[go: up one dir, main page]

JP2004124781A - Hermetic compressor - Google Patents

Hermetic compressor Download PDF

Info

Publication number
JP2004124781A
JP2004124781A JP2002288498A JP2002288498A JP2004124781A JP 2004124781 A JP2004124781 A JP 2004124781A JP 2002288498 A JP2002288498 A JP 2002288498A JP 2002288498 A JP2002288498 A JP 2002288498A JP 2004124781 A JP2004124781 A JP 2004124781A
Authority
JP
Japan
Prior art keywords
stator
spacer
container
hermetic
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002288498A
Other languages
Japanese (ja)
Other versions
JP4228645B2 (en
JP2004124781A5 (en
Inventor
Osamu Kazama
風間 修
Tomoaki Oikawa
及川 智明
Yasuyoshi Tajima
田島 庸賀
Koji Masumoto
増本 浩二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2002288498A priority Critical patent/JP4228645B2/en
Publication of JP2004124781A publication Critical patent/JP2004124781A/en
Publication of JP2004124781A5 publication Critical patent/JP2004124781A5/ja
Application granted granted Critical
Publication of JP4228645B2 publication Critical patent/JP4228645B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manufacture Of Motors, Generators (AREA)
  • Compressor (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

【課題】密閉容器に固定子鉄心を嵌合して固定する密閉型圧縮機に使用される固定子は、密閉容器の内径に対応した外径の固定子が必要であり、生産台数が少ないものについては生産台数が多い物に対し高コストであった。
【解決手段】電動機の固定子を、スペーサを介して密閉容器に固定することにより、密閉容器の内径よりも固定子鉄心の外径が小さな電動機を使用することを可能とし前記スペーサが複数の部材で形成されている。また、スペーサが複数の部材で形成されている。
【選択図】 図1
[PROBLEMS] A stator used in a hermetic compressor for fitting and fixing a stator core to a hermetic container requires a stator having an outer diameter corresponding to the inner diameter of the hermetic container, and the number of units produced is small. Was expensive for products with a large production volume.
By fixing a stator of an electric motor to a sealed container via a spacer, it is possible to use an electric motor having an outer diameter of the stator core smaller than an inner diameter of the sealed container, and the spacer includes a plurality of members. It is formed with. The spacer is formed of a plurality of members.
[Selection] Figure 1

