【0001】
【発明の属する技術分野】
本発明は、塩素化有機化合物分解用触媒および塩素化有機化合物の分解方法に関し、詳しくは、低温度でダイオキシン等の塩素化有機化合物を高効率で分解することが出来る塩素化有機化合物分解用触媒および塩素化有機化合物の分解方法に関する。
【0002】
【従来の技術】
都市ゴミや産業廃棄物を処理する焼却炉などから排出される燃焼排ガスは、各種の有害成分を含有しているが、毒性の強いダイオキシンとその前駆体である芳香族塩素化合物などの塩素化有機化合物および光化学スモッグの原因物質である窒素酸化物の除去は、特に重要である。
【0003】
燃焼排ガス中の塩素化有機化合物の除去方法としては、各種の方法が知られているが、特に接触分解法は、500℃以下の条件で塩素化有機化合物を分解する優れた方法である。ところで、塩素化有機化合物の接触分解は、300℃以上の分解温度では一旦分解されたダイオキシン等が再生成するため、250℃以下の温度で行うことが要求されている。
【0004】
更に近年、都市ゴミ焼却設備では、ゴミ焼却時に発生した熱を回収する目的で得たスチームで発電し、都市ゴミ焼却設備に電力供給すると共に余剰電力の売電が行なわれている。ところで、塩素化有機化合物分解用触媒層の反応温度の維持に上記のスチームが利用されている場合、反応温度が高い程に多量のスチームが消費される不利益がある。従って、斯かる観点からも可及的に低い反応温度、具体的には200℃以下の反応温度での運転が要求されている。
【0005】
一方、塩素化有機化合物の接触分解は、酸化反応と考えられ、反応温度が低下すると反応速度が必然的に低下する。従って、より低い温度で接触分解を行って所定の分解率を得ようとした場合は、触媒量の増加や単位時間当たりの処理ガス量の低下が必要となる。しかしながら、都市ゴミ焼却設備では、処理ガス量の低下が困難なため、処理装置が巨大化するという問題がある。
【0006】
一方、触媒の担体としては、一般的に、TiO2、SiO2、Al2O3、ZrO2等が使用できるが、塩素化有機化合物分解用触媒の場合は、燃焼排ガス中にSO2が含有されている場合が多いため、SO2に耐性を有するTiO2が一般的に使用される。例えば、TiO2担体に活性成分V2O5とWO3を担持した触媒が使用され(例えば特許文献1参照)、また、担体として、Ti、Si、Zrの2元または3元複合酸化物を使用することにより活性成分の分散性を向上させて触媒性能の向上を図っている(例えば特許文献2参照)。
【0007】
そして、270〜290℃の反応温度が採用されている(例えば特許文献3参照)が、斯かる温度は十分に低温とは言い難く、また、温度が200℃でSV(空間速度)が2,000Hr−1の反応条件が採用されており(例えば特許文献4参照)、多量の触媒を使用する必要がある。
【0008】
【特許文献1】
特許第2633316号公報
【特許文献2】
特許第2916259号公報
【特許文献3】
特許第2633316号公報
【特許文献4】
特許第2916259号公報
【0009】
上述の様に、従来の塩素化有機化合物分解用触媒は、何れも、低温条件で且つコンパクトな処理装置で使用するには十分に満足し得る性能ではない。
【0010】
【発明が解決しようとする課題】
本発明は、上記実情に鑑みなされたものであり、その目的は、低温度でダイオキシン等の塩素化有機化合物を高効率で分解することが出来る塩素化有機化合物分解用触媒および塩素化有機化合物の分解方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明者らは、種々検討を重ねた結果、次の様な種々の知見を得た。すなわち、ハニカム構造のセル相互に貫通する横穴を形成するならば、これにより排ガス中の流れの乱流成分が増加し、排ガス中の塩素化有機化合物の触媒への拡散効率が向上し、その結果、低温においても塩素化有機化合物を高分解できる。
【0012】
本発明は、上記の知見に基づき達成されたものであり、その第1の要旨は、担体に活性成分を担持して成るハニカム構造の塩素化有機化合物分解用触媒であって、ハニカム構造のセル相互に貫通する横穴を形成して成ることを特徴とする塩素化有機化合物分解用触媒に存する。
【0013】
そして、本発明の第2の要旨は、上記の塩素化有機化合物分解用触媒と塩素化有機化合物含有ガスを接触させることを特徴とする塩素化有機化合物の分解方法に存する。
【0014】
【発明の実施の形態】
先ず、本発明の塩素化有機化合物分解用触媒(以下、単に「触媒」と略記する)について説明する。本発明の触媒は、担体に活性成分を担持して成るハニカム構造の触媒である。
【0015】
上記の担体および活性成分としては、塩素化有機化合物分解用触媒に使用されている従来公知のものを制限なく使用することが出来る。担体の例としては、TiO2、SiO2、Al2O3、WO3等の単一酸化物、これらの2元系複合酸化物(例えばTiO2−SiO2)又は3元系複合酸化物(例えばTiO2−SiO2−WO3)又はこれらの複合酸化物と単一酸化物との混合物が挙げられる。活性成分の例としては、V、Cr、Mo、Mn、Fe、Ni、Cu、Ag、Au、Pd、Y、Ce、Nd、W、In及びIrの群から選ばれる少なくとも1種の金属および/またはその酸化物が挙げられる。これらの中では、バナジウム(V)酸化物が安価であり且つ有機ハロゲン化合物の分解率が高いために好適に使用される。活性成分の担体に対する割合は、通常1〜10重量%の範囲である。
