A JP2002297819A JP2002297819A JP2004130233A JP 2004130233 A JP2004130233 A JP 2004130233A JP 2002297819 A JP2002297819 A JP 2002297819A JP 2002297819 A JP2002297819 A JP 2002297819A JP 2004130233 A JP2004130233 A JP 2004130233A
- Authority
- JP
- Japan
- Prior art keywords
- reverse osmosis
- osmosis membrane
- membrane module
- stage
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001223 reverse osmosis Methods 0.000 title claims abstract description 148
- 239000012528 membrane Substances 0.000 title claims abstract description 141
- 238000000034 method Methods 0.000 title claims abstract description 35
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 117
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 claims description 15
- 239000000460 chlorine Substances 0.000 claims description 15
- 229910052801 chlorine Inorganic materials 0.000 claims description 15
- 239000013535 sea water Substances 0.000 claims description 14
- 239000012510 hollow fiber Substances 0.000 claims description 7
- 229920002647 polyamide Polymers 0.000 claims description 7
- 239000004952 Polyamide Substances 0.000 claims description 5
- 239000000463 material Substances 0.000 claims description 5
- 229920000642 polymer Polymers 0.000 claims description 5
- 229920002301 cellulose acetate Polymers 0.000 claims description 4
- 239000012466 permeate Substances 0.000 claims description 3
- 230000001954 sterilising effect Effects 0.000 claims description 2
- 238000004659 sterilization and disinfection Methods 0.000 claims description 2
- 239000000203 mixture Substances 0.000 abstract description 4
- 239000008400 supply water Substances 0.000 description 11
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 8
- 229910052796 boron Inorganic materials 0.000 description 8
- 239000000243 solution Substances 0.000 description 8
- 238000010612 desalination reaction Methods 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 238000011084 recovery Methods 0.000 description 4
- 229920002284 Cellulose triacetate Polymers 0.000 description 3
- DWAQJAXMDSEUJJ-UHFFFAOYSA-M Sodium bisulfite Chemical compound [Na+].OS([O-])=O DWAQJAXMDSEUJJ-UHFFFAOYSA-M 0.000 description 3
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 3
- 239000003513 alkali Substances 0.000 description 3
- 239000003638 chemical reducing agent Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 235000010267 sodium hydrogen sulphite Nutrition 0.000 description 3
- 239000000645 desinfectant Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000003672 processing method Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 239000003651 drinking water Substances 0.000 description 1
- 235000020188 drinking water Nutrition 0.000 description 1
- 238000000909 electrodialysis Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 239000010841 municipal wastewater Substances 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- AKHNMLFCWUSKQB-UHFFFAOYSA-L sodium thiosulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=S AKHNMLFCWUSKQB-UHFFFAOYSA-L 0.000 description 1
- 235000019345 sodium thiosulphate Nutrition 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 238000004065 wastewater treatment Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、高濃度溶液の逆浸透処理に関する発明であり、特に海水の淡水化などを目的とする分離方法に関するものである。
【0002】
【従来の技術】
逆浸透法は、海水及びかん水の淡水化、半導体工業及び医薬品工業用の純水、超純水の製造、都市排水処理等の幅広い分野で利用されている。蒸発法、電気透析法と比較して省エネルギーの点で有利であり、広く普及が進んでいる。特に、中空糸膜逆浸透膜は、単位容積当たりの膜面積を大きくできるため、膜分離操作に適した形状であり、例えば、逆浸透膜による海水淡水化分野では広く用いられている。
【0003】
逆浸透法で処理された水は飲料水にも使用されているが、安全意識の高まりとともに、水質基準の遵守が求められている。そのため、逆浸透膜の透過水を一旦集めて、再度逆浸透膜で処理する2段法が検討されている。
【0004】
従来、1段目の逆浸透膜処理された透過水の全量が2段目の逆浸透膜で処理され、2段目の逆浸透膜の濃縮水を1段目の供給水に戻す処理方法が開示されている。しかしながら、この方法では、1段目の全量が2段目で処理されるので、消費エネルギーが大きくなること、また、原水の水質によっては透過水質が必要過度となる場合があり、好ましくない。
【0005】
一方、海水淡水化でのホウ素除去を目的として、1段目の逆浸透膜の濃縮側の透過水のみを2段目の逆浸透膜モジュールへ供給する2段法が開示されている。しかしながら、1段目の逆浸透膜モジュールからの透過水で供給側透過水と濃縮側透過水の取り出し部は区分されているものの、逆浸透膜モジュール内部での区分が明確ではなく、供給側透過水と濃縮側透過水の濃度は制御ができず、2段目への供給水を制御するのが困難であるという問題がある。また、濃縮側透過水の全量が2段目で処理されるため、2段目の透過水が必要過度の水質となったり、逆に水質が不足したりすることに対し、対応できないという問題がある。
【0006】
【特許文献1】
米国特許第4,574049号明細書(第3欄34行−第4欄4行、図1)
【0007】
【非特許文献1】
ニューメンブレンテクノロジーシンポジウム2002予稿集(第6−1−1頁−第6−1−10頁)
【0008】
【発明が解決しようとする課題】
単純に1段目逆浸透膜の透過水を一旦集めて、2段目逆浸透膜に供給すると、必要以上に2段目逆浸透膜の規模が大きくなるという問題がある。また、1段目の透過水の一部を2段目へ供給する場合、2段目への供給水の水質が制御できないという問題がある。本発明は、このような点に鑑みてなされたもので、逆浸透膜で処理した透過水を部分的に再度逆浸透膜で処理する膜処理方法において、後段の逆浸透膜部分の規模を低減し、効率的な処理が可能な処理方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明者らは、上記課題を克服すべく鋭意検討を重ねた結果、本発明に到達した。すなわち、本願発明は下記の構成を有するものである。
(1)高濃度原水を2段の逆浸透膜モジュールで処理し、高濃度の濃縮水と低濃度の透過水とに分離する処理方法であって、1段目の逆浸透膜モジュールで分離された低濃度の透過水が2段目の逆浸透膜モジュールに供給されるように配設され、1段目の逆浸透膜モジュールの透過水の10%から100%を2段目の逆浸透膜モジュールで処理することを特徴とする高濃度溶液の処理方法。
(2)1段目の逆浸透膜モジュールにおいて逆浸透膜モジュールが2連に配置され、1連目逆浸透膜モジュールに高濃度原水が供給され、2連目逆浸透膜モジュールに1連目モジュールの濃縮水が供給される構成をもつ(1)記載の高濃度溶液の処理方法。
(3)1段目の逆浸透膜モジュールの2連目の逆浸透膜モジュールの透過水と1連目の逆浸透膜モジュールの透過水を100:0から40:60の割合で混合して、2段目の逆浸透膜モジュールで逆浸透処理することを特徴する(1)、(2)いずれか記載の高濃度溶液の処理方法。
(4)中空糸型逆浸透膜が酢酸セルロース系高分子からなることを特徴とする(1)〜(3)いずれか記載の高濃度溶液の処理方法。
(5)2段目の逆浸透膜モジュールがポリアミド系素材の逆浸透膜からなることを特徴とする(1)〜(4)いずれか記載の高濃度溶液の処理方法。
(6)高濃度原水が海水であることを特徴とする(1)〜(5)いずれか記載の高濃度溶液の処理方法。
(7)高濃度原水に殺菌処理として間欠的に塩素を注入することを特徴とする(1)〜(6)いずれか記載の高濃度溶液の処理方法。
【0010】
本発明における高濃度原水とは、逆浸透処理が可能な溶質の溶解液体であり、濃度はその浸透圧から逆浸透処理が可能な範囲にあるものである。例えば、海水などがあげられ、回収率によっても異なるが、逆浸透膜では、5.4MPaから9MPaで淡水化処理が可能である。
【0011】
本発明における逆浸透膜とは、数十ダルトンの分子量の分離特性を有する領域の分離膜であり、具体的には、0.5MPa以上の操作圧力で、食塩を90%以上、除去可能であるものである。海水淡水化に使用される中空糸型逆浸透膜は、操作圧力が大きく、また、食塩の除去率は99%以上が一般的である。
【0012】
本発明における2段の逆浸透処理とは、原水を一度、逆浸透処理した透過水を再度、逆浸透処理する処理方法であり、1段目逆浸透膜モジュールと2段目逆浸透膜モジュールの間には昇圧操作が必要となる。本発明の場合は、部分的な2段処理のため、2段目の処理がなされない1段目の透過水は、2段目の処理水と合流して生産水として取り出される。なお、1段目の逆浸透膜モジュールと2段目の逆浸透膜モジュールは同一の特性でも異なる特性でもかまわない。2段目の逆浸透膜モジュールの除去率が1段目の逆浸透膜モジュールの除去率より高いほうが好ましい。また、2段目での除去性能を向上させるためや、2段目の膜特性を考慮して、1段目と2段目の間で添加剤を注入してもかまわない。例えば、海水淡水化の場合は、ホウ素の除去率は一般的には塩の除去率に比べて高くないが、アルカリを添加してpHを9以上にあげると、ホウ素の除去率は大幅に増加するため、アルカリを添加する場合がある。また、1段目の逆浸透膜モジュールが耐塩素性を有し、供給水、透過水に残留塩素が存在する場合、還元剤を注入する場合がある。アルカリの例としては、水酸化ナトリウム、水酸化カルシウムなどがあげられ、水酸化ナトリウムが最も好ましい。また、還元剤の例としては、亜硫酸水素ナトリウム、亜硫酸水素ナトリウム、チオ硫酸ナトリウムなどがあげられ、亜硫酸水素ナトリウムが最も好ましい。
【0013】
本発明において、逆浸透膜モジュールが2連に配置されるとは、原水を一度、逆浸透処理した濃縮水を再度、逆浸透処理する処理方法であり、1連目の逆浸透膜モジュールと2連目の逆浸透膜モジュールの間には昇圧操作は不要である。
【0014】
本発明において、2段目の逆浸透膜モジュールで処理される1段目の透過水の一部は、1段目だけでは透過水の水質が不十分である2連目逆浸透膜モジュールの透過水が主となる。しかしながら、2段法全体の透過水の水質から判断して、余裕がある場合は、2連目逆浸透膜モジュールの透過水の一部で良いが、逆に、不十分であれば、2連目逆浸透膜モジュールの透過水全量に、1連目逆浸透膜モジュールの透過水の一部を加えた混合液となる。2連目逆浸透膜モジュールの透過水の一部で良い場合は、その割合は20%〜100%が好ましく、より好ましくは50%〜100%である。さらに好ましくは70%〜100%である。この範囲内にあれば、2段法の効果が顕著となり好ましい。一方、1連目逆浸透膜モジュールの透過水の一部を加えた混合液の場合は、その混合割合は1%〜50%が好ましく、より好ましくは1%〜30%である。さらに、1〜30%であれば、2段目の処理の負荷を低く抑えることができ2段法のシステムが有効に作用する点で好ましい。
また、1段目の逆浸透膜モジュール内の供給水流量が大きくなり、膜表面の更新が促進されるような、2本の逆浸透膜モジュールが2連に直列に配置されている場合は、高回収率運転時等にはより好ましい。さらに、2段目の逆浸透膜モジュールに供給され、逆浸透処理される1段目の逆浸透膜モジュールの透過水は、1段目の逆浸透膜モジュールのなかでも透過水の濃度が高い2連目の逆浸透膜モジュールの透過水を主とするのが好ましい。1連目の逆浸透膜モジュールの透過水量が2連目の逆浸透膜モジュールの透過水量より多いことを考慮して、1連目の逆浸透膜モジュールの透過水と2連目の逆浸透膜モジュールの透過水の割合は、0:100から60:40の割合が好ましい。
【0015】
本発明における酢酸セルロース系高分子とは、酢酸セルロース、三酢酸セルロース、両者の混合物が例としてあげられる。性能面、性能の安定性等から三酢酸セルロースが好ましい。また、これらの素材は耐塩素性に優れるため、供給水に殺菌剤として塩素を添加が可能である。間欠的に注入するほうが、消毒物副生製物の発生量や薬品使用量が小さくなり好ましい。
【0016】
本発明におけるポリアミド系素材とは、線状ポリアミド高分子、架橋ポリアミド高分子等が例としてあげられ、除去性能が優れているものであれば、いずれでもかまわない。また、耐塩素性を有するものとそうでないものがあるが、運転管理上、耐塩素性を有しているものが好ましい。
【0017】
本発明における耐塩素性を有するとは、水道水程度の残留塩素の存在下での1年程度の連続使用が可能であることを意味する。耐塩素性を有するポリアミド系逆浸透膜の例としては、東洋紡績(株)製のHS(R)シリーズなどがあげられる。この2段目の逆浸透膜モジュールが耐塩素性を有すると、1段目の逆浸透膜モジュールへの供給水に塩素を用いて、透過水中に残留しても、そのまま、2段目逆浸透膜モジュールの処理が可能となるため、操作性、還元剤の薬品使用量の点から好ましい。
【0018】
【発明の実施の形態】
本発明の実施の形態1を図1に基づいて説明する。図1は、一例として1段目の逆浸透膜として、2つの中空糸型逆浸透膜モジュールを2連に配置し、2連目の逆浸透膜モジュールの透過水のみを2段目の逆浸透膜モジュールへ供給して分離操作を行う場合を示している。高圧ポンプ4により昇圧された供給水6は1段目1連目の逆浸透膜モジュールに供給され、濃縮水8は2連目の逆浸透膜モジュール2に供給される。2連目の逆浸透膜モジュール2の濃縮水10は排出され、透過水9は昇圧ポンプ5によりで昇圧され、2段目の逆浸透膜モジュール3へ供給され濃縮水12は排出され、透過水11は1連目の透過水7と合流し生産水13として得られる。
【0019】
図2は図1と類似しており、1段目の1連目逆浸透膜モジュール1の透過水7と1段目2連目逆浸透膜モジュール2の透過水9とが連通しており、流量調整バルブ14,15、16で1連目、2連目の各逆浸透膜モジュールの透過水の割合を制御可能で2段目逆浸透膜モジュール2への供給水の流量、水質を変更可能である。例えば、流量調整バルブ14、15を開け、流量調整バルブ16を絞れば、1連目逆浸透膜モジュール1の透過水7の混合割合が増加し、逆に、流量調整バルブ14、16を開け、流量調整バルブ15を絞れば、2連目逆浸透膜モジュール2透過水の流量を減少させることが可能である。
【0020】
【実施例】
以下に、実施例を挙げて本発明を説明するが、本発明はこれらの実施例により何ら制限されるものではない。なお、実施例は、海水淡水化用の逆浸透膜の場合を示す。
【0021】
(実施例1)
1段目の逆浸透膜モジュールとして三酢酸セルロース製の中空糸型逆浸透膜エレメントが圧力容器内に2本装着された中空糸型逆浸透膜モジュールを用い、2段目の逆浸透膜モジュールとして耐塩素性ポリアミド製の中空糸型逆浸透膜モジュールを用い、図1に示すような、1段目が2連の2段のモジュール配置で海水を処理した。但し、2段目への供給水へNaOHを添加し、pHを9に設定した。運転条件は以下の通りであった。原水の温度25℃、TDS濃度3.5%、ホウ素濃度4.5mg/L、1段目の操作圧力70kg/cm2、2段目の操作圧力15kg/cm2、1段目の回収率53%、2段目の回収率85%。得られた2段処理としての生産水の水質はTDS143mg/L、ホウ素1.23mg/lであった。また、2段目の昇圧ポンプの消費電力は0.18kw/m3であった。1、2段目の水質等は表1にまとめて示した。
【0022】
(実施例2)
逆浸透膜モジュールの配置が図2であること以外、実施例1と同様に海水を処理した。但し、2段目逆浸透膜モジュールへの供給水が2連目逆浸透膜モジュールの透過水の80%とし、2段目の処理用の逆浸透膜モジュールの処理量が実施例1と同じ程度となるように、本数を80%にした。得られた2段処理としての生産水の水質はTDS166mg/L、ホウ素1.39mg/lであった。また、2段目の昇圧ポンプの消費電力は0.14kw/m3であった。1、2段目の水質等は表1にまとめて示した。
【0023】
(実施例3)
逆浸透膜モジュールの配置が図2であり、2段目逆浸透膜モジュールへの供給水が2連目逆浸透膜モジュールの透過水の100%と1連目逆浸透膜モジュールの25%の混合水であること以外、実施例2と同様に海水を処理した。但し、2段目の処理用の逆浸透膜モジュールの処理量が実施例1と同じ程度となるように、本数を150%にした。得られた2段処理としての生産水の水質はTDS116mg/L、ホウ素1.04mg/lであった。また、2段目の昇圧ポンプの消費電力は0.27kw/m3であった。1、2段目の水質等は表1にまとめて示した。
【0024】
(比較例1)
図2のモジュール配置で、1段目の1連目逆浸透膜モジュールの透過水、2連目の逆浸透膜モジュールの透過水がすべて2段目の逆浸透膜モジュールの供給水となるような、完全な2段法で実施例3と同様に海水を処理した。但し、2段目の処理用の逆浸透膜モジュール当たりの処理量が実施例1と同じ程度となるように、逆浸透膜モジュール本数を約3倍にした。得られた2段処理としての生産水の水質はTDS25mg/L、ホウ素0.4mg/lであった。また、2段目の昇圧ポンプの消費電力は0.59kw/m3であった。生産水質の濃度は非常に低いが、TDS濃度が低すぎる傾向があることと、2段目の昇圧ポンプの消費電力が非常に大きく、過剰な処理の運転であると考えられる。1、2段目の水質等は表1にまとめて示した。
【0025】
【表1】
【0026】
【発明の効果】
逆浸透膜で処理した透過水を部分的に再度逆浸透膜で処理する膜処理方法において、2段目の逆浸透膜モジュール部分の規模および消費電力を低減する方法を提供することができる。また、2段目の逆浸透膜モジュールへの供給水を変更して、全体のシステムの最適化が可能である。
【図面の簡単な説明】
【図1】本発明の処理方法の一例で、1段目の2連目逆浸透膜モジュールの透過水のみ2段目の逆浸透膜モジュールに供給される場合の簡単な構成図を示す。
【図2】本発明の処理方法の一例で、1段目の2連目逆浸透膜モジュールの透過水と1連目の逆浸透膜モジュールの透過水の混合水が2段目の逆浸透膜モジュールに供給される場合の簡単な構成図を示す。
【符号の説明】
1:1段目の1連目の逆浸透膜モジュール
2:1段目の2連目の逆浸透膜モジュール
3:2段目の逆浸透膜モジュール
4:高圧ポンプ
5:昇圧ポンプ
6:供給水
7:1連目の逆浸透膜モジュールの透過水
8:1連目の逆浸透膜モジュールの濃縮水
9:2連目の逆浸透膜モジュールの透過水
10:2連目の逆浸透膜モジュールの濃縮水
11:2段目の逆浸透膜モジュールの透過水
12:2段目の逆浸透膜モジュールの濃縮水
13:生産水
14、15,16:流量調整バルブ[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a reverse osmosis treatment of a high-concentration solution, and more particularly to a separation method for desalination of seawater and the like.
[0002]
[Prior art]
The reverse osmosis method is used in a wide range of fields such as desalination of seawater and brackish water, production of pure water and ultrapure water for the semiconductor industry and the pharmaceutical industry, and municipal wastewater treatment. Compared to the evaporation method and the electrodialysis method, they are advantageous in energy saving and are widely used. In particular, the hollow fiber reverse osmosis membrane has a shape suitable for a membrane separation operation because the membrane area per unit volume can be increased, and is widely used, for example, in the field of seawater desalination using a reverse osmosis membrane.
[0003]
Water treated by the reverse osmosis method is also used for drinking water, but as safety awareness increases, compliance with water quality standards is required. Therefore, a two-stage method of once collecting permeated water of the reverse osmosis membrane and treating it again with the reverse osmosis membrane is being studied.
[0004]
Conventionally, there is a processing method in which the entire amount of permeated water subjected to the first-stage reverse osmosis membrane treatment is treated by the second-stage reverse osmosis membrane, and the concentrated water of the second-stage reverse osmosis membrane is returned to the first-stage supply water. It has been disclosed. However, in this method, since the entire amount of the first stage is treated in the second stage, energy consumption is increased, and the quality of the permeated water may be excessively necessary depending on the quality of the raw water, which is not preferable.
[0005]
On the other hand, for the purpose of removing boron in seawater desalination, a two-stage method is disclosed in which only permeated water on the concentration side of a first-stage reverse osmosis membrane is supplied to a second-stage reverse osmosis membrane module. However, the permeated water from the first-stage reverse osmosis membrane module separates the supply side permeated water and the concentrated side permeated water withdrawal sections, but the division inside the reverse osmosis membrane module is not clear, There is a problem that the concentration of water and the permeate on the concentration side cannot be controlled, and it is difficult to control the supply water to the second stage. In addition, since the entire amount of the permeated water on the concentration side is treated in the second stage, there is a problem that the second stage permeated water cannot cope with an excessively required water quality or conversely a shortage of the water quality. is there.
[0006]
[Patent Document 1]
U.S. Pat. No. 4,574,049 (
[0007]
[Non-patent document 1]
Proceedings of New Membrane Technology Symposium 2002 (pages 6-1-1 to 6-1-10)
[0008]
[Problems to be solved by the invention]
If the permeated water of the first-stage reverse osmosis membrane is simply collected and supplied to the second-stage reverse osmosis membrane, there is a problem that the size of the second-stage reverse osmosis membrane becomes unnecessarily large. Further, when a part of the permeated water in the first stage is supplied to the second stage, there is a problem that the quality of the water supplied to the second stage cannot be controlled. The present invention has been made in view of such a point, and in a membrane treatment method in which permeated water treated with a reverse osmosis membrane is partially treated again with a reverse osmosis membrane, the scale of a subsequent reverse osmosis membrane portion is reduced. It is another object of the present invention to provide a processing method capable of performing efficient processing.
[0009]
[Means for Solving the Problems]
The present inventors have conducted intensive studies to overcome the above-mentioned problems, and as a result, have reached the present invention. That is, the present invention has the following configuration.
(1) A high-concentration raw water is treated by a two-stage reverse osmosis membrane module, and is separated into a high-concentration concentrated water and a low-concentration permeated water. Is disposed so as to supply the low-concentration permeated water to the second-stage reverse osmosis membrane module. A method for treating a high-concentration solution, wherein the treatment is performed by a module.
(2) In the first-stage reverse osmosis membrane module, the reverse osmosis membrane modules are arranged in two rows, high-concentration raw water is supplied to the first reverse osmosis membrane module, and the first module is provided to the second reverse osmosis membrane module. (1) The method for treating a highly concentrated solution according to (1), wherein the concentrated water is supplied.
(3) The permeated water of the second reverse osmosis membrane module of the first reverse osmosis membrane module and the permeated water of the first reverse osmosis membrane module are mixed at a ratio of 100: 0 to 40:60, The method for treating a high-concentration solution according to any one of (1) and (2), wherein the reverse osmosis treatment is performed by a second-stage reverse osmosis membrane module.
(4) The method for treating a high-concentration solution according to any one of (1) to (3), wherein the hollow fiber type reverse osmosis membrane is made of a cellulose acetate polymer.
(5) The method for treating a high-concentration solution according to any one of (1) to (4), wherein the second-stage reverse osmosis membrane module is formed of a reverse osmosis membrane made of a polyamide material.
(6) The method for treating a high-concentration solution according to any one of (1) to (5), wherein the high-concentration raw water is seawater.
(7) The method for treating a high concentration solution according to any one of (1) to (6), wherein chlorine is intermittently injected into the high concentration raw water as a sterilization treatment.
[0010]
The high-concentration raw water according to the present invention is a dissolved liquid of a solute that can be subjected to reverse osmosis treatment, and has a concentration within a range in which reverse osmosis treatment is possible based on its osmotic pressure. For example, seawater and the like can be mentioned, and depending on the recovery rate, the reverse osmosis membrane can be desalinated at 5.4 MPa to 9 MPa.
[0011]
The reverse osmosis membrane in the present invention is a separation membrane in a region having a separation characteristic of a molecular weight of several tens of daltons, and specifically, can remove 90% or more of salt at an operation pressure of 0.5 MPa or more. Things. A hollow fiber type reverse osmosis membrane used for seawater desalination has a large operating pressure, and the salt removal rate is generally 99% or more.
[0012]
The two-stage reverse osmosis treatment in the present invention is a treatment method in which raw water is subjected once to reverse osmosis treatment of permeated water subjected to reverse osmosis treatment. During that time, a boost operation is required. In the case of the present invention, because of the partial two-stage treatment, the first-stage permeated water that is not subjected to the second-stage treatment is combined with the second-stage treated water and taken out as product water. The first-stage reverse osmosis membrane module and the second-stage reverse osmosis membrane module may have the same characteristics or different characteristics. The removal rate of the second-stage reverse osmosis membrane module is preferably higher than the removal rate of the first-stage reverse osmosis membrane module. In addition, an additive may be injected between the first and second stages in order to improve the removal performance in the second stage or in consideration of the film characteristics of the second stage. For example, in the case of seawater desalination, the removal rate of boron is generally not higher than the removal rate of salt, but when the pH is increased to 9 or more by adding an alkali, the removal rate of boron is greatly increased. For this purpose, an alkali may be added. When the first-stage reverse osmosis membrane module has chlorine resistance and there is residual chlorine in the supply water and the permeated water, a reducing agent may be injected. Examples of the alkali include sodium hydroxide and calcium hydroxide, with sodium hydroxide being most preferred. Examples of the reducing agent include sodium bisulfite, sodium bisulfite, sodium thiosulfate and the like, and sodium bisulfite is most preferred.
[0013]
In the present invention, the phrase “the reverse osmosis membrane modules are arranged in two rows” refers to a treatment method in which raw water is once subjected to reverse osmosis treatment of concentrated water that has been subjected to reverse osmosis treatment. No pressurizing operation is required between consecutive reverse osmosis membrane modules.
[0014]
In the present invention, a part of the permeated water of the first stage treated in the second reverse osmosis membrane module is transmitted through the second reverse osmosis membrane module in which the quality of the permeated water is insufficient only in the first stage. Water is the main. However, judging from the quality of the permeated water of the entire two-stage method, if there is a margin, part of the permeated water of the second reverse osmosis membrane module may be used. A mixed liquid is obtained by adding a part of the permeated water of the first reverse osmosis membrane module to the total amount of permeated water of the first reverse osmosis membrane module. When a part of the permeated water of the second reverse osmosis membrane module is sufficient, the ratio is preferably 20% to 100%, more preferably 50% to 100%. More preferably, it is 70% to 100%. Within this range, the effect of the two-stage method is remarkable, which is preferable. On the other hand, in the case of a mixed solution to which a part of the permeated water of the first reverse osmosis membrane module is added, the mixing ratio is preferably 1% to 50%, more preferably 1% to 30%. Further, if it is 1 to 30%, the load of the second stage processing can be suppressed low, and the system of the two-stage method is effective in that it is preferable.
In addition, when the two reverse osmosis membrane modules are arranged in series in two rows such that the supply water flow rate in the first-stage reverse osmosis membrane module is increased and the renewal of the membrane surface is promoted, It is more preferable when operating at a high recovery rate. Further, the permeated water of the first-stage reverse osmosis membrane module supplied to the second-stage reverse osmosis membrane module and subjected to the reverse osmosis treatment has a high concentration of permeated water among the first-stage reverse osmosis membrane modules. It is preferable to mainly use the permeated water of the continuous reverse osmosis membrane module. Considering that the amount of permeated water of the first reverse osmosis membrane module is larger than that of the second reverse osmosis membrane module, the permeated water of the first reverse osmosis membrane module and the second reverse osmosis membrane are used. The ratio of the permeated water of the module is preferably from 0: 100 to 60:40.
[0015]
Examples of the cellulose acetate polymer in the present invention include cellulose acetate, cellulose triacetate, and a mixture of both. Cellulose triacetate is preferred from the viewpoint of performance and stability of performance. Further, since these materials have excellent chlorine resistance, it is possible to add chlorine as a disinfectant to the supplied water. It is preferable to inject intermittently because the amount of disinfectant by-products generated and the amount of chemicals used are reduced.
[0016]
Examples of the polyamide-based material in the present invention include a linear polyamide polymer, a crosslinked polyamide polymer, and the like, and any material having excellent removal performance may be used. Further, there are those having chlorine resistance and those having no chlorine resistance, but those having chlorine resistance are preferable in terms of operation management.
[0017]
Having chlorine resistance in the present invention means that it can be used continuously for about one year in the presence of residual chlorine such as tap water. Examples of the polyamide-based reverse osmosis membrane having chlorine resistance include the HS (R) series manufactured by Toyobo Co., Ltd. If the second-stage reverse osmosis membrane module has chlorine resistance, the second-stage reverse osmosis will remain as it is even if chlorine is used as the supply water to the first-stage reverse osmosis membrane module and remains in the permeated water. Since the membrane module can be processed, it is preferable in terms of operability and the amount of chemicals used in the reducing agent.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
[0019]
FIG. 2 is similar to FIG. 1, wherein the permeated
[0020]
【Example】
Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited to these examples. In addition, an Example shows the case of the reverse osmosis membrane for seawater desalination.
[0021]
(Example 1)
As a first-stage reverse osmosis membrane module, a hollow-fiber reverse osmosis membrane module in which two hollow fiber-type reverse osmosis membrane elements made of cellulose triacetate are installed in a pressure vessel is used. Using a hollow fiber type reverse osmosis membrane module made of chlorine-resistant polyamide, seawater was treated in a two-stage module arrangement in which the first stage was a double stage as shown in FIG. However, the pH was set to 9 by adding NaOH to the water supplied to the second stage. The operating conditions were as follows. Raw water temperature 25 ° C., TDS concentration 3.5%, boron concentration 4.5 mg / L, first stage operating pressure 70 kg / cm 2 , second stage operating pressure 15 kg / cm 2 , first stage recovery 53 %, Second-stage recovery rate 85%. The water quality of the resulting production water as a two-stage treatment was 143 mg / L for TDS and 1.23 mg / L for boron. The power consumption of the second-stage booster pump was 0.18 kw / m 3 . Table 1 summarizes the water quality and the like of the first and second stages.
[0022]
(Example 2)
Seawater was treated in the same manner as in Example 1 except that the arrangement of the reverse osmosis membrane module was as shown in FIG. However, the supply water to the second-stage reverse osmosis membrane module is assumed to be 80% of the permeated water of the second-stage reverse osmosis membrane module, and the throughput of the second-stage reverse osmosis membrane module is about the same as that of the first embodiment. The number was reduced to 80% so that The quality of the obtained product water as a two-stage treatment was 166 mg / L for TDS and 1.39 mg / L for boron. The power consumption of the second-stage booster pump was 0.14 kw / m 3 . Table 1 summarizes the water quality and the like of the first and second stages.
[0023]
(Example 3)
The arrangement of the reverse osmosis membrane module is shown in FIG. 2, and the water supplied to the second reverse osmosis membrane module is a mixture of 100% of the permeated water of the second reverse osmosis membrane module and 25% of the first reverse osmosis membrane module. Except for being water, seawater was treated in the same manner as in Example 2. However, the number of reverse osmosis membrane modules for processing in the second stage was set to 150% so that the throughput was about the same as in Example 1. The water quality of the obtained production water as a two-stage treatment was 116 mg / L for TDS and 1.04 mg / l for boron. The power consumption of the second-stage booster pump was 0.27 kw / m 3 . Table 1 summarizes the water quality and the like of the first and second stages.
[0024]
(Comparative Example 1)
In the module arrangement of FIG. 2, the permeated water of the first-stage reverse osmosis membrane module in the first stage is such that all the permeated water of the second reverse osmosis membrane module becomes the supply water for the second-stage reverse osmosis membrane module The seawater was treated as in Example 3 in a complete two-stage process. However, the number of reverse osmosis membrane modules was approximately tripled so that the processing amount per reverse osmosis membrane module for the second stage treatment was about the same as in Example 1. The water quality of the obtained production water as a two-stage treatment was TDS 25 mg / L and boron 0.4 mg / L. The power consumption of the second-stage booster pump was 0.59 kw / m 3 . Although the concentration of the produced water quality is very low, the TDS concentration tends to be too low, and the power consumption of the second stage booster pump is very large, which is considered to be an operation of excessive treatment. Table 1 summarizes the water quality and the like of the first and second stages.
[0025]
[Table 1]
[0026]
【The invention's effect】
In the membrane treatment method for partially treating the permeated water treated with the reverse osmosis membrane again with the reverse osmosis membrane, it is possible to provide a method for reducing the scale and power consumption of the second-stage reverse osmosis membrane module. Further, it is possible to optimize the entire system by changing the supply water to the second-stage reverse osmosis membrane module.
[Brief description of the drawings]
FIG. 1 shows a simple configuration diagram in a case where only permeated water of a first-stage second reverse osmosis membrane module is supplied to a second-stage reverse osmosis membrane module in an example of the treatment method of the present invention.
FIG. 2 shows an example of a treatment method according to the present invention, in which a mixture of permeated water of a first-stage second reverse osmosis membrane module and permeated water of a first-stage reverse osmosis membrane module is used in a second-stage reverse osmosis membrane. FIG. 4 shows a simple configuration diagram when supplied to a module.
[Explanation of symbols]
1: First-stage first-stage reverse osmosis membrane module 2: First-stage second-stage reverse osmosis membrane module 3: Second-stage reverse osmosis membrane module 4: High-pressure pump 5: Boost pump 6: Supply water 7: Permeated water of the first reverse osmosis membrane module 8: Concentrated water of the first reverse osmosis membrane module 9: Permeated water of the second reverse osmosis membrane module 10: Permeate of the second reverse osmosis membrane module Concentrated water 11: Permeated water of the second-stage reverse osmosis membrane module 12: Concentrated water of the second-stage reverse osmosis membrane module 13:
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002297819A JP4304573B2 (en) | 2002-10-10 | 2002-10-10 | Treatment method of high concentration solution by reverse osmosis membrane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002297819A JP4304573B2 (en) | 2002-10-10 | 2002-10-10 | Treatment method of high concentration solution by reverse osmosis membrane |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004130233A true JP2004130233A (en) | 2004-04-30 |
JP4304573B2 JP4304573B2 (en) | 2009-07-29 |
Family
ID=32287423
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002297819A Expired - Lifetime JP4304573B2 (en) | 2002-10-10 | 2002-10-10 | Treatment method of high concentration solution by reverse osmosis membrane |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4304573B2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006263542A (en) * | 2005-03-23 | 2006-10-05 | Kurita Water Ind Ltd | Fresh water generator and fresh water generation method |
WO2013058063A1 (en) * | 2011-10-19 | 2013-04-25 | 株式会社日立プラントテクノロジー | Fresh water generation system |
KR20140050979A (en) * | 2012-10-22 | 2014-04-30 | 엘지전자 주식회사 | A backwash method for a reverse osmosis membrane and a system for the same |
US9259686B2 (en) | 2009-12-25 | 2016-02-16 | Toray Industries, Inc. | Water producing system and operation method therefor |
CN108525519A (en) * | 2017-03-06 | 2018-09-14 | 佛山市顺德区美的饮水机制造有限公司 | Cross screening system |
KR20190086268A (en) * | 2018-01-12 | 2019-07-22 | 두산중공업 주식회사 | Backwashing system with concentrated brine and backwashing method therewith |
KR20190099391A (en) * | 2016-11-25 | 2019-08-27 | 노무라마이크로사이엔스가부시키가이샤 | Ultrapure Water Production Method and Ultrapure Water Production System |
WO2020054862A1 (en) * | 2018-09-14 | 2020-03-19 | 株式会社 東芝 | Water treatment apparatus |
CN113975974A (en) * | 2021-10-04 | 2022-01-28 | 张英华 | Reverse-osmosis seawater desalination membrane core reverse-blowing equipment and control method |
-
2002
- 2002-10-10 JP JP2002297819A patent/JP4304573B2/en not_active Expired - Lifetime
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006263542A (en) * | 2005-03-23 | 2006-10-05 | Kurita Water Ind Ltd | Fresh water generator and fresh water generation method |
US9259686B2 (en) | 2009-12-25 | 2016-02-16 | Toray Industries, Inc. | Water producing system and operation method therefor |
US9758393B2 (en) | 2011-10-19 | 2017-09-12 | Hitachi, Ltd. | Fresh water generation system |
JPWO2013058063A1 (en) * | 2011-10-19 | 2015-04-02 | 株式会社日立製作所 | Fresh water system |
AU2012324220B2 (en) * | 2011-10-19 | 2015-12-24 | Hitachi, Ltd. | Fresh water generation system |
CN103917496B (en) * | 2011-10-19 | 2016-08-17 | 株式会社日立制作所 | Make water system |
WO2013058063A1 (en) * | 2011-10-19 | 2013-04-25 | 株式会社日立プラントテクノロジー | Fresh water generation system |
CN103917496A (en) * | 2011-10-19 | 2014-07-09 | 株式会社日立制作所 | Fresh water generation system |
KR20140050979A (en) * | 2012-10-22 | 2014-04-30 | 엘지전자 주식회사 | A backwash method for a reverse osmosis membrane and a system for the same |
KR101968525B1 (en) | 2012-10-22 | 2019-04-12 | 엘지전자 주식회사 | A backwash method for a reverse osmosis membrane and a system for the same |
KR102432353B1 (en) * | 2016-11-25 | 2022-08-11 | 노무라마이크로사이엔스가부시키가이샤 | Ultrapure water manufacturing method and ultrapure water manufacturing system |
KR20190099391A (en) * | 2016-11-25 | 2019-08-27 | 노무라마이크로사이엔스가부시키가이샤 | Ultrapure Water Production Method and Ultrapure Water Production System |
CN108525519A (en) * | 2017-03-06 | 2018-09-14 | 佛山市顺德区美的饮水机制造有限公司 | Cross screening system |
KR20190086268A (en) * | 2018-01-12 | 2019-07-22 | 두산중공업 주식회사 | Backwashing system with concentrated brine and backwashing method therewith |
KR102024927B1 (en) | 2018-01-12 | 2019-09-24 | 두산중공업 주식회사 | Backwashing system with concentrated brine and backwashing method therewith |
WO2020054862A1 (en) * | 2018-09-14 | 2020-03-19 | 株式会社 東芝 | Water treatment apparatus |
JP2020044457A (en) * | 2018-09-14 | 2020-03-26 | 株式会社東芝 | Water treatment equipment |
JP7366527B2 (en) | 2018-09-14 | 2023-10-23 | 株式会社東芝 | water treatment equipment |
CN113975974A (en) * | 2021-10-04 | 2022-01-28 | 张英华 | Reverse-osmosis seawater desalination membrane core reverse-blowing equipment and control method |
Also Published As
Publication number | Publication date |
---|---|
JP4304573B2 (en) | 2009-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200086274A1 (en) | Advancements in osmotically driven membrane systems including multi-stage purification | |
US7097769B2 (en) | Method of boron removal in presence of magnesium ions | |
TWI393678B (en) | Desalination system | |
US10940439B1 (en) | High water recovery hybrid membrane system for desalination and brine concentration | |
JP2008100220A (en) | Method for producing freshwater | |
JP2003071252A (en) | Multi-stage type reverse osmosis treating method | |
JP5900527B2 (en) | Treatment method for water containing low molecular weight organic substances | |
JP4304573B2 (en) | Treatment method of high concentration solution by reverse osmosis membrane | |
JP3862816B2 (en) | Reverse osmosis membrane separation method | |
EP1894612B1 (en) | Method for purifying water by means of a membrane filtration unit | |
JP4996067B2 (en) | Water treatment apparatus using reverse osmosis membrane and method of using the same | |
WO2020184044A1 (en) | Pure-water production device and pure-water production method | |
JP4332774B2 (en) | Method and apparatus for processing high concentration solution by reverse osmosis membrane | |
KR20170069614A (en) | Saltwater desalination system | |
JP2000051663A (en) | Apparatus and method for separation of reverse osmosis membrane | |
JP3912067B2 (en) | Primary pure water production equipment | |
JP4337024B2 (en) | Treatment method of high concentration solution by reverse osmosis membrane | |
JP2001047045A (en) | Reverse osmosis membrane type desalination apparatus | |
JPH09155344A (en) | Method for desalination of brackish water and apparatus therefor | |
JP2001347142A (en) | Reverse osmosis separation method | |
JP2003117553A (en) | Method and apparatus for producing fresh water | |
JP2016203065A (en) | Desalination system using reverse osmosis and operational method thereof | |
JP2006167533A (en) | Seawater concentration method | |
JP2004000938A (en) | Water production method | |
JP3351127B2 (en) | Reverse osmosis membrane separation device and fresh water producing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050930 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20070713 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080207 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080404 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090402 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090415 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 4304573 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120515 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130515 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130515 Year of fee payment: 4 |
|
EXPY | Cancellation because of completion of term |