Description

【0001】
【発明の属する技術分野】
この発明は、密閉型圧縮機の構造に関するものである。
【0002】
【従来の技術】
図16に、密閉型圧縮機の構造の一例を示す。(例えば、特許文献1参照)。図において、上部容器1(a)と中間部容器1(b)と下部容器1(c)からなる円筒状の密閉容器1は、圧縮要素2を下部に、該圧縮要素2を駆動し固定子4と回転子5からなる電動要素3を上部に収容している。該固定子3は、薄板電磁鋼板を積層して形成し、外径が中間部密閉容器1(b)の内径より大きな固定子鉄心6を持ち、この鉄心部分が前記中間部密閉容器1(b)に焼嵌めされ固定されている。前記回転子5は薄板電磁鋼板を積層して形成した回転子鉄心7にアルミを鋳造して形成したかご型導体を有する誘導電動機型、または前記回転子鉄心7に永久磁石を配置した永久磁石電動機型が一般的であり、前記回転子鉄心部分が前記圧縮要素2を駆動する回転軸8に焼嵌めされている。前記圧縮要素2はスポット溶接にて前記固定子4と前記回転子5の中心がほぼ同軸となるよう下部密閉容器1(c)に固定される。中間部密閉容器1(b)と上部密閉容器1(a)、下部容器1(c)はそれぞれ一部が重なるように嵌合され、外周を溶接により密閉される。
【0003】
次に、動作について簡単に説明する。密閉型圧縮機は冷凍回路に組み込まれ冷媒と圧縮要素2を潤滑する冷凍機油が封入される。電動要素3に電源が供給されると、回転子5が回転し圧縮要素2を駆動する。すると、冷媒は吸入マフラー9を通り圧縮要素2に吸入され、圧縮された後に密閉容器1内に吐出される。圧縮要素2から吐出された冷媒は圧縮要素2の上に配置される電動要素3の密閉容器1との隙間、固定子4や回転子5の鉄心に設けられた貫通孔12、固定子と回転子の空隙等を通り上部容器に配置される吐出管10より冷媒回路内に送られる。また、前記吐出管10から冷媒が吐出される前に冷媒と分離された冷凍機油は、前記固定子4や前記回転子5の鉄心に設けられた貫通孔12、前記固定子4と前記回転子5の空隙等を通り、密閉容器1の下部に戻る。
【0004】
また、電動機の構造に関し、固定子の外径よりも大きな内径をもつブラケット(密閉型圧縮機では密閉容器にあたる)に固定子を固定する方法としてブラケットと固定子の間に別部材を用いて固定子を固定する方法が公知である。この場合、本発明とは趣旨が異なるが、外部より冷却液を循環させ固定子を冷却する為のインナーケースを磁性材料で作成することにより固定子の一部として使用するもので、固定子を小型化できることを目的としたものである。(例えば、特許文献2参照)。
【0005】
【特許文献1】
特開2000−303960号公報(第2頁、第3図)
【特許文献2】
特開平6−62574号公報(第1頁、第1図)
【0006】
【発明が解決しようとする課題】
密閉型圧縮機は用途により除湿機や冷蔵庫用の冷凍能力が200W程度のものから、店舗空調機用の冷凍能力が20kW超のものまで作られており、それぞれの冷凍能力帯により圧縮要素の容積が異なる為、圧縮要素を収容する密閉容器もそれに応じて径が異なる。固定子は前述の通り密閉容器に焼嵌めされている為、密閉容器の内径に対応した外径の固定子が必要であった。
【0007】
また、固定子の生産設備では固定子鉄心の外径が異なると設備が共有できないか大幅な段取り替えが発生する為、外径が異なると生産台数が少ない能力帯においても、生産台数が多い能力帯と同様の設備投資が必要であり、コストが高くなるという問題があった。
【0008】
この発明は上述のような課題を解決するためになされたもので、その目的は密閉容器の内径に対し固定子の外径が小さい電動機を、冷媒及び冷凍機油の通路を妨げることなく安価な密閉型圧縮機を得るものである。
【0009】
また、本発明の目的は材料使用量を低減すると共に低騒音、低振動化させた密閉型圧縮機を得るものである。
【0010】
また、本発明の目的は密閉容器の内径に対し固定子の外径が小さい電動機を、冷媒及び冷凍機油の通路を妨げることなく安価な密閉型圧縮機を得ることに加えて、前記密閉容器が半径並びに密閉容器の円筒形状の長さ方向に対し、均一な保持力にて前記固定子を確保しかつ、スペーサを介して密閉容器の外周から前記固定子の内周において円筒度、真円度を確保することである。
【0011】
【課題を解決するための手段】
固定子の外径と前記密閉容器の内径との隙間を埋め、かつ前記回転軸方向に貫通する空間を設けたスペーサにより密閉容器へ固着される以前において前記固定子の外径は前記密閉容器内径より小なる関係にあるものである。
【0012】
また、前記回転軸方向に貫通する空間を設けたスペーサにより、固定子の外径と前記密閉容器の内径との隙間を埋め、かつスペーサの回転軸方向長さを固定子鉄心の軸方向長さよりも短くするものである。
【0013】
また、前記回転軸方向に貫通する空間を設けたスペーサにより、固定子の外径と前記密閉容器の内径との隙間を埋め、かつ前記密閉容器や前記スペーサの全体を均一に温度上昇、下降させて前記スペーサに焼き嵌めして、固定子と該固定子外周にあるスペーサを焼き嵌めして固定して、その後にスペーサと該スペーサ外周にある密閉容器を焼き嵌めして固定するものである。
【0014】
【発明の実施の形態】
実施の形態1.
以下、この発明の実施の形態を図面を用いて説明する。図1に密閉型圧縮機の断面図を示す。ここで、固定子4の外径は中間部容器1(b)の内径よりも小さく、該中間部密閉容器1(b)に前記固定子4を固定する為、該固定子4の外径と中間部密閉容器内径との間にスペーサ11を配置してある。図1に密閉型圧縮機の構造の一例を示す。図において、上部密閉容器1(a)と前記中間部密閉容器1(b)と下部密閉容器1(c)からなる円筒状の密閉容器1は、圧縮要素2を下部に、該圧縮要素2を駆動し固定子4と回転子5からなる電動要素3を上部に収容している。該固定子3は、例えば薄板電磁鋼板を積層して形成し、外径が中間部密閉容器1(b)の内径より大きな固定子鉄心6を持ち、この鉄心部分が前記中間部密閉容器1(b)に焼嵌めされ固定されている。前記回転子5は薄板電磁鋼板を積層して形成した回転子鉄心7にアルミを鋳造して形成したかご型導体を有する誘導電動機型、または前記回転子鉄心6に永久磁石を配置した永久磁石電動機型で形成されることが一般的であり、前記回転子5鉄心部分が前記圧縮要素2を駆動する回転軸8に焼嵌めされている。前記圧縮要素2はスポット溶接にて前記固定子4と前記回転子5の中心が同軸となるよう下部密閉容器1(c)に固定される。中間密閉部容器1(b)と上部密閉容器1(a)、下部密閉容器1(c)はそれぞれ一部が重なるように嵌合され、外周を溶接により密閉される。
【0015】
次に、動作について簡単に説明する。密閉型圧縮機は冷凍回路に組み込まれ冷媒と前記圧縮要素2を潤滑する冷凍機油が封入される。前記電動要素3に電源が供給されると、前記電動要素3が前記回転子5を回転運動させて前記圧縮要素2を駆動する。次いで冷媒は吸入マフラー9を通り前記圧縮要素2に吸入され、前記圧縮要素2により圧縮された後に密閉容器1内に吐出される。前記圧縮要素2から吐出された冷媒は前記圧縮要素2の上に配置される前記電動要素3の前記密閉容器1との隙間、前記固定子4や前記回転子5の鉄心に設けられた貫通孔、前記固定子4と前記回転子5の空隙等を通り上部容器1(a)に配置される吐出管10より冷媒回路内に送られる。また、前記吐出管10から冷媒が吐出される前に冷媒と分離された冷凍機油は、前記固定子4や前記回転子5の鉄心に設けられた貫通孔、前記固定子4と前記回転子5の空隙等を通り、前記密閉容器1下部に戻る。
【0016】
図2に密閉容器上部より電動要素を覗いた図を示す。図において、密閉容器1の実装回路の下部で、前記スペーサ11は密閉容器1の内周に焼き嵌めで位置決めされ、かつその内周で固定子4を焼き嵌めで位置決めされている。電動要素3は電線で結線された電源との接続端子を含み、電子回路基板を搭載されその構成要素として前記電子回路基板と接合された固定子4、及び前記固定子の内周と対向する前記回転子5からなり、該回転子5はその中心で回転軸8に焼き嵌められている。貫通孔12は前記スペーサ11と前記密閉容器1の内周間及び回転子5に設けられ冷媒や冷凍機油が流通するための孔であり、切欠き13も同様に冷媒と冷凍機油の流路としてスペーサ11に設けられている。
【0017】
図3にスペーサ11の斜視図を示す。スペーサは一体構造となっており、密閉容器とスペーサの間に冷媒と冷凍機油の流路としての貫通孔12が出来るよう回転軸方向に貫通した切欠き13を設けてある。スペーサの内径は固定子外径よりも小さく、焼嵌めにより固定子と結合する構造となっている。固定子4と結合したスペーサ11の外径は密閉容器1の内径よりも大きくなっており、密閉容器に焼き嵌めにて固定される。
【0018】
図4において固定子4とスペーサ11を焼き嵌め固定する工程、図5において前記密閉容器1と前記固定子4と焼き嵌めした該スペーサ11を焼き嵌め固定する工程を示す。図4(a)において、前記固定子4が前記スペーサ11へ固着される以前は該スペーサ11の内径Diは前記固定子4の外径dcoより小さいが、前記スペーサ11を加熱し、該スペーサ11の内径Diは前記固定子4の外径dcoと同等となる。図4(a)で前記スペーサ11は上方から治工具で保持され下降し始め、次工程である図4(b)で前記スペーサ11は更に下降し続け、前記固定子4をその内側に挿入される。次いで、前記スペーサ11が空気等で冷却され該スペーサ11の内径Diは前記固定子4の外径dcoより小さい状態に戻ろうとして収縮し、該スペーサ11は前記固定子4に固着される。以上により前記スペーサ11は前記固定子4に対し半径並びに前記スペーサ11の円筒形状の長さ方向に対し均一な保持力にて確保することができる。また、前記スペーサ11の全体を均一に温度上昇、下降し前記固定子4に焼き嵌めして固定する方法をとることにより前記スペーサ11の内周と前記固定子4の外周において円筒度、真円度を確保できる。
【0019】
図5において、前記スペーサ11が密閉容器へ固着される以前においては該スペーサ11の外径Doは密閉容器1の内径dsiより大きい。密閉容器1は加熱され、密閉容器1の内径dsiはスペーサ11の外径Doより大きくなり、密閉容器1は上方から治工具で固定され下降し始めスペーサ11をその内側に挿入される。
【0020】
図6では前記密閉容器1は上方から治工具で固定され下降した状態を示す。図に示すように前記スペーサ11を該密閉容器1の内側に挿入される。前記密閉容器1が空気等で冷却され前記密閉容器1の内径dsiは前記スペーサ11の外径Doより小さい状態に戻ろうとし、前記スペーサ11は前記密閉容器1に固着される。前記密閉容器1内周に前記スペーサ11を介して固定子4が固着され一連の工程が完了する。以上により前記密閉容器1は前記スペーサ11に対し半径並びに密閉容器1の円筒形状の長さ方向に対し均一な保持力にて確保することができる。また、密閉容器1の全体を均一に温度上昇、下降しスペーサ11に焼き嵌めして固定する方法をとることにより密閉容器1の内周、スペーサ11の外周において円筒度、真円度を確保できる。
【0021】
図4〜図6による説明にて記述したとおり、前記密閉容器1は半径並びに密閉容器1の円筒形状の長さ方向に対し、均一な保持力にて前記固定子4確保することができる。また、前記密閉容器1や前記スペーサ11の全体を均一に温度上昇、下降させて前記スペーサ11に焼き嵌めして固定する方法をとることにより、スペーサ11を介して密閉容器1の外周から前記固定子4の内周において円筒度、真円度を確保できる。
【0022】
上記によって密閉容器1内径よりも固定子4の外径が小さな固定子4も密閉容器1内に装着することが可能になる為、従来密閉容器1の内径が小さな密閉型圧縮機に用いていた電動機が使用可能となる。電動機の発生トルクは固定子鉄心6の長さに比例する為、外径が小さくなることにより不足するトルクは鉄心長さを長くすることで補うことが出来る。また、電動機の発生トルクは回転子と固定子の間の空隙での磁束密度にも比例しており、特に従来主流であったフェライト磁石に対し、最大エネルギー積が約10倍の希土類磁石を用いた永久磁石電動機では、外径が密閉容器1に対して小さな電動機を使用した場合でも、固定子鉄心長さを従来の鉄心長さに対しそれほど長くしなくても済む。
【0023】
また、電動機の生産設備では固定子鉄心の外径が異なると設備が共有できないか大幅な段取り替えが発生する為、外径を共通化することで生産コスト、設備投資の削減に効果がある。
【0024】
実施の形態2.
以下実施の形態において記載する以外の構成及び動作は上記実施の形態1と同一である。図7に密閉型圧縮機の断面図を示す。本実施の形態の例では固定子の保持力を確保できる範囲でスペーサの長さL2を固定子の鉄心長さL1より短くしてある。圧縮機運転時、固定子4の固有振動数が運転周波数の整数倍に近い場合、騒音および振動が大きくなるが、スペーサの長さL2の長さを固定子の鉄心長さL1より短くすることにより、固有振動数を運転周波数の整数倍からずらし、騒音、振動を低減することが出来る。また、スペーサの材料の使用量を減らす事が出来る為、コスト削減及び省資源化に効果がある。
【0025】
図7において、1は上部密閉容器1(a)と中間部密閉容器1(b)と下部密閉容器1(c)からなる円筒状の密閉容器であり、圧縮要素2を下部に、前記圧縮要素2を駆動し固定子4と回転子5からなる電動要素3を上部に収容している。前記固定子4は、薄板電磁鋼板を積層するなどして形成し外径が中間部密閉容器の内径より小なる固定子鉄心6を持ち、この鉄心部分が中間部密閉容器1(b)に前記スペーサ11を介して焼嵌めされ固定されている。前記回転子5は薄板電磁鋼板を積層して形成した回転子鉄心7にアルミを鋳造して形成したかご型導体を有する誘導電動機型、または前記回転子鉄心に永久磁石を配置した永久磁石電動機型が一般的であり、回転子鉄心部分が前記圧縮要素2を駆動する回転軸8に焼嵌めされている。前記圧縮要素2はスポット溶接にて固定子と回転子の中心がほぼ同軸となるよう下部密閉容器に固定される。中間密閉部容器1(b)と上部密閉容器1(a)、下密閉部容器1(c)はそれぞれ一部が重なるように嵌合され、外周を溶接により密閉される。
【0026】
次に、図7を利用して動作について説明する。密閉型圧縮機は冷凍空調機として製造時、冷凍回路に組み込まれ冷媒と前記圧縮要素2を潤滑する冷凍機油が密閉容器1内に封入される。前記電動要素3に対し電源を供給されると、該電動要素3が回転し圧縮要素2を駆動する。冷媒は吸入マフラー9を通り前記圧縮要素2に吸入され、圧縮された後に前記密閉容器1内に吐出される。前記圧縮要素2から吐出された冷媒は該圧縮要素2の上に配置される電動要素3の密閉容器1との隙間、前記固定子4や前記回転子5の鉄心に設けられた貫通孔、前記固定子4と前記回転子5の空隙等を通り上密閉部容器1(a)に配置される吐出管10より冷媒回路内に送られる。また、該吐出管10から冷媒が吐出される前に冷媒と分離された冷凍機油は、前記固定子4や前記回転子5の鉄心に設けられた貫通孔、固定子4と回転子5の空隙等を通り、密閉容器下部1(c)に戻る。
【0027】
図8に密閉容器上部より電動要素を覗いた図を示す。図において、前記密閉容器1内壁に密着固定された前記スペーサ11は円周方向に貫通孔12と交互に、半径方向では該貫通孔12と同様に前記密閉容器1と前記固定子4の間で空間を占有している。図9に前記スペーサ11の斜視図を示す。該スペーサ10は複数の同様な部材から形成されている為、一体構造で製作するよりも冷媒および冷凍機油の流路を広くすることが出来、前記密閉容器1の内径と前記固定子鉄心6の外径の差が小さく、前記スペーサ11の切欠きまたは前記貫通孔12を設けることで冷媒および冷凍機油の流路を確保するのが難しい場合有効である。
【0028】
また、前記固定子4の外周部に設けた凹部と前記スペーサ11に設けた凸部を嵌合させることにより、スペーサの位置決めが容易となり組立性を向上することが出来る。また、前記固定子4の外周部に設けた凸部と前記スペーサ11内周部に設けた凹部を嵌合させることによっても、同様にスペーサの位置決めが容易となり組立性を向上する。
【0029】
図10に前記固定子4の保持力を確保できる範囲で前記スペーサ11の長さL2を該固定子4の鉄心長さL1より短くした場合及び前記スペーサ11の長さL2を該固定子4の鉄心長さL1と等しくした場合について、圧縮機運転時の固定子の振動特性を横軸周波数対加振力に対する固定子4の振幅として模式的に表示した図である。前記スペーサ11の長さL2を該固定子4の鉄心長さL1を等しくした場合、固有振動数が運転周波数の整数倍に近いとすると固有振動数にあたる周波数値nfの場合の応答は周波数nfの近傍で極大値をとり、騒音および振動が大きくなる。一方、前記固定子長さL2を鉄心長さL1より短くすることによって、固有振動数を運転周波数の整数倍からずらした場合も図10の特性曲線で示す。図で、L1>L2として指した最大値は、L1=L2の特性曲線における周波数=nfでの最大値に比較してより低い値を示し、騒音、振動を低減すされる効果を示す。
【0030】
実施の形態3.
以下実施の形態において記載する以外の構成及び動作は上記実施の形態1及び実施の形態2と同一である。図11に密閉容器上部より電動要素を覗いた図を、図12にスペーサの構造図を示す。スペーサは薄板電磁鋼板を積層して構成され、冷媒および冷凍機油の流路として回転軸方向に貫通孔12を設けており、凹凸状の第一のカシメ14,第二のカシメ15を介して連結されている。スペーサ部に薄板電磁鋼板を用いることにより、スペーサ部を固定子鉄心から漏れる磁束の磁路として使用することが可能であり、固定子鉄心の磁束密度を低減させ圧縮機の効率の向上に寄与する。電磁鋼板の素材は、固定子鉄心や回転子鉄心と同じで無くても良い。
【0031】
薄肉電磁鋼板は図12のように一列に打ち抜くことにより材料の歩留まりを向上している。打ち抜かれた電磁鋼板は第一のコア部材16と第2のコア部材17が交互に積層されており、第一のカシメ14は積層方向のコア部材を連結しており、第二のカシメ15は積層方向の電磁鋼板を結合するのみならず、円周方向のコア部材の結合に寄与しており、カシメを中心に回転自在に連結されている。所定の高さに積層されたスペーサは、回転自在に連結された連結部を中心に回転させることにより、固定子鉄心に巻きつけるように組み立てることが可能となっている。巻きつけたスペーサは両端の結合部を溶接することにより固定子と結合し、密閉容器に焼嵌めされる。
【0032】
このように、スペーサを回転自在に連結している部材で構成した場合、前記固定子4を嵌合する際に固定子鉄心6へ生じる応力を分散する為、固定子鉄心の応力による変形を防止し、磁歪による鉄損低減及び固定子内径真円度の確保により、高効率,低騒音の圧縮機を提供することが出来る。
【0033】
また、スペーサと同様に連結部を有する固定子鉄心を用いた固定子に本スペーサを用いる場合には、図11に示す通り円周方向の連結部分が重ならないように固定することにより、固定子鉄心からスペーサへ漏れる磁束の磁気抵抗を連結部分が重なった場合に比べ低減することができ、効率の改善に寄与する。
【0034】
複数のスペーサ部材を連結する方法は、カシメの替わりにピンを挿入することにより回転自在に連結しても良い。
【0035】
また、積層方向のコア部材の連結は、カシメの替わりに溶接を用いても良い。
【0036】
実施の形態4.
以下実施の形態において記載する以外の構成及び動作は上記実施の形態1及び実施の形態2及び実施の形態3と同一である。図13に密閉型圧縮機の断面図を、図14にスペーサの構造図を示す。スペーサは積層電磁鋼板を積層して、各部材を回転自在に連結したものであり、固定子の外周部に設けた凹部とスペーサに設けた凸部はそれぞれ中心部にのみ設けてあり、スペーサを巻付けた際、円周方向の位置ずれのみならず軸方向の位置ずれを抑制することが可能である。
【0037】
図13において、1は上部密閉容器1(a)と中間密閉部容器1(b)と下部容器1(c)からなる円筒状の密閉容器であり、圧縮要素2を下部に、前記圧縮要素2を駆動し固定子4と回転子5からなる電動要素3を上部に収容している。前記固定子4は、薄板電磁鋼板を積層するなどで形成し外径が中間部容器の内径より小なる固定子鉄心6を持ち、この鉄心部分が中間部容器1(b)に前記スペーサ11を介して焼嵌めされ固定されている。前記回転子5は薄板電磁鋼板を積層して形成した回転子鉄心7にアルミを鋳造して形成したかご型導体を有する誘導電動機型、または前記回転子鉄心に永久磁石を配置した永久磁石電動機型が一般的であり、回転子鉄心部分が前記圧縮要素2を駆動する回転軸8に焼嵌めされている。前記圧縮要素2はスポット溶接にて固定子と回転子の中心がほぼ同軸となるよう下部容器に固定される。中間部密閉容器1(b)と上部密閉容器1(a)、下部密閉容器1(c)はそれぞれ一部が重なるように嵌合され、外周を溶接により密閉される。
【0038】