【0016】
ハニカム構造は平行に貫通した多数の小孔(セル)を有する構造である。斯かる構造の触媒は反応管内にぴったりと収めて使用される。そして、上記のセルの形としては、六角形、四角形、三角形、円形などがある。通常、セルの大きさ(径)は目開き、セルとセルとの間は壁、1つのセルに注目した場合に対向する左右または上下の壁の各中心間の距離はピッチと呼ばれる。
【0017】
本発明の触媒は、上記の様なハニカム構造を備え、ハニカム構造のセル相互に貫通する横穴を形成して成ることを特徴とする。斯かる本発明の触媒によれば、排ガス中の流れの乱流成分が増加し、排ガス中の塩素化有機化合物の触媒への拡散効率が向上し、その結果、低温においても塩素化有機化合物を高分解できる。
【0018】
上記の横穴は、通常、ハニカム触媒の調製後に適当な手段、例えば、電気ドリル等を使用して形成される。また、横穴の大きさ、形状、個数などは必ずしも制限される訳ではないが、横穴の大きさはセルの大きさの50%以下であり、横穴の全壁総面積は全横壁の0.1〜20%の範囲が好ましい。
【0019】
ハニカム触媒の製造方法としては、(a)担体成分と活性成分またはその原料を成形助材と共に混練した後に、押出成形法などにより所定の形状と大きさのセルを備えたハニカム状の形状に賦形する方法、(b)ハニカム形状の基材上に担体成分および活性成分を含浸・担持する方法を挙げることが出来る。上述の製造方法(a)の1例として、以下の方法が例示される。
【0020】
(1)メタバナジン酸アンモニウムを約10重量%モノエタノールアミン水溶液に溶解する。
(2)硫酸チタン溶液を熱加水分解してメタチタン酸スラリーを得る。
(3)メタチタン酸スラリーに15重量%アンモニア水を加えてpH調整した後、リフラックス処理を1時間以上行なう。
(4)シリカゾルを加え、更に、リフラックス処理を1時間以上行なう。
(5)得られたスラリーを濾過し、得られたケーキを50〜150℃の温度で3〜50時間乾燥した後、400〜650℃の温度で焼成し、冷却後に粉砕する。
(6)得られた粉末状のSiO2−TiO22元系複合酸化物を50重量%以下の割合のTiO2と混合して担体とする。
(7)上記の担体と上記の(1)で調製した水溶液とをニーダーで混練する。
【0021】
(8)(i)更に成形助材を加えて混練した混練物を押出成形し、50〜150℃の温度で3〜50時間乾燥した後、SV100〜2,000Hr−1の空気気流中、450〜650℃の温度で焼成する、または(i i)混練物を50〜150℃の温度で3〜50時間乾燥し、450〜650℃の温度で焼成した後、成形助材を加えて成形する。
【0022】
また、上述の製造方法(b)の1例として、次の方法が例示される。すなわち、円柱状、球状、ハニカム状、板状など、所望の形状の基材上に上記の(2)〜(6)で調製した担体成分をコーティングし、上記の(1)で調製した水溶液を塗布して活性成分を含浸させ、50〜150℃で3〜50時間乾燥した後、450〜650℃の温度で焼成する。
【0023】
基材上に形成された触媒の場合、基材としては、TiO2に、シリカ(SiO2)やアルミナ(Al2O3)等を単独で又は併用して使用する。SiO2−TiO22元系複合酸化物とTiO2との混合物(担体成分)の量は、担体成分と活性成分との合計量に対し、通常70〜99重量%である。また、担体成分と活性成分との合計量は、基材、担体成分および活性成分の総量に対し、通常5〜70重量%、好ましくは10〜50重量%である。
【0024】
混練・成形方法の様に添加した原料が全て活性成分となる場合は、それぞれの金属塩などの原料成分が対応する金属酸化物に変化したものとして、触媒組成は添加量から推算する。また、含浸方法で製造された場合は、触媒をフッ化水素酸で処理した後、硫酸アンモニウムで融解してプラズマ発光分析法(ICP−AES分析法)により触媒組成を測定する。
【0025】
次に、本発明の触媒の使用方法(塩素化有機化合物の分解方法)について説明する。本発明においては前記の触媒と塩素化有機化合物含有ガスを接触させる。塩素化有機化合物含有ガスとしては、例えば、2,3,7,8−テトラクロロジベンゾダイオキシン及び2,3,4,7,8−ぺンタクロロジベンゾフランで代表されるダイオキシン類や3,3’,4,4’,5−ペンタクロロビフェニルで代表されるコプラナーPCB類が約0.01〜200ng/m3(N.T.P)(毒性等価換算値)含有され、更に、ダイオキシン類の前駆体物質である、モノクロロベンゼン、トリクロロベンゼン等のクロロベンゼン類、O−クロロフェノール、トリクロロフェノール等のクロロフェノール類、クロロベンゾフラン等が含有されたガス、具体的には、都市ごみや産業廃棄物などを燃焼した際の排ガス等が挙げられる。斯かる塩素化有機化合物含有ガスは、水分と共に酸素を含有し、その含有量は、通常0.5〜25容量%、好ましく1〜21容量%である。
【0026】
上記の様な塩素化有機化合物含有ガスは、通常、バグフィルターに通じて粉塵や重金属などを除去した後に接触工程に導入される。また、必要に応じ、バグフィルターでの前段でガス中に消石灰粉末を添加して酸性ガスを除去してもよい。
【0027】
