[go: up one dir, main page]

JP2004119279A - Dye-sensitizing solar cell and its manufacturing method - Google Patents

Dye-sensitizing solar cell and its manufacturing method Download PDF

Info

Publication number
JP2004119279A
JP2004119279A JP2002283528A JP2002283528A JP2004119279A JP 2004119279 A JP2004119279 A JP 2004119279A JP 2002283528 A JP2002283528 A JP 2002283528A JP 2002283528 A JP2002283528 A JP 2002283528A JP 2004119279 A JP2004119279 A JP 2004119279A
Authority
JP
Japan
Prior art keywords
dye
fluorine atom
solar cell
semiconductor electrode
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002283528A
Other languages
Japanese (ja)
Other versions
JP3984137B2 (en
Inventor
Satoshi Mikoshiba
御子柴 智
Hiroyasu Sumino
角野 裕康
Shinji Murai
村井 伸次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002283528A priority Critical patent/JP3984137B2/en
Publication of JP2004119279A publication Critical patent/JP2004119279A/en
Application granted granted Critical
Publication of JP3984137B2 publication Critical patent/JP3984137B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dye-sensitizing solar cell with improved energy conversion efficiency. <P>SOLUTION: In the dye-sensitizing solar cell equipped with a semiconductor electrode 4, an opposing electrode 5 and an electrolyte composition 9; a film-like matter containing at least one kind of organic compound selected from among a group of alkoxysilane containing fluorine atom, chlorosilane containing fluorine atom, silanol containing fluorine atom, pyridines containing fluorine atom and imidazoles containing fluorine atom, and dyes are formed at least on a part of the surface of the semiconductor electrode 4. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、色素増感型(光増感型)太陽電池及びその製造方法に関する。
【0002】
【従来の技術】
一般的な光増感型太陽電池は、例えば特開平1−220380号公報に記載されているように、金属酸化物の微粒子からなる透明半導体層の表面に色素を担持させたものから構成された電極(酸化物電極)と、この電極に対向する透明電極と、2つの電極間に介在される液状のキャリア移動層とを備える。このような太陽電池は、キャリア移動層が液状であるため、湿式方式の光増感型太陽電池と呼ばれる。
【0003】
前述したような光増感型太陽電池は、以下の過程を経て動作する。すなわち、透明電極側より入射した光は、透明半導体層表面に担持された色素に到達し、この色素を励起する。励起した色素は、速やかに透明半導体層へ電子を渡す。一方、電子を失うことによって正に帯電した色素は、キャリア移動層から拡散してきたイオンから電子を受け取ることによって電気的に中和される。電子を渡したイオンは透明電極に拡散して、電子を受け取る。この酸化物電極とこれに対向する透明電極とを、それぞれ負極および正極とすることにより、湿式光増感型太陽電池が作動する。
【0004】
一方、特開2001−102103号公開公報の段落[0043]には、半導体の表面に色素を担持させて色素担持部を形成した後、電荷移動制御分子を担持させて電荷移動制御分子担持部を形成させることにより、色素担持部が形成されていない半導体層の表面を電荷移動制御分子によって被覆し、半導体層の表面から電荷輸送層内への電荷の移動を防止し、開放電圧、光電変換効率等の光特性に優れる半導体電極を得ることが記載されている。また、電荷移動制御分子には、ケイ素化合物、スズ化合物、スルホン酸塩、硫酸エステル塩、リン酸エステル塩含有高分子が用いられている(段落[0023])。
【0005】
しかしながら、このような電荷移動制御分子を含む半導体電極を用いた色素増感型太陽電池によると、色素の加水分解が生じるため、高いエネルギー変換効率を得られないという問題点がある。
【0006】
【特許文献1】
特開平1−220380号公報(特許請求の範囲)
【0007】
【特許文献2】
特開2001−102103号公報(特許請求の範囲、段落[0023]、[0043])
【0008】
【発明が解決しようとする課題】
本発明は、エネルギー変換効率が向上された色素増感型太陽電池及びその製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明に係る色素増感型太陽電池は、半導体電極と、対向電極と、電解質組成物とを具備する色素増感型太陽電池において、
前記半導体電極の表面の少なくとも一部に、フッ素原子を含有するアルコキシシラン、フッ素原子を含有するクロロシラン、フッ素原子を含有するシラノール、フッ素原子を含有するピリジン類およびフッ素原子を含有するイミダゾール類よりなる群から選択される少なくとも1種類の有機化合物と、色素とを含有する膜状物が形成されていることを特徴とするものである。
【0010】
本発明に係る色素増感型太陽電池の製造方法は、半導体電極の表面に色素を吸着させる工程と、
前記半導体電極を有機化合物を含む溶液に浸漬するか、もしくは前記半導体電極を有機化合物の蒸気雰囲気に晒す工程とを具備し、
前記有機化合物は、フッ素原子を含有するアルコキシシラン、フッ素原子を含有するクロロシラン、フッ素原子を含有するシラノール、フッ素原子を含有するピリジン類およびフッ素原子を含有するイミダゾール類よりなる群から選択される少なくとも1種類であることを特徴とするものである。
【0011】
【発明の実施の形態】
本発明に係る色素増感型太陽電池は、半導体電極と、対向電極と、電解質組成物とを具備する色素増感型太陽電池において、前記半導体電極の表面の少なくとも一部に、フッ素原子を含有するアルコキシシラン、フッ素原子を含有するクロロシラン、フッ素原子を含有するシラノール、フッ素原子を含有するピリジン類およびフッ素原子を含有するイミダゾール類よりなる群から選択される少なくとも1種類のF置換有機化合物と、色素とを含有する膜状物が形成されていることを特徴とするものである。
【0012】
半導体電極は、半導体粒子の焼結体から形成されている。このような半導体粒子の表面に色素が単分子吸着することにより単分子膜が形成され、この単分子膜が非形成の半導体粒子表面に前述した種類のF置換有機化合物が物理吸着または化学結合により吸着された結果が、本願発明で用いる膜状物の一形態である。吸着状態について具体的に説明すると、例えば、アルコキシシランのOR基、クロロシランのCl、シラノールのOH基は、半導体電極の半導体(例えば、TiO)とそれぞれ反応して化学結合により半導体電極表面に吸着することが可能である。一方、ピリジン類、イミダゾール類は、それぞれ、窒素原子が半導体電極の半導体(例えば、TiO)と酸塩基反応に基づいて物理的に吸着することが可能である。
【0013】
さらに、前述したF置換有機化合物は、フッ素の撥水性及びその立体障害により水との親和性が低い。その結果、このF置換有機化合物は、製造工程中にセル内に取り込まれた水分や、電解質中に添加した水分によって色素が加水分解されるのを抑えることができるため、エネルギー変換効率が高い色素増感型太陽電池を実現することができる。
【0014】
以下、半導体電極、対向電極及び電解質組成物について説明する。
【0015】
1)半導体電極