次に、図13を利用して動作について説明する。密閉型圧縮機は冷凍機や空調機として製造時、冷凍回路に組み込まれ冷媒と前記圧縮要素2を潤滑する冷凍機油が密閉容器1内に封入される。前記電動要素3に対し電源を供給されると、該電動要素3が回転し圧縮要素2を駆動する。冷媒は吸入マフラー9を通り前記圧縮要素2に吸入され、圧縮された後に前記密閉容器1内に吐出される。前記圧縮要素2から吐出された冷媒は該圧縮要素2の上に配置される電動要素3の密閉容器1との隙間、前記固定子4や前記回転子5の鉄心に設けられた貫通孔、前記固定子4と前記回転子5の空隙等を通り上部容器1(a)に配置される吐出管10より冷媒回路内に送られる。また、該吐出管10から冷媒が吐出される前に冷媒と分離された冷凍機油は、前記固定子4や前記回転子5の鉄心に設けられた貫通孔、固定子4と回転子5の空隙等を通り、密閉容器下部1(c)に戻る。
【0039】
また、スペーサ11を固定子4に固定した後に、スペーサ11の外径真円度が悪く密閉容器1との嵌合が厳しい場合には、外周を切削する場合があるが、図15に鉄心打ち抜き形状として示す通り、固定子4および回転子5の鉄心とを、前記スペーサ11と固定子鉄心6を同一の抜き型により、同心で、スペーサ11を打ち抜いて形成したことにより、環状にした場合の真円度を向上し密閉容器への嵌合性を向上し、固定子鉄心との密着性も向上することが出来る。
【0040】
ここでは、ロータリー式圧縮機について述べたが、固定子が密閉容器に嵌合されている密閉型圧縮機であれば、スクロール式圧縮機等圧縮要素の機構を問わないのは言うまでもない。
【0041】
【発明の効果】
この発明によれば、密閉容器の内径に対し固定子鉄心外径が小さな電動機を、スペーサを介して密閉容器に固定することにより、密閉型圧縮機内の冷媒および冷凍機油の流れを妨げることなく、スペーサを介して密閉容器に対する固定子固着を確実行え、また、機種の異なる圧縮機においても同一電動機機種を適用可能となり、生産時の段取り替え軽減や設備投資の抑制により、安価で高性能な密閉型圧縮機を提供することが可能である。
【0042】
この発明によれば、密閉容器の内径に対し固定子鉄心外径が小さな電動機を、スペーサを介して密閉容器に固定することにより、密閉型圧縮機内の冷媒および冷凍機油の流れを妨げることなく、スペーサを介して密閉容器に対する固定子固着を確実行え、また、機種の異なる圧縮機においても同一電動機機種を適用可能となり、生産時の段取り替え軽減や設備投資の抑制により、安価で高性能な密閉型圧縮機を提供することが可能で固定子の鉄心部の回転軸方向長さは前記スペーサの回転軸方向の長さ以上としたので騒音、振動を低減可能な密閉型圧縮機を提供することが可能である。
【0043】
この発明によれば、密閉型圧縮機内の冷媒および冷凍機油の流れを妨げることなく、スペーサを介して密閉容器に対する固定子固着を確実行え、また、機種の異なる圧縮機においても同一電動機機種を適用可能となり、生産時の段取り替え軽減や設備投資の抑制により、安価で高性能な密閉型圧縮機を提供することが可能で、また密閉容器が半径並びに密閉容器の円筒形状の長さ方向に対し、均一な保持力にて固定子を確保しかつ、スペーサを介し密閉容器の外周から固定子の内周において円筒度、真円度を確保できる密閉型圧縮機を提供することが可能である。
【0044】
【図面の簡単な説明】
【図1】この発明の実施例を示す、密閉型圧縮機断面図。
【図2】この発明の実施例を示す、密閉容器上部より電動要素を覗いた図。
【図3】この発明の実施例を示す、密閉容器とスペーサ組立て工程図。
【図4】この発明の実施例を示す、固定子とスペーサ組立て工程図。
【図5】この発明の実施例を示す、密閉容器上部より電動要素を覗いた図。
【図6】この発明の実施例を示す、密閉容器とスペーサ完成図。
【図7】この発明の実施例を示す、密閉型圧縮機断面図。
【図8】この発明の実施例を示す、密閉容器上部より電動要素を覗いた図。
【図9】この発明の実施例を示す、スペーサ斜視図。
【図10】圧縮機運転時の固定子の振動特性を説明した図。
【図11】この発明の実施例を示す、密閉容器上部より電動要素を覗いた図。
【図12】この発明の実施例を示す、スペーサ構造図。
【図13】この発明の実施例を示す、密閉型圧縮機断面図。
【図14】この発明の実施例を示す、スペーサ斜視図。
【図15】この発明の実施例を示す、鉄心打ち抜き形状図。
【図16】従来例を示す、密閉型圧縮機断面図。
【符号の説明】
1 密閉容器 、 1(a) 上部密閉容器 、1(b) 中間部密閉容器
1(c) 下部密閉容器 、2 圧縮要素 、 3 電動要素 、 4 固定子5 回転子 、6 固定子鉄心 、7 回転子鉄心 、8 回転軸 、9 吸入マフラー 、 10 吐出管 、 11 スペーサ 、12 貫通孔 、13 切欠き 、 14 第一のカシメ 、 15 第二のカシメ 、16 第一のコア部材 、17 第二のコア部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to the structure of a hermetic compressor.
[0002]
[Prior art]
FIG. 16 shows an example of the structure of a hermetic compressor. (For example, refer to Patent Document 1). In the figure, a cylindrical sealed container 1 composed of an upper container 1 (a), an intermediate container 1 (b), and a lower container 1 (c) has a compression element 2 as a lower part, and the compression element 2 is driven to drive a stator. An electric element 3 composed of 4 and a rotor 5 is accommodated in the upper part. The stator 3 is formed by laminating thin electromagnetic steel plates, and has a stator core 6 whose outer diameter is larger than the inner diameter of the intermediate sealed container 1 (b), and this core part is the intermediate sealed container 1 (b ) And fixed by shrinkage. The rotor 5 is an induction motor type having a cage conductor formed by casting aluminum on a rotor core 7 formed by laminating thin electromagnetic steel plates, or a permanent magnet motor having a permanent magnet disposed on the rotor core 7. The mold is general, and the rotor core portion is shrink-fitted to the rotary shaft 8 that drives the compression element 2. The compression element 2 is fixed to the lower sealed container 1 (c) by spot welding so that the centers of the stator 4 and the rotor 5 are substantially coaxial. The intermediate sealed container 1 (b), the upper sealed container 1 (a), and the lower container 1 (c) are fitted so that they partially overlap each other, and the outer periphery is sealed by welding.
[0003]
Next, the operation will be briefly described. The hermetic compressor is incorporated in a refrigeration circuit and encloses refrigerant and refrigeration oil that lubricates the compression element 2. When power is supplied to the electric element 3, the rotor 5 rotates to drive the compression element 2. Then, the refrigerant passes through the suction muffler 9 and is sucked into the compression element 2, compressed and then discharged into the sealed container 1. The refrigerant discharged from the compression element 2 has a clearance from the sealed container 1 of the electric element 3 disposed on the compression element 2, a through-hole 12 provided in the iron core of the stator 4 or the rotor 5, and the stator and rotation. It is sent into the refrigerant circuit from the discharge pipe 10 arranged in the upper container through the gap of the child. The refrigerating machine oil separated from the refrigerant before the refrigerant is discharged from the discharge pipe 10 passes through the through holes 12 provided in the iron cores of the stator 4 and the rotor 5, the stator 4 and the rotor. Return to the lower part of the sealed container 1 through the gap 5 and the like.
[0004]
In addition, regarding the structure of the motor, as a method of fixing the stator to a bracket having an inner diameter larger than the outer diameter of the stator (which is a hermetic container in a hermetic compressor), a fixing member is used between the bracket and the stator. Methods for fixing the child are known. In this case, although the gist of the present invention is different, the inner case for cooling the stator by circulating the cooling liquid from the outside is made of a magnetic material and used as a part of the stator. The purpose is to reduce the size. (For example, refer to Patent Document 2).
[0005]
[Patent Document 1]
JP 2000-303960 A (2nd page, FIG. 3)
[Patent Document 2]
JP-A-6-62574 (first page, FIG. 1)
[0006]
[Problems to be solved by the invention]
Hermetic compressors are manufactured from those with a refrigeration capacity of about 200 W for dehumidifiers and refrigerators to those with a refrigeration capacity of over 20 kW for store air conditioners depending on the application. Therefore, the diameter of the sealed container that accommodates the compression element varies accordingly. Since the stator is shrink-fitted in the closed container as described above, an outer diameter stator corresponding to the inner diameter of the closed container is required.
[0007]
In addition, if the outer diameter of the stator core is different in the stator production equipment, the equipment cannot be shared or a large setup change occurs. There was a problem that the same capital investment as the belt was necessary and the cost was high.
[0008]
The present invention has been made to solve the above-described problems. The object of the present invention is to provide an electric motor in which the outer diameter of the stator is smaller than the inner diameter of the hermetic container and is inexpensively sealed without interfering with the refrigerant and refrigerant oil passages. A mold compressor is obtained.
[0009]
Another object of the present invention is to obtain a hermetic compressor that reduces the amount of material used and reduces noise and vibration.
[0010]
Another object of the present invention is to provide an electric motor having a stator whose outer diameter is smaller than the inner diameter of the hermetic container, and to obtain an inexpensive hermetic compressor without obstructing the passage of refrigerant and refrigerating machine oil. Secure the stator with a uniform holding force with respect to the radius and the length direction of the cylindrical shape of the sealed container, and cylindricity and roundness from the outer periphery of the sealed container to the inner periphery of the stator via a spacer Is to secure.
[0011]
[Means for Solving the Problems]
The outer diameter of the stator is the inner diameter of the hermetic container before being fixed to the hermetic container by a spacer that fills the gap between the outer diameter of the stator and the inner diameter of the hermetic container and provides a space penetrating in the rotation axis direction. It has a smaller relationship.
[0012]
Further, a spacer provided with a space penetrating in the direction of the rotation axis fills the gap between the outer diameter of the stator and the inner diameter of the hermetic container, and the length of the spacer in the rotation axis direction is greater than the axial length of the stator core. Is also shortened.
[0013]