塩素化有機化合物含有ガスと触媒との接触温度は、通常100〜250℃、好ましくは100〜200℃である。接触温度が250℃を超える場合は、塩素化有機化合物の分解率も増加するが、分解されたダイオキシン類が再合成する問題と共に触媒層加熱用スチームの節約の観点からも不利である。接触温度が100℃未満の場合は、運転上支障を来す結露が惹起される。触媒層の圧力は、ゲージ圧として、通常−0.05〜0.9MPa、好ましくは−0.01〜0.5MPaである。また、SVは、通常100〜50,000Hr−1、好ましくは1,000〜20,000Hr−1である。
【0028】
【実施例】
以下、本発明を実施例により更に詳細に説明するが、本発明は、その要旨を超えない限り、以下の実施例に限定されるものではない。
【0029】
実施例1
<TiO2粉末の調製>
硫酸法による酸化チタンの製造工程より得られる硫酸チタン溶液を熱加水分解してメタチタン酸を得、これを酸化チタンとして800g取り出し、環流器付撹拌槽に仕込み、これに15重量%アンモニア水498gを加えてPH9.5に調整した後、95℃にて1時間に亘り充分な撹拌を行いつつ加熱熟成した。その後、冷却してスラリーを取り出し、濾過脱水し、得られたケーキを100℃で20時間乾燥した後、600℃まで75℃/Hrの速度で昇温し、同温度で5時間保持した。そして、冷却後、適当な粒度に粉砕し、TiO2粉末を得た。
【0030】
<触媒の調製>
メタバナジン酸アンモニウム1029gとパラモリブデン酸アンモニウム736gを80℃に加温した10重量%モノエタノールアミン水溶液6000gに溶解して原料液を調製した。前記で得たTiO2粉末7600gを双腕型ニーダーで1時間に亘り乾式混合し、当該混合物に上記の原料液と成形助剤1000gを加えて更に2時間混練した。得られた混合物を押し出し機に充填し、ハニカム構造に押出成形し後、130℃の温度で24時間乾燥し、次いで、SV100Hr−1、温度500℃の条件下で3時間焼成し、外寸:7.5cm×7.5cm×50cm、目開き:縦・横4.1mmのハニカム触媒を得た。
【0031】
次いで、上記ハニカム触媒が30mlとなる様に、縦・横30mm(6穴)、高さ33mmに切り出し、各側面(30mm×33mmの面)の合計4面のそれぞれに電気ドリルで直径2mmの横穴(セルの形成方向に対して直交する方向で且つ一面から他方面に貫通する横穴)を略均等間隔で4個形成した。
【0032】
<活性試験>
ガラス製反応器に上記の触媒を30ml充填し、常圧固定床流通反応装置で活性試験を行った。触媒固定床の寸法は縦30mm、横30mm、高さ33mmであった。原料ガス組成はオルトクロルフェノール(OCP)100ppm、O210vol%、H2O10vol%、N2バランス量の組成であった。原料ガスのSVは10,000Hr−1であった。160℃と180℃の各温度で5時間保持した後、反応装置通過ガスをマイクロシリンジでサンプリングし、ガスクロマトグラフィーで分析した。分析は絶対検量線法で行った。結果を表1に示す。
【0033】
比較例1
実施例1において、横穴の形成を行なわなかった以外は、実施例1と同様にしてハニカム触媒を得た。そして、実施例1と同様に活性試験を行ない、その結果を表1に示す。
【0034】
【表1】
【0035】
【発明の効果】
以上説明した本発明によれば、低温度でダイオキシン等の塩素化有機化合物を高効率で分解することが出来る塩素化有機化合物分解用触媒および塩素化有機化合物の分解方法が提供され、本発明の工業的価値は顕著である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a catalyst for decomposing chlorinated organic compounds and a method for decomposing chlorinated organic compounds, and more particularly, to a catalyst for decomposing chlorinated organic compounds that can decompose chlorinated organic compounds such as dioxin at a low temperature with high efficiency. And a method for decomposing chlorinated organic compounds.
[0002]
[Prior art]
Combustion exhaust gas emitted from incinerators that treat municipal garbage and industrial waste contains various harmful components, but chlorinated organic compounds such as highly toxic dioxins and their precursors, such as aromatic chlorine compounds. The removal of compounds and nitrogen oxides that cause photochemical smog is of particular importance.
[0003]
Various methods are known as a method for removing chlorinated organic compounds from combustion exhaust gas. Particularly, catalytic cracking is an excellent method for decomposing chlorinated organic compounds under the condition of 500 ° C. or lower. By the way, the catalytic decomposition of chlorinated organic compounds is required to be performed at a temperature of 250 ° C. or less because once decomposed dioxin and the like are regenerated at a decomposition temperature of 300 ° C. or more.
[0004]
Furthermore, in recent years, in municipal garbage incineration facilities, power generated by steam obtained for the purpose of recovering heat generated during garbage incineration has been supplied to municipal garbage incineration facilities, and surplus power has been sold. When the above-mentioned steam is used to maintain the reaction temperature of the chlorinated organic compound decomposition catalyst layer, there is a disadvantage that a higher reaction temperature consumes a larger amount of steam. Therefore, from such a viewpoint, operation at a reaction temperature as low as possible, specifically, at a reaction temperature of 200 ° C. or lower is required.
[0005]
On the other hand, the catalytic decomposition of a chlorinated organic compound is considered to be an oxidation reaction, and when the reaction temperature decreases, the reaction rate necessarily decreases. Therefore, when an attempt is made to obtain a predetermined cracking rate by performing catalytic cracking at a lower temperature, it is necessary to increase the amount of the catalyst or decrease the amount of the processing gas per unit time. However, in the municipal garbage incineration equipment, there is a problem that the processing apparatus becomes huge because it is difficult to reduce the amount of processing gas.
[0006]
On the other hand, TiO 2 , SiO 2 , Al 2 O 3 , ZrO 2 and the like can be generally used as a catalyst carrier. In the case of a chlorinated organic compound decomposition catalyst, SO 2 is contained in combustion exhaust gas. since in many cases is, TiO 2 having a resistance to sO 2 is generally used. For example, a catalyst in which an active component V 2 O 5 and WO 3 are supported on a TiO 2 carrier is used (for example, see Patent Document 1), and a binary or ternary composite oxide of Ti, Si, Zr is used as a carrier. By using the compound, the dispersibility of the active component is improved to improve the catalyst performance (for example, see Patent Document 2).
[0007]
Although a reaction temperature of 270 to 290 ° C. is employed (for example, see Patent Document 3), such a temperature is hardly sufficiently low, and a temperature of 200 ° C. and an SV (space velocity) of 2, A reaction condition of 000 Hr -1 is employed (for example, see Patent Document 4), and it is necessary to use a large amount of a catalyst.
[0008]
[Patent Document 1]
Japanese Patent No. 2633316 [Patent Document 2]
Japanese Patent No. 2916259 [Patent Document 3]
Japanese Patent No. 2633316 [Patent Document 4]
Japanese Patent No. 2,916,259
As described above, none of the conventional catalysts for decomposing chlorinated organic compounds has sufficiently satisfactory performance for use in a compact processing apparatus at low temperature conditions.
[0010]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and its object is to provide a chlorinated organic compound decomposition catalyst and a chlorinated organic compound that can decompose chlorinated organic compounds such as dioxin at a low temperature with high efficiency. It is to provide a decomposition method.
[0011]
[Means for Solving the Problems]
As a result of various studies, the present inventors have obtained the following various findings. In other words, if lateral holes penetrating between the cells of the honeycomb structure are formed, this increases the turbulent components of the flow in the exhaust gas, and improves the diffusion efficiency of the chlorinated organic compounds in the exhaust gas to the catalyst. As a result, In addition, chlorinated organic compounds can be highly decomposed even at low temperatures.
[0012]
The present invention has been achieved based on the above findings, and a first gist of the present invention is a catalyst for decomposing a chlorinated organic compound having a honeycomb structure in which an active ingredient is supported on a carrier, comprising a cell having a honeycomb structure. A catalyst for decomposing chlorinated organic compounds, characterized by forming lateral holes that penetrate each other.
[0013]
The second aspect of the present invention resides in a method for decomposing chlorinated organic compounds, which comprises contacting the chlorinated organic compound decomposition catalyst with a gas containing chlorinated organic compounds.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
First, the catalyst for decomposing chlorinated organic compounds of the present invention (hereinafter simply referred to as “catalyst”) will be described. The catalyst of the present invention is a catalyst having a honeycomb structure in which an active component is supported on a carrier.
[0015]
As the above-mentioned carrier and active ingredient, conventionally known ones used in catalysts for decomposing chlorinated organic compounds can be used without limitation. Examples of the carrier include a single oxide such as TiO 2 , SiO 2 , Al 2 O 3 and WO 3 , a binary composite oxide thereof (for example, TiO 2 —SiO 2 ) or a ternary composite oxide ( For example, TiO 2 —SiO 2 —WO 3 ) or a mixture of a composite oxide thereof and a single oxide may be used. Examples of the active component include at least one metal selected from the group consisting of V, Cr, Mo, Mn, Fe, Ni, Cu, Ag, Au, Pd, Y, Ce, Nd, W, In and Ir, and / or Or an oxide thereof. Among them, vanadium (V) oxide is preferably used because it is inexpensive and has a high decomposition rate of organic halogen compounds. The ratio of active ingredient to carrier is usually in the range from 1 to 10% by weight.
[0016]
The honeycomb structure is a structure having a number of small holes (cells) penetrating in parallel. The catalyst having such a structure is used while being tightly fitted in a reaction tube. Examples of the shape of the cell include a hexagon, a square, a triangle, and a circle. In general, the size (diameter) of a cell is an aperture, and a wall between cells is called a pitch. A distance between centers of left and right or upper and lower walls facing each other when one cell is focused is called a pitch.
[0017]
The catalyst of the present invention has a honeycomb structure as described above, and is characterized in that the honeycomb structure is formed by forming lateral holes that penetrate each other. According to such a catalyst of the present invention, the turbulent component of the flow in the exhaust gas is increased, and the diffusion efficiency of the chlorinated organic compound in the exhaust gas to the catalyst is improved. High resolution.
[0018]
The above-mentioned lateral hole is usually formed by using a suitable means such as an electric drill after the preparation of the honeycomb catalyst. Further, the size, shape, number, etc. of the side holes are not necessarily limited, but the size of the side holes is 50% or less of the size of the cell, and the total wall total area of the side holes is 0.1% of the total width of the side walls. A range of -20% is preferred.