半導体電極は、ガラス基板などの光受光面を有する基板に透明導電膜を介して形成されていることが望ましい。
【0016】
半導体電極は、可視光領域の吸収が少ない透明な半導体を含むことが好ましい。かかる半導体としては、n型半導体(例えば、金属酸化物半導体)が好ましい。具体的には、チタン、ジルコニウム、ハフニウム、ストロンチウム、亜鉛、インジウム、イットリウム、ランタン、バナジウム、ニオブ、タンタル、クロム、モリブデンあるいはタングステンなどの遷移金属の酸化物、SrTiO、CaTiO、BaTiO、MgTiO、SrNbのようなペロブスカイト、あるいはこれらの複合酸化物または酸化物混合物、およびGaNなどを用いることができる。
【0017】
半導体電極の表面の少なくとも一部には、前述したような組成の膜状物が形成されている。この膜状物に含まれるF置換有機化合物について説明する。
【0018】
フッ素原子を含有するアルコキシシランとしては、Si原子と直接結合するアルキル基の水素原子の少なくとも一部がフッ素原子で置換されたオルガノアルコキシシランが好ましい。このようなオルガノアルコキシシランは、疎水性と半導体との吸着性とに優れているからである。具体的には、3,3,3−トリフルオロプロピルトリメトキシシラン、1H,1H,2H,2H−パーフルオロオクチルトリメトキシシラン、1H,1H,2H,2H−パーフルオロデシルトリメトキシシラン、フルオロアルキルオリゴマー置換トリメトキシシラン(例えば、ダイキン工業株式会社の商品名がオプツールDSX)などを挙げることができる。
【0019】
フッ素原子を含有するクロロシランとしては、Si原子と直接結合するアルキル基の水素原子の少なくとも一部がフッ素原子で置換されたオルガノクロルシランが好ましい。このようなオルガノクロルシランは、疎水性と半導体との吸着性とに優れているからである。具体的には、3,3,3−トリフルオロプロピルクロロシラン、1H,1H,2H,2H−パーフルオロオクチルクロロシラン、1H,1H,2H,2H−パーフルオロデシルクロロシラン等を挙げることができる。
【0020】
フッ素原子を含有するシラノールとしては、Si原子と直接結合するアルキル基の水素原子の少なくとも一部がフッ素原子で置換されたオルガノシラノールが好ましい。具体的には、3,3,3−トリフルオロプロピルシラントリオール、1H,1H,2H,2H−パーフルオロオクチルシラントリオール、1H,1H,2H,2H−パーフルオロデシルシラントリオール等を挙げることができる。
【0021】
フッ素原子を含有するピリジン類としては、少なくとも一つの水素原子がフッ素原子で置換されたピリジン、少なくとも一つの水素原子がフッ素原子で置換されたアルキル基を置換基として持つピリジンなどが好ましい。このようなピリジン類は、疎水性と半導体との吸着性との双方に優れているからである。具体的には、2−フルオロピリジン、2−メトキシ−3−(トリフルオロメチル)ピリジン、2−メトキシ−5−(トリフルオロメチル)ピリジン、2−メルカプト−3−(トリフルオロメチル)ピリジン、2−メルカプト−5−(トリフルオロメチル)ピリジン、2−ヒドロキシ−3−(トリフルオロメチル)ピリジン、2−ヒドロキシ−4−(トリフルオロメチル)ピリジン、2−ヒドロキシ−5−(トリフルオロメチル)ピリジン、3,5−ジクロロ−2,4,6−トリフルオロピリジン等を挙げることができる。
【0022】
フッ素原子を含有するイミダゾール類としては、少なくとも一つの水素原子がフッ素原子で置換されたイミダゾール、少なくとも一つの水素原子がフッ素原子で置換されたアルキル基を置換基として持つイミダゾールなどが好ましい。具体的には、1−メチル−2−トリフルオロプロピルイミダゾール等を挙げることができる。
【0023】
フッ素原子を含有するアルコキシシラン、クロロシラン、シラノール、ピリジン類およびイミダゾール類のうち、特に、アルコキシシランは、半導体電極(例えばTiO)の表面に存在するTi−OHと化学反応し、強固なTi−O−Si結合を生成し、安定に存在するためにもっとも好ましい。
【0024】
また、フッ素原子を含有するアルコキシシラン、クロロシラン、シラノール、ピリジン類およびイミダゾール類から選ばれるF置換有機化合物と併せて、以下に説明するような有機酸または有機酸塩を併用しても良い。
【0025】
フッ素原子を含有する有機酸としては、例えば、2,5−ジフルオロ安息香酸、2,6−ジフルオロ安息香酸、3,4−ジフルオロ安息香酸、ペンタフルオロ安息香酸、ペンタフルオロプロパン酸、ノナフルオロペンタン酸、パーフルオロヘキサン酸、パーフルオロヘプタン酸、パーフルオロオクタン酸、パーフルオロノナン酸、パーフルオロテトラデカン酸、3,5−ビス(トリフルオロメチル)フェニル酢酸、2,4−ビス(トリフルオロメチル)安息香酸、2,6−ビス(トリフルオロメチル)安息香酸、3,5−ビス(トリフルオロメチル)安息香酸、2,2−ビス(3−カルボキシフェニル)ヘキサフルオロプロパン、2,2−ビス(4−カルボキシフェニル)ヘキサフルオロプロパン等を挙げることができる。
【0026】
フッ素原子を含有する有機酸塩としては、例えば、ペンタフルオロ安息香酸塩化物、ノナフルオロペンタン酸塩化物、ペンタフルオロプロパン酸塩化物、パーフルオロヘキサン酸塩化物、パーフルオロヘプタン酸塩化物、パーフルオロオクタン酸塩化物、パーフルオロノナン酸塩化物、パーフルオロテトラデカン酸塩化物等を挙げることができる。
【0027】
F置換有機化合物の吸着面積は、半導体電極のBET法による比表面積を100%とした際に0.001〜1%の範囲内になるように設定することが好ましい。これは以下に説明する理由によるものである。F置換有機化合物の吸着面積を0.0001%未満にすると、F置換有機化合物による効果を十分に得られない恐れがある。一方、F置換有機化合物の吸着面積が1%を超えると、色素の表面がF置換有機化合物で覆われるため、色素の活性が低下して高いエネルギー変換効率を得られない恐れがある。
【0028】
色素は、半導体電極の表面に単分子吸着していることが望ましい。色素としては、例えば、ルテニウム−トリス型の遷移金属錯体、ルテニウム−ビス型の遷移金属錯体、オスミウム−トリス型の遷移金属錯体、オスミウム−ビス型の遷移金属錯体、ルテニウム−シス−ジアクア−ビピリジル錯体、フタロシアニン、およびポルフィリン等を挙げることができる。
【0029】
透明導電膜としては、可視光領域の吸収が少なく、かつ導電性を有するものが好ましい。かかる透明導電膜としては、フッ素あるいはインジウムなどがドープされた酸化スズ膜、フッ素あるいはインジウムなどがドープされた酸化亜鉛膜などが好ましい。また、伝導性を向上させて抵抗の上昇を防ぐ観点から、透明導電膜と併用して低抵抗な金属またはカーボンのマトリクスを配線することが望ましい。
【0030】
2)対向電極
対向電極は、例えば、白金、金、および銀のような金属膜、カーボン膜、酸化スズ膜、フッ素がドープされた酸化スズ膜、酸化亜鉛膜等から形成することができる。電解質に対する耐久性を考慮すると、白金が特に好ましい。
【0031】
対向電極は、ガラス基板のような対向基板上に形成させることが好ましい。なお、白金は、電気化学的またはスパッタリングなどにより対向基板に付着させることができる。
【0032】
3)電解質組成物
この電解質組成物は、液体状およびゲル状のいずれであってもよい。
【0033】
電解質組成物は、可逆的な酸化還元対を含むことが好ましい。可逆的な酸化還元対は、例えば、ヨウ素(I)とヨウ化物との混合物、ヨウ化物、臭化物、ハイドロキノン、およびTCNQ錯体等から供給することができる。特に、ヨウ素とヨウ化物との混合物から供給されるIとI とからなる酸化還元対が好ましい。
【0034】
上述したような酸化還元対は、色素の酸化電位よりも0.1〜0.6V小さい酸化還元電位を示すことが望ましい。色素の酸化電位よりも0.1〜0.6V小さい酸化還元電位を示す酸化還元対は、例えば、Iのような還元種が、酸化された色素から正孔を受け取ることができる。こうした酸化還元対が電解質中に含有されることによって、n型半導体電極と導電膜との間の電荷輸送の速度を速くすることができるとともに、開放端電圧を高くすることができる。
【0035】
電解質組成物は、ヨウ化物を含有することが望ましい。ヨウ化物としては、例えば、アルカリ金属のヨウ化物、有機化合物のヨウ化物、ヨウ化物の溶融塩等が挙げられる。
【0036】
ヨウ化物の溶融塩としては、イミダゾリウム塩、ピリジニウム塩、第4級アンモニウム塩、ピロリジニウム塩、ピラゾリジウム塩、イソチアゾリジニウム塩、およびイソオキサゾリジニウム塩等の複素環含窒素化合物のヨウ化物を使用することができる。
【0037】
前記ヨウ化物の溶融塩としては、例えば、1,3−ジメチルイミダゾリウムアイオダイド、1−エチル−3−メチルイミダゾリウムアイオダイド、1−メチル3−プロピルイミダゾリウムアイオダイド、1−メチル−3−ペンチルイミダゾリウムアイオダイド、1−メチル−3−イソペンチルイミダゾリウムアイオダイド、1−メチル−3−ヘキシルイミダゾリウムアイオダイド、1−メチル−3−イソヘキシル(分岐)イミダゾリウムアイオダイド、1−メチル−3−エチルイミダゾリウムアイオダイド、1,2−ジメチル−3−プロピルイミダゾールアイオダイド、1−エチル−3−イソプロピルイミダゾリウムアイオダイド、1−プロピル−3−プロピルイミダゾリウムアイオダイド、ピロリジニウムアイオダイド等を挙げることができる。こうしたヨウ化物の溶融塩は、単独でまたは2種以上を組み合わせて使用することができる。また、その含有量は、電解質組成物中0.005mol/L以上、7mol/L以下程度であることが好ましい。0.005mol/L未満の場合には、効果を十分に得ることが困難となる。一方、7mol/Lを越えると、粘度が高くイオン伝導性が著しく低下するおそれがある。