Further, the spacer provided with a space penetrating in the direction of the rotation axis fills the gap between the outer diameter of the stator and the inner diameter of the sealed container, and uniformly raises and lowers the temperature of the sealed container and the entire spacer. Then, the stator and the spacer on the outer periphery of the stator are shrink-fitted and fixed, and then the spacer and the sealed container on the outer periphery of the spacer are shrink-fitted and fixed.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows a sectional view of a hermetic compressor. Here, the outer diameter of the stator 4 is smaller than the inner diameter of the intermediate container 1 (b). In order to fix the stator 4 to the intermediate sealed container 1 (b), the outer diameter of the stator 4 A spacer 11 is disposed between the inner sealed container inner diameter. FIG. 1 shows an example of the structure of a hermetic compressor. In the figure, a cylindrical sealed container 1 composed of an upper sealed container 1 (a), an intermediate sealed container 1 (b), and a lower sealed container 1 (c) has a compression element 2 at the bottom and the compression element 2 at the bottom. The electric element 3 that is driven and includes the stator 4 and the rotor 5 is accommodated in the upper part. The stator 3 is formed, for example, by laminating thin electromagnetic steel plates, and has a stator core 6 whose outer diameter is larger than the inner diameter of the intermediate sealed container 1 (b), and this core part is the intermediate sealed container 1 ( It is shrink-fitted and fixed to b). The rotor 5 is an induction motor type having a squirrel-cage conductor formed by casting aluminum on a rotor core 7 formed by laminating thin electromagnetic steel plates, or a permanent magnet motor having a permanent magnet disposed on the rotor core 6. In general, the rotor 5 core portion is shrink-fitted to a rotating shaft 8 that drives the compression element 2. The compression element 2 is fixed to the lower sealed container 1 (c) by spot welding so that the centers of the stator 4 and the rotor 5 are coaxial. The intermediate sealed container 1 (b), the upper sealed container 1 (a), and the lower sealed container 1 (c) are fitted so as to partially overlap each other, and the outer periphery is sealed by welding.
[0015]
Next, the operation will be briefly described. The hermetic compressor is incorporated in a refrigeration circuit and encloses refrigerant and refrigeration oil that lubricates the compression element 2. When power is supplied to the electric element 3, the electric element 3 rotates the rotor 5 to drive the compression element 2. Next, the refrigerant passes through the suction muffler 9 and is sucked into the compression element 2, compressed by the compression element 2, and then discharged into the sealed container 1. The refrigerant discharged from the compression element 2 is a gap between the electric element 3 disposed on the compression element 2 and the sealed container 1, and a through hole provided in the iron core of the stator 4 or the rotor 5. Then, the air passes through the gap between the stator 4 and the rotor 5 and is sent into the refrigerant circuit from the discharge pipe 10 disposed in the upper container 1 (a). Refrigerating machine oil separated from the refrigerant before the refrigerant is discharged from the discharge pipe 10 passes through holes provided in the iron cores of the stator 4 and the rotor 5, the stator 4 and the rotor 5. Through the gap and the like to return to the lower part of the sealed container 1.
[0016]
The figure which looked at the electric element from the airtight container upper part in FIG. 2 is shown. In the figure, the spacer 11 is positioned by shrink fitting on the inner periphery of the sealed container 1 and the stator 4 is positioned by shrink fitting on the inner periphery of the lower portion of the mounting circuit of the sealed container 1. The electric element 3 includes a connection terminal connected to a power source connected by an electric wire, and is mounted with an electronic circuit board and has a stator 4 joined to the electronic circuit board as a component thereof, and the inner surface of the stator is opposed to the stator 4. It consists of a rotor 5, and this rotor 5 is shrink-fitted on the rotating shaft 8 at its center. The through-hole 12 is a hole provided in the inner periphery of the spacer 11 and the hermetic container 1 and in the rotor 5 for circulating refrigerant and refrigerating machine oil, and the notch 13 is similarly used as a flow path for the refrigerant and refrigerating machine oil. The spacer 11 is provided.
[0017]
FIG. 3 shows a perspective view of the spacer 11. The spacer has an integral structure, and a notch 13 penetrating in the direction of the rotation axis is provided between the sealed container and the spacer so as to form a through hole 12 as a flow path for the refrigerant and the refrigerating machine oil. The inner diameter of the spacer is smaller than the outer diameter of the stator, and the spacer is coupled to the stator by shrink fitting. The outer diameter of the spacer 11 coupled to the stator 4 is larger than the inner diameter of the sealed container 1, and is fixed to the sealed container by shrink fitting.
[0018]
FIG. 4 shows a step of shrink-fitting and fixing the stator 4 and the spacer 11, and FIG. 5 shows a step of shrink-fitting and fixing the airtight container 1 and the stator 4 to the spacer 11. In FIG. 4A, before the stator 4 is fixed to the spacer 11, the inner diameter Di of the spacer 11 is smaller than the outer diameter dco of the stator 4, but the spacer 11 is heated and the spacer 11 is heated. The inner diameter Di is equal to the outer diameter dco of the stator 4. In FIG. 4 (a), the spacer 11 is held by a jig from above and begins to descend. In FIG. 4 (b), which is the next step, the spacer 11 continues to descend further, and the stator 4 is inserted inside thereof. The Next, the spacer 11 is cooled by air or the like, and the inner diameter Di of the spacer 11 contracts to return to a state smaller than the outer diameter dco of the stator 4, and the spacer 11 is fixed to the stator 4. Thus, the spacer 11 can be secured to the stator 4 with a uniform holding force with respect to the radius and the length direction of the cylindrical shape of the spacer 11. Further, by adopting a method in which the temperature of the entire spacer 11 is uniformly raised and lowered and shrink-fitted and fixed to the stator 4, the inner circumference of the spacer 11 and the outer circumference of the stator 4 are cylindrical and round. The degree can be secured.
[0019]
In FIG. 5, the outer diameter Do of the spacer 11 is larger than the inner diameter dsi of the sealed container 1 before the spacer 11 is fixed to the sealed container. The hermetic container 1 is heated, the inner diameter dsi of the hermetic container 1 becomes larger than the outer diameter Do of the spacer 11, and the hermetic container 1 is fixed by a jig from above and starts to descend, and the spacer 11 is inserted inside.
[0020]
In FIG. 6, the said airtight container 1 shows the state which was fixed with the jig from the upper side and descended. As shown in the figure, the spacer 11 is inserted inside the sealed container 1. The sealed container 1 is cooled with air or the like, and the inner diameter dsi of the sealed container 1 tries to return to a state smaller than the outer diameter Do of the spacer 11, and the spacer 11 is fixed to the sealed container 1. The stator 4 is fixed to the inner periphery of the hermetic container 1 via the spacer 11 to complete a series of steps. As described above, the sealed container 1 can be secured with a uniform holding force with respect to the spacer 11 with respect to the radius and the length direction of the cylindrical shape of the sealed container 1. Further, by adopting a method in which the temperature of the entire sealed container 1 is uniformly raised and lowered and shrink-fitted and fixed to the spacer 11, cylindricity and roundness can be secured on the inner periphery of the sealed container 1 and the outer periphery of the spacer 11. .
[0021]
As described in the description with reference to FIGS. 4 to 6, the sealed container 1 can secure the stator 4 with a uniform holding force with respect to the radius and the length direction of the cylindrical shape of the sealed container 1. In addition, the temperature of the closed container 1 and the entire spacer 11 is uniformly raised and lowered, and is fixed by being shrink-fitted to the spacer 11 to fix the fixed from the outer periphery of the closed container 1 via the spacer 11. Cylindricality and roundness can be secured on the inner periphery of the child 4.
[0022]
As described above, the stator 4 having the outer diameter of the stator 4 smaller than the inner diameter of the hermetic container 1 can be mounted in the hermetic container 1, so that it has been conventionally used for a hermetic compressor having a smaller inner diameter of the hermetic container 1. The electric motor can be used. Since the generated torque of the electric motor is proportional to the length of the stator core 6, the torque that is deficient when the outer diameter is reduced can be compensated for by increasing the length of the core. The generated torque of the motor is also proportional to the magnetic flux density in the gap between the rotor and the stator. In particular, rare earth magnets with a maximum energy product of about 10 times that of the conventional mainstream ferrite magnets are used. In the conventional permanent magnet motor, even when an electric motor having a small outer diameter is used for the sealed container 1, the length of the stator core does not have to be so long as that of the conventional core.
[0023]
In addition, if the outer diameter of the stator core is different in the production facilities of the motor, the facilities cannot be shared or a large setup change occurs. Therefore, sharing the outer diameter is effective in reducing production costs and capital investment.
[0024]
Embodiment 2. FIG.
Configurations and operations other than those described in the following embodiments are the same as those in the first embodiment. FIG. 7 shows a sectional view of the hermetic compressor. In the example of the present embodiment, the length L2 of the spacer is shorter than the iron core length L1 of the stator as long as the holding force of the stator can be secured. During compressor operation, if the natural frequency of the stator 4 is close to an integral multiple of the operating frequency, noise and vibration will increase, but the length of the spacer L2 should be shorter than the iron core length L1 of the stator. Thus, the natural frequency can be shifted from an integral multiple of the operating frequency, and noise and vibration can be reduced. In addition, since the amount of spacer material used can be reduced, it is effective in reducing costs and saving resources.
[0025]
In FIG. 7, reference numeral 1 denotes a cylindrical sealed container including an upper sealed container 1 (a), an intermediate sealed container 1 (b), and a lower sealed container 1 (c). 2 is driven, and an electric element 3 including a stator 4 and a rotor 5 is accommodated in the upper part. The stator 4 has a stator core 6 that is formed by laminating thin electromagnetic steel sheets or the like and has an outer diameter smaller than the inner diameter of the intermediate sealed container, and this iron core portion is attached to the intermediate sealed container 1 (b). It is shrink-fitted and fixed via the spacer 11. The rotor 5 is an induction motor type having a cage conductor formed by casting aluminum on a rotor core 7 formed by laminating thin electromagnetic steel plates, or a permanent magnet motor type having a permanent magnet disposed on the rotor core. The rotor core portion is shrink-fitted to the rotary shaft 8 that drives the compression element 2. The compression element 2 is fixed to the lower sealed container by spot welding so that the centers of the stator and the rotor are substantially coaxial. The intermediate sealed container 1 (b), the upper sealed container 1 (a), and the lower sealed container 1 (c) are fitted so that they partially overlap each other, and the outer periphery is sealed by welding.
[0026]
Next, the operation will be described with reference to FIG. When the hermetic compressor is manufactured as a refrigeration air conditioner, the refrigerant and the refrigerating machine oil that lubricates the compression element 2 are incorporated in the hermetic container 1 and incorporated in the refrigeration circuit. When power is supplied to the electric element 3, the electric element 3 rotates to drive the compression element 2. The refrigerant passes through the suction muffler 9 and is sucked into the compression element 2, compressed, and then discharged into the sealed container 1. The refrigerant discharged from the compression element 2 is a gap between the electric element 3 disposed on the compression element 2 and the sealed container 1, a through hole provided in the iron core of the stator 4 or the rotor 5, It passes through the gap between the stator 4 and the rotor 5 and the like, and is sent into the refrigerant circuit from the discharge pipe 10 disposed in the upper sealed container 1 (a). The refrigerating machine oil separated from the refrigerant before the refrigerant is discharged from the discharge pipe 10 is a through-hole provided in the iron core of the stator 4 or the rotor 5, or a gap between the stator 4 and the rotor 5. Etc. and return to the lower part 1 (c) of the sealed container.
[0027]
The figure which looked at the electric element from the airtight container upper part in FIG. 8 is shown. In the figure, the spacers 11 tightly fixed to the inner wall of the hermetic container 1 alternate with the through holes 12 in the circumferential direction, and between the hermetic container 1 and the stator 4 in the radial direction, like the through holes 12. Occupies space. FIG. 9 is a perspective view of the spacer 11. Since the spacer 10 is formed of a plurality of similar members, the flow path of the refrigerant and the refrigerating machine oil can be made wider than that manufactured by a single structure, and the inner diameter of the hermetic container 1 and the stator core 6 can be increased. This is effective when the difference in outer diameter is small and it is difficult to secure the flow paths for the refrigerant and the refrigerating machine oil by providing the notches in the spacer 11 or the through holes 12.
[0028]
Further, by fitting the concave portion provided on the outer peripheral portion of the stator 4 and the convex portion provided on the spacer 11, the spacer can be easily positioned and the assemblability can be improved. Also, by fitting the convex portion provided on the outer peripheral portion of the stator 4 with the concave portion provided on the inner peripheral portion of the spacer 11, the spacer can be easily positioned and the assemblability is improved.
[0029]
FIG. 10 shows a case where the length L2 of the spacer 11 is shorter than the iron core length L1 of the stator 4 within a range in which the holding force of the stator 4 can be secured, and the length L2 of the spacer 11 is It is the figure which displayed typically the vibration characteristic of the stator at the time of compressor operation as the amplitude of the stator 4 with respect to a horizontal axis frequency versus excitation force about the case where it is equal to the iron core length L1. When the length L2 of the spacer 11 is made equal to the core length L1 of the stator 4, if the natural frequency is close to an integer multiple of the operating frequency, the response in the case of the frequency value nf corresponding to the natural frequency is the frequency nf. The maximum value is taken in the vicinity, and noise and vibration increase. On the other hand, the characteristic curve of FIG. 10 also shows the case where the natural frequency is shifted from an integral multiple of the operating frequency by making the stator length L2 shorter than the iron core length L1. In the figure, the maximum value indicated as L1> L2 is lower than the maximum value at the frequency = nf in the characteristic curve of L1 = L2, indicating the effect of reducing noise and vibration.
[0030]
Embodiment 3 FIG.
Configurations and operations other than those described in the following embodiments are the same as those in the first embodiment and the second embodiment. FIG. 11 shows a view of the electric element from the top of the sealed container, and FIG. 12 shows the structure of the spacer. The spacer is formed by laminating thin electromagnetic steel plates, and is provided with a through hole 12 in the direction of the rotation axis as a flow path for refrigerant and refrigerating machine oil, and is connected via an uneven first caulking 14 and a second caulking 15. Has been. By using a thin electromagnetic steel sheet for the spacer part, it is possible to use the spacer part as a magnetic path for magnetic flux leaking from the stator core, which contributes to improving the efficiency of the compressor by reducing the magnetic flux density of the stator core. . The material of the electromagnetic steel sheet may not be the same as that of the stator core or the rotor core.
[0031]
Thin-walled electrical steel sheets are improved in material yield by punching in a line as shown in FIG. In the punched electrical steel sheet, the first core member 16 and the second core member 17 are alternately laminated, the first caulking 14 connects the core members in the laminating direction, and the second caulking 15 In addition to joining the magnetic steel sheets in the stacking direction, it contributes to the connection of the core members in the circumferential direction, and is connected rotatably around the caulking. The spacers stacked at a predetermined height can be assembled so as to be wound around the stator core by rotating around a connecting portion that is rotatably connected. The wound spacer is joined to the stator by welding the joints at both ends, and is shrink-fitted into the sealed container.
[0032]
In this way, when the spacer is constituted by a member that is rotatably connected, since the stress generated in the stator core 6 when the stator 4 is fitted is dispersed, deformation due to the stress of the stator core is prevented. In addition, a highly efficient and low noise compressor can be provided by reducing iron loss due to magnetostriction and ensuring the roundness of the inner diameter of the stator.
[0033]
Further, when this spacer is used for a stator using a stator core having a connecting portion as in the case of the spacer, the stator is fixed by fixing the connecting portions in the circumferential direction so as not to overlap as shown in FIG. The magnetic resistance of the magnetic flux leaking from the iron core to the spacer can be reduced as compared with the case where the connecting portions overlap, contributing to improvement in efficiency.
[0034]
As a method of connecting the plurality of spacer members, the spacer members may be rotatably connected by inserting pins instead of caulking.
[0035]
Further, the core members in the stacking direction may be connected by welding instead of caulking.
[0036]
Embodiment 4 FIG.
Configurations and operations other than those described in the following embodiments are the same as those in the first embodiment, the second embodiment, and the third embodiment. FIG. 13 shows a sectional view of the hermetic compressor, and FIG. 14 shows a structure diagram of the spacer. The spacer is made by laminating laminated magnetic steel sheets and connecting each member in a freely rotatable manner. The concave portion provided on the outer peripheral portion of the stator and the convex portion provided on the spacer are provided only in the center portion, and the spacer When winding, it is possible to suppress not only the circumferential displacement but also the axial displacement.
[0037]
In FIG. 13, reference numeral 1 denotes a cylindrical hermetic container composed of an upper hermetic container 1 (a), an intermediate hermetic container 1 (b), and a lower container 1 (c). The electric element 3 composed of the stator 4 and the rotor 5 is housed in the upper part. The stator 4 has a stator core 6 formed by laminating thin electromagnetic steel plates or the like, and has an outer diameter smaller than the inner diameter of the intermediate container, and this iron core portion attaches the spacer 11 to the intermediate container 1 (b). It is shrink-fitted and fixed. The rotor 5 is an induction motor type having a cage conductor formed by casting aluminum on a rotor core 7 formed by laminating thin electromagnetic steel plates, or a permanent magnet motor type having a permanent magnet disposed on the rotor core. The rotor core portion is shrink-fitted to the rotary shaft 8 that drives the compression element 2. The compression element 2 is fixed to the lower container by spot welding so that the centers of the stator and the rotor are substantially coaxial. The intermediate sealed container 1 (b), the upper sealed container 1 (a), and the lower sealed container 1 (c) are fitted so as to partially overlap each other, and the outer periphery is sealed by welding.
[0038]
Next, the operation will be described with reference to FIG. When the hermetic compressor is manufactured as a refrigerator or an air conditioner, a refrigerant and a refrigerating machine oil that lubricates the compression element 2 are incorporated in the hermetic container 1 and incorporated in a refrigeration circuit. When power is supplied to the electric element 3, the electric element 3 rotates to drive the compression element 2. The refrigerant passes through the suction muffler 9 and is sucked into the compression element 2, compressed and then discharged into the sealed container 1. The refrigerant discharged from the compression element 2 is a gap between the electric element 3 disposed on the compression element 2 and the sealed container 1, a through hole provided in the iron core of the stator 4 or the rotor 5, It passes through the gap between the stator 4 and the rotor 5 and the like, and is sent into the refrigerant circuit from the discharge pipe 10 arranged in the upper container 1 (a). The refrigerating machine oil separated from the refrigerant before the refrigerant is discharged from the discharge pipe 10 is a through-hole provided in the iron core of the stator 4 or the rotor 5, or a gap between the stator 4 and the rotor 5. Etc. and return to the lower part 1 (c) of the sealed container.
[0039]
Further, after the spacer 11 is fixed to the stator 4, when the outer diameter roundness of the spacer 11 is poor and the fitting with the sealed container 1 is severe, the outer periphery may be cut. As shown as the shape, the stator 4 and the iron core of the rotor 5 are annularly formed by forming the spacer 11 and the stator core 6 concentrically with the same punching die and punching the spacer 11. The roundness can be improved, the fitting property to the sealed container can be improved, and the adhesion with the stator core can be improved.
[0040]
Although the rotary type compressor has been described here, it goes without saying that the mechanism of the compression element such as the scroll type compressor is not limited as long as the stator is fitted in the hermetic container.
[0041]
【The invention's effect】
According to this invention, by fixing the motor having a small stator core outer diameter with respect to the inner diameter of the hermetic container to the hermetic container via the spacer, without disturbing the flow of the refrigerant and the refrigerating machine oil in the hermetic compressor, The stator can be securely fixed to the sealed container via the spacer, and the same motor model can be applied to compressors of different models. Low-cost and high-performance sealing is achieved by reducing setup changes during production and reducing capital investment. A mold compressor can be provided.
[0042]
According to this invention, by fixing the motor having a small stator core outer diameter with respect to the inner diameter of the hermetic container to the hermetic container via the spacer, without disturbing the flow of the refrigerant and the refrigerating machine oil in the hermetic compressor, The stator can be securely fixed to the sealed container via the spacer, and the same motor model can be applied to compressors of different models. Low-cost and high-performance sealing is achieved by reducing setup changes during production and reducing capital investment. And providing a hermetic compressor capable of reducing noise and vibration since the length of the stator core in the direction of the rotation axis is greater than the length of the spacer in the direction of the rotation axis. Is possible.
[0043]
According to the present invention, the stator can be securely fixed to the sealed container via the spacer without interfering with the flow of the refrigerant and the refrigerating machine oil in the hermetic compressor, and the same motor model can be applied to different compressors. It is possible to provide an inexpensive and high-performance hermetic compressor by reducing setup change during production and restraining capital investment. Also, the hermetic container has a radius and the length of the cylindrical shape of the hermetic container. It is possible to provide a hermetic compressor that secures the stator with a uniform holding force and that can ensure cylindricity and roundness from the outer periphery of the hermetic container to the inner periphery of the stator via the spacer.
[0044]
[Brief description of the drawings]
FIG. 1 is a sectional view of a hermetic compressor showing an embodiment of the present invention.
FIG. 2 is a view of the electric element as seen from the top of the sealed container, showing an embodiment of the present invention.
FIG. 3 is an airtight container and spacer assembly process diagram showing an embodiment of the present invention.
FIG. 4 is a stator and spacer assembly process diagram showing an embodiment of the present invention.
FIG. 5 is a view of the electric element as seen from the top of the sealed container, showing an embodiment of the present invention.
FIG. 6 is a completed view of an airtight container and a spacer showing an embodiment of the present invention.
FIG. 7 is a sectional view of a hermetic compressor showing an embodiment of the present invention.
FIG. 8 is a view of the electric element as seen from the top of the sealed container, showing an embodiment of the present invention.
FIG. 9 is a spacer perspective view showing an embodiment of the present invention.
FIG. 10 is a diagram illustrating the vibration characteristics of the stator when the compressor is operating.
FIG. 11 is a view of the electric element as seen from the top of the sealed container, showing an embodiment of the present invention.
FIG. 12 is a spacer structure diagram showing an embodiment of the present invention.
FIG. 13 is a sectional view of a hermetic compressor showing an embodiment of the present invention.
FIG. 14 is a perspective view of a spacer showing an embodiment of the present invention.
FIG. 15 is a punching shape diagram of an iron core showing an embodiment of the present invention.
FIG. 16 is a sectional view of a hermetic compressor showing a conventional example.
[Explanation of symbols]
1 airtight container, 1 (a) upper airtight container, 1 (b) middle airtight container
1 (c) Lower sealed container, 2 compression element, 3 electric element, 4 stator 5 rotor, 6 stator core, 7 rotor core, 8 rotating shaft, 9 suction muffler, 10 discharge pipe, 11 spacer, 12 through Hole, 13 notch, 14 first caulking, 15 second caulking, 16 first core member, 17 second core member

Claims (10)

密閉容器内下部に配置された圧縮要素の回転軸を中心として固定された回転子と、該回転子に半径方向に対向して配置された固定子と、により構成される電動要素と、前記密閉容器内に固定され、該電動要素によって前記回転軸を回転され駆動される圧縮要素と、を備え密閉容器へ固着される以前において前記固定子の外径は前記密閉容器内径より小なることを特徴とする密閉型圧縮機。An electric element composed of a rotor fixed around a rotation axis of a compression element disposed in the lower part of the hermetic container, and a stator disposed radially opposite the rotor; A compression element fixed in the container and driven by rotating the rotating shaft by the electric element, and before being fixed to the sealed container, the outer diameter of the stator is smaller than the inner diameter of the sealed container. A hermetic compressor. 密閉容器内下部に配置された圧縮要素の回転軸を中心として固定された回転子と、該回転子に半径方向に対向して配置された固定子と、により構成される電動要素と、前記密閉容器内に固定され、該電動要素によって前記回転軸を回転され駆動される圧縮要素と、前記固定子の外径と前記密閉容器の内径との間に設けられた隙間を埋めるスペーサと、を備えた前記固定子の鉄心部の回転軸方向長さは前記スペーサの回転軸方向の長さ以上であることを特徴とする密閉型圧縮機。An electric element composed of a rotor fixed around a rotation axis of a compression element disposed in the lower part of the hermetic container, and a stator disposed radially opposite the rotor; A compression element fixed in the container and driven by rotating the rotating shaft by the electric element; and a spacer filling a gap provided between the outer diameter of the stator and the inner diameter of the hermetic container. Further, the length in the rotation axis direction of the iron core portion of the stator is equal to or longer than the length of the spacer in the rotation axis direction. 密閉容器内下部に配置された圧縮要素の回転軸を中心として固定された回転子と、該回転子に半径方向に対向して配置され、前記密閉容器の内壁に焼嵌めして固着した固定子と、により構成される電動要素と、回転軸方向の該電動要素下部において固定されかつ前記電動要素によって前記回転軸を回転され駆動される圧縮要素と、前記固定子の外径と焼嵌めされて後に前記密閉容器内径と焼嵌めされて前記固定子の外径と前記密閉容器の内径の隙間を埋めるスペーサと、を備えたことを特徴とする密閉型圧縮機。A rotor fixed around the rotation axis of the compression element disposed in the lower part of the hermetic container, and a stator that is disposed to face the rotor in the radial direction and is shrink-fitted and fixed to the inner wall of the hermetic container An electric element composed of: a compression element fixed at the lower part of the electric element in the direction of the rotation axis and driven by rotating the rotation axis by the electric element; and an outer diameter of the stator. A hermetic compressor comprising: a spacer that is shrink-fitted to the inner diameter of the hermetic container later to fill a gap between the outer diameter of the stator and the inner diameter of the hermetic container. 前記スペーサが複数の部材で形成されていることを特徴とした請求項1乃至請求項3記載の密閉型圧縮機。The hermetic compressor according to any one of claims 1 to 3, wherein the spacer is formed of a plurality of members. 前記スペーサを構成する部材同士が連結部を介して連結して形成されることを特徴とした請求項1乃至請求項4記載の密閉型圧縮機。The hermetic compressor according to any one of claims 1 to 4, wherein members constituting the spacer are connected to each other through a connecting portion. 前記スペーサの内周部と前記固定子の外周部において一方を凹または凸部として形成し、前記スペーサの内周部における凹凸部と前記固定子の外周部における凹凸部が嵌合することを特徴とした請求項1乃至請求項5記載の密閉型圧縮機。One of the inner peripheral portion of the spacer and the outer peripheral portion of the stator is formed as a concave or convex portion, and the concave and convex portions on the inner peripheral portion of the spacer and the concave and convex portions on the outer peripheral portion of the stator are fitted. The hermetic compressor according to any one of claims 1 to 5. 前記スペーサは密閉容器内壁に対し円周方向に2以上に分割され、不連続に配置されたことを特徴とする請求項1乃至請求項6記載の密閉型圧縮機。7. The hermetic compressor according to claim 1, wherein the spacer is divided into two or more in the circumferential direction with respect to the inner wall of the hermetic container and is discontinuously arranged. 前記スペーサを電磁鋼板を積層することにより形成した事を特徴とする請求項1乃至請求項7のいずれかに記載の密閉型圧縮機。The hermetic compressor according to any one of claims 1 to 7, wherein the spacer is formed by laminating electromagnetic steel sheets. 前記スペーサと固定子鉄心を同一の抜き型から打ち抜き形成した事を特徴とする請求項1乃至請求項8のいずれかに記載の密閉型圧縮機9. The hermetic compressor according to claim 1, wherein the spacer and the stator core are formed by punching from the same punching die. 前記スペーサと固定子と回転子を同一の抜き型から打ち抜き形成した事を特徴とする請求項1乃至請求項8のいずれかに記載の密閉型圧縮機。9. The hermetic compressor according to claim 1, wherein the spacer, the stator, and the rotor are formed by punching from the same punching die.
JP2002288498A 2002-10-01 2002-10-01 Hermetic compressor Expired - Fee Related JP4228645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002288498A JP4228645B2 (en) 2002-10-01 2002-10-01 Hermetic compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002288498A JP4228645B2 (en) 2002-10-01 2002-10-01 Hermetic compressor