[0019]
As a method for producing a honeycomb catalyst, (a) a carrier component and an active component or a raw material thereof are kneaded together with a molding aid, and then extruded into a honeycomb shape having cells of a predetermined shape and size by extrusion molding or the like. And (b) a method in which a carrier component and an active component are impregnated and supported on a honeycomb-shaped base material. As an example of the above-described manufacturing method (a), the following method is exemplified.
[0020]
(1) Dissolve ammonium metavanadate in an aqueous solution of about 10% by weight of monoethanolamine.
(2) The titanium sulfate solution is hydrolyzed to obtain a metatitanic acid slurry.
(3) A 15% by weight aqueous ammonia is added to the metatitanic acid slurry to adjust the pH, and then a reflux treatment is performed for 1 hour or more.
(4) Add silica sol and perform reflux treatment for 1 hour or more.
(5) The obtained slurry is filtered, and the obtained cake is dried at a temperature of 50 to 150 ° C. for 3 to 50 hours, calcined at a temperature of 400 to 650 ° C., and crushed after cooling.
(6) The resulting powdery SiO 2 -TiO 2 2-element composite oxides was mixed with TiO 2 ratio of 50% by weight and a carrier.
(7) The above carrier and the aqueous solution prepared in the above (1) are kneaded with a kneader.
[0021]
(8) (i) A kneaded product obtained by further adding a forming aid and kneading is extruded, dried at a temperature of 50 to 150 ° C. for 3 to 50 hours, and then dried in an air stream of SV 100 to 2,000 Hr −1 to 450 Baking at a temperature of ~ 650 ° C or (ii) drying the kneaded material at a temperature of 50 ~ 150 ° C for 3 ~ 50 hours, baking at a temperature of 450 ~ 650 ° C, and forming by adding a molding aid. .
[0022]
Further, as an example of the above-described manufacturing method (b), the following method is exemplified. That is, the carrier component prepared in the above (2) to (6) is coated on a substrate having a desired shape such as a columnar shape, a spherical shape, a honeycomb shape, and a plate shape, and the aqueous solution prepared in the above (1) is coated. It is applied and impregnated with the active ingredient, dried at 50 to 150 ° C for 3 to 50 hours, and then fired at a temperature of 450 to 650 ° C.
[0023]
In the case of a catalyst formed on a substrate, silica (SiO 2 ) or alumina (Al 2 O 3 ) is used alone or in combination with TiO 2 as the substrate. The amount of SiO 2 -TiO 2 2-element complex oxide and a mixture of TiO 2 (carrier component), the total amount of the carrier component and the active ingredient is usually 70 to 99 wt%. The total amount of the carrier component and the active ingredient is usually 5 to 70% by weight, preferably 10 to 50% by weight, based on the total amount of the base material, the carrier component and the active ingredient.
[0024]
When all the added raw materials become active components as in the kneading and molding method, the catalyst composition is estimated from the added amount on the assumption that the raw material components such as metal salts have changed to the corresponding metal oxides. When the catalyst is manufactured by the impregnation method, the catalyst is treated with hydrofluoric acid, melted with ammonium sulfate, and the catalyst composition is measured by a plasma emission analysis (ICP-AES analysis).
[0025]
Next, a method for using the catalyst of the present invention (a method for decomposing a chlorinated organic compound) will be described. In the present invention, the catalyst is brought into contact with the chlorinated organic compound-containing gas. Examples of the chlorinated organic compound-containing gas include dioxins represented by 2,3,7,8-tetrachlorodibenzodioxin and 2,3,4,7,8-pentachlorodibenzofuran and 3,3 ′, Coplanar PCBs represented by 4,4 ′, 5-pentachlorobiphenyl are contained in an amount of about 0.01 to 200 ng / m 3 (NTP) (equivalent value in terms of toxicity), and a precursor of dioxins Burns gas containing chlorobenzenes such as monochlorobenzene and trichlorobenzene, chlorophenols such as O-chlorophenol and trichlorophenol, and chlorobenzofuran. Exhaust gas and the like at that time. Such a chlorinated organic compound-containing gas contains oxygen together with water, and its content is usually 0.5 to 25% by volume, preferably 1 to 21% by volume.
[0026]
The chlorinated organic compound-containing gas as described above is usually introduced into a contact step after removing dust and heavy metals through a bag filter. If necessary, slaked lime powder may be added to the gas before the bag filter to remove the acidic gas.
[0027]
The contact temperature between the chlorinated organic compound-containing gas and the catalyst is usually 100 to 250 ° C, preferably 100 to 200 ° C. When the contact temperature exceeds 250 ° C., the decomposition rate of the chlorinated organic compound also increases, but this is disadvantageous from the viewpoint of recombining the decomposed dioxins and saving steam for heating the catalyst layer. When the contact temperature is lower than 100 ° C., dew condensation which causes trouble in operation is caused. The pressure of the catalyst layer is usually -0.05 to 0.9 MPa, preferably -0.01 to 0.5 MPa as a gauge pressure. The SV is usually 100 to 50,000 Hr -1 , preferably 1,000 to 20,000 Hr -1 .
[0028]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the following examples unless it exceeds the gist of the present invention.
[0029]
Example 1
<Preparation of TiO 2 powder>
The titanium sulfate solution obtained from the titanium oxide production process by the sulfuric acid method is thermally hydrolyzed to obtain metatitanic acid, 800 g of this is taken out as titanium oxide, charged into a stirring tank equipped with a reflux device, and 498 g of 15% by weight ammonia water is added thereto. In addition, after the pH was adjusted to 9.5, the mixture was heated and aged at 95 ° C. for 1 hour with sufficient stirring. Thereafter, the slurry was cooled, the slurry was taken out, filtered and dewatered, and the obtained cake was dried at 100 ° C. for 20 hours, heated to 600 ° C. at a rate of 75 ° C./Hr, and kept at the same temperature for 5 hours. And after cooling, it was pulverized to an appropriate particle size to obtain a TiO 2 powder.
[0030]
<Preparation of catalyst>
A raw material liquid was prepared by dissolving 1029 g of ammonium metavanadate and 736 g of ammonium paramolybdate in 6000 g of a 10% by weight aqueous solution of monoethanolamine heated to 80 ° C. 7600 g of the TiO 2 powder obtained above was dry-mixed for 1 hour with a double-arm kneader, and the mixture was added with the above-mentioned raw material liquid and 1000 g of a molding aid, and kneaded for 2 hours. The obtained mixture was filled into an extruder, extruded into a honeycomb structure, dried at a temperature of 130 ° C. for 24 hours, and then fired for 3 hours at a temperature of SV100Hr −1 and a temperature of 500 ° C. for three hours. A honeycomb catalyst having a size of 7.5 cm × 7.5 cm × 50 cm and an aperture of 4.1 mm in length and width was obtained.
[0031]
Next, the honeycomb catalyst was cut into 30 mm in length and width (6 holes) and 33 mm in height so as to have a volume of 30 ml, and each side (30 mm × 33 mm) was cut by an electric drill into a horizontal hole having a diameter of 2 mm. Four (horizontal holes penetrating from one surface to the other surface in a direction perpendicular to the cell formation direction) were formed at substantially equal intervals.
[0032]
<Activity test>
A glass reactor was charged with 30 ml of the above catalyst, and an activity test was carried out using a normal-pressure fixed-bed flow reactor. The dimensions of the fixed catalyst bed were 30 mm long, 30 mm wide, and 33 mm high. The raw material gas composition was 100 ppm of orthochlorophenol (OCP), 10 vol% of O 2, 10 vol% of H 2 O, and a balance amount of N 2 . The SV of the raw material gas was 10,000 Hr- 1 . After holding at 160 ° C. and 180 ° C. for 5 hours, the gas passing through the reactor was sampled with a microsyringe and analyzed by gas chromatography. The analysis was performed by the absolute calibration method. Table 1 shows the results.
[0033]
Comparative Example 1
A honeycomb catalyst was obtained in the same manner as in Example 1 except that the horizontal hole was not formed. Then, an activity test was performed in the same manner as in Example 1, and the results are shown in Table 1.
[0034]
[Table 1]
[0035]
【The invention's effect】
According to the present invention described above, a catalyst for decomposing chlorinated organic compounds and a method for decomposing chlorinated organic compounds, which can decompose chlorinated organic compounds such as dioxin at a low temperature with high efficiency, are provided. The industrial value is significant.