【0038】
電解質組成物中のヨウ素含有量は、0.01mol/L以上、3mol/L以下の範囲内にすることが好ましい。ヨウ素は、電解質組成物中で、ヨウ化物と混合して可逆的な酸化還元対として作用する。したがって、ヨウ素の含有量が0.01mol/L未満の場合には、酸化還元対の酸化体が不足し電荷を輸送することが困難になる恐れがある。一方、3mol/Lを越えると、溶液の光吸収が増大し、チタニアのような半導体に効率よく光を与えることができないおそれがある。なお、ヨウ素の含有量は、0.03mol/L以上、1mol/L以下であることがより好ましい。
【0039】
電解質組成物は、有機溶媒をさらに含有することができる。有機溶媒を含有することによって、電解質組成物の粘度をよりいっそう低下させることができるため、半導体電極へ浸透されやすくなる。
【0040】
使用し得る有機溶媒としては、例えば、エチレンカーボネート(EC)やプロピレンカーボネート(PC)などの環状カーボネート;ジメチルカーボネート、メチルエチルカーボネート、およびジエチルカーボネートなどの鎖状カーボネート;γ−ブチロラクトン、アセトニトリル、プロピオン酸メチル、およびプロピオン酸エチルなどが挙げられる。さらに、テトラヒドロフラン、および2一メチルテトラヒドロフランなどの環状エーテル;ジメトキシエタン、およびジエトキシエタンなどの鎖状エーテル;アセトニトリル、プロピオニトリル、グルタロニトリル、およびメトキシプロピオニトリルなどのニトリル系溶剤などが挙げられる。こうした有機溶媒は、単独であるいは2種以上の混合物として用いることができる。
【0041】
有機溶媒の含有量は、特に限定されないが電解質組成物中80重量%以下にすることが好ましい。有機溶媒の含有量が30重量%を越えると、揮発による性能劣化のおそれがあるため、有機溶媒の含有量は、30重量%以下にすることがより好ましい。
【0042】
電解質組成物には、水が含有されることが好ましい。水を含有する電解質組成物は、色素増感型太陽電池のエネルギー変換効率をより高くすることができる。電解質組成物中の水の含有量は、0.01重量%〜50重量%の範囲内にすることが好ましい。水の含有量のさらに好ましい範囲は、0.1重量%〜30重量%で、最も好ましい範囲は1重量%〜10重量%である。
【0043】
本発明に係る色素増感型太陽電池は、例えば、以下に説明する方法で製造される。
【0044】
まず、光受光面を有する基板、例えばガラス基板を用意し、その内面に透明導電膜およびn型半導体電極を順次形成する。このn型半導体電極保持基板を、エタノールなどの媒体に溶解された色素の溶液に浸漬することによりエステル結合によってn型半導体(例えば、チタニア)表面に色素を吸着させる。次いで、前述した有機化合物を有機溶剤に溶解させた溶液にn型半導体電極保持基板を浸漬するか、もしくは前述した有機化合物の蒸気雰囲気にn型半導体電極保持基板を晒すことによって、半導体表面のうち色素未吸着部分に有機化合物を物理吸着または化学結合により吸着させる。F置換有機化合物の吸着方法としては、F置換有機化合物の蒸気を吸着させる方法が好ましい。この方法によると、色素表面がF置換有機化合物で覆われるのを防ぐことができ、色素の活性が低下するのを抑えることができるため、より高いエネルギー変換効率が得られるからである。
【0045】
一方、光受光面を有する基板、例えばガラス基板の表面に対向電極として導電膜を形成し、対向電極とn型半導体電極とを対向させ、電池ユニットを組み立てる。
【0046】
次いで、電解質組成物を、n型半導体電極と対向電極との間隙に注入した後、電池ユニットを密封する。ここで用いられる電解質組成物がゲル電解質前駆体組成物の場合には、このゲル状電解質前駆体組成物をゲル化させることによって、本発明に係る色素増感型太陽電池が得られる。
【0047】
【実施例】
以下、本発明の実施例を図面を参照して詳細に説明する。
【0048】
(実施例1)
まず、n型半導体電極の材料として、平均一次粒径が約10〜20nmの高純度酸化チタン(アナターゼ)粉末を含有する市販ペースト(スイス Solaronix社製)を用意した。
【0049】
ガラス基板1上にフッ素ドープしたSnO透明電極(6Ω/□)2を設け、その上に前述のペーストをスクリーン印刷法で印刷して、温度450℃で熱処理を施した。これによって、酸化チタン(アナターゼ)粒子からなる厚さ2μmのn型半導体電極を形成した。
【0050】
このスクリーン印刷と熱処理とを複数回繰り返すことにより、最終的にフッ素ドープした酸化スズ導電膜2(透明導電膜2)上に、アナターゼ相の酸化チタン粒子3からなるn型半導体電極4を、8μmの厚さで形成した。このn型半導体電極4のラフネスファクターは1500であった。ラフネスファクターは、基板の投影面積に対する窒素吸着量から求めた。
【0051】
一方、シス−ビス(チオシアナト)−N,N−ビス(2,2’−ジピリジル−4,4’−ジカルボン酸)−ルテニウム(II)二水和物)を乾燥エタノールに溶解して、3×10−4Mの乾燥エタノール溶液を調製した。前述のn型半導体電極4を、この溶液(温度約80℃)に4時間浸漬した後、アルゴン気流中で引き上げた。これによって、n型半導体電極4表面には、色素であるルテニウム錯体が担持された。次に、パーフルオロカーボン系希釈剤にフルオロアルキルオリゴマー置換トリメトキシシラン(ダイキン工業株式会社製の商品名がオプツールDSX)を溶解させ、得られた溶液にn型半導体電極保持基板を浸漬し、1分間に10mmの速度で引き上げ、自然乾燥させた。フルオロアルキルオリゴマー置換トリメトキシシランの吸着面積は、n型半導体電極のBET法による比表面積を100%とした際に0.001%に相当するものであった。
【0052】
また、表面に白金を付着させたガラス基板6上に、フッ素ドープ酸化スズ電極5(導電膜5)を形成した。前述のn型半導体電極4が作製された基板1上に、直径15μmのスペーサーを介してこの対向電極5を設置した。さらに、電解質組成物の注入口を残して、周囲をエポキシ系樹脂7で固めて固定した。
【0053】
以上の操作によって、図1(a)に示すような光電変換素子ユニットが得られた。
【0054】
電解質組成物は、次のようにして調製した。まず、アセトニトリル100ml中に、リチウムアイオダイド(LiI)0.5mol/L、メチルヘキシルイミダソリウムアイオダイド0.3mol/L、t−ブチルピリジン0.5mol/L、および、ヨウ素0.05mol/Lを溶解し電解質組成物を調製した。
【0055】
次いで、図1(b)に示すように、光電変換ユニットの開口部に注入ノズル8から電解質組成物9を注入した。電解質組成物9は、図1(c)に示されるように、n型半導体電極4に浸透するとともに、n型半導体電極4と酸化スズ電極5との間にも注入された。
【0056】
引き続き、図1(d)に示すように、光電変換ユニットの開口部をエポキシ樹脂10で封口した後、60℃で30分間、ホットプレート上で加熱することにより電解質組成物をゲル化させ、光電変換素子、すなわち色素増感型太陽電池を製造した。得られた太陽電池の断面図を図2に示す。
【0057】
図2に示されるように、ガラス基板1上には、透明導電膜2および透明なn型半導体電極4が順次形成されている。このn型半導体電極4は、微粒子3の集合体から形成されるため、表面積が極めて大きい。また、n型半導体電極4の表面には色素が単分子吸着していると共に、主に色素未吸着箇所にフルオロアルキルオリゴマー置換トリメトキシシランが吸着している。n型半導体電極4の表面は、樹脂状構造のように自己相似性を有したフラクタル形状とすることが可能である。一方、導電膜からなる対向電極5は、ガラス基板6上に形成されている。
【0058】
ゲル電解質層9は、透明なn型半導体電極4中の細孔に保持されるとともに、n型半導体電極4と対向電極5との間に介在される。このような色素増感型太陽電池においてガラス基板1側から光11が入射されると、まず、n型半導体電極4の表面に吸着されている色素が、入射光11を吸収して励起される。励起した色素が、n型半導体電極4へ電子を渡すとともに、ゲル電解質層9にホールを渡すことによって光電変換が行なわれる。
【0059】
(実施例2)
フルオロアルキルオリゴマー置換トリメトキシシラン(ダイキン工業株式会社製の商品名がオプツールDSX)をパーフルオロカーボン系希釈剤に0.1重量%溶解させた溶液の飽和蒸気中に、色素吸着後のn型半導体電極保持基板を60分間静置することにより、フッ素置換有機物の吸着を行なうこと以外は、前述の実施例1と同様の手法により色素増感型太陽電池を製造した。
【0060】
(実施例3〜8)
フッ素置換有機化合物の種類および吸着方法を下記表1に示すように変更すること以外は、前述した実施例1または実施例2で説明したのと同様な手法により色素増感型太陽電池を製造した。なお、実施例3で使用したフッ素置換有機化合物である3,3,3−トリフルオロプロピルトリメトキシシランの構造式を下記化1に示す。
【0061】
【化1】

Figure 2004119279
【0062】
(比較例1)
フルオロアルキルオリゴマー置換トリメトキシシランの処理を行なわない以外は、実施例1と同様にして色素増感型太陽電池を製造した。
【0063】
(比較例2)
メチルトリメトキシシランが溶解されたトルエン溶液に、色素吸着後のn型半導体電極保持基板を浸漬することにより、半導体電極表面にメチルトリメトキシシランを吸着させること以外は、前述した実施例1と同様にして色素増感型太陽電池を製造した。
【0064】
得られた実施例1〜18及び比較例1〜2の太陽電池について、100mW/cmの擬似太陽光を照射した際のエネルギー変換効率を測定し、その結果を下記表1に示す。
【0065】
【表1】
Figure 2004119279
【0066】
表1から明らかなように、半導体電極の表面にF置換の有機化合物と色素とを含有する膜状物が形成されている実施例1〜8の太陽電池は、F置換有機化合物による処理を行わない比較例1の太陽電池と、F原子を含まない有機化合物で処理を行う比較例2の太陽電池に比較してエネルギー変換効率に優れていることがわかる。特に、フッ素原子を含有するアルコキシシランを用いる実施例1〜4の太陽電池は、高いエネルギー変換効率を得られることがわかる。
【0067】
(実施例9〜13)
ゲル電解質を用いる代わりに、メチルプロピルイミダゾリウムアイオダイドにt−ブチルピリジンを0.58M、LiIを0.5M、Iを0.3M、水を10wt%を添加した電解液を用いると共に、フッ素置換有機化合物の種類および吸着方法を下記表2に示すように変更すること以外は、前述した実施例1または実施例2で説明したのと同様な手法により色素増感型太陽電池を製造した。
【0068】
(比較例3)
ゲル電解質を用いる代わりに前述した実施例9で説明した電解液を用いると共に、フルオロアルキルオリゴマー置換トリメトキシシランの処理を行なわない以外は、実施例1と同様にして色素増感型太陽電池を製造した。
【0069】
(比較例2)
メチルトリメトキシシランが溶解されたトルエン溶液に、色素吸着後のn型半導体電極保持基板を浸漬することにより、半導体電極表面にメチルトリメトキシシランを吸着させることと、ゲル電解質の代わりに前述した実施例9で説明した電解液を用いること以外は、前述した実施例1と同様にして色素増感型太陽電池を製造した。
【0070】
得られた実施例9〜13及び比較例3〜4の太陽電池について、100mW/cmの擬似太陽光を照射した際のエネルギー変換効率を測定し、その結果を下記表2に示す。
【0071】
【表2】
Figure 2004119279
【0072】
表2から明らかなように、実施例9〜13の太陽電池は、水による色素の加水分解がほとんど起こらず、エネルギー変換効率が比較例3,4の太陽電池に比較して高いことが理解できる。また、実施例9〜13の太陽電池は、80℃で1週間加熱し再度エネルギー変換効率を測定した際にほとんど効率の減少がおこらなかった。特に、フッ素原子を含有するアルコキシシランを用いる実施例9〜10の太陽電池は、高いエネルギー変換効率を得られることがわかる。
【0073】
(実施例14)
1−メチル−3−プロピルイミダゾリウムアイオダイド中によう素0.3M、t−ブチルピリジン0.58M、LiI0.5Mを溶解させた溶液に水10wt%加えた電解質組成物をゲル電解質の代わりに用いること以外は、実施例2と同様にして色素増感型太陽電池を製造した。この太陽電池のエネルギー変換効率を前述したのと同様な条件で測定したところ、5.0%であった。また、80℃で1週間加熱し再度エネルギー変換効率を測定したところ、ほとんど効率の減少がおこらなかった。
【0074】
(実施例15)
1−メチル−3−プロピルイミダゾリウムアイオダイド中によう素0.3M、t−ブチルピリジン0.58M、LiI0.5Mを溶解させた溶液に水55wt%加えた電解質組成物をゲル電解質の代わりに用いること以外は、実施例2と同様にして色素増感型太陽電池を製造した。この太陽電池のエネルギー変換効率を前述したのと同様な条件で測定したところ、1%であった。さらに、この太陽電池を80℃で1週間加熱し再度エネルギー変換効率を測定したところ、0.9%であった。
【0075】
(比較例5)
フルオロアルキルオリゴマー置換トリメトキシシランの処理を行なわないこと以外は、実施例15と同様にして色素増感型太陽電池を製造した。この太陽電池のエネルギー変換効率を前述したのと同様な条件で測定したところ、0.9%であった。さらに、この太陽電池を80℃で1週間加熱し再度エネルギー変換効率を測定したところ、0.1%に出力は低下した。
【0076】
【発明の効果】
以上詳述したように本発明によれば、エネルギー変換効率が向上された色素増感型太陽電池及びその製造方法を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る色素増感型太陽電池の製造工程の一例を示す断面図。
【図2】本発明に係る色素増感型太陽電池の一例を示す断面図。
【符号の説明】
1…ガラス基板
2…透明導電膜
3…酸化チタン微粒子
4…半導体電極
5…導電膜
6…対向基板
7,10…エポキシ樹脂
8…注入ノズル
9…電解質組成物
11…入射光。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a dye-sensitized (photosensitized) solar cell and a method for manufacturing the same.
[0002]
[Prior art]
A general photosensitized solar cell is constituted by, for example, as described in JP-A-1-220380, in which a dye is supported on the surface of a transparent semiconductor layer composed of metal oxide fine particles. An electrode (oxide electrode), a transparent electrode facing the electrode, and a liquid carrier moving layer interposed between the two electrodes are provided. Such a solar cell is called a wet-type photosensitized solar cell because the carrier transfer layer is liquid.
[0003]
The photosensitized solar cell as described above operates through the following processes. That is, light incident from the transparent electrode side reaches the dye carried on the surface of the transparent semiconductor layer, and excites the dye. The excited dye quickly transfers electrons to the transparent semiconductor layer. On the other hand, the dye positively charged by losing electrons is electrically neutralized by receiving electrons from ions diffused from the carrier transfer layer. The ions that have passed the electrons diffuse into the transparent electrode and receive the electrons. The wet photosensitized solar cell operates by using the oxide electrode and the transparent electrode opposed thereto as a negative electrode and a positive electrode, respectively.
[0004]
On the other hand, in paragraph [0043] of JP-A-2001-102103, after a dye is supported on a semiconductor surface to form a dye-carrying part, a charge-transfer controlling molecule is supported and a charge-transfer controlling molecule supporting part is formed. By forming, the surface of the semiconductor layer on which the dye-carrying portion is not formed is covered with charge transfer control molecules, preventing the transfer of charge from the surface of the semiconductor layer into the charge transport layer, open voltage, photoelectric conversion efficiency. It is described that a semiconductor electrode having excellent optical characteristics such as the above is obtained. Further, as the charge transfer control molecule, a polymer containing a silicon compound, a tin compound, a sulfonate, a sulfate, or a phosphate is used (paragraph [0023]).
[0005]
However, according to the dye-sensitized solar cell using a semiconductor electrode containing such a charge transfer controlling molecule, there is a problem that high energy conversion efficiency cannot be obtained because the dye is hydrolyzed.
[0006]
[Patent Document 1]
JP-A 1-220380 (claims)
[0007]
[Patent Document 2]
JP 2001-102103 A (claims, paragraphs [0023], [0043])
[0008]
[Problems to be solved by the invention]
An object of the present invention is to provide a dye-sensitized solar cell with improved energy conversion efficiency and a method for manufacturing the same.
[0009]
[Means for Solving the Problems]
The dye-sensitized solar cell according to the present invention is a dye-sensitized solar cell including a semiconductor electrode, a counter electrode, and an electrolyte composition.
At least a portion of the surface of the semiconductor electrode is made of a fluorine atom-containing alkoxysilane, a fluorine atom-containing chlorosilane, a fluorine atom-containing silanol, a fluorine atom-containing pyridine, and a fluorine atom-containing imidazole. It is characterized in that a film containing at least one organic compound selected from the group and a dye is formed.
[0010]
The method for producing a dye-sensitized solar cell according to the present invention, a step of adsorbing a dye on the surface of the semiconductor electrode,
Immersing the semiconductor electrode in a solution containing an organic compound, or exposing the semiconductor electrode to a vapor atmosphere of an organic compound,
The organic compound is a fluorine atom-containing alkoxysilane, a fluorine atom-containing chlorosilane, a fluorine atom-containing silanol, a fluorine atom-containing pyridines and a fluorine atom-containing imidazoles at least selected from the group consisting of It is characterized by one type.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
The dye-sensitized solar cell according to the present invention is a dye-sensitized solar cell including a semiconductor electrode, a counter electrode, and an electrolyte composition, wherein at least a part of the surface of the semiconductor electrode contains a fluorine atom. Alkoxysilane, chlorosilane containing a fluorine atom, silanol containing a fluorine atom, at least one F-substituted organic compound selected from the group consisting of pyridines containing a fluorine atom and imidazoles containing a fluorine atom, A film-like substance containing a dye is formed.
[0012]
The semiconductor electrode is formed from a sintered body of semiconductor particles. A monomolecular film is formed by the monomolecular adsorption of the dye on the surface of such a semiconductor particle, and the F-substituted organic compound of the type described above is physically adsorbed or chemically bonded to the surface of the semiconductor particle on which the monomolecular film is not formed. The result of the adsorption is one form of a film used in the present invention. The adsorption state will be specifically described. For example, the OR group of alkoxysilane, the Cl of chlorosilane, and the OH group of silanol are formed by the semiconductor (for example, TiO 2) of the semiconductor electrode.2) Can be adsorbed on the surface of the semiconductor electrode by chemical bonding. On the other hand, pyridines and imidazoles each have a nitrogen atom as a semiconductor electrode (for example, TiO.sub.2).2) And an acid-base reaction.
[0013]
Further, the F-substituted organic compound described above has low affinity for water due to the water repellency of fluorine and its steric hindrance. As a result, the F-substituted organic compound can suppress the dye from being hydrolyzed by the water taken into the cell during the manufacturing process and the water added to the electrolyte, so that the dye having a high energy conversion efficiency can be suppressed. A sensitized solar cell can be realized.
[0014]
Hereinafter, the semiconductor electrode, the counter electrode, and the electrolyte composition will be described.
[0015]
1) Semiconductor electrode
The semiconductor electrode is desirably formed on a substrate having a light receiving surface such as a glass substrate via a transparent conductive film.
[0016]
The semiconductor electrode preferably contains a transparent semiconductor that absorbs less in the visible light region. As such a semiconductor, an n-type semiconductor (for example, a metal oxide semiconductor) is preferable. Specifically, oxides of transition metals such as titanium, zirconium, hafnium, strontium, zinc, indium, yttrium, lanthanum, vanadium, niobium, tantalum, chromium, molybdenum or tungsten, SrTiO3, CaTiO3, BaTiO3, MgTiO3, SrNb2O6Or a composite oxide or oxide mixture thereof, GaN, or the like.
[0017]
On at least a part of the surface of the semiconductor electrode, a film-like material having the composition described above is formed. The F-substituted organic compound contained in the film will be described.
[0018]
As the alkoxysilane containing a fluorine atom, an organoalkoxysilane in which at least a part of a hydrogen atom of an alkyl group directly bonded to a Si atom is substituted with a fluorine atom is preferable. This is because such an organoalkoxysilane is excellent in hydrophobicity and adsorptivity to a semiconductor. Specifically, 3,3,3-trifluoropropyltrimethoxysilane, 1H, 1H, 2H, 2H-perfluorooctyltrimethoxysilane, 1H, 1H, 2H, 2H-perfluorodecyltrimethoxysilane, fluoroalkyl Oligomer-substituted trimethoxysilane (for example, the trade name of Daikin Industries, Ltd. is Optool DSX).
[0019]
As the chlorosilane containing a fluorine atom, an organochlorosilane in which at least a part of hydrogen atoms of an alkyl group directly bonded to a Si atom is substituted with a fluorine atom is preferable. This is because such organochlorosilane is excellent in hydrophobicity and adsorptivity to a semiconductor. Specifically, 3,3,3-trifluoropropylchlorosilane, 1H, 1H, 2H, 2H-perfluorooctylchlorosilane, 1H, 1H, 2H, 2H-perfluorodecylchlorosilane and the like can be mentioned.
[0020]
As the silanol containing a fluorine atom, an organosilanol in which at least a part of a hydrogen atom of an alkyl group directly bonded to a Si atom is substituted with a fluorine atom is preferable. Specifically, 3,3,3-trifluoropropylsilanetriol, 1H, 1H, 2H, 2H-perfluorooctylsilanetriol, 1H, 1H, 2H, 2H-perfluorodecylsilanetriol and the like can be mentioned. .
[0021]
As the pyridine containing a fluorine atom, pyridine in which at least one hydrogen atom is substituted by a fluorine atom, pyridine having an alkyl group in which at least one hydrogen atom is substituted by a fluorine atom as a substituent, and the like are preferable. This is because such pyridines are excellent in both hydrophobicity and adsorptivity to a semiconductor. Specifically, 2-fluoropyridine, 2-methoxy-3- (trifluoromethyl) pyridine, 2-methoxy-5- (trifluoromethyl) pyridine, 2-mercapto-3- (trifluoromethyl) pyridine, -Mercapto-5- (trifluoromethyl) pyridine, 2-hydroxy-3- (trifluoromethyl) pyridine, 2-hydroxy-4- (trifluoromethyl) pyridine, 2-hydroxy-5- (trifluoromethyl) pyridine , 3,5-dichloro-2,4,6-trifluoropyridine and the like.
[0022]
As the imidazole containing a fluorine atom, imidazole in which at least one hydrogen atom is substituted by a fluorine atom, imidazole having an alkyl group in which at least one hydrogen atom is substituted by a fluorine atom as a substituent are preferable. Specifically, 1-methyl-2-trifluoropropylimidazole and the like can be mentioned.
[0023]
Among alkoxysilanes, chlorosilanes, silanols, pyridines and imidazoles containing a fluorine atom, in particular, alkoxysilane is used as a semiconductor electrode (for example, TiO2).2) Is most preferable because it chemically reacts with Ti-OH present on the surface to form a strong Ti-O-Si bond and exists stably.
[0024]
Further, an organic acid or an organic acid salt as described below may be used in combination with an F-substituted organic compound selected from alkoxysilane, chlorosilane, silanol, pyridines and imidazoles containing a fluorine atom.
[0025]
Examples of the organic acid containing a fluorine atom include, for example, 2,5-difluorobenzoic acid, 2,6-difluorobenzoic acid, 3,4-difluorobenzoic acid, pentafluorobenzoic acid, pentafluoropropanoic acid, and nonafluoropentanoic acid , Perfluorohexanoic acid, perfluoroheptanoic acid, perfluorooctanoic acid, perfluorononanoic acid, perfluorotetradecanoic acid, 3,5-bis (trifluoromethyl) phenylacetic acid, 2,4-bis (trifluoromethyl) benzoic acid Acid, 2,6-bis (trifluoromethyl) benzoic acid, 3,5-bis (trifluoromethyl) benzoic acid, 2,2-bis (3-carboxyphenyl) hexafluoropropane, 2,2-bis (4 -Carboxyphenyl) hexafluoropropane and the like.
[0026]
Examples of the organic acid salt containing a fluorine atom include, for example, pentafluorobenzoic acid chloride, nonafluoropentanoic acid chloride, pentafluoropropanoic acid chloride, perfluorohexanoic acid chloride, perfluoroheptanoic acid chloride, perfluorochemical Octanoic acid chloride, perfluorononanoic acid chloride, perfluorotetradecanoic acid chloride and the like can be mentioned.
[0027]
The adsorption area of the F-substituted organic compound is preferably set so as to fall within the range of 0.001 to 1% when the specific surface area of the semiconductor electrode by the BET method is 100%. This is for the reason described below. If the adsorption area of the F-substituted organic compound is less than 0.0001%, the effect of the F-substituted organic compound may not be sufficiently obtained. On the other hand, if the adsorption area of the F-substituted organic compound exceeds 1%, the surface of the dye is covered with the F-substituted organic compound, so that the activity of the dye may be reduced and a high energy conversion efficiency may not be obtained.
[0028]
It is desirable that the dye is monomolecularly adsorbed on the surface of the semiconductor electrode. Examples of the dye include a ruthenium-tris type transition metal complex, a ruthenium-bis type transition metal complex, an osmium-tris type transition metal complex, an osmium-bis type transition metal complex, and a ruthenium-cis-diaqua-bipyridyl complex. , Phthalocyanine, and porphyrin.
[0029]
It is preferable that the transparent conductive film has little absorption in the visible light region and has conductivity. As such a transparent conductive film, a tin oxide film doped with fluorine or indium, a zinc oxide film doped with fluorine or indium, or the like is preferable. Further, from the viewpoint of improving conductivity and preventing an increase in resistance, it is desirable to wire a low-resistance metal or carbon matrix in combination with the transparent conductive film.
[0030]
2) Counter electrode
The counter electrode can be formed from, for example, a metal film such as platinum, gold, and silver, a carbon film, a tin oxide film, a tin oxide film doped with fluorine, a zinc oxide film, or the like. Platinum is particularly preferable in consideration of durability against the electrolyte.
[0031]
The counter electrode is preferably formed on a counter substrate such as a glass substrate. Note that platinum can be attached to the opposite substrate by electrochemical or sputtering.
[0032]
3) Electrolyte composition
This electrolyte composition may be liquid or gel.
[0033]
The electrolyte composition preferably contains a reversible redox couple. Reversible redox couples include, for example, iodine (I2) And iodides, iodides, bromides, hydroquinones, TCNQ complexes and the like. In particular, I provided from a mixture of iodine and iodideAnd I3 And a redox couple consisting of
[0034]
It is desirable that the redox couple as described above shows a redox potential that is 0.1 to 0.6 V lower than the oxidation potential of the dye. A redox couple exhibiting a redox potential 0.1 to 0.6 V lower than the oxidation potential of the dye is, for example, IReducing species such as can accept holes from the oxidized dye. By including such a redox couple in the electrolyte, the speed of charge transport between the n-type semiconductor electrode and the conductive film can be increased, and the open-circuit voltage can be increased.
[0035]
It is desirable that the electrolyte composition contains iodide. Examples of the iodide include an iodide of an alkali metal, an iodide of an organic compound, a molten salt of an iodide, and the like.
[0036]
Examples of the molten salt of iodide include iodides of heterocyclic nitrogen-containing compounds such as imidazolium salts, pyridinium salts, quaternary ammonium salts, pyrrolidinium salts, pyrazolidium salts, isothiazolidinium salts, and isoxazolidinium salts. Can be used.
[0037]
Examples of the molten salt of the iodide include 1,3-dimethylimidazolium iodide, 1-ethyl-3-methylimidazolium iodide, 1-methyl-3-propylimidazolium iodide, and 1-methyl-3-. Pentyl imidazolium iodide, 1-methyl-3-isopentyl imidazolium iodide, 1-methyl-3-hexylimidazolium iodide, 1-methyl-3-isohexyl (branched) imidazolium iodide, 1-methyl- 3-ethyl imidazolium iodide, 1,2-dimethyl-3-propyl imidazol iodide, 1-ethyl-3-isopropyl imidazolium iodide, 1-propyl-3-propyl imidazolium iodide, pyrrolidinium iodide Etc. That. These iodide molten salts can be used alone or in combination of two or more. Further, the content thereof is preferably about 0.005 mol / L or more and about 7 mol / L or less in the electrolyte composition. When the amount is less than 0.005 mol / L, it is difficult to obtain a sufficient effect. On the other hand, if it exceeds 7 mol / L, the viscosity may be high and the ionic conductivity may be significantly reduced.
[0038]
It is preferable that the iodine content in the electrolyte composition be in the range of 0.01 mol / L or more and 3 mol / L or less. Iodine mixes with iodide in the electrolyte composition and acts as a reversible redox couple. Therefore, when the content of iodine is less than 0.01 mol / L, there is a possibility that the oxidant of the redox couple becomes insufficient and it becomes difficult to transport charges. On the other hand, if it exceeds 3 mol / L, the light absorption of the solution increases, and it may not be possible to efficiently provide light to a semiconductor such as titania. Note that the content of iodine is more preferably 0.03 mol / L or more and 1 mol / L or less.
[0039]
The electrolyte composition may further contain an organic solvent. When the organic solvent is contained, the viscosity of the electrolyte composition can be further reduced, so that the electrolyte composition is easily permeated into the semiconductor electrode.
[0040]
Examples of the organic solvent that can be used include cyclic carbonates such as ethylene carbonate (EC) and propylene carbonate (PC); linear carbonates such as dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate; γ-butyrolactone, acetonitrile, and propionic acid. Methyl and ethyl propionate. Furthermore, cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran; linear ethers such as dimethoxyethane and diethoxyethane; nitrile solvents such as acetonitrile, propionitrile, glutaronitrile, and methoxypropionitrile; Can be These organic solvents can be used alone or as a mixture of two or more.
[0041]
The content of the organic solvent is not particularly limited, but is preferably 80% by weight or less in the electrolyte composition. If the content of the organic solvent exceeds 30% by weight, the performance may be degraded due to volatilization. Therefore, the content of the organic solvent is more preferably set to 30% by weight or less.
[0042]
Preferably, the electrolyte composition contains water. The electrolyte composition containing water can further increase the energy conversion efficiency of the dye-sensitized solar cell. The content of water in the electrolyte composition is preferably in the range of 0.01% by weight to 50% by weight. A more preferred range for the water content is 0.1% to 30% by weight, and the most preferred range is 1% to 10% by weight.
[0043]
The dye-sensitized solar cell according to the present invention is manufactured, for example, by the method described below.
[0044]
First, a substrate having a light receiving surface, for example, a glass substrate is prepared, and a transparent conductive film and an n-type semiconductor electrode are sequentially formed on the inner surface thereof. The n-type semiconductor electrode holding substrate is immersed in a solution of the dye dissolved in a medium such as ethanol, so that the dye is adsorbed on the surface of the n-type semiconductor (for example, titania) by an ester bond. Next, the n-type semiconductor electrode holding substrate is immersed in a solution in which the above-described organic compound is dissolved in an organic solvent, or the n-type semiconductor electrode holding substrate is exposed to the vapor atmosphere of the above-described organic compound, thereby forming a semiconductor surface. The organic compound is adsorbed on the unadsorbed portion of the dye by physical adsorption or chemical bonding. As a method of adsorbing the F-substituted organic compound, a method of adsorbing the vapor of the F-substituted organic compound is preferable. According to this method, the dye surface can be prevented from being covered with the F-substituted organic compound, and a decrease in the activity of the dye can be suppressed, so that higher energy conversion efficiency can be obtained.
[0045]
On the other hand, a conductive film is formed as a counter electrode on a substrate having a light receiving surface, for example, a glass substrate, and the counter electrode and the n-type semiconductor electrode are opposed to each other to assemble a battery unit.
[0046]
Next, after the electrolyte composition is injected into the gap between the n-type semiconductor electrode and the counter electrode, the battery unit is sealed. When the electrolyte composition used here is a gel electrolyte precursor composition, the dye-sensitized solar cell according to the present invention can be obtained by gelling the gel electrolyte precursor composition.
[0047]
【Example】
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0048]
(Example 1)
First, as a material for the n-type semiconductor electrode, a commercially available paste (manufactured by Solaronix, Switzerland) containing high-purity titanium oxide (anatase) powder having an average primary particle size of about 10 to 20 nm was prepared.
[0049]
Fluorine-doped SnO on glass substrate 12A transparent electrode (6Ω / □) 2 was provided, and the above-mentioned paste was printed thereon by a screen printing method, and heat-treated at a temperature of 450 ° C. Thus, an n-type semiconductor electrode made of titanium oxide (anatase) particles and having a thickness of 2 μm was formed.
[0050]
By repeating this screen printing and heat treatment a plurality of times, an n-type semiconductor electrode 4 composed of titanium oxide particles 3 in the anatase phase is finally formed on the fluorine-doped tin oxide conductive film 2 (transparent conductive film 2) by 8 μm. Formed with a thickness of The roughness factor of the n-type semiconductor electrode 4 was 1500. The roughness factor was determined from the nitrogen adsorption amount with respect to the projected area of the substrate.
[0051]
On the other hand, cis-bis (thiocyanato) -N, N-bis (2,2′-dipyridyl-4,4′-dicarboxylic acid) -ruthenium (II) dihydrate) was dissolved in dry ethanol, and 3 × 10-4A dry ethanol solution of M was prepared. The above-mentioned n-type semiconductor electrode 4 was immersed in this solution (temperature: about 80 ° C.) for 4 hours, and then pulled up in an argon stream. As a result, the ruthenium complex as a dye was carried on the surface of the n-type semiconductor electrode 4. Next, a fluoroalkyl oligomer-substituted trimethoxysilane (trade name: Optool DSX, manufactured by Daikin Industries, Ltd.) is dissolved in a perfluorocarbon-based diluent, and the n-type semiconductor electrode holding substrate is immersed in the obtained solution for 1 minute. At a speed of 10 mm and air-dried. The adsorption area of the fluoroalkyl oligomer-substituted trimethoxysilane was equivalent to 0.001% when the specific surface area of the n-type semiconductor electrode measured by the BET method was 100%.
[0052]
Further, a fluorine-doped tin oxide electrode 5 (conductive film 5) was formed on a glass substrate 6 having platinum adhered to the surface. The counter electrode 5 was placed on the substrate 1 on which the above-described n-type semiconductor electrode 4 was formed via a spacer having a diameter of 15 μm. Furthermore, the periphery was solidified and fixed with epoxy resin 7 except for the injection port for the electrolyte composition.
[0053]
Through the above operation, a photoelectric conversion element unit as shown in FIG. 1A was obtained.
[0054]
The electrolyte composition was prepared as follows. First, in 100 ml of acetonitrile, 0.5 mol / L of lithium iodide (LiI), 0.3 mol / L of methylhexylimidasolium iodide, 0.5 mol / L of t-butylpyridine, and 0.05 mol / L of iodine were used. Was dissolved to prepare an electrolyte composition.
[0055]
Next, as shown in FIG. 1B, an electrolyte composition 9 was injected from an injection nozzle 8 into the opening of the photoelectric conversion unit. The electrolyte composition 9 penetrated into the n-type semiconductor electrode 4 and was injected between the n-type semiconductor electrode 4 and the tin oxide electrode 5 as shown in FIG.
[0056]
Subsequently, as shown in FIG. 1D, the opening of the photoelectric conversion unit is sealed with an epoxy resin 10 and then heated at 60 ° C. for 30 minutes on a hot plate to gel the electrolyte composition, and A conversion element, that is, a dye-sensitized solar cell was manufactured. FIG. 2 shows a cross-sectional view of the obtained solar cell.
[0057]
As shown in FIG. 2, a transparent conductive film 2 and a transparent n-type semiconductor electrode 4 are sequentially formed on a glass substrate 1. Since the n-type semiconductor electrode 4 is formed from an aggregate of the fine particles 3, the surface area is extremely large. The dye is adsorbed on the surface of the n-type semiconductor electrode 4 as a single molecule, and the fluoroalkyl oligomer-substituted trimethoxysilane is adsorbed mainly on the non-dye adsorbed portion. The surface of the n-type semiconductor electrode 4 can have a fractal shape having self-similarity like a resin-like structure. On the other hand, the counter electrode 5 made of a conductive film is formed on a glass substrate 6.
[0058]
The gel electrolyte layer 9 is held by pores in the transparent n-type semiconductor electrode 4 and is interposed between the n-type semiconductor electrode 4 and the counter electrode 5. When light 11 enters from the glass substrate 1 side in such a dye-sensitized solar cell, first, the dye adsorbed on the surface of the n-type semiconductor electrode 4 absorbs the incident light 11 and is excited. . The excited dye passes electrons to the n-type semiconductor electrode 4 and passes holes to the gel electrolyte layer 9 to perform photoelectric conversion.
[0059]
(Example 2)
An n-type semiconductor electrode after dye adsorption in saturated vapor of a solution in which a fluoroalkyl oligomer-substituted trimethoxysilane (trade name of Optool DSX manufactured by Daikin Industries, Ltd.) is dissolved in a perfluorocarbon-based diluent at 0.1% by weight. A dye-sensitized solar cell was manufactured in the same manner as in Example 1 except that the holding substrate was allowed to stand for 60 minutes to adsorb the fluorine-substituted organic substance.
[0060]
(Examples 3 to 8)
A dye-sensitized solar cell was manufactured in the same manner as described in Example 1 or Example 2 above, except that the type of the fluorine-substituted organic compound and the adsorption method were changed as shown in Table 1 below. . The structural formula of 3,3,3-trifluoropropyltrimethoxysilane which is the fluorine-substituted organic compound used in Example 3 is shown in the following chemical formula 1.
[0061]
Embedded image
Figure 2004119279
[0062]
(Comparative Example 1)
A dye-sensitized solar cell was manufactured in the same manner as in Example 1, except that the treatment with the fluoroalkyl oligomer-substituted trimethoxysilane was not performed.
[0063]
(Comparative Example 2)
Same as Example 1 described above, except that methyltrimethoxysilane is adsorbed on the surface of the semiconductor electrode by immersing the n-type semiconductor electrode holding substrate after dye adsorption in a toluene solution in which methyltrimethoxysilane is dissolved. Thus, a dye-sensitized solar cell was manufactured.
[0064]
For the obtained solar cells of Examples 1 to 18 and Comparative Examples 1 and 2, 100 mW / cm2The energy conversion efficiency when simulated sunlight was irradiated was measured, and the results are shown in Table 1 below.
[0065]
[Table 1]
Figure 2004119279
[0066]
As is clear from Table 1, the solar cells of Examples 1 to 8 in which a film containing an F-substituted organic compound and a dye were formed on the surface of the semiconductor electrode were treated with the F-substituted organic compound. It can be seen that the solar cell of Comparative Example 1 having no F atom and the solar cell of Comparative Example 2 which was treated with the organic compound containing no F atom had better energy conversion efficiency. In particular, it is understood that the solar cells of Examples 1 to 4 using the alkoxysilane containing a fluorine atom can obtain high energy conversion efficiency.
[0067]
(Examples 9 to 13)
Instead of using a gel electrolyte, methylpropyl imidazolium iodide was added to t-butylpyridine at 0.58M, LiI at 0.5M, I2Of Example 1 or Example 2 described above, except that an electrolyte solution containing 0.3 M and 10 wt% of water was used, and the type and adsorption method of the fluorine-substituted organic compound were changed as shown in Table 2 below. A dye-sensitized solar cell was manufactured in the same manner as described above.
[0068]
(Comparative Example 3)
A dye-sensitized solar cell was manufactured in the same manner as in Example 1 except that the electrolytic solution described in Example 9 was used instead of using the gel electrolyte, and that the treatment with the fluoroalkyl oligomer-substituted trimethoxysilane was not performed. did.
[0069]
(Comparative Example 2)
The n-type semiconductor electrode holding substrate after dye adsorption is immersed in a toluene solution in which methyltrimethoxysilane is dissolved, so that methyltrimethoxysilane is adsorbed on the surface of the semiconductor electrode, and the above-described procedure is performed instead of the gel electrolyte. A dye-sensitized solar cell was manufactured in the same manner as in Example 1 except that the electrolytic solution described in Example 9 was used.
[0070]
Regarding the obtained solar cells of Examples 9 to 13 and Comparative Examples 3 and 4, 100 mW / cm2The energy conversion efficiency when simulated sunlight was irradiated was measured, and the results are shown in Table 2 below.
[0071]
[Table 2]
Figure 2004119279
[0072]
As is clear from Table 2, it can be understood that the solar cells of Examples 9 to 13 hardly hydrolyze the dye with water, and have a higher energy conversion efficiency than the solar cells of Comparative Examples 3 and 4. . In addition, when the solar cells of Examples 9 to 13 were heated at 80 ° C. for one week and the energy conversion efficiency was measured again, the efficiency hardly decreased. In particular, it is understood that the solar cells of Examples 9 to 10 using the alkoxysilane containing a fluorine atom can obtain high energy conversion efficiency.
[0073]
(Example 14)
An electrolyte composition obtained by adding 10 wt% of water to a solution of 0.3 M of iodine, 0.58 M of t-butylpyridine, and 0.5 M of LiI in 1-methyl-3-propylimidazolium iodide instead of the gel electrolyte Except for using, a dye-sensitized solar cell was manufactured in the same manner as in Example 2. When the energy conversion efficiency of this solar cell was measured under the same conditions as described above, it was 5.0%. In addition, heating at 80 ° C. for one week and measuring the energy conversion efficiency again showed almost no reduction in efficiency.
[0074]
(Example 15)
An electrolyte composition obtained by adding 55 wt% of water to a solution of 0.3 M of iodine, 0.58 M of t-butylpyridine, and 0.5 M of LiI in 1-methyl-3-propylimidazolium iodide instead of the gel electrolyte Except for using, a dye-sensitized solar cell was manufactured in the same manner as in Example 2. When the energy conversion efficiency of this solar cell was measured under the same conditions as described above, it was 1%. Furthermore, when this solar cell was heated at 80 ° C. for one week and the energy conversion efficiency was measured again, it was 0.9%.
[0075]
(Comparative Example 5)
A dye-sensitized solar cell was manufactured in the same manner as in Example 15 except that the treatment with the fluoroalkyl oligomer-substituted trimethoxysilane was not performed. When the energy conversion efficiency of this solar cell was measured under the same conditions as described above, it was 0.9%. Furthermore, when this solar cell was heated at 80 ° C. for one week and the energy conversion efficiency was measured again, the output was reduced to 0.1%.
[0076]
【The invention's effect】
As described in detail above, according to the present invention, it is possible to provide a dye-sensitized solar cell with improved energy conversion efficiency and a method for manufacturing the same.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view illustrating an example of a manufacturing process of a dye-sensitized solar cell according to the present invention.
FIG. 2 is a sectional view showing an example of a dye-sensitized solar cell according to the present invention.
[Explanation of symbols]
1: Glass substrate
2. Transparent conductive film
3: Fine particles of titanium oxide
4 ... Semiconductor electrode
5 ... conductive film
6: Counter substrate
7,10 ... epoxy resin
8 ... Injection nozzle
9 ... Electrolyte composition
11 ... incident light.

Claims (3)

半導体電極と、対向電極と、電解質組成物とを具備する色素増感型太陽電池において、
前記半導体電極の表面の少なくとも一部に、フッ素原子を含有するアルコキシシラン、フッ素原子を含有するクロロシラン、フッ素原子を含有するシラノール、フッ素原子を含有するピリジン類およびフッ素原子を含有するイミダゾール類よりなる群から選択される少なくとも1種類の有機化合物と、色素とを含有する膜状物が形成されていることを特徴とする色素増感型太陽電池。
In a dye-sensitized solar cell including a semiconductor electrode, a counter electrode, and an electrolyte composition,
At least a portion of the surface of the semiconductor electrode is composed of a fluorine atom-containing alkoxysilane, a fluorine atom-containing chlorosilane, a fluorine atom-containing silanol, a fluorine atom-containing pyridine, and a fluorine atom-containing imidazole. A dye-sensitized solar cell, wherein a film containing at least one organic compound selected from the group and a dye is formed.
前記アルコキシシラン、前記クロロシラン及び前記シラノールは、それぞれ、Si原子に結合され、かつ少なくとも一つの水素原子がフッ素原子で置換されたアルキル基を有し、前記ピリジン類および前記イミダゾール類は、それぞれ、少なくとも一つの水素原子がフッ素原子で置換されたアルキル基を有するか、または少なくとも一つの水素原子がフッ素原子で置換されていることを特徴とする請求項1記載の色素増感型太陽電池。The alkoxysilane, the chlorosilane, and the silanol each have an alkyl group bonded to a Si atom and at least one hydrogen atom is substituted with a fluorine atom, and the pyridines and the imidazoles each have at least The dye-sensitized solar cell according to claim 1, wherein one hydrogen atom has an alkyl group substituted with a fluorine atom, or at least one hydrogen atom is substituted with a fluorine atom. 半導体電極の表面に色素を吸着させる工程と、
前記半導体電極を有機化合物を含む溶液に浸漬するか、もしくは前記半導体電極を有機化合物の蒸気雰囲気に晒す工程とを具備し、
前記有機化合物は、フッ素原子を含有するアルコキシシラン、フッ素原子を含有するクロロシラン、フッ素原子を含有するシラノール、フッ素原子を含有するピリジン類およびフッ素原子を含有するイミダゾール類よりなる群から選択される少なくとも1種類であることを特徴とする色素増感型太陽電池の製造方法。
A step of adsorbing the dye on the surface of the semiconductor electrode,
Immersing the semiconductor electrode in a solution containing an organic compound, or exposing the semiconductor electrode to a vapor atmosphere of an organic compound,
The organic compound is at least one selected from the group consisting of a fluorine atom-containing alkoxysilane, a fluorine atom-containing chlorosilane, a fluorine atom-containing silanol, a fluorine atom-containing pyridine, and a fluorine atom-containing imidazole. A method for producing a dye-sensitized solar cell, which is one type.
JP2002283528A 2002-09-27 2002-09-27 Dye-sensitized solar cell and method for producing the same Expired - Fee Related JP3984137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002283528A JP3984137B2 (en) 2002-09-27 2002-09-27 Dye-sensitized solar cell and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002283528A JP3984137B2 (en) 2002-09-27 2002-09-27 Dye-sensitized solar cell and method for producing the same

Publications (2)

Publication Number Publication Date
JP2004119279A true JP2004119279A (en) 2004-04-15
JP3984137B2 JP3984137B2 (en) 2007-10-03

Family

ID=32277367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002283528A Expired - Fee Related JP3984137B2 (en) 2002-09-27 2002-09-27 Dye-sensitized solar cell and method for producing the same

Country Status (1)

Country Link
JP (1) JP3984137B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024565A (en) * 2004-07-06 2006-01-26 General Electric Co <Ge> Passivated dye-sensitized oxide semiconductor electrode and solar cell using said electrode
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell
US9013023B2 (en) 2011-12-28 2015-04-21 Panasonic Corporation Photoelectric element having stacked charge-transport layers
JP2018152553A (en) * 2017-02-21 2018-09-27 華邦電子股▲ふん▼有限公司Winbond Electronics Corp. Perovskite composite structure

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006024565A (en) * 2004-07-06 2006-01-26 General Electric Co <Ge> Passivated dye-sensitized oxide semiconductor electrode and solar cell using said electrode
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2845882A2 (en) 2008-10-29 2015-03-11 Fujifilm Corporation Dye, Photoelectric Conversion Element and Photoelectrochemical Cell
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
US9013023B2 (en) 2011-12-28 2015-04-21 Panasonic Corporation Photoelectric element having stacked charge-transport layers
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell
JP2018152553A (en) * 2017-02-21 2018-09-27 華邦電子股▲ふん▼有限公司Winbond Electronics Corp. Perovskite composite structure
US10453620B2 (en) 2017-02-21 2019-10-22 Winbond Electronics Corp. Perovskite composite structure

Also Published As

Publication number Publication date
JP3984137B2 (en) 2007-10-03

Similar Documents

Publication Publication Date Title
JP4392741B2 (en) Photoelectric cell
JP5237664B2 (en) Photoelectric conversion element
US20100116340A1 (en) Dye sensitized photoelectric conversion device and manufacturing method thereof, electronic equipment, and semiconductor electrode and manufacturing method thereof
US20120097251A1 (en) Photoelectric conversion device method for making same and electronic device
EP2442401A1 (en) Dye-sensitized photoelectric converter, manufacturing method thereof, and electronic device
US20120085396A1 (en) Photoelectric conversion element, method of manufacutring photoelectric conversion element, electrolyte layer for photoelectric conversion element, and electronic apparatus
JP2012014849A (en) Photoelectric conversion element, method for manufacturing the same, photoelectric conversion element module and method for manufacturing the same
JP2011204662A (en) Photoelectric conversion element and method of manufacturing the same, and electronic apparatus
WO2012117867A1 (en) Photoelectric conversion element, method for producing photoelectric conversion element, and electronic equipment
WO2011158922A1 (en) Photoelectric conversion element and method for producing same, and electronic device
JP2003187881A (en) Photoelectric conversion element, method for manufacturing the same, and photoelectric cell
WO2012086663A1 (en) Dye, dye-sensitized photoelectric conversion element, electronic device, and building
EP1375428B1 (en) Methods for producing titanium oxide sol and fine titanium oxide particles for use in photoelectric conversion devices
JP4247820B2 (en) Method for manufacturing photoelectric conversion element and photoelectric conversion element
JP2012243436A (en) Photoelectric conversion element, method for manufacturing the same, and electronic device
JP3984137B2 (en) Dye-sensitized solar cell and method for producing the same
JP2003257506A (en) Electrolyte composition, photoelectric transducer and photoelectric cell
WO2012128016A1 (en) Manufacturing method for photoelectric conversion element and manufacturing method for electronic device
JP4356865B2 (en) Method for producing metal-metal oxide composite electrode, photoelectric conversion element and photovoltaic cell
JP4100491B2 (en) Semiconductor fine particle layer, photoelectric conversion element and photovoltaic cell
JP2002184478A (en) Electrolyte, photoelectric conversion element, photoelectrochemical battery, and method of manufacturing electrolyte
JP4958331B2 (en) Method for producing photoelectric conversion element, photoelectric conversion element and photovoltaic cell
JP2002313444A (en) Photoelectric conversion element and method for manufacturing the same
JP2007200714A (en) Dye-sensitized solar cell and its manufacturing method
JP4021637B2 (en) Photosensitized solar cell and method for producing the same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070705

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees