[go: up one dir, main page]

JP2004127540A - Fluorescent lamp lighting method and fluorescent lamp lighting device - Google Patents

Fluorescent lamp lighting method and fluorescent lamp lighting device Download PDF

Info

Publication number
JP2004127540A
JP2004127540A JP2002285791A JP2002285791A JP2004127540A JP 2004127540 A JP2004127540 A JP 2004127540A JP 2002285791 A JP2002285791 A JP 2002285791A JP 2002285791 A JP2002285791 A JP 2002285791A JP 2004127540 A JP2004127540 A JP 2004127540A
Authority
JP
Japan
Prior art keywords
fluorescent lamp
voltage
power supply
glass tube
external electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002285791A
Other languages
Japanese (ja)
Inventor
Eiju Yano
矢野 英寿
Hidehiko Noguchi
野口 英彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Lighting and Technology Corp
Original Assignee
Harison Toshiba Lighting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harison Toshiba Lighting Corp filed Critical Harison Toshiba Lighting Corp
Priority to JP2002285791A priority Critical patent/JP2004127540A/en
Publication of JP2004127540A publication Critical patent/JP2004127540A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)

Abstract

【課題】内部電極の消耗及び内部電極近傍の管壁温度の上昇が抑制され、かつ全長に亘って所要の輝度が得られる蛍光ランプの点灯手段の提供。
【解決手段】内壁面に蛍光体被膜15が形成され、かつ少なくとも希ガスを含む放電媒体が封入されたガラス管16、前記ガラス管16の両端側にリード線端子17a,17bを導出して封装された一対の内部電極18a,18b、及び前記ガラス管16外周面に形成された外部電極19を有する蛍光ランプを周期的な交流電圧の印加によって点灯する方法であって、
周期的な交流電圧を発生する電源21の低電圧側を外部電極19に接続し、高電圧側を一対の内部電極18a,18bに切り替え可能に接続し、前記交流電圧の整数周期に対応して通電を切り替え点灯することを特徴とする。
【選択図】 図1
An object of the present invention is to provide a fluorescent lamp lighting means capable of suppressing the consumption of an internal electrode and a rise in the temperature of a tube wall near the internal electrode, and obtaining a required brightness over the entire length.
A glass tube (16) having a phosphor coating (15) formed on an inner wall thereof and containing a discharge medium containing at least a rare gas, and lead wire terminals (17a, 17b) drawn out and sealed at both ends of the glass tube (16). A fluorescent lamp having a pair of internal electrodes 18a and 18b and an external electrode 19 formed on the outer peripheral surface of the glass tube 16 by periodically applying an AC voltage.
The low voltage side of the power supply 21 that generates a periodic AC voltage is connected to the external electrode 19, and the high voltage side is connected to the pair of internal electrodes 18a and 18b so as to be switchable. It is characterized by switching on and lighting.
[Selection diagram] Fig. 1

Description

【0001】
【発明の属する技術分野】
本発明は、高輝度化が図られ、かつ安定した点灯が可能なバックライト用光源などに適する放電灯駆動装置に関する。
【0002】
【従来の技術】
たとえばパーソナルコンピューター、ナビゲーションなどに使用される液晶表示装置は、パーソナルコンピューターなどの普及とともに、高性能、長寿命化が要求されている。そして、それらの構成において、バックライト用光源として、一般的に、冷陰極蛍光ランプを使用しているが、光源系のさらなる高性能化も期待されている。
【0003】
この期待に対応して、図8に構成例を横断面的に示す外面電極蛍光ランプが開発されている。すなわち、内壁面に蛍光体皮膜1が形成され、かつキセノンを主体とした希ガス(放電媒体)が気密に封入されたガラス管2と、前記ガラス管2の一端側にリード端子3を導出して封装された内部電極4と、前記ガラス管2の外周面に、管軸方向ほぼ全長に亘って所要のピッチで螺旋状に捲装された外部電極5とを有する外面電極蛍光ランプが使用されつつある。
【0004】
ここで、ガラス管2は、外径1.2〜10.0mm程度、長さ50〜800mm程度で、放電媒体としてたとえばキセノンガスを主体とした希ガスが封入されている。図8において、6は外部電極5の捲装面を被覆する透光性の熱収縮チューブで、外部電極5の捲装位置ズレ防止などの機能を呈する。なお、外部電極の端部5aは、ガラス管2の他端封着部に植設されたリード端子7に固定されている。
【0005】
上記外面電極蛍光ランプは、リード端子3を介して内部電極4、及びリード端子7を介して外部電極5に、電圧供給線8,9を介して電源(インバータ)10側から所要の周期的な交流電圧(たとえば1〜3KV)を印加すると、両電極4、5による放電が開始し、ガラス管2内で紫外線を放射する。こうして放射された紫外線が、ガラス管2内壁面の蛍光体皮膜1によって可視光線に変換され、発光効率が良好で、安定した点灯が行われる蛍光ランプとして機能する。
【0006】
【発明が解決しようとする課題】
しかしながら、上記、従来の蛍光ランプ点灯方式の場合は、次のような不具合がある。たとえば液晶表示装置の大形化に伴って、バックライト光源として蛍光ランプの長尺化が要求されているが、ガラス管2の全長に亘って所要の発光を得るため、ガラス管2全域に放電を広げるには、図4の直線aで示すように、印加電圧を大幅に高く設定する必要がある。ここで、ガラス管2の全長に亘って放電を広げるとは、図5の直線bで示すように管電流が高くなると言う問題がある。
【0007】
この点、より具体的に説明すると、図9(a)に模式的に示すように、ガラス管2の全長で陽光柱が管径方向に広がる拡散陽光柱(拡散陽光柱)を発生した場合は、蛍光体による輝度を全長に亘ってほぼ一様に高めることができる。しかし、ガラス管2を長くし、ガラス管2内全長を放電させるため、管電流を高めると、図9(b)に模式的に示すように、内部電極4側の一部領域で陽光柱が細い線状の状態(収縮陽光柱)となる。ここで、収縮陽光柱の状態になると、収縮陽光柱領域における蛍光体の輝度は、拡散陽光柱状態になっている領域の輝度に較べて1/2以下の明るさになる。つまり、図10に示すように、ガラス管2の軸方向での輝度ムラを生じ、全長に亘ってほぼ一様な輝度を呈する蛍光ランプとして機能しないことになる。したがって、従来の点灯方式では、一様な拡散陽光柱領域の形成・確保の上で発光管の長さに限界があって、バックライトの大形化が制約される。
【0008】
また、長尺なガラス管2の全域で放電を行うため、管電流を高く設定すると、点灯寿命中における内部電極4のスパッタリングによる損耗が促進され、短寿命化すると言う問題がある。さらに、一端側に封装した内部電極4に、全電流が集中して流れるため、内部電極4近傍の管壁温度が上昇し、その使用過程において、隣接する周辺構成部材など悪影響を及ぼす恐れがある。
【0009】
本発明は、上記問題に対処してなされたもので、内部電極の消耗及び内部電極近傍の管壁温度の上昇が抑制され、かつ蛍光ランプ全長に亘って所要のほぼ一様な明るさ輝度が得られる蛍光ランプの点灯手段の提供を目的とする。
【0010】
【課題を解決するための手段】
本発明の蛍光ランプの点灯方法は、内壁面に蛍光体被膜が形成され、かつ少なくとも希ガスを含む放電媒体が封入されたガラス管、前記ガラス管の両端側にリード線端子を導出して封装された一対の内部電極、及び前記ガラス管外周面に形成された外部電極を有する蛍光ランプを交流電圧の印加によって点灯する方法であって、
前記交流電圧を発生する電源の一方の出力端を外部電極に接続し、前記電源の他方の出力端を一対の内部電極に所定の周期で切り替え接続することを特徴とするものである。
【0011】
本発明の蛍光ランプの点灯方法においては、前記所定の切り替え周期は、前記交流電圧の周期と同一またはその整数倍の周期であることを特徴とするものである。
【0012】
本発明の蛍光ランプの点灯装置は、内壁面に蛍光体被膜が形成され、かつ少なくとも希ガスを含む放電媒体が封入されたガラス管、前記ガラス管の両端側にリード線端子を導出して封装された一対の内部電極、及び前記ガラス管外周面に形成された外部電極を有する蛍光ランプと、前記蛍光ランプの一対の内部電極及び外部電極に印加する交流電圧を発生する交流電源と、この交流電源によって発生する交流電圧を、前記一対の内部電極の一方と前記外部電極間、および、前記一対の内部電極の他方と外部電極間に所定の周期で交互に印加する切り替え手段と、を有することを特徴とするものである。
【0013】
本発明の蛍光ランプの点灯装置においては、前記所定の切り替え周期は、前記交流電圧の周期と同一またはその整数倍の周期であることを特徴とするものである。
【0014】
また、本発明の蛍光ランプの点灯装置においては、内壁面に蛍光体被膜が形成され、かつ少なくとも希ガスを含む放電媒体が封入されたガラス管、前記ガラス管の両端側にリード線端子を導出して封装された一対の内部電極、及び前記ガラス管外周面に形成された外部電極を有する蛍光ランプと、前記蛍光ランプの一方の内部電極及び外部電極間に所定の周期で間歇的に交流電圧を印加する第1の交流電源と、前記蛍光ランプの他方の内部電極及び外部電極間に所定の周期で間歇的に交流電圧を印加する第2の交流電源とを備え、前記第1の交流電源及び第2の交流電源は、前記間歇的な交流電圧発生の位相が互いに異なっていることを特徴とするものである。
【0015】
さらに、本発明の蛍光ランプの点灯装置においては、前記第1の交流電源から交流電圧が供給されている期間は、前記第2の交流電源は交流電圧の発生を停止していることを特徴とするものである。
【0016】
上記本発明に係る蛍光ランプの点灯手段は、ガラス管内に封装した内部電極と、ガラス管外周面全長に亘って設けた外部電極との間に、交流電圧(正弦波電圧ないし矩形波電圧)を印加して、点灯駆動する手段において、次の点で特徴付けられる。すなわち、蛍光ランプは、ガラス管の両端に内部電極を対向封装するとともに、ガラス管の外周面に外部電極を装着し、この外部電極と前記内部電極間への給電に際し、一対の内部電極への給電を周期的に交互に切り替えることにより、見かけ上、常時、ガラス管内全長に亘って所要の拡散陽光柱を形成させ、結果的に、長いガラス管の場合でも、その全長に亘って一様な明るさ・輝度の発光が得られることを骨子とする。
【0017】
【発明の実施の形態】
以下、図1、図2、図3、図4、図5、図6及び図7を参照して実施例を説明する。
【0018】
図1(a),(b)は、第1の実施例に係る蛍光ランプの点灯手段の概略構成及び駆動動作を説明するための模式図である。図1(a),(b)において、蛍光ランプ14は、次のよう構成と成っている。すなわち、内壁面に蛍光体皮膜15が形成され、かつキセノンを主体とした希ガス(放電媒体)が気密に封入されたガラス管16と、前記ガラス管16の両端側にそれぞれリード端子17a,17bを導出して対向して封装された一対の内部電極18a,18bと、前記ガラス管16の外周面に、管軸方向ほぼ全長に亘って所要のピッチで螺旋状に捲装された外部電極19とを有する外面電極蛍光ランプである。
【0019】
ここで、ガラス管16は、外径1.2〜15.0mm程度、長さ50〜800mm程度で、放電媒体としてたとえばキセノンガスを主体とした希ガスが封入されている。また、内部電極18a,18bは、電圧給電線20a,20bを介して周期的に交流電圧(矩形波電圧)を発生する電源21の高圧側に、スイッチ素子22での周期的な切り替えが可能に接続している。さらに、外部電極19のリード端子19aは、電圧給電線20cを介して交流電圧(矩形波電圧)を発生する電源21の低圧側に接続されている。なお、23は外部電極19の捲装面を被覆する透光性の熱収縮チューブで、外部電極19の捲装位置ズレ防止などの機能を呈する。
【0020】
上記蛍光ランプ14は、たとえば電圧供給線20a及びリード端子17aを介して内部電極18aに電源21の高電圧側の交流電圧を、また、電圧供給線20c及びリード端子19aを介して外部電極19に低電圧側の交流電圧をそれぞれ選択的に印加すると、両電極18a、19による放電が開始し、ガラス管16内の内部電極18a側で拡散陽光柱が発生し、主としてこの拡散陽光柱領域で紫外線がガラス管16内壁面の蛍光体皮膜15によって可視光線に変換される。一方、電圧供給線20b及びリード端子17bを介して内部電極18bに電源21の高電圧側の交流電圧を、また、電圧供給線20c及びリード端子19aを介して外部電極19に低電圧側の交流電圧をそれぞれ選択的に印加すると、両電極18b、19による放電が開始し、ガラス管16内の内部電極18b側で拡散陽光柱が発生し、主としてこの拡散陽光柱領域で紫外線がガラス管16内壁面の蛍光体皮膜15によって可視光線に変換される。つまり、周期的に電源21の高電圧側の交流電圧を内部電圧18a,18bに交互に切り替え印加すると、あたかもガラス管16の全長に亘って拡散陽光柱が形成され、図2に示すように全長に亘って一様な明るさ・輝度が得られる。
【0021】
なお、電源21の高電圧側交流電圧の内部電圧18a,18bに対する交互切り替えのタイミングは、電源21が出力する矩形波電圧(交流電圧)に同期させて行う。すなわち、スイッチング素子22のタイミングチャートは、たとえば図3(a)に示すように、交流電圧の1周期ごとに電圧供給線20aもしくは20bに交互に切り替えるか、図3(b)に示すように、矩形波電圧の2周期ごとに電圧供給線20aもしくは20bに交互に切り替えるか、あるいは図3(c)に示すように、矩形波電圧の間に電圧休止期間を設け、この電圧休止期間でスイッチング素子22による切り替え行うなどの手段がある。なお、電圧休止期間でスイッチング素子22による切り替え行う方式の場合は、スイッチング素子22の切り替えに遅れが生じても対応できる。
【0022】
また、上記切り替え点灯駆動においては、ガラス管16の長さ(蛍光ランプの長さ)と、電源21の出力電圧との関係は、図4の直線Aに示すごとく、従来品(直線a)に対し、比較的低く設定できるので、内部電極18a,18bスパッタリングによる摩耗なども抑制され、ランプの長寿命化が図られる。さらに、ガラス管16の長さ(蛍光ランプの長さ)と、内部電極18a,18b個々に流れる電流との関係は、図5の直線Bで示すように、従来品(直線b)に比較して大きく改善されている。また、内部電極18a,18b近傍の管壁温度の上昇も抑制され、周辺部に熱的な悪影響を及ぼす恐れも低減する。
【0023】
図6(a),(b)は、第2の実施例に係る蛍光ランプの点灯手段の概略構成及び駆動動作を説明するための模式図である。図6(a),(b)において、蛍光ランプ14の構成は、周期的な交流電圧を発生する電源21を内部電極18a,18bごとに設置した他、基本的に、第1の実施例の場合と同様なので構成の詳細な説明を省略する。すなわち、第2の実施例の場合は、内部電極18a,18bは、電圧給電線20a,20bを介して交流電圧(矩形波電圧)を発生する電源21a,21bの高圧側に周期的な切り替えが可能に接続している。さらに、外部電極19のリード端子19aは、電圧給電線20cを介して交流電圧(矩形波電圧)を発生する電源21a,21bの低圧側に接続された構成を採っている。
【0024】
第2の実施例に係る蛍光ランプ14は、たとえば電圧供給線20a及びリード端子17aを介して内部電極18aに電源21aの高電圧側の交流電圧を、また、電圧供給線20c及びリード端子19aを介して外部電極19に低電圧側の交流電圧をそれぞれ選択的に印加すると、両電極18a、19による放電が開始し、ガラス管16内の内部電極18a側で拡散陽光柱が発生し、主としてこの拡散陽光柱領域で紫外線がガラス管16内壁面の蛍光体皮膜15によって可視光線に変換される。一方、電圧供給線20b及びリード端子17bを介して内部電極18bに電源21bの高電圧側の交流電圧を、また、電圧供給線20c及びリード端子19aを介して外部電極19に低電圧側の交流電圧をそれぞれ選択的に印加すると、両電極18b、19による放電が開始し、ガラス管16内の内部電極18b側で拡散陽光柱が発生し、主としてこの拡散陽光柱領域で紫外線がガラス管16内壁面の蛍光体皮膜15によって可視光線に変換される。つまり、周期的に電源21a,21bの高電圧側の交流電圧を内部電圧18a,18bに交互に切り替え印加すると、あたかもガラス管16の全長に亘って拡散陽光柱が形成され、前記図2に示すように全長に亘って一様な明るさ・輝度が得られる。
【0025】
なお、電源21a,21bの高電圧側交流電圧の内部電圧18a,18bに対する交互切り替えのタイミングは、電源21a,21bが同時に出力しないように位相制御して行う。すなわち、電源21a,21bの電圧波形は、たとえば図7に示すように、それぞれ矩形の交流電圧が所定の周期で間歇的に発生し、それらの発生タイミングは、電源21aが交流電圧を発生している期間中は電源21bは交流電圧の発生を停止している。また、逆に、電源21aが交流電圧の発生を停止している期間中は、電源21bは交流電圧を発生している。このように、電源21a,21bの電圧波形は、その完結的発生の位相が互いに異なっている。
【0026】
本発明は、上記実施例に限定されるものでなく、発明の趣旨を逸脱しない範囲で種々の変形を採ることができる。たとえば、蛍光ランプの寸法・形状、印加する矩形波電圧、内部電極の形状・材質・配置、外部電極の形状・材質・配置など使用状態に応じて適宜選択してもよい。
【0027】
【発明の効果】
本発明によれば、一方の内部電極と外部電極との間の放電、及び他方の内部電極と外部電極との間の放電で、長い放電空間を分担させ、かつ周期的に交互に所要の拡散陽光柱を発生させる構成を採って、目視的には、全長に亘って一様な発光が得られる。つまり、1個の内部電極が担当する発光長が短く設定される。したがって、低い電圧で長尺のランプの均一な発光が確保でき、また、1個の内部電極に対して流す管電流(消費電流)も低減できるので、収縮陽光柱の発生抑制(輝度低下の回避)、点灯時における内部電極の消耗抑制(長寿命化)、内部電極近傍の管壁温度の低減化などが図られる。すなわち、液晶表示装置(表示パネル)の大形化に充分対応でき、かつ高品質な画像表示が可能なバックライト機構を提供できる。
【図面の簡単な説明】
【図1】(a),(b)は第1の実施例に係る蛍光ランプ点灯方式の概略構成及び動作を模式的に示す断面図。
【図2】第1の実施例に係る蛍光ランプ点灯手段によるランプ長方向における輝度分布を示す特性図。
【図3】(a),(b),(c)は第1の実施例に係る蛍光ランプ点灯手段における内部電極に周期的に印加する矩形波電圧の変形例を示すタイミングチャート図。
【図4】第1の実施例に係る蛍光ランプ点灯手段における電源電圧とランプ長との関係を従来の点灯手段の場合と比較して示す特性図。
【図5】第1の実施例に係る蛍光ランプ点灯手段における内部電極1個に流れる電流とランプ長との関係を従来の点灯手段の場合と比較して示す特性図。
【図6】(a),(b)は第2の実施例に係る蛍光ランプ点灯方式の概略構成及び動作を模式的に示す断面図。
【図7】第2の実施例に係る蛍光ランプ点灯手段における内部電極に周期的に印加する矩形波電圧の変形例を示すタイミングチャート図。
【図8】従来の蛍光ランプ点灯手段の概略構成を示す断面図。
【図9】従来の蛍光ランプ点灯手段における拡散陽光柱の発生状態を模式的に示す断面図。
【図10】従来の蛍光ランプ点灯手段によるランプ長方向における輝度分布を示す特性図。
【符号の説明】
15……蛍光体被膜
16……ガラス管
17a,17b……内部電極用リード端子
18a,18b……内部電極
19……外部電極
19a……外部電極リード端子
20a,20b,20c……電圧供給線
21……電源
22……切り替えスイッチ素子
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a discharge lamp driving device suitable for a backlight light source or the like which can achieve high luminance and can be stably lit.
[0002]
[Prior art]
For example, with the spread of personal computers and the like, liquid crystal display devices used for personal computers, navigation and the like are required to have high performance and long life. In these configurations, a cold cathode fluorescent lamp is generally used as a backlight light source, but further improvement in the performance of the light source system is also expected.
[0003]
In response to this expectation, an external electrode fluorescent lamp whose configuration example is shown in cross section in FIG. 8 has been developed. That is, a glass tube 2 in which a phosphor film 1 is formed on the inner wall surface and a rare gas (discharge medium) mainly composed of xenon is hermetically sealed, and a lead terminal 3 is led out to one end side of the glass tube 2. An external electrode fluorescent lamp is used which has an internal electrode 4 which is sealed by sealing, and an external electrode 5 which is spirally wound on the outer peripheral surface of the glass tube 2 at a required pitch over substantially the entire length in the tube axis direction. It is getting.
[0004]
Here, the glass tube 2 has an outer diameter of about 1.2 to 10.0 mm and a length of about 50 to 800 mm, and is filled with a rare gas mainly composed of, for example, xenon gas as a discharge medium. In FIG. 8, reference numeral 6 denotes a light-transmissive heat-shrinkable tube that covers the winding surface of the external electrode 5 and has a function of preventing the winding position of the external electrode 5 from being shifted. The end 5a of the external electrode is fixed to a lead terminal 7 implanted at the other end sealing portion of the glass tube 2.
[0005]
The external electrode fluorescent lamp is connected to the internal electrode 4 via the lead terminal 3 and to the external electrode 5 via the lead terminal 7, and from the power supply (inverter) 10 side via the voltage supply lines 8 and 9, a required periodicity. When an AC voltage (for example, 1 to 3 KV) is applied, discharge by both electrodes 4 and 5 starts, and ultraviolet rays are radiated in the glass tube 2. The emitted ultraviolet light is converted into visible light by the phosphor film 1 on the inner wall surface of the glass tube 2, and functions as a fluorescent lamp having good luminous efficiency and stable lighting.
[0006]
[Problems to be solved by the invention]
However, the conventional fluorescent lamp lighting method has the following disadvantages. For example, as the size of a liquid crystal display device increases, the length of a fluorescent lamp is required as a backlight source. However, in order to obtain required light emission over the entire length of the glass tube 2, discharge is performed over the entire glass tube 2. In order to widen the voltage, it is necessary to set the applied voltage to be much higher as shown by the straight line a in FIG. Here, spreading the discharge over the entire length of the glass tube 2 involves a problem that the tube current increases as shown by the straight line b in FIG.
[0007]
This point will be described in more detail. As shown schematically in FIG. 9A, when a positive column expands in the radial direction of the glass tube 2 over the entire length of the glass tube 2 (diffusion positive column). In addition, the luminance of the phosphor can be almost uniformly increased over the entire length. However, when the tube current is increased in order to make the glass tube 2 longer and discharge the entire length of the glass tube 2, as shown schematically in FIG. It becomes a thin linear state (contracted positive column). Here, in the state of the contracted positive column, the brightness of the phosphor in the region of the contracted positive column becomes less than half the brightness of the region in the diffused positive column state. That is, as shown in FIG. 10, uneven brightness occurs in the axial direction of the glass tube 2, and the glass tube 2 does not function as a fluorescent lamp exhibiting substantially uniform brightness over the entire length. Therefore, in the conventional lighting method, there is a limit to the length of the arc tube in forming and securing a uniform diffused positive column region, which limits the size of the backlight.
[0008]
In addition, since the discharge is performed in the entire area of the long glass tube 2, if the tube current is set high, there is a problem that the wear of the internal electrode 4 due to the sputtering during the lighting life is promoted and the life is shortened. Further, since the entire current flows intensively into the internal electrode 4 sealed on one end side, the temperature of the tube wall near the internal electrode 4 rises, and in the process of using the same, there is a possibility of adversely affecting adjacent peripheral members. .
[0009]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-described problems, and suppresses the consumption of internal electrodes and a rise in tube wall temperature in the vicinity of the internal electrodes, and achieves a required substantially uniform brightness and brightness over the entire length of the fluorescent lamp. It is an object of the present invention to provide a lighting means for the obtained fluorescent lamp.
[0010]
[Means for Solving the Problems]
The lighting method of a fluorescent lamp according to the present invention is directed to a glass tube in which a phosphor film is formed on an inner wall surface and a discharge medium containing at least a rare gas is sealed, and lead wire terminals are led out to both ends of the glass tube to be sealed. A method of lighting a fluorescent lamp having a pair of internal electrodes and an external electrode formed on the outer peripheral surface of the glass tube by applying an AC voltage,
One output terminal of the power supply for generating the AC voltage is connected to an external electrode, and the other output terminal of the power supply is switched and connected to a pair of internal electrodes at a predetermined cycle.
[0011]
In the lighting method of a fluorescent lamp according to the present invention, the predetermined switching cycle is the same as the cycle of the AC voltage or a cycle that is an integral multiple thereof.
[0012]
A lighting device for a fluorescent lamp according to the present invention is a glass tube in which a phosphor film is formed on an inner wall surface and a discharge medium containing at least a rare gas is sealed, and lead wire terminals are drawn out and sealed at both ends of the glass tube. A pair of internal electrodes, and a fluorescent lamp having an external electrode formed on the outer peripheral surface of the glass tube, an AC power supply that generates an AC voltage applied to the pair of internal electrodes and the external electrode of the fluorescent lamp, Switching means for alternately applying an alternating voltage generated by a power supply between one of the pair of internal electrodes and the external electrode, and between the other of the pair of internal electrodes and the external electrode at a predetermined cycle. It is characterized by the following.
[0013]
In the lighting device for a fluorescent lamp according to the present invention, the predetermined switching cycle is the same as the cycle of the AC voltage or a cycle of an integral multiple thereof.
[0014]
In the lighting device for a fluorescent lamp of the present invention, a phosphor film is formed on an inner wall surface, and a glass tube in which a discharge medium containing at least a rare gas is sealed, and lead wire terminals are led out to both ends of the glass tube. A fluorescent lamp having a pair of internal electrodes sealed and an external electrode formed on the outer peripheral surface of the glass tube, and an AC voltage intermittently at a predetermined cycle between one internal electrode and the external electrode of the fluorescent lamp. And a second AC power supply for applying an AC voltage intermittently at a predetermined period between the other internal electrode and the external electrode of the fluorescent lamp, wherein the first AC power supply And the second AC power supply is characterized in that the phases of the intermittent AC voltage generation are different from each other.
[0015]
Further, in the fluorescent lamp lighting device according to the present invention, the second AC power supply stops generating the AC voltage during a period in which the AC voltage is supplied from the first AC power supply. Is what you do.
[0016]
The lighting means of the fluorescent lamp according to the present invention is characterized in that an AC voltage (sine wave voltage or rectangular wave voltage) is applied between an internal electrode sealed in a glass tube and an external electrode provided over the entire outer surface of the glass tube. The means for driving by applying and lighting is characterized by the following points. That is, the fluorescent lamp has internal electrodes opposed to each other at both ends of the glass tube, and an external electrode is mounted on the outer peripheral surface of the glass tube, and when power is supplied between the external electrode and the internal electrodes, a pair of internal electrodes is connected to the internal electrode. By periodically and alternately changing the power supply, apparently, the required diffused positive column is always formed over the entire length of the glass tube. As a result, even in the case of a long glass tube, a uniform diffused positive column is formed. The essence is to obtain light emission of brightness and luminance.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, an embodiment will be described with reference to FIGS. 1, 2, 3, 4, 5, 6 and 7.
[0018]
FIGS. 1A and 1B are schematic diagrams for explaining a schematic configuration and a driving operation of a lighting means of a fluorescent lamp according to a first embodiment. 1A and 1B, the fluorescent lamp 14 has the following configuration. That is, a glass tube 16 in which a phosphor film 15 is formed on the inner wall surface and a rare gas (discharge medium) mainly composed of xenon is hermetically sealed, and lead terminals 17a and 17b are provided at both ends of the glass tube 16, respectively. And a pair of internal electrodes 18a, 18b sealed to face each other, and external electrodes 19 spirally wound on the outer peripheral surface of the glass tube 16 at a required pitch over substantially the entire length in the tube axis direction. An external electrode fluorescent lamp having:
[0019]
Here, the glass tube 16 has an outer diameter of about 1.2 to 15.0 mm and a length of about 50 to 800 mm, and is filled with a rare gas mainly composed of, for example, xenon gas as a discharge medium. Also, the internal electrodes 18a and 18b can be periodically switched by the switch element 22 to the high voltage side of the power supply 21 that periodically generates an AC voltage (rectangular wave voltage) via the voltage supply lines 20a and 20b. Connected. Further, the lead terminal 19a of the external electrode 19 is connected to a low voltage side of a power supply 21 that generates an AC voltage (rectangular wave voltage) via a voltage feed line 20c. Reference numeral 23 denotes a light-transmissive heat-shrinkable tube that covers the winding surface of the external electrode 19 and has a function of preventing the winding position of the external electrode 19 from being shifted.
[0020]
The fluorescent lamp 14 is connected, for example, to the internal electrode 18a via the voltage supply line 20a and the lead terminal 17a, and to the external electrode 19 via the voltage supply line 20c and the lead terminal 19a. When the alternating voltage on the low voltage side is selectively applied, discharge is started by both electrodes 18a and 19, and a diffused positive column is generated on the side of the internal electrode 18a in the glass tube 16, and ultraviolet rays are mainly generated in the diffused positive column region. Is converted into visible light by the phosphor film 15 on the inner wall surface of the glass tube 16. On the other hand, the high voltage side AC voltage of the power supply 21 is applied to the internal electrode 18b via the voltage supply line 20b and the lead terminal 17b, and the low voltage side AC voltage is applied to the external electrode 19 via the voltage supply line 20c and the lead terminal 19a. When a voltage is selectively applied, discharge is started by the two electrodes 18b and 19, and a diffused positive column is generated on the side of the internal electrode 18b in the glass tube 16. The light is converted into visible light by the phosphor film 15 on the wall surface. That is, when the alternating voltage on the high voltage side of the power supply 21 is periodically switched and applied to the internal voltages 18a and 18b, a diffused positive column is formed over the entire length of the glass tube 16, and as shown in FIG. And uniform brightness / brightness can be obtained over the entire range.
[0021]
The timing of alternately switching the high-voltage side AC voltage of the power supply 21 with respect to the internal voltages 18a and 18b is performed in synchronization with the rectangular wave voltage (AC voltage) output from the power supply 21. That is, the timing chart of the switching element 22 may be, for example, as shown in FIG. 3A, alternately switching to the voltage supply line 20a or 20b every one cycle of the AC voltage, or as shown in FIG. The voltage supply line 20a or 20b is alternately switched every two periods of the rectangular wave voltage, or a voltage pause period is provided between the rectangular wave voltages as shown in FIG. 22. Note that, in the case of a method in which switching is performed by the switching element 22 during the voltage suspension period, it is possible to cope with a delay in switching of the switching element 22.
[0022]
In the switching lighting drive, the relationship between the length of the glass tube 16 (the length of the fluorescent lamp) and the output voltage of the power supply 21 is, as shown by the straight line A in FIG. On the other hand, since it can be set relatively low, wear due to the sputtering of the internal electrodes 18a and 18b is also suppressed, and the life of the lamp is extended. Further, the relationship between the length of the glass tube 16 (the length of the fluorescent lamp) and the current flowing through each of the internal electrodes 18a and 18b is, as shown by the straight line B in FIG. Has been greatly improved. In addition, an increase in the temperature of the tube wall near the internal electrodes 18a and 18b is also suppressed, and the risk of adversely affecting the peripheral portion is also reduced.
[0023]
FIGS. 6A and 6B are schematic diagrams for explaining a schematic configuration and a driving operation of the lighting means of the fluorescent lamp according to the second embodiment. 6A and 6B, the configuration of the fluorescent lamp 14 is basically the same as that of the first embodiment except that a power supply 21 for generating a periodic AC voltage is provided for each of the internal electrodes 18a and 18b. Since this is the same as the case, detailed description of the configuration is omitted. That is, in the case of the second embodiment, the internal electrodes 18a and 18b are periodically switched to the high voltage side of the power supplies 21a and 21b that generate an AC voltage (rectangular wave voltage) via the voltage supply lines 20a and 20b. Connected as possible. Further, the lead terminal 19a of the external electrode 19 is configured to be connected to the low voltage side of power supplies 21a and 21b that generate an AC voltage (rectangular wave voltage) via a voltage feed line 20c.
[0024]
In the fluorescent lamp 14 according to the second embodiment, for example, an AC voltage on the high voltage side of the power supply 21a is applied to the internal electrode 18a via the voltage supply line 20a and the lead terminal 17a, and the voltage supply line 20c and the lead terminal 19a. When an AC voltage on the low voltage side is selectively applied to the external electrode 19 via the respective electrodes, discharge by the two electrodes 18a and 19 starts, and a diffused positive column is generated on the internal electrode 18a side in the glass tube 16, and this is mainly caused. Ultraviolet light is converted into visible light by the phosphor film 15 on the inner wall surface of the glass tube 16 in the diffusion positive column region. On the other hand, the high voltage side AC voltage of the power supply 21b is applied to the internal electrode 18b via the voltage supply line 20b and the lead terminal 17b, and the low voltage side AC voltage is applied to the external electrode 19 via the voltage supply line 20c and the lead terminal 19a. When a voltage is selectively applied, discharge is started by the two electrodes 18b and 19, and a diffused positive column is generated on the side of the internal electrode 18b in the glass tube 16. The light is converted into visible light by the phosphor film 15 on the wall surface. That is, when the alternating voltage on the high voltage side of the power supplies 21a and 21b is periodically switched and applied alternately to the internal voltages 18a and 18b, a diffused positive column is formed over the entire length of the glass tube 16, as shown in FIG. As described above, uniform brightness and luminance can be obtained over the entire length.
[0025]
The timing of alternately switching the high-voltage side AC voltages of the power supplies 21a and 21b with respect to the internal voltages 18a and 18b is controlled by controlling the phases so that the power supplies 21a and 21b do not output simultaneously. That is, in the voltage waveforms of the power supplies 21a and 21b, for example, as shown in FIG. 7, rectangular AC voltages are generated intermittently at a predetermined cycle, and the generation timing is such that the power supply 21a generates the AC voltage. During this period, the power supply 21b stops generating the AC voltage. Conversely, while the power supply 21a stops generating the AC voltage, the power supply 21b generates the AC voltage. As described above, the voltage waveforms of the power supplies 21a and 21b are different from each other in the phase of their complete generation.
[0026]
The present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the invention. For example, the size and shape of the fluorescent lamp, the rectangular wave voltage to be applied, the shape and material and arrangement of the internal electrodes, and the shape, material and arrangement of the external electrodes and the like may be appropriately selected according to the use condition.
[0027]
【The invention's effect】
According to the present invention, a long discharge space is shared by a discharge between one internal electrode and an external electrode and a discharge between the other internal electrode and an external electrode, and the required diffusion is periodically and alternately performed. By adopting a configuration for generating a positive column, visually uniform light emission can be obtained over the entire length. That is, the emission length assigned to one internal electrode is set to be short. Therefore, uniform emission of a long lamp can be ensured at a low voltage, and a tube current (consumption current) flowing to one internal electrode can be reduced. ), Suppression of consumption of the internal electrode during lighting (extension of life), reduction of the temperature of the tube wall near the internal electrode, and the like are achieved. That is, it is possible to provide a backlight mechanism that can sufficiently cope with an increase in the size of a liquid crystal display device (display panel) and that can display a high-quality image.
[Brief description of the drawings]
FIGS. 1A and 1B are cross-sectional views schematically showing a schematic configuration and operation of a fluorescent lamp lighting method according to a first embodiment.
FIG. 2 is a characteristic diagram showing a luminance distribution in a lamp length direction by the fluorescent lamp lighting means according to the first embodiment.
FIGS. 3A, 3B, and 3C are timing charts showing modified examples of a rectangular wave voltage periodically applied to an internal electrode in the fluorescent lamp lighting means according to the first embodiment.
FIG. 4 is a characteristic diagram showing the relationship between the power supply voltage and the lamp length in the fluorescent lamp lighting means according to the first embodiment, in comparison with the case of a conventional lighting means.
FIG. 5 is a characteristic diagram showing the relationship between the current flowing through one internal electrode and the lamp length in the fluorescent lamp lighting means according to the first embodiment, in comparison with the case of a conventional lighting means.
FIGS. 6A and 6B are cross-sectional views schematically showing a schematic configuration and operation of a fluorescent lamp lighting method according to a second embodiment.
FIG. 7 is a timing chart showing a modification of the rectangular wave voltage periodically applied to the internal electrodes in the fluorescent lamp lighting means according to the second embodiment.
FIG. 8 is a sectional view showing a schematic configuration of a conventional fluorescent lamp lighting means.
FIG. 9 is a cross-sectional view schematically showing a state in which a diffused positive column is generated in a conventional fluorescent lamp lighting means.
FIG. 10 is a characteristic diagram showing a luminance distribution in a lamp length direction by a conventional fluorescent lamp lighting means.
[Explanation of symbols]
15 phosphor coating 16 glass tubes 17a, 17b internal electrode lead terminals 18a, 18b internal electrode 19 external electrode 19a external electrode lead terminals 20a, 20b, 20c voltage supply line 21 Power supply 22 Changeover switch element

Claims (6)

内壁面に蛍光体被膜が形成され、かつ少なくとも希ガスを含む放電媒体が封入されたガラス管、前記ガラス管の両端側にリード線端子を導出して封装された一対の内部電極、及び前記ガラス管外周面に形成された外部電極を有する蛍光ランプを交流電圧の印加によって点灯する方法であって、
前記交流電圧を発生する電源の一方の出力端を外部電極に接続し、前記電源の他方の出力端を一対の内部電極に所定の周期で切り替え接続することを特徴とする蛍光ランプの点灯方法。
A glass tube in which a phosphor film is formed on an inner wall surface and a discharge medium containing at least a rare gas is sealed, a pair of internal electrodes that are led out and sealed at both ends of the glass tube, and the glass A method of lighting a fluorescent lamp having an external electrode formed on the outer peripheral surface of the tube by applying an AC voltage,
A method for lighting a fluorescent lamp, comprising: connecting one output terminal of the power supply for generating an AC voltage to an external electrode, and connecting the other output terminal of the power supply to a pair of internal electrodes at a predetermined cycle.
前記所定の切り替え周期は、前記交流電圧の周期と同一またはその整数倍の周期であることを特徴とする請求項1記載の蛍光ランプの点灯方法。2. The fluorescent lamp lighting method according to claim 1, wherein the predetermined switching cycle is the same as the cycle of the AC voltage or a cycle that is an integral multiple thereof. 内壁面に蛍光体被膜が形成され、かつ少なくとも希ガスを含む放電媒体が封入されたガラス管、前記ガラス管の両端側にリード線端子を導出して封装された一対の内部電極、及び前記ガラス管外周面に形成された外部電極を有する蛍光ランプと、
前記蛍光ランプの一対の内部電極及び外部電極に印加する交流電圧を発生する交流電源と、
この交流電源によって発生する交流電圧を、前記一対の内部電極の一方と前記外部電極間、および、前記一対の内部電極の他方と外部電極間に所定の周期で交互に印加する切り替え手段と、
を有することを特徴とする蛍光ランプの点灯装置。
A glass tube in which a phosphor film is formed on an inner wall surface and a discharge medium containing at least a rare gas is sealed, a pair of internal electrodes that are led out and sealed at both ends of the glass tube, and the glass A fluorescent lamp having an external electrode formed on the outer peripheral surface of the tube,
An AC power supply that generates an AC voltage applied to a pair of internal electrodes and an external electrode of the fluorescent lamp;
A switching unit that alternately applies an AC voltage generated by the AC power supply at a predetermined cycle between one of the pair of internal electrodes and the external electrode, and between the other of the pair of internal electrodes and the external electrode,
A lighting device for a fluorescent lamp, comprising:
前記所定の切り替え周期は、前記交流電圧の周期と同一またはその整数倍の周期であることを特徴とする請求項3記載の蛍光ランプの点灯装置。4. The fluorescent lamp lighting device according to claim 3, wherein the predetermined switching cycle is the same as the cycle of the AC voltage or a cycle that is an integral multiple thereof. 内壁面に蛍光体被膜が形成され、かつ少なくとも希ガスを含む放電媒体が封入されたガラス管、前記ガラス管の両端側にリード線端子を導出して封装された一対の内部電極、及び前記ガラス管外周面に形成された外部電極を有する蛍光ランプと、
前記蛍光ランプの一方の内部電極及び外部電極間に所定の周期で間歇的に交流電圧を印加する第1の交流電源と、
前記蛍光ランプの他方の内部電極及び外部電極間に所定の周期で間歇的に交流電圧を印加する第2の交流電源とを備え、
前記第1の交流電源及び第2の交流電源は、前記間歇的な交流電圧発生の位相が互いに異なっていることを特徴とする蛍光ランプの点灯装置。
A glass tube in which a phosphor film is formed on an inner wall surface and a discharge medium containing at least a rare gas is sealed, a pair of internal electrodes that are led out and sealed at both ends of the glass tube, and the glass A fluorescent lamp having an external electrode formed on the outer peripheral surface of the tube,
A first AC power supply that applies an AC voltage intermittently at a predetermined cycle between one internal electrode and the external electrode of the fluorescent lamp;
A second AC power supply that applies an AC voltage intermittently at a predetermined cycle between the other internal electrode and the external electrode of the fluorescent lamp,
The lighting device for a fluorescent lamp, wherein the first AC power supply and the second AC power supply have different phases of the intermittent AC voltage generation.
前記第1の交流電源から交流電圧が供給されている期間は、前記第2の交流電源は交流電圧の発生を停止していることを特徴とする請求項5記載の蛍光ランプの点灯装置。The fluorescent lamp lighting device according to claim 5, wherein the second AC power supply stops generating the AC voltage during a period in which the AC voltage is supplied from the first AC power supply.
JP2002285791A 2002-09-30 2002-09-30 Fluorescent lamp lighting method and fluorescent lamp lighting device Pending JP2004127540A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002285791A JP2004127540A (en) 2002-09-30 2002-09-30 Fluorescent lamp lighting method and fluorescent lamp lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002285791A JP2004127540A (en) 2002-09-30 2002-09-30 Fluorescent lamp lighting method and fluorescent lamp lighting device

Publications (1)

Publication Number Publication Date
JP2004127540A true JP2004127540A (en) 2004-04-22

Family

ID=32279001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002285791A Pending JP2004127540A (en) 2002-09-30 2002-09-30 Fluorescent lamp lighting method and fluorescent lamp lighting device

Country Status (1)

Country Link
JP (1) JP2004127540A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094179A1 (en) * 2006-02-13 2007-08-23 Matsushita Electric Industrial Co., Ltd. Dielectric barrier discharge lamp device and backlight for liquid crystal
WO2007129506A1 (en) * 2006-05-09 2007-11-15 Panasonic Corporation Apparatus and method for lighting dielectric barrier discharge lamp
WO2008038527A1 (en) * 2006-09-27 2008-04-03 Panasonic Corporation Noble gas fluorescent lamp, lamp lighting device and liquid crystal display device
WO2020100733A1 (en) * 2018-11-13 2020-05-22 ウシオ電機株式会社 Excimer lamp light source device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007094179A1 (en) * 2006-02-13 2007-08-23 Matsushita Electric Industrial Co., Ltd. Dielectric barrier discharge lamp device and backlight for liquid crystal
WO2007129506A1 (en) * 2006-05-09 2007-11-15 Panasonic Corporation Apparatus and method for lighting dielectric barrier discharge lamp
WO2008038527A1 (en) * 2006-09-27 2008-04-03 Panasonic Corporation Noble gas fluorescent lamp, lamp lighting device and liquid crystal display device
WO2020100733A1 (en) * 2018-11-13 2020-05-22 ウシオ電機株式会社 Excimer lamp light source device
KR20210077784A (en) * 2018-11-13 2021-06-25 우시오덴키 가부시키가이샤 Excimer lamp light source device
KR102324022B1 (en) 2018-11-13 2021-11-09 우시오덴키 가부시키가이샤 Excimer lamp light source device
US11270879B2 (en) 2018-11-13 2022-03-08 Ushio Denki Kabushiki Kaisha Excimer lamp light source device
EP3882953A4 (en) * 2018-11-13 2022-10-19 Ushio Denki Kabushiki Kaisha Excimer lamp light source device

Similar Documents

Publication Publication Date Title
JP3622032B2 (en) Backlight and backlight driving method
TWI398191B (en) Rare gas fluorescent lamp lighting device
KR20030025214A (en) Light source device and liquid crystal display using the same
JP2004127540A (en) Fluorescent lamp lighting method and fluorescent lamp lighting device
US6636004B1 (en) Dimmable discharge lamp for dielectrically impeded discharges
JP2003178717A (en) Light source device and liquid crystal display using the same
JP5645012B2 (en) Discharge lamp lighting device, projector, and discharge lamp driving method
JP3540333B2 (en) Fluorescent lamp device
JP2006093083A (en) Mercury-free lamp and lamp equipment
JP3513590B2 (en) External electrode fluorescent lamp lighting method
EP0948030A2 (en) Rare gaseous discharge lamp, lighting circuit, and lighting device
JP2004281367A (en) Light source device and liquid crystal display using the same
JP2006338897A (en) Dielectric barrier discharge lamp lighting device and lighting method
KR101181142B1 (en) Lighting apparatus for rare gas fluorescent lamp
JP4209937B2 (en) Dielectric barrier discharge lamp lighting device and lighting method
JP2000040494A (en) Discharge lamp, discharge lamp lighting method, discharge lamp lighting device and lighting device
WO2004030421A1 (en) Discharge lamp lighting device
JP2002075674A (en) Discharge lamp drive
JP2003223868A (en) Light source device and liquid crystal display device
JP2006049236A (en) Discharge lamp device, light source device, and liquid crystal display device
JP2004127539A (en) Fluorescent lamp
JP2006024367A (en) Discharge lamp device, backlight and backlight for liquid crystal display element
JP2004172134A (en) Light source device and liquid crystal display using the same
JP2006338896A (en) Dielectric barrier discharge lamp lighting device and lighting method
JP4424496B2 (en) Light source device