[go: up one dir, main page]

JP2004115889A - Electrode smelting electrode cooling device - Google Patents

Electrode smelting electrode cooling device Download PDF

Info

Publication number
JP2004115889A
JP2004115889A JP2002283439A JP2002283439A JP2004115889A JP 2004115889 A JP2004115889 A JP 2004115889A JP 2002283439 A JP2002283439 A JP 2002283439A JP 2002283439 A JP2002283439 A JP 2002283439A JP 2004115889 A JP2004115889 A JP 2004115889A
Authority
JP
Japan
Prior art keywords
bus bar
electrode
cooling device
electrolytic smelting
upper portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002283439A
Other languages
Japanese (ja)
Inventor
Takeshi Kano
狩野 健
Hideki Hachitsuka
八塚 英樹
Mitsuo Hosaka
保坂 光夫
Hitoshi Watabe
渡部 等
Katsumi Sawahata
沢畑 克実
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Akita Seiren KK
Original Assignee
Akita Seiren KK
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akita Seiren KK, Dowa Mining Co Ltd filed Critical Akita Seiren KK
Priority to JP2002283439A priority Critical patent/JP2004115889A/en
Publication of JP2004115889A publication Critical patent/JP2004115889A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrolytic Production Of Metals (AREA)

Abstract

【課題】従来の電解製錬用電極の冷却装置においては、ブスバー上に水を流すことでブスバーを冷却しているためブスバーの冷却が不均一となり、電気抵抗の上昇を十分に阻止できないがあった。
【解決手段】本発明の電解製錬用電極の冷却装置においては、電解製錬用電極に通電するためのブスバー外端面側における上記ブスバー上面から下方の地点から上記ブスバーの上面上部に向って斜めに冷却水を噴霧する手段を設ける。上記ブスバー上面の上部に向って噴霧された冷却水を受け止めるため上記ブスバー上面上部に傘状部材を設ける。上記傘状部材の下面は凹面である。
【選択図】 図2
In a conventional cooling device for an electrode for electrolytic smelting and refining, the bus bar is cooled by flowing water over the bus bar, so that the cooling of the bus bar becomes uneven, and the rise in electric resistance cannot be sufficiently prevented. Was.
In a cooling device for an electrode for electrolytic smelting of the present invention, an obliquely extending from a point below the upper surface of the bus bar on the outer end surface side of the bus bar for energizing the electrode for electrolytic smelting toward an upper portion of the upper surface of the bus bar. Is provided with means for spraying cooling water. An umbrella-shaped member is provided on the upper portion of the bus bar to receive the cooling water sprayed toward the upper portion of the upper portion of the bus bar. The lower surface of the umbrella-shaped member is concave.
[Selection] Fig. 2

Description

【0001】
【発明の属する技術分野】
本発明は電解製錬用電極の冷却装置、特に、高電流を通電する個所について、主に、電解製錬における電解槽の電極接点部分並びに通電部の冷却装置に関するものである。
【0002】
【従来の技術】
図5及び図6は従来の電解製錬装置を示し、1は電解槽、2は電極、2′はその耳部、3はブスバー、4は散水パイプ、5は電解槽1同志の接合部、6は電解液面である。
【0003】
通常、上記電解槽1は横4〜5m、縦2〜4m、深さ2〜3mの箱状である。上記ブスバー3は断面が約400×90mm角で、長さが5mの銅製の角棒である。上記電極2の耳部2′の厚さは10〜50mmであり、上記ブスバー3と接触する部分の厚さは10〜50mm、長さが30〜50mmである。
【0004】
電解製錬は、酸に金属を含ませた酸溶液中に、純度が90〜98%程度の回収金属よりなる電極と、回収金属を採取のための電極を挿入し、通電させ、目的の回収金属を純度99.99%程度にて回収する方法である。
【0005】
前記電極2は、一般的に金属の純度を上げて回収する側をカソード、他方をアノードと呼んでいる。
【0006】
上記のように電解槽1は、電極2を搭載、かつ通電可能なように、両側に電気を通電するブスバー3を有する。
【0007】
通電、電解製錬では、アノード並びにカソードへの通電は、電極2の耳部2′とブスバー3との接触により行われる。この場合、電極2の自重によりブスバー3との接触を保持している。
【0008】
このため、電極2とブスバー3の接触部に異物が混入したり、通電中の熱により通電抵抗が変化し、所望の回収量が得られない、または回収量に対しての電力消費量が予想より上回る効率の悪化が生じていた。
【0009】
また、電解製錬での電極2の数は、一槽あたり30〜50枚に及び、その電解槽1が数十あることから電極2の数が多く、電極2の自重も数百kgもあるため、衝突した時の衝撃力があり、簡易な装置でも破損してしまう。また、1つの電解槽1の数十枚ある電極2の1枚でも通電不良が発生しただけでもその電解槽1全体に影響を与えてしまうため、1枚1枚の電極2の接点における電気的安定が重要である。
【0010】
そのため、例えば特開平6−212472号公報に示すようにブスバー3と電極2との接点近傍に水を流すことで接点の電気的安定を図っていた。また、水を流すことで同時にブスバーの冷却を兼ねていた。ブスバー3は高電流が常時流れるため、熱を持ち、冷却することで電気抵抗を下げ、電力費を抑制することができる。
【0011】
特願平4−176090号のように水管を用いて冷却する方法が提案されている。それ以上簡易なものがさらに望まれていた。
【0012】
【発明が解決しようとする課題】
然しながら、前述のように電解槽1は数十あり、その電極2の総数も多数であるため水道コストがかかり、また、単に水を流して冷却するだけでは冷却にムラを生じ通電部の熱上昇による電気抵抗の上昇、また熱のばらつきによる抵抗のばらつきもあり接点の管理に多大な労力を要していた。
【0013】
従って、より簡便で接点の電気的安定の維持ができコストのかからない手段が求められていた。本発明者は種々実験研究の結果、単に水を散水するのではなく噴霧せしめれば極めて好ましいことを見出した。本発明はこのような知見によって得られたものである。
【0014】
【課題を解決するための手段】
本発明の電解製錬用電極の冷却装置は、電解製錬用電極に通電するためのブスバー上に冷却水を噴霧するためのスプレー手段を設けたことを特徴とする。
【0015】
上記スプレー手段は、上記ブスバー外端面側における上記ブスバー上面から下方の地点から上記ブスバーの上面上部に向って斜めに冷却水を噴霧する手段であることを特徴とする。
【0016】
また、上記ブスバー上面の上部に向って噴霧された冷却水を受け止めるため上記ブスバー上面上部に配置した傘状部材を有することを特徴とする。
【0017】
上記傘状部材の下面は、凹面であることを特徴とする。
【0018】
【発明の実施の形態】
以下図面によって本発明の実施例を説明する。
【0019】
本発明においては図1及び図2に示すように上記ブスバー3の長辺の中心部外端面側における上記ブスバー3の上面から下方へ約5cm下がった地点に冷却水を噴霧するためのスプレー手段7を配置し、このスプレー手段7のスプレー開口8から上記ブスバー3の上面上部に向って斜めに略円錐状に冷却水を噴霧せしめるようにする。
【0020】
なお、上記スプレー開口8をブスバー3の長辺の中心付近に配置したのは、ここがブスバー3において最も発熱が多い箇所であるためであり、スプレー手段7の個数、配置位置はブスバー3の長さや、発熱状況により適宜決めるものとする。
【0021】
噴霧の形状は特には問わないが、なるべく噴霧する水粒子は、細かく、流速が遅いのが良い。これは、流速が早い噴霧ではブスバー3に付着した水粒子がすぐに流れ落ちてしまうのと、ブスバー3に当たる水粒子が跳ね返り、電解槽1の周りに飛散するためである。スプレー開口8はより広範囲に噴霧できるものを配置する。
【0022】
噴霧量は例えば0.3リットル/分とし、1回の噴霧時間を10分とし20分間隔とする。例えば噴霧面積は長径1〜2.5m×短径0.2〜0.3mの楕円の面積とする。
【0023】
本発明の他の実施例においては図3及び図4に示すようにブスバー3の上方約5cmに直径10cmの弧を有する半円弧状の傘9をブスバー3に向って凹面を向けるように配置する。
【0024】
この実施例においては噴霧された水粒子8′が上記傘9の下面に付着し、傘9の端部を介して水滴がブスバー3と電極2の耳部2′の接点部に滴下する。
【0025】
半円弧状の凹面によって噴霧した水粒子8′は捕集しやすく、滴下速度も適度となる。また、スプレー開口8から噴霧された噴霧水が電解槽1上に飛び、電解槽1内の酸溶液中に達するのを上記傘9によって阻止できるようになる。
【0026】
上記条件にて、15時間電解操業を行ない、ブスバー3の表面温度を噴霧口と対面する点を中心に中心と、左右両側1m間隔で計3点測定した結果、ブスバー3の温度は、平均温度52℃、3点でのばらつきは9℃以下であった。接触の不具合により通電の電圧が上がってしまう通電不良は発生せず、安定した電流供給であった。また、ブスバー3の表面は、間欠噴霧にもかかわらず、表面は常に水で濡れた状態であった。
【0027】
【発明の効果】
上記のように本発明の電解製錬用電極の冷却装置によれば、ブスバー3を従来の冷却手段に比べより均一に冷却することが出来、冷却効率を極めて大きく改良することができるため電気抵抗を下げ電力費を抑制できるようになる。また、傘9を用いれば噴霧水が電解槽1に迄飛び、酸溶液中に達することを阻止できるようになると共に、水量を節約できるようになる大きな利益がある。
【図面の簡単な説明】
【図1】本発明の電解製錬用電極の冷却装置を説明するための平面図である。
【図2】図1に示す電解製錬用電極の冷却装置の要部の縦断側面図である。
【図3】本発明の他の実施例における電解製錬用電極の冷却装置を説明するための平面図である。
【図4】図3に示す電解製錬用電極の冷却装置の要部の縦断側面図である。
【図5】従来の電解槽の説明用平面図である。
【図6】図5に示す電解製錬用電極の冷却装置の要部の縦断側面図である。
【符号の説明】
1  電解槽
2  電極
2′ 耳部
3  ブスバー
4  散水パイプ
5  接合部
6  電解液面
7  スプレー手段
8  スプレー開口
8′ 水粒子
9  傘
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cooling device for an electrode for electrolytic smelting, and more particularly to a cooling device for an electrode contact portion and an energizing portion of an electrolytic cell in a portion where a high current is applied.
[0002]
[Prior art]
5 and 6 show a conventional electrolytic smelting apparatus, wherein 1 is an electrolytic cell, 2 is an electrode, 2 'is an ear portion, 3 is a bus bar, 4 is a sprinkling pipe, 5 is a joint of the electrolytic cells 1 and, 6 is an electrolyte surface.
[0003]
Usually, the electrolytic cell 1 is in the shape of a box having a width of 4 to 5 m, a length of 2 to 4 m, and a depth of 2 to 3 m. The bus bar 3 is a copper square bar having a cross section of about 400 × 90 mm square and a length of 5 m. The thickness of the ear portion 2 ′ of the electrode 2 is 10 to 50 mm, and the thickness of the portion in contact with the bus bar 3 is 10 to 50 mm and the length is 30 to 50 mm.
[0004]
In the electrolytic smelting, an electrode made of a recovered metal having a purity of about 90 to 98% and an electrode for collecting the recovered metal are inserted into an acid solution containing a metal in an acid, and the electrode is energized, and the desired recovery is performed. This is a method of recovering a metal at a purity of about 99.99%.
[0005]
The electrode 2 is generally referred to as a cathode on the side of collecting and increasing the purity of the metal, and the other side as an anode.
[0006]
As described above, the electrolytic cell 1 has the bus bars 3 on both sides for supplying electricity so that the electrodes 2 are mounted and the electricity can be supplied.
[0007]
In energization and electrolytic smelting, energization to the anode and the cathode is performed by contact between the ear 2 ′ of the electrode 2 and the bus bar 3. In this case, the contact with the bus bar 3 is maintained by the weight of the electrode 2.
[0008]
For this reason, foreign matter may be mixed into the contact portion between the electrode 2 and the bus bar 3, or the conduction resistance may change due to heat during conduction, and a desired recovery amount may not be obtained, or power consumption relative to the recovery amount may be expected. More efficiency degradation had occurred.
[0009]
In addition, the number of electrodes 2 in electrolytic smelting ranges from 30 to 50 per cell, and the number of the electrodes 2 is large because the number of the electrolytic cells 1 is several tens, and the own weight of the electrode 2 is also several hundred kg. Therefore, there is an impact force at the time of collision, and even a simple device is damaged. In addition, even if only one of the tens of electrodes 2 in one electrolytic cell 1 has a faulty energization, the entire electrolytic cell 1 is affected. Stability is important.
[0010]
For this reason, for example, as shown in Japanese Patent Application Laid-Open No. 6-212472, electric stability of the contact is achieved by flowing water near the contact between the bus bar 3 and the electrode 2. In addition, by flowing water, the bus bar was also cooled at the same time. Since a high current always flows through the bus bar 3, the bus bar 3 has heat, and by cooling, the electric resistance can be reduced and the power cost can be suppressed.
[0011]
As disclosed in Japanese Patent Application No. 4-176090, a cooling method using a water pipe has been proposed. Even simpler ones have been desired.
[0012]
[Problems to be solved by the invention]
However, as described above, there are dozens of electrolytic cells 1 and the total number of the electrodes 2 is large, thus increasing the cost of water supply. Further, simply cooling by flowing water causes uneven cooling and increases the heat of the energized part. Therefore, there is a variation in resistance due to heat and a variation in resistance due to variation in heat.
[0013]
Therefore, there has been a demand for a simpler and less expensive means for maintaining the electrical stability of the contacts. As a result of various experimental studies, the present inventor has found that it is extremely preferable to spray water instead of simply spraying water. The present invention has been obtained based on such findings.
[0014]
[Means for Solving the Problems]
A cooling device for an electrode for electrolytic smelting of the present invention is characterized in that a spray means for spraying cooling water on a bus bar for supplying electricity to the electrode for electrolytic smelting is provided.
[0015]
The spraying means is means for spraying cooling water obliquely from a point below the upper surface of the bus bar on the outer end surface side of the bus bar toward an upper portion of the upper surface of the bus bar.
[0016]
Further, an umbrella-shaped member is provided on the upper portion of the bus bar to receive the cooling water sprayed toward the upper portion of the upper surface of the bus bar.
[0017]
The lower surface of the umbrella-shaped member is concave.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0019]
In the present invention, as shown in FIGS. 1 and 2, a spraying means 7 for spraying cooling water to a point about 5 cm below the upper surface of the bus bar 3 on the outer end face side of the center of the long side of the bus bar 3 is provided. The cooling water is sprayed obliquely and substantially conically from the spray opening 8 of the spray means 7 toward the upper part of the upper surface of the bus bar 3.
[0020]
The reason why the spray opening 8 is arranged in the vicinity of the center of the long side of the bus bar 3 is that this is where the bus bar 3 generates the most heat. It should be determined appropriately according to the heat generation situation.
[0021]
The shape of the spray is not particularly limited, but the water particles to be sprayed are preferably fine and have a low flow rate. This is because the water particles attached to the bus bar 3 immediately flow down with the spray having a high flow rate, and the water particles hitting the bus bar 3 rebound and scatter around the electrolytic cell 1. The spray opening 8 is provided for spraying a wider area.
[0022]
The spray amount is, for example, 0.3 liter / minute, and the time of one spray is 10 minutes, and the interval is 20 minutes. For example, the spray area is an elliptical area having a major axis of 1 to 2.5 m and a minor axis of 0.2 to 0.3 m.
[0023]
In another embodiment of the present invention, as shown in FIGS. 3 and 4, a semicircular umbrella 9 having an arc having a diameter of 10 cm about 5 cm above the bus bar 3 is arranged so that the concave surface faces the bus bar 3. .
[0024]
In this embodiment, the sprayed water particles 8 ′ adhere to the lower surface of the umbrella 9, and water droplets drop onto the contact point between the bus bar 3 and the ear 2 ′ of the electrode 2 through the end of the umbrella 9.
[0025]
The water particles 8 'sprayed by the semi-circular concave surface are easily collected, and the dripping speed becomes appropriate. In addition, the umbrella 9 can prevent the spray water sprayed from the spray opening 8 from flying onto the electrolytic cell 1 and reaching the acid solution in the electrolytic cell 1.
[0026]
Under the above conditions, the electrolytic operation was performed for 15 hours, and the surface temperature of the bus bar 3 was measured at a total of three points at 1 m intervals on both the left and right sides centering on the point facing the spray port. The dispersion at 52 ° C. and three points was 9 ° C. or less. There was no energization failure in which the energization voltage was increased due to contact failure, and the current was stable. In addition, the surface of the bus bar 3 was always wet with water despite intermittent spraying.
[0027]
【The invention's effect】
As described above, according to the electrode smelting electrode cooling apparatus of the present invention, the bus bar 3 can be cooled more uniformly than the conventional cooling means, and the cooling efficiency can be greatly improved. And power costs can be reduced. In addition, the use of the umbrella 9 has a great advantage that the spray water can be prevented from flying to the electrolytic cell 1 and reaching the acid solution, and the amount of water can be saved.
[Brief description of the drawings]
FIG. 1 is a plan view for explaining a cooling device for an electrode for electrolytic smelting of the present invention.
FIG. 2 is a vertical sectional side view of a main part of the cooling device for the electrode for electrolytic smelting shown in FIG.
FIG. 3 is a plan view for explaining a cooling device for an electrode for electrolytic smelting in another embodiment of the present invention.
4 is a vertical sectional side view of a main part of the cooling device for the electrode for electrolytic smelting shown in FIG. 3;
FIG. 5 is an explanatory plan view of a conventional electrolytic cell.
6 is a vertical sectional side view of a main part of the cooling device for the electrode for electrolytic smelting shown in FIG. 5;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Electrolyzer 2 Electrode 2 'Ear 3 Bus bar 4 Sprinkling pipe 5 Joint 6 Electrolyte surface 7 Spray means 8 Spray opening 8' Water particle 9 Umbrella

Claims (4)

電解製錬用電極に通電するためのブスバー上に冷却水を噴霧するためのスプレー手段を設けたことを特徴とする電解製錬用電極の冷却装置。A cooling device for an electrode for electrolytic smelting, comprising: a spray means for spraying cooling water onto a bus bar for supplying electricity to the electrode for electrolytic smelting. 上記スプレー手段が上記ブスバー外端面側における上記ブスバー上面から下方の地点から上記ブスバーの上面上部に向って斜めに冷却水を噴霧する手段であることを特徴とする請求項1記載の電解製錬用電極の冷却装置。2. The electrolytic smelting apparatus according to claim 1, wherein the spraying means is means for spraying cooling water obliquely from a point below the upper surface of the bus bar on the outer end surface side of the bus bar toward an upper portion of the upper surface of the bus bar. Electrode cooling device. 上記ブスバー上面の上部に向って噴霧された冷却水を受け止めるため上記ブスバー上面上部に配置した傘状部材を有することを特徴とする請求項2記載の電解製錬用電極の冷却装置。3. The cooling device for an electrode for electrolytic smelting according to claim 2, further comprising an umbrella-shaped member disposed on an upper portion of the upper surface of the bus bar to receive cooling water sprayed toward an upper portion of the upper surface of the bus bar. 上記傘状部材の下面が凹面であることを特徴とする請求項3記載の電解製錬用電極の冷却装置。4. The cooling device for an electrode for electrolytic smelting according to claim 3, wherein the lower surface of the umbrella-shaped member is concave.
JP2002283439A 2002-09-27 2002-09-27 Electrode smelting electrode cooling device Pending JP2004115889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002283439A JP2004115889A (en) 2002-09-27 2002-09-27 Electrode smelting electrode cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002283439A JP2004115889A (en) 2002-09-27 2002-09-27 Electrode smelting electrode cooling device

Publications (1)

Publication Number Publication Date
JP2004115889A true JP2004115889A (en) 2004-04-15

Family

ID=32277301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002283439A Pending JP2004115889A (en) 2002-09-27 2002-09-27 Electrode smelting electrode cooling device

Country Status (1)

Country Link
JP (1) JP2004115889A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103261491A (en) * 2010-12-23 2013-08-21 通用电气-日立核能美国有限责任公司 Modular anode assemblies and methods of using the same for electrochemical reduction
US9920443B2 (en) 2010-12-23 2018-03-20 Ge-Hitachi Nuclear Energy Americas Llc Modular cathode assemblies and methods of using the same for electrochemical reduction

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103261491A (en) * 2010-12-23 2013-08-21 通用电气-日立核能美国有限责任公司 Modular anode assemblies and methods of using the same for electrochemical reduction
JP2014501331A (en) * 2010-12-23 2014-01-20 ジーイー−ヒタチ・ニュークリア・エナジー・アメリカズ・エルエルシー Modular anode assembly and method of using it for electrochemical reduction
US9920443B2 (en) 2010-12-23 2018-03-20 Ge-Hitachi Nuclear Energy Americas Llc Modular cathode assemblies and methods of using the same for electrochemical reduction

Similar Documents

Publication Publication Date Title
ES2361522T3 (en) AN ELECTROCOAGULATION CELL.
US20100200424A1 (en) Plasma-electrolytic polishing of metals products
AU2019385031B2 (en) Hydrogen production method
JP2004115889A (en) Electrode smelting electrode cooling device
CN109863258B (en) Cathode current collector/connector for hall-hero cell
EP1558792B1 (en) Method for the formation of a good contact surface on an aluminium support bar and electrolysis cell
CN207581966U (en) A kind of negative plate device for high density silver electrolytic cell
CN215828888U (en) Metal electrolysis equipment
US20050268997A1 (en) Method for obtaining a good contact surface on an electrolysis cell busbar and busbar
KR101029222B1 (en) Method and method for forming a good contact surface on the cathode support bar
CN206828652U (en) Insulation board between a kind of copper electrolysis cells with jet pipe
CN209974911U (en) Electrolytic cell component of sodium hypochlorite generator
JP3145194B2 (en) Zinc electrolytic smelting method and apparatus
CN217324352U (en) Tombarthite electrolysis negative pole connecting device
CN109267104B (en) Metallic lithium electrolysis cathode device
JP5287654B2 (en) Basket type anode
JP2010037619A (en) Ion exchange membrane system electrolytic cell and method of recovering performance of cathode
JPH0649675A (en) Bipolar electrolytic cell
JP3604229B2 (en) Electrolysis method and electrode used in the electrolysis method
CN215713424U (en) Integrally assembled bipolar diaphragm-free electrolysis device
CN219377508U (en) Acidolysis electric defogging modified cathode ray
KR101990128B1 (en) Wire fixing type cylinder electrode
CN223103113U (en) Novel zinc electrodeposited copper bar is connected device
CN118256957A (en) Electrolytic cell conductive device and electrolytic equipment
KR200398058Y1 (en) Head bar for electrolytic tempering have a cooling construction

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050705

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080513

A521 Written amendment

Effective date: 20080714

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090120