[go: up one dir, main page]

JP2004126625A - Method for manufacturing double refraction film - Google Patents

Method for manufacturing double refraction film Download PDF

Info

Publication number
JP2004126625A
JP2004126625A JP2003424196A JP2003424196A JP2004126625A JP 2004126625 A JP2004126625 A JP 2004126625A JP 2003424196 A JP2003424196 A JP 2003424196A JP 2003424196 A JP2003424196 A JP 2003424196A JP 2004126625 A JP2004126625 A JP 2004126625A
Authority
JP
Japan
Prior art keywords
film
liquid crystal
birefringence
stretching
birefringent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003424196A
Other languages
Japanese (ja)
Inventor
Hiroyuki Yoshimi
吉見 裕之
Shinichi Sasaki
佐々木 伸一
Yasuo Fujimura
藤村 保夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2003424196A priority Critical patent/JP2004126625A/en
Publication of JP2004126625A publication Critical patent/JP2004126625A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a thin and light double refraction film capable of obtaining a liquid crystal display device of an STN type or the like with excellent contrast and visual field angle by an oriented film having optical rotatory power in addition to birefringence and capable of compensating even the twist of liquid crystal. <P>SOLUTION: In the method for manufacturing the double refraction film, the oriented film having the birefringence and the optical rotatory power is obtained by performing control to a film composed of polymer in different directions in a range where the angle change θ of the direction is indicated by an equation: 0+mπ<θ<90+mπ (where m is 0 or an integer ≥1) and performing two times or more of stretching processings. The double refraction film indicates characteristics that the chromaticity coordinates x,y form a circular track on a CIE chromaticity diagram in arranging it between two polarizing plates and rotating one polarizing plate, and the liquid crystal display device of the STN type or the like having an excellent achievement degree or the like of black-and-white display and color display by coloring prevention is obtained. <P>COPYRIGHT: (C)2004,JPO

Description

 本発明は、STN型等の液晶表示装置の着色防止やコントラストの向上等に有用な、複屈折性と旋光性を具備する複屈折性フィルムの製造方法に関する。 The present invention relates to a method for producing a birefringent film having birefringence and optical rotation, which is useful for preventing coloration and improving contrast of a liquid crystal display device of STN type or the like.

 低電圧、低消費電力でIC回路との直結が可能な液晶表示装置が、その表示機能の多様性や軽量化の可能性等に着目されてパーソナルコンピュータやワードプロセッサ、データターミナル装置等の種々の画面表示に使用されており、最近では大容量表示性や高速応答性に優れることよりTN型に代わるSTN型の液晶表示装置が主流となっている。 Liquid crystal display devices that can be directly connected to IC circuits with low voltage and low power consumption focus on the variety of display functions and the possibility of weight reduction, and various screens of personal computers, word processors, data terminal devices, etc. In recent years, liquid crystal display devices of the STN type have become the mainstream in place of the TN type because of their excellent large-capacity display performance and high-speed response.

 前記のスーパーツイステッドネマチック(STN)型液晶では、TN型に比べてそのツイスト角が大きいため液晶表示画像が青や黄系統に着色し、白黒表示ではコントラストや視認性を低下させ、またカラー表示を阻害する原因となっている。そのため、種々の着色防止手段が提案されている。 In the super twisted nematic (STN) type liquid crystal, the twist angle is larger than that in the TN type, so that the liquid crystal display image is colored in a blue or yellow system. In a black and white display, the contrast and visibility are reduced, and the color display is reduced. It is a cause of inhibition. Therefore, various coloring prevention means have been proposed.

 従来、前記の着色防止手段として延伸フィルムからなる位相差板を用いる方式が提案されている。しかしながら、従来の一般的な位相差板では旋光性を示さず、複屈折性による位相差に対処できるだけで液晶のツイストに対する補償効果に乏しく、高コントラストの液晶表示装置に対処できない問題点があった。 Conventionally, a method using a retardation plate made of a stretched film has been proposed as the coloring prevention means. However, a conventional general retardation plate does not exhibit optical rotation, and can only deal with a phase difference due to birefringence, but has a poor effect of compensating for twist of a liquid crystal, and cannot deal with a high-contrast liquid crystal display device. .

 複屈折性と旋光性を示す複屈折性フィルムとしては、1/2波長板からなる延伸フィルム、又は旋光性物質にて旋光性を付与した延伸フィルムが知られていた。しかしながら、前者では旋光子として機能する波長が実質的に単色光のみである難点があり、後者では旋光性の付与に旋光性物質を用いる必要のある難点があった。
特開平6−3525号公報 特開平6−27319号公報
As a birefringent film exhibiting birefringence and optical rotation, a stretched film composed of a half-wave plate or a stretched film imparted with optical rotation with a light-rotating substance has been known. However, the former has a drawback that the wavelength functioning as an optical rotator is substantially only monochromatic light, and the latter has a drawback that it is necessary to use an optical rotatory substance for imparting optical rotatory power.
JP-A-6-3525 JP-A-6-27319

 本発明は、複屈折性に加えて旋光性も具備して液晶のツイストに対しても補償できる延伸フィルムを得て、薄くて軽く、コントラストや視野角に優れるSTN型等の液晶表示装置を得ることができる複屈折性フィルムの製造方法の開発を課題とする。 The present invention obtains a stretched film having optical rotation in addition to birefringence and capable of compensating for liquid crystal twist, and obtains a thin and light liquid crystal display device such as an STN type display which is excellent in contrast and viewing angle. It is an object of the present invention to develop a method for producing a birefringent film that can be used.

 本発明は、ポリマーからなるフィルムに、異方向に、かつその方向の角度変化θを式:0+mπ<θ<90+mπ(ただしmは、0又は1以上の整数である)で表される範囲で制御して、2回以上の延伸処理を施すことにより複屈折性と旋光性を具備する延伸フィルムを得ることを特徴とする複屈折性フィルムの製造方法を提供するものである。 According to the present invention, a polymer film is controlled in a different direction and an angle change θ in the direction in a range represented by the formula: 0 + mπ <θ <90 + mπ (where m is 0 or an integer of 1 or more). It is another object of the present invention to provide a method for producing a birefringent film, wherein a stretched film having birefringence and optical rotation is obtained by performing a stretching treatment two or more times.

 本発明によれば、延伸処理にて旋光性も付与できて、複屈折性と旋光性を具備する薄くて軽く、液晶のツイストに対しても補償できる、延伸フィルムからなる製造容易な複屈折性フィルムを得ることができ、これは2枚の偏光板間に配置して一方の偏光板を回転させた場合に、その色度座標x,yがCIE色度図上で円型の軌跡を形成する特性を示し、それを用いて着色防止による白黒表示やカラー表示の達成度、コントラスト、視野角等に優れるSTN型等の液晶表示装置を得ることができる。 According to the present invention, an optical rotation property can be imparted by a stretching treatment, a thin and light film having a birefringence and an optical rotation property can be compensated for a twist of a liquid crystal, and a birefringence which is easily manufactured from a stretched film and is easy to manufacture. A film can be obtained, which is arranged between two polarizing plates, and when one of the polarizing plates is rotated, its chromaticity coordinates x and y form a circular locus on the CIE chromaticity diagram. With the use of such a liquid crystal display device, it is possible to obtain an STN type liquid crystal display device which is excellent in the degree of achieving black and white display and color display by preventing coloring, contrast, viewing angle, and the like.

 本発明の製造方法は、ポリマーからなるフィルムに、異方向に、かつその方向の角度変化θを式:0+mπ<θ<90+mπ(ただしmは、0又は1以上の整数である)で表される範囲で制御して、2回以上の延伸処理を施すことにより複屈折性と旋光性を具備する延伸フィルムからなる複屈折性フィルムを得るものである。 In the production method of the present invention, an angle change θ in a different direction and in a different direction on a film made of a polymer is represented by the formula: 0 + mπ <θ <90 + mπ (where m is 0 or an integer of 1 or more). A birefringent film made of a stretched film having birefringence and optical rotation is obtained by performing stretching treatment twice or more while controlling within the range.

 前記した異方向に2回以上の延伸処理を施すことにより、複屈折性に加えて旋光性も具備する延伸フィルムが得られる。これは、1回目の延伸処理による分子配向に加えて、別の方向への2回目以降の延伸処理による新たな分子配向が付加され、その異方向の延伸処理にてフィルム内に蓄積された別方向の分子配向がその屈折率の最大方向に基づいて延伸フィルムの厚さ方向において変化し、その分子配向の方向変化が旋光性を生じさせるものと思われる。 施 す By performing the stretching treatment two or more times in the different directions, a stretched film having optical rotation in addition to birefringence can be obtained. This is because, in addition to the molecular orientation by the first stretching process, a new molecular orientation by the second and subsequent stretching processes in another direction is added, and another molecular orientation accumulated in the film by the stretching process in the different direction is performed. It is considered that the molecular orientation in the direction changes in the thickness direction of the stretched film based on the maximum direction of the refractive index, and the change in the direction of the molecular orientation causes optical rotation.

 本発明による複屈折性フィルム、すなわち複屈折性と旋光性を具備する延伸フィルムは、それを2枚の偏光板間に配置して一方の偏光板を回転させた場合に、その色度座標x,yがCIE色度図上で円や楕円などの円型の軌跡を形成する。その軌跡の例を図1に示した。色度図の内部に示した、光源の色度座標点を囲む楕円形が円型軌跡の一例である。 The birefringent film according to the present invention, that is, the stretched film having birefringence and optical rotation, has its chromaticity coordinate x when placed between two polarizing plates and one of the polarizing plates is rotated. , Y form a circular locus such as a circle or an ellipse on the CIE chromaticity diagram. FIG. 1 shows an example of the locus. An ellipse surrounding the chromaticity coordinate point of the light source shown inside the chromaticity diagram is an example of a circular locus.

 前記において色度座標x,yの軌跡は、JIS Z 8701などによる公知の操作に基づいて求めることができる。すなわち例えば図2の如く、ハロゲンランプからなるC光源11、グラントムソンプリズムからなる偏光板12,13及びフォトマル14からなる光学系における偏光板12,13の間に、複屈折性フィルム1を配置し、一方の偏光板、例えば偏光板13を所定角度、例えば10度ずつ回転させてその角度ごとに分光透過率を測定し、その測定値からJIS Z 8701による公式に基づいてXYZ表色系における三刺激値を求め、それより各回転角における色度座標を算出して、それをxy色度図上にプロットする方法などにより当該軌跡を視覚化することができる。 に お い て In the above description, the locus of the chromaticity coordinates x, y can be obtained based on a known operation according to JIS Z 8701 or the like. That is, as shown in FIG. 2, for example, the birefringent film 1 is disposed between the C light source 11 composed of a halogen lamp, the polarizers 12 and 13 composed of a Glan-Thompson prism, and the polarizers 12 and 13 in an optical system composed of a photomultiplier 14. Then, one of the polarizers, for example, the polarizer 13 is rotated at a predetermined angle, for example, 10 degrees, and the spectral transmittance is measured at each angle, and the measured value is used in the XYZ color system based on the formula according to JIS {Z} 8701. The trajectory can be visualized by obtaining tristimulus values, calculating chromaticity coordinates at each rotation angle from the tristimulus values, and plotting the chromaticity coordinates on an xy chromaticity diagram.

 ポリマーフィルムに対する異方向の延伸処理は、一軸や二軸等の適宜な方式で行うことができる。先の延伸処理による分子配向を残しつつ、後の延伸処理による別方向の新たな分子配向の付加は、フィルムを形成するポリマーのガラス転移温度以下に延伸温度を設定して、先の延伸処理における延伸温度よりも低い延伸温度で後の延伸処理を行う方式にて効率的に行いうるが、この方式に限定されず、適宜な方式で分子配向を付与してよい。 延伸 Stretching of the polymer film in a different direction can be performed by an appropriate method such as uniaxial or biaxial. The addition of a new molecular orientation in another direction by the subsequent stretching process, while maintaining the molecular orientation by the preceding stretching process, is performed by setting the stretching temperature to be equal to or lower than the glass transition temperature of the polymer forming the film. It can be efficiently performed by a method in which a subsequent stretching treatment is performed at a stretching temperature lower than the stretching temperature, but is not limited to this method, and molecular orientation may be imparted by an appropriate method.

 異方向の延伸処理において、その異方向としての、先後の延伸処理おける延伸方向の角度変化θは、式:0+mπ<θ<90+mπ(ただしmは、0又は1以上の整数である)で表される範囲で制御される。一軸延伸の場合には、先の延伸軸に対する角度変化が45〜60度となる方向に後の一軸延伸処理を施して、先の延伸処理による分子配向とは別方向の新たな分子配向を付加し、複屈折性と旋光性を示す特性を付与する方式が好ましい。 In the stretching process in the different direction, the angle change θ in the stretching direction in the subsequent stretching process as the different direction is represented by the formula: 0 + mπ <θ <90 + mπ (where m is 0 or an integer of 1 or more). It is controlled within the range. In the case of uniaxial stretching, a subsequent uniaxial stretching process is performed in a direction in which the angle change with respect to the previous stretching axis becomes 45 to 60 degrees, and a new molecular orientation different from the molecular orientation by the previous stretching process is added. However, a method of imparting properties showing birefringence and optical rotation is preferable.

 前記の式を満足する、延伸方向の角度変化θをもたせた異方向の延伸処理は、フィルムの厚さ方向において屈折率の最大方向(分子配向)を効率よく変化させる点、従って前記の如く旋光性を効率よく付与する点よりも有利である。得られる延伸フィルムにおける複屈折性ないし位相差や旋光性等は、延伸倍率や延伸方向等の延伸条件を変えることにより制御することができる。 Stretching in a different direction having an angle change θ in the stretching direction, which satisfies the above equation, effectively changes the maximum direction (molecular orientation) of the refractive index in the thickness direction of the film. This is more advantageous than efficiently giving the property. The birefringence, retardation, optical rotation and the like of the obtained stretched film can be controlled by changing stretching conditions such as stretching ratio and stretching direction.

 延伸フィルムの製造に際しては、必要に応じ熱収縮性フィルムの接着下に延伸処理することもできる。一軸や二軸等の普通の延伸処理ではフィルム面に対して略平行な方向に分子配向するが、熱収縮性フィルム接着下での延伸処理ではフィルム面に対して傾斜する方向に分子配向させることもできる。従って延伸フィルム内における分子配向の方向は、フィルム面に対して平行であってもよいし、傾斜していてもよい。 製造 In the production of a stretched film, a stretching treatment can be carried out while adhering a heat-shrinkable film, if necessary. In normal stretching such as uniaxial or biaxial, the molecules are oriented in a direction substantially parallel to the film surface, but in the stretching process under heat-shrinkable film bonding, the molecules are oriented in a direction inclined to the film surface. You can also. Therefore, the direction of molecular orientation in the stretched film may be parallel to the film surface or may be inclined.

 複屈折性フィルム(延伸フィルム)を形成するポリマーとしては、光学的に透明なフィルムを形成しうる適宜なものを用いうる。好ましくは、固有の複屈折値が大きくて溶液製膜により均質なフィルムを形成しうるポリマーである。ポリマーは、ホモポリマー、コポリマー、それらの誘導体、ブレンド物などの適宜な形態で用いることができる。 ポ リ マ ー As the polymer forming the birefringent film (stretched film), an appropriate polymer capable of forming an optically transparent film can be used. Preferably, it is a polymer having a large intrinsic birefringence value and capable of forming a homogeneous film by solution casting. The polymer can be used in an appropriate form such as a homopolymer, a copolymer, a derivative thereof, or a blend.

 好ましく用いうるポリマーとしては、例えばポリカーボネート、ポリアリレート、ポリスルホン、ポリエチレンテレフタレート、ポリアミド、ポリイミド、ポリエーテルスルホンなどがあげられる。就中、ポリカーボネート系高分子、ポリアリレート系高分子、ポリスルホン系高分子、ポリエステル系高分子などは特に好ましく用いうる。 ポ リ マ ー Polymers that can be preferably used include, for example, polycarbonate, polyarylate, polysulfone, polyethylene terephthalate, polyamide, polyimide, polyethersulfone and the like. Above all, a polycarbonate polymer, a polyarylate polymer, a polysulfone polymer, a polyester polymer, and the like can be particularly preferably used.

 好ましい複屈折性フィルムは、70%以上の光透過率を示して無彩色のものである。また液晶表示装置の製造工程などの如く、加熱処理等の環境条件で分子配向が緩和されるおそれのある場合などには、その緩和防止の点などよりガラス転移温度が105℃以上、就中110℃以上のポリマーからなる複屈折性フィルムが好ましい。 The preferred birefringent film is an achromatic color having a light transmittance of 70% or more. Further, when there is a possibility that molecular orientation may be relaxed by environmental conditions such as heat treatment as in a manufacturing process of a liquid crystal display device, etc., the glass transition temperature is 105 ° C. or more, especially 110 ° C. to prevent the relaxation. A birefringent film composed of a polymer having a temperature of at least ° C is preferred.

 本発明による複屈折性フィルムは、それを用いて液晶のツイスト等による光学特性を高度に補償でき、STN型液晶等の複屈折性と旋光性を示す液晶セルの視認性を補償することができる。これは、延伸フィルム(複屈折性フィルム)が複屈折性と旋光性を具備し、それに基づいて上記CIE色度図上で図9に例示のSTN型液晶等の場合と同様に円型の軌跡を示すものであること、特に混色系として波長幅を有する旋光特性を具備することによるものと思われる。 INDUSTRIAL APPLICABILITY The birefringent film according to the present invention can highly compensate optical characteristics due to twisting of liquid crystal and the like, and can compensate the visibility of a liquid crystal cell exhibiting birefringence and optical rotatory power such as STN type liquid crystal. . This is because the stretched film (birefringent film) has birefringence and optical rotatory power, and on the basis thereof, a circular locus on the CIE chromaticity diagram as in the case of the STN type liquid crystal illustrated in FIG. It is thought that this is due in particular to having optical rotation characteristics having a wavelength width as a color mixing system.

 従来の例えば一軸延伸フィルムや同時又は逐次の二軸延伸フィルムの如く、複屈折性のみを具備して旋光性は具備しない複屈折性フィルムが当該CIE色度図上に示す軌跡は、図8の如く直線である。従って当該CIE色度図上で円型の軌跡を示すことは、複屈折性に加えて旋光性も具備することに基づく特性であると思われる。 A conventional birefringent film having only birefringence and no optical rotation, such as a conventional uniaxially stretched film or a simultaneously or sequentially biaxially stretched film, has a locus on the CIE chromaticity diagram shown in FIG. It is a straight line. Therefore, it is considered that the fact that a circular locus is shown on the CIE chromaticity diagram is a characteristic based on having optical rotation in addition to birefringence.

 本発明による複屈折性フィルムは、単層フィルムを延伸処理してなる単層の延伸フィルムからなることが一般的であるが、非接着又は接着の複層フィルムを延伸処理してなる単層又は複層の延伸フィルムからなっていてもよい。 The birefringent film according to the present invention is generally a single-layer stretched film obtained by stretching a single-layer film, but a single-layer stretched non-adhesive or adhesive multilayer film or It may be composed of a multilayer stretched film.

 従って複屈折性フィルムは、単層の延伸フィルムからなっていてもよいし、図3の如く同種又は異種のフィルム15,16の接着層2を介した重畳物などとして形成されていてもよい。その重畳数は任意であり、重畳数や光軸の配置角度などにより位相差等の光学特性を制御することができる。なお複屈折性フィルムの厚さは、位相差等の光学特性に応じて適宜に決定することができる。一般には、柔軟性等の点より単層フィルムに基づき500μm以下、就中200μm以下の厚さとされる。 Therefore, the birefringent film may be composed of a single-layer stretched film, or may be formed as a superimposed product of the same or different films 15, 16 via the adhesive layer 2 as shown in FIG. The number of superpositions is arbitrary, and optical characteristics such as phase difference can be controlled by the number of superpositions and the arrangement angle of the optical axis. Note that the thickness of the birefringent film can be appropriately determined according to optical characteristics such as retardation. Generally, the thickness is 500 μm or less, especially 200 μm or less based on a single-layer film in terms of flexibility and the like.

 また複屈折性フィルムは、その実用に際して例えば位相差フィルムや厚さ方向に分子配向した視角特性改善用のフィルムの如き別種の複屈折性フィルム、あるいは保護フィルムや偏光板等の他の光学素子の1種又は2種以上と重畳して用いることもできる。重畳の組合せは、液晶表示装置の視認性の補償等に要求される光学特性などに応じて適宜に決定することができる。 Further, the birefringent film, in its practical use, for example, a different type of birefringent film such as a retardation film or a film for improving viewing angle characteristics molecularly oriented in the thickness direction, or other optical elements such as a protective film or a polarizing plate. One type or two or more types can be used in an overlapping manner. The combination of the superpositions can be appropriately determined according to the optical characteristics required for compensating the visibility of the liquid crystal display device and the like.

 ちなみに複屈折性フィルムと偏光板を組合せることで、楕円偏光板を形成することができる。図4に接着層2を介して複屈折性フィルム1と偏光板3を積層してなる楕円偏光板を例示した。 Incidentally, an elliptically polarizing plate can be formed by combining a birefringent film and a polarizing plate. FIG. 4 illustrates an elliptically polarizing plate obtained by laminating the birefringent film 1 and the polarizing plate 3 via the adhesive layer 2.

 偏光板としては、偏光フィルムなどの適宜なものを用いることができ、特に限定はない。一般には、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルムの如き親水性高分子フィルムにヨウ素及び/又は二色性染料を吸着させて延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物の如きポリエン配向フィルムなどからなる偏光フィルムが用いられる。偏光フィルムの厚さは通例5〜800μmであるが、これに限定されない。 As the polarizing plate, an appropriate one such as a polarizing film can be used, and there is no particular limitation. In general, iodine and / or a dichroic dye is adsorbed and stretched on a hydrophilic polymer film such as a polyvinyl alcohol-based film, a partially formalized polyvinyl alcohol-based film, and an ethylene / vinyl acetate copolymer-based partially saponified film. A polarizing film made of a polyene oriented film, such as a dehydrated product of polyvinyl alcohol or a dehydrochlorinated product of polyvinyl chloride, is used. The thickness of the polarizing film is generally 5 to 800 μm, but is not limited thereto.

 偏光板は、偏光フィルムの片側又は両側に透明保護層を有するものであってもよい。透明保護層の形成材としては、透明性、機械的強度、熱安定性、水分遮蔽性などに優れるものが好ましく用いうる。その代表例としては、ポリエステル系樹脂、ポリエーテルスルホン系樹脂、ポリカーボネート系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリオレフィン系樹脂、アクリル系樹脂、アセテート系樹脂の如きポリマーなどがあげられる。透明保護層は、上記の複屈折性フィルムに兼ねさせることもできる。 The polarizing plate may have a transparent protective layer on one or both sides of the polarizing film. As the material for forming the transparent protective layer, those having excellent transparency, mechanical strength, heat stability, moisture shielding property, and the like can be preferably used. Typical examples thereof include polymers such as polyester resin, polyether sulfone resin, polycarbonate resin, polyamide resin, polyimide resin, polyolefin resin, acrylic resin, and acetate resin. The transparent protective layer can also serve as the birefringent film.

 複屈折性フィルム同士やそれと偏光板などを接着するための透明な接着剤や粘着剤等の種類については特に限定はないが、各機能フィルムの光学特性の変化防止等の点より、硬化や乾燥の際に高温のプロセスを要しないものが好ましく、長時間の硬化処理や乾燥時間を要しないものが望ましい。 There is no particular limitation on the type of transparent adhesive or pressure-sensitive adhesive for bonding the birefringent films to each other or the polarizing plate and the like, but curing and drying are performed in order to prevent a change in the optical characteristics of each functional film. In this case, those which do not require a high-temperature process are preferred, and those which do not require a long curing treatment or drying time are desirable.

 楕円偏光板には、その複屈折性フィルムや偏光板ないし透明保護層を紫外線吸収剤、例えばサリチル酸エステル系化合物、ベンゾフェノン系化合物、ベンゾトリアゾール系化合物、シアノアクリレート系化合物、ニッケル錯塩系化合物等で処理する方式などにより紫外線吸収能をもたせることもできる。 The elliptically polarizing plate has its birefringent film, polarizing plate or transparent protective layer treated with an ultraviolet absorber, for example, a salicylic acid ester compound, a benzophenone compound, a benzotriazole compound, a cyanoacrylate compound, a nickel complex salt compound, or the like. UV absorbing ability can be imparted by a method such as the following.

 液晶表示装置の形成に際しては、本発明による複屈折性フィルムを液晶セルと偏光板の間に配置することが表示装置の視認性の補償性の点などより好ましい。図5にその例を示した。4が液晶セルである。複屈折性フィルムは、液晶セルの片側又は両側における偏光板との間に配置することが好ましい。 (4) In forming a liquid crystal display device, it is preferable to arrange the birefringent film according to the present invention between the liquid crystal cell and the polarizing plate from the viewpoint of compensating the visibility of the display device. FIG. 5 shows an example. 4 is a liquid crystal cell. The birefringent film is preferably disposed between the polarizing plate on one side or both sides of the liquid crystal cell.

 液晶セルとしては適宜なものを用いうるが、本発明による複屈折性フィルムは、STN型の如く複屈折性と旋光性を示す液晶セルに特に有利に用いうる。視認性の補償などの点より好ましく用いうる複屈折性フィルムは、液晶セルによる旋光型の複屈折を可及的に補償するものである。これにより、着色を防止してコントラストや視角特性が改良された白黒表示やカラー表示を実現することができる。 Any liquid crystal cell can be used, but the birefringent film according to the present invention can be particularly advantageously used for a liquid crystal cell exhibiting birefringence and optical rotation such as STN type. The birefringent film that can be preferably used from the viewpoint of compensating the visibility and the like is one that compensates as much as possible the optical rotation type birefringence due to the liquid crystal cell. Thus, black-and-white display and color display with improved contrast and viewing angle characteristics by preventing coloring can be realized.

 重量平均分子量が8万のポリカーボネートの20重量%メチレンクロライド溶液をステンレスベルト上に流延し、残留揮発分が3%になるまで乾燥させたのち剥離して得たフィルムを158℃で一軸延伸し、ついでその延伸軸に対して45度の方向に150℃で再度一軸延伸して、複屈折性と旋光性を具備する延伸フィルムからなる複屈折性フィルムを得た。 A 20% by weight methylene chloride solution of polycarbonate having a weight average molecular weight of 80,000 was cast on a stainless steel belt, dried until the residual volatile matter became 3%, and then peeled off, and a film obtained was uniaxially stretched at 158 ° C. Then, the film was uniaxially stretched again at 150 ° C. in a direction at 45 ° to the stretching axis to obtain a birefringent film comprising a stretched film having birefringence and optical rotation.

 重量平均分子量が8万のポリカーボネートの20重量%メチレンクロライド溶液をステンレスベルト上に流延し、残留揮発分が3%になるまで乾燥させたのち剥離して得たフィルムを158℃で一軸延伸し、それよりその延伸軸に対して60度の角度方向に打抜いた打抜きフィルムを熱収縮性フィルムで粘着層を介して接着挟持し、ロール状に丸めた状態で153℃で一軸延伸しその熱収縮性フィルムを剥がして、複屈折性と旋光性を具備する延伸フィルムからなる複屈折性フィルムを得た。 A 20% by weight methylene chloride solution of polycarbonate having a weight average molecular weight of 80,000 was cast on a stainless steel belt, dried until the residual volatile matter became 3%, and then peeled off, and a film obtained was uniaxially stretched at 158 ° C. Then, a punched film punched at an angle of 60 degrees with respect to the stretching axis is adhered and sandwiched with a heat-shrinkable film via an adhesive layer, rolled into a roll, and then uniaxially stretched at 153 ° C. The shrinkable film was peeled off to obtain a birefringent film composed of a stretched film having birefringence and optical rotation.

 重量平均分子量が8万のポリカーボネートの20重量%メチレンクロライド溶液をステンレスベルト上に流延し、残留揮発分が3%になるまで乾燥させたのち剥離して得たフィルムを熱収縮性フィルムで粘着層を介して接着挟持し、158℃で一軸延伸した後それより熱収縮性フィルムを剥がし、得られたフィルムをその延伸軸に対して60度の方向に150℃で一軸延伸して、複屈折性と旋光性を具備する延伸フィルムからなる複屈折性フィルムを得た。 A 20% by weight methylene chloride solution of polycarbonate having a weight average molecular weight of 80,000 is cast on a stainless steel belt, dried until the residual volatile content becomes 3%, and then peeled off, and the obtained film is adhered with a heat shrinkable film. After heat-shrinkable film is peeled off from it after stretching uniaxially at 158 ° C, the resulting film is uniaxially stretched at 150 ° C in the direction of 60 ° to its stretching axis, and birefringent A birefringent film comprising a stretched film having properties and optical rotation was obtained.

比較例1
 重量平均分子量が8万のポリカーボネートの20重量%メチレンクロライド溶液をステンレスベルト上に流延し、残留揮発分が3%になるまで乾燥させたのち剥離して得たフィルムを158℃で一軸延伸して、複屈折性は具備するが旋光性は具備しない一軸延伸フィルムを得た。
Comparative Example 1
A 20% by weight methylene chloride solution of polycarbonate having a weight average molecular weight of 80,000 was cast on a stainless steel belt, dried until the residual volatile content became 3%, and then peeled off, and a film obtained was uniaxially stretched at 158 ° C. Thus, a uniaxially stretched film having birefringence but not optical rotation was obtained.

比較例2
 重量平均分子量が8万のポリカーボネートの20重量%メチレンクロライド溶液をステンレスベルト上に流延し、残留揮発分が3%になるまで乾燥させたのち剥離して得たフィルムを158℃で縦横(直交)方向に同時二軸延伸して、複屈折性は具備するが旋光性は具備しない二軸延伸フィルムを得た。
Comparative Example 2
A 20% by weight methylene chloride solution of polycarbonate having a weight average molecular weight of 80,000 was cast on a stainless steel belt, dried until the residual volatile matter became 3%, and then peeled off. ) Direction to obtain a biaxially stretched film having birefringence but not optical rotation.

比較例3
 重量平均分子量が8万のポリカーボネートの20重量%メチレンクロライド溶液をステンレスベルト上に流延し、残留揮発分が3%になるまで乾燥させたのち剥離して得たフィルムを158℃で縦横(直交)方向に逐次二軸延伸して、複屈折性は具備するが旋光性は具備しない二軸延伸フィルムを得た。
Comparative Example 3
A 20% by weight methylene chloride solution of polycarbonate having a weight average molecular weight of 80,000 was cast on a stainless steel belt, dried until the residual volatile matter became 3%, and then peeled off. The film was biaxially stretched successively in the direction) to obtain a biaxially stretched film having birefringence but not optical rotation.

                評価試験
xy色度図
 実施例、比較例1で得た複屈折性フィルム又は一軸延伸フィルムをTFF−120AFT(オーク製作所製)における偏光板間に配置し色度測定モードにて分光透過率を測定した。測定は、一方の偏光板をその吸収軸が45度となるように設定して、それに試料を延伸軸が0度となるように設置し、検光子側の偏光板をその吸収軸に基づいて0〜180度の範囲で10度刻みで回転させ、各設定角度での分光透過率より色度を求めた。
Evaluation test xy chromaticity diagram The birefringent film or uniaxially stretched film obtained in Examples and Comparative Example 1 was placed between polarizing plates in TFF-120AFT (manufactured by Oak Manufacturing Co., Ltd.), and the spectral transmittance was measured in a chromaticity measurement mode. did. In the measurement, one of the polarizing plates was set so that its absorption axis was at 45 degrees, the sample was set thereon so that the stretching axis was at 0 degrees, and the analyzer-side polarizing plate was set based on its absorption axis. The chromaticity was determined from the spectral transmittance at each set angle by rotating the lens at intervals of 10 degrees in the range of 0 to 180 degrees.

 前記の結果より作成したxy色度図を図1及び図6〜図8に示した。図1は実施例2の場合、図6は実施例1の場合、図7は実施例3の場合、図8は比較例1の場合である。各xy色度図より、実施例の場合、従って複屈折性と旋光性を具備するものの場合には、色度座標x,yが光源の色度座標点を包囲する状態で円型の軌跡を示していることが判る(図1、図6、図7)。 X The xy chromaticity diagrams prepared from the above results are shown in FIGS. 1 and 6 to 8. 1 shows the case of Example 2, FIG. 6 shows the case of Example 1, FIG. 7 shows the case of Example 3, and FIG. 8 shows the case of Comparative Example 1. According to each xy chromaticity diagram, in the case of the embodiment, and in the case of the one having birefringence and optical rotation, a circular locus is formed while the chromaticity coordinates x and y surround the chromaticity coordinate point of the light source. This can be seen from FIGS. 1, 6, and 7.

 一方、一軸延伸フィルムからなる比較例1の場合、従って複屈折性は具備するが旋光性は具備しないものの場合における当該軌跡は、直線であることが判る(図8)。 On the other hand, in the case of Comparative Example 1 consisting of a uniaxially stretched film, the locus in the case of having birefringence but not having optical rotation was found to be a straight line (FIG. 8).

 前記した円型と直線との軌跡結果の相違は、複屈折性フィルムが複屈折性に加えて旋光性も具備しているか否かの違いに基づくと思われる。すなわち複屈折性物質がニコル間で示す色偏光理論(例えば「応用光学」、久保田宏著、岩波全書発行、P163)より、前記した旋光性の具否の違いに基づいて当該軌跡の相違が生じていると推定することができる。 相違 The difference in the results of the trajectory between the circular shape and the straight line is considered to be based on whether the birefringent film has optical rotation in addition to the birefringence. That is, according to the color polarization theory (for example, “Applied optics”, written by Hiroshi Kubota, published by Iwanami Zensho, p. 163) between the Nicols of the birefringent substance, the difference in the trajectory occurs based on the difference in the optical rotation. It can be estimated that.

視認性
 図9に示した如く色度座標x,yが円型の軌跡を示すSTN型液晶セルの視認側に実施例、比較例1で得た複屈折性フィルム又は一軸延伸フィルムを配置し、その配置体の両側に偏光フィルム(日東電工社製、NPF−EG1225DU)をセットして液晶表示装置を形成し、駆動状態と非駆動状態における光の透過率を測定して、その比をコントラストとして算出した。また、そのコントラストが5以上となる視野角を調べた。
Visibility As shown in FIG. 9, the birefringent film or uniaxially stretched film obtained in Example and Comparative Example 1 was arranged on the viewing side of an STN type liquid crystal cell in which chromaticity coordinates x and y showed a circular locus, A polarizing film (NPF-EG1225DU, manufactured by Nitto Denko Corporation) was set on both sides of the arrangement to form a liquid crystal display device, and the transmittance of light in a driven state and a non-driven state was measured, and the ratio was used as a contrast. Calculated. Further, the viewing angle at which the contrast becomes 5 or more was examined.

 前記の結果を次表に示した。

           実施例1 実施例2 実施例3 比較例1
    コントラスト  15   23   25   10
    視野角(度) −28〜30 −37〜50 −38〜47 −25〜27
The results are shown in the following table.

Example 1 Example 2 Example 3 Comparative Example 1
Contrast 15 23 25 10
Viewing angle (degrees) -28 to 30 -37 to 50 -38 to 47 -25 to 27

 表より、本発明による複屈折性フィルムを用いることで、コントラストに優れる液晶表示装置を形成できることが判る。また熱収縮性フィルムを用いて延伸処理したフィルムの如く、色度座標x,yの当該軌跡が液晶セルの当該軌跡に近似するほど視野角特性も向上するなど、より高度の補償を達成できることが判る。 From the table, it can be seen that a liquid crystal display device having excellent contrast can be formed by using the birefringent film according to the present invention. Further, as in a film stretched using a heat-shrinkable film, a higher degree of compensation can be achieved such that the viewing angle characteristic is improved as the locus of the chromaticity coordinates x and y approaches the locus of the liquid crystal cell. I understand.

 なお比較例2、3で得た二軸延伸フィルムについても前記に準じてxy色度図を作成すると共に、STN型液晶セルに適用してその視認性を調べたところ、xy色度図上での当該軌跡は、図8の比較例1の場合と同様に直線であった。また視認性についてもそのコントラストや視野角は、比較例1と略同じ値であった。 The biaxially stretched films obtained in Comparative Examples 2 and 3 were also prepared with xy chromaticity diagrams according to the above, and applied to STN-type liquid crystal cells to check their visibility. Is a straight line as in the case of Comparative Example 1 in FIG. The contrast and the viewing angle of the visibility were almost the same as those of Comparative Example 1.

実施例2で得た複屈折性フィルムのxy色度図Xy chromaticity diagram of the birefringent film obtained in Example 2 色度の測定方法の説明図Illustration of chromaticity measurement method 重畳型の複屈折性フィルム例の断面図Sectional view of an example of a superimposed birefringent film 楕円偏光板例の断面図Sectional view of elliptically polarizing plate example 液晶表示装置例の断面図Sectional view of liquid crystal display device example 実施例1で得た複屈折性フィルムのxy色度図Xy chromaticity diagram of the birefringent film obtained in Example 1 実施例3で得た複屈折性フィルムのxy色度図Xy chromaticity diagram of the birefringent film obtained in Example 3 比較例1で得た一軸延伸フィルムのxy色度図Xy chromaticity diagram of the uniaxially stretched film obtained in Comparative Example 1 STN型液晶セルのxy色度図Xy chromaticity diagram of STN type liquid crystal cell

符号の説明Explanation of reference numerals

    1,15,16:複屈折性フィルム
    2:接着層
    3:偏光板
    4:液晶セル


         特許出願人     日東電工株式会社
         代 理 人     藤 本  勉
1, 15, 16: birefringent film 2: adhesive layer 3: polarizing plate 4: liquid crystal cell


Patent applicant Nitto Denko Corporation Daito Tsutomu Fujimoto

Claims (2)

 ポリマーからなるフィルムに、異方向に、かつその方向の角度変化θを式:0+mπ<θ<90+mπ(ただしmは、0又は1以上の整数である)で表される範囲で制御して、2回以上の延伸処理を施すことにより複屈折性と旋光性を具備する延伸フィルムを得ることを特徴とする複屈折性フィルムの製造方法。 In a film made of a polymer, an angle change θ in different directions and in the directions is controlled in a range represented by the formula: 0 + mπ <θ <90 + mπ (where m is an integer of 0 or 1 or more), and 2 A method for producing a birefringent film, wherein a stretched film having birefringence and optical rotation is obtained by performing a stretching treatment at least twice.  請求項1において、延伸フィルムがそれを2枚の偏光板間に配置して一方の偏光板を回転させた場合に、その色度座標x,yがCIE色度図上で円型の軌跡を形成するものである複屈折性フィルムの製造方法。
In claim 1, when the stretched film is disposed between two polarizing plates and one of the polarizing plates is rotated, its chromaticity coordinates x and y have a circular locus on the CIE chromaticity diagram. A method for producing a birefringent film to be formed.
JP2003424196A 2003-12-22 2003-12-22 Method for manufacturing double refraction film Withdrawn JP2004126625A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003424196A JP2004126625A (en) 2003-12-22 2003-12-22 Method for manufacturing double refraction film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003424196A JP2004126625A (en) 2003-12-22 2003-12-22 Method for manufacturing double refraction film

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7100776A Division JPH08271732A (en) 1995-03-31 1995-03-31 Double refraction film, elliptically polarizing plate and liquid crystal display device

Publications (1)

Publication Number Publication Date
JP2004126625A true JP2004126625A (en) 2004-04-22

Family

ID=32291262

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003424196A Withdrawn JP2004126625A (en) 2003-12-22 2003-12-22 Method for manufacturing double refraction film

Country Status (1)

Country Link
JP (1) JP2004126625A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007030466A (en) * 2005-07-29 2007-02-08 Hirano Giken Kogyo Kk Film stretching device and method for producing oriented film
JP2008242426A (en) * 2006-12-22 2008-10-09 Nippon Shokubai Co Ltd Manufacturing method of retardation film
JP2010058495A (en) * 2008-08-04 2010-03-18 Fujifilm Corp Optical film manufacturing method, optical film, polarizing plate, optical compensation film, antireflection film, and liquid crystal display device
JP2012150513A (en) * 2012-04-13 2012-08-09 Nippon Zeon Co Ltd Stretched film and method of manufacturing stretched film
JP2014186355A (en) * 2008-08-04 2014-10-02 Fujifilm Corp Optical film, polarizing plate, optical compensating film, anti-reflection film and liquid crystal display device
CN107561781A (en) * 2013-08-27 2018-01-09 群创光电股份有限公司 Display device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007030466A (en) * 2005-07-29 2007-02-08 Hirano Giken Kogyo Kk Film stretching device and method for producing oriented film
JP2008242426A (en) * 2006-12-22 2008-10-09 Nippon Shokubai Co Ltd Manufacturing method of retardation film
JP2010058495A (en) * 2008-08-04 2010-03-18 Fujifilm Corp Optical film manufacturing method, optical film, polarizing plate, optical compensation film, antireflection film, and liquid crystal display device
JP2014186355A (en) * 2008-08-04 2014-10-02 Fujifilm Corp Optical film, polarizing plate, optical compensating film, anti-reflection film and liquid crystal display device
JP2012150513A (en) * 2012-04-13 2012-08-09 Nippon Zeon Co Ltd Stretched film and method of manufacturing stretched film
CN107561781A (en) * 2013-08-27 2018-01-09 群创光电股份有限公司 Display device

Similar Documents

Publication Publication Date Title
KR101017888B1 (en) Liquid crystal display device and laminated polarizer and polarized light source device
JP4566385B2 (en) Polarizer
JP2007522533A (en) Retardation film including vertically aligned liquid crystal film and method for producing the same
KR20050098867A (en) Broad-band-cholesteric liquid-crystal film and process for producing the same, circularly polarizing plate, linearly polarizing element, illuminator, and liquid-crystal display
JPH07333597A (en) Liquid crystal display device
JP2006517486A (en) Method for producing polymer optical film
CN115443424A (en) Optical laminate, image display device, and glass composite
US5244713A (en) Optical film
JPH04371903A (en) Polarization plate and liquid crystal display device
JPH08294988A (en) Release film
JP2009075533A (en) Elliptic polarization plate and liquid crystal display device
JP2003231214A (en) Release film
KR0135519B1 (en) Optical film
JP4566384B2 (en) Polarizer
JPH07101026A (en) Laminate with improved polarization characteristics and release film therefor
JPH09325216A (en) Wide viewing angle polarizer plate
JP2002365428A (en) Method for manufacturing optical film and laminated polarizing plate and liquid crystal display device using the same
JP3004782B2 (en) Polarizing plate and liquid crystal display
JP2004126625A (en) Method for manufacturing double refraction film
JP2000227518A (en) Polarizing member, optical member and liquid crystal display device
JP3165175B2 (en) Polarizing plate and liquid crystal display
JP2007065682A (en) Birefringent film, elliptically polarizing plate and liquid crystal display device
JP3830559B2 (en) Optical compensation film and liquid crystal display device
KR102137551B1 (en) Retardation film for ips mode, polarizing plate comprising the same and liquid crystal display comprising the same
WO2022264593A1 (en) Phase difference film, production method for same, polarizing plate, and liquid crystal display device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20071004

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20071004