Publications (3)

Publication Number Publication Date
JP2004124781A true JP2004124781A (en) 2004-04-22
JP2004124781A5 JP2004124781A5 (en) 2005-11-17
JP4228645B2 JP4228645B2 (en) 2009-02-25

Family

ID=32280980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002288498A Expired - Fee Related JP4228645B2 (en) 2002-10-01 2002-10-01 Hermetic compressor

Country Status (1)

Country Link
JP (1) JP4228645B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255918A (en) * 2007-04-06 2008-10-23 Matsushita Electric Ind Co Ltd Hermetic compressor
JP2010255623A (en) * 2009-04-01 2010-11-11 Panasonic Corp Compressor
JP2011043138A (en) * 2009-08-24 2011-03-03 Sanyo Electric Co Ltd Compressor
WO2022097261A1 (en) * 2020-11-06 2022-05-12 株式会社Tbk Stator and motor comprising stator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008255918A (en) * 2007-04-06 2008-10-23 Matsushita Electric Ind Co Ltd Hermetic compressor
JP2010255623A (en) * 2009-04-01 2010-11-11 Panasonic Corp Compressor
JP2011043138A (en) * 2009-08-24 2011-03-03 Sanyo Electric Co Ltd Compressor
WO2022097261A1 (en) * 2020-11-06 2022-05-12 株式会社Tbk Stator and motor comprising stator

Also Published As

Publication number Publication date
JP4228645B2 (en) 2009-02-25

Similar Documents

Publication Publication Date Title
JP4823787B2 (en) Rotor, hermetic compressor and refrigeration cycle apparatus
US6582207B2 (en) Motor compressor and cooling apparatus using the same
JP2012115084A (en) Self-start axial gap synchronous motor, and compressor and refrigeration cycle device using the same
JP6680779B2 (en) Compressor and refrigeration cycle device
JP2010063351A (en) Stator, motor and compressor
JP6195989B2 (en) Compressor, refrigeration cycle apparatus, and air conditioner
JP3143327B2 (en) Hermetic rotary compressor
KR100573947B1 (en) Electromotive compressor
KR100903265B1 (en) Armature, motor, compressor and method for manufacturing them
JP7290411B2 (en) DC motor and rotary compressor using DC motor
JP4228645B2 (en) Hermetic compressor
JP2018160953A (en) Compressor
JP2009240146A (en) Rotor of brushless dc motor, compressor equipped with rotor, and apparatus with compressor mounted thereon
KR100540096B1 (en) Electromotive compressor
JP4253574B2 (en) Permanent magnet type rotating electric machine and compressor using the same
JP3485879B2 (en) Rotor of motor for compressor
JP3485877B2 (en) Rotor of motor for compressor
JP6482615B2 (en) Compressor, refrigeration cycle apparatus, and air conditioner
JP2005229798A (en) Refrigeration device
JP3485909B2 (en) Hermetic compressor
JP3485910B2 (en) Hermetic compressor
JP3485881B2 (en) Compressor
JP3485880B2 (en) Rotor of motor for compressor
JP3213482B2 (en) Hermetic rotary compressor
JP2005188518A (en) Motor driven compressor

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040708

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050928

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080617

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081124

R151 Written notification of patent or utility model registration

Ref document number: 4228645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees