JP2004108204A - 内燃機関用制御装置 - Google Patents
内燃機関用制御装置 Download PDFInfo
- Publication number
- JP2004108204A JP2004108204A JP2002270008A JP2002270008A JP2004108204A JP 2004108204 A JP2004108204 A JP 2004108204A JP 2002270008 A JP2002270008 A JP 2002270008A JP 2002270008 A JP2002270008 A JP 2002270008A JP 2004108204 A JP2004108204 A JP 2004108204A
- Authority
- JP
- Japan
- Prior art keywords
- intake pressure
- cylinder
- internal combustion
- combustion engine
- cylinders
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Landscapes
- Electrical Control Of Ignition Timing (AREA)
- Output Control And Ontrol Of Special Type Engine (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combined Controls Of Internal Combustion Engines (AREA)
Abstract
【課題】内燃機関の各気筒の吸気圧変化量に基づき点火時期や燃料噴射量を適切に補正し気筒間のトルク変動を解消すること。
【解決手段】3気筒からなる内燃機関1の吸気圧PMをクランクシャフト13の回転に伴う240〔°CA(Crank Angle:クランク角)〕である燃焼間隔毎に平均化した各気筒の平均吸気圧の吸気圧変化量と、この吸気圧変化量の全気筒分の総和である720〔°CA〕間の吸気圧変化量とから最も変化の大きな気筒が特定され、この気筒に対し点火時期が進角または遅角される。また、最も吸気圧変化が大きいと特定された気筒に対し燃料噴射量が増量または減量される。この点火時期や燃料噴射量の補正により、気筒間のトルク変動を好適に解消することができる。
【選択図】 図1
【解決手段】3気筒からなる内燃機関1の吸気圧PMをクランクシャフト13の回転に伴う240〔°CA(Crank Angle:クランク角)〕である燃焼間隔毎に平均化した各気筒の平均吸気圧の吸気圧変化量と、この吸気圧変化量の全気筒分の総和である720〔°CA〕間の吸気圧変化量とから最も変化の大きな気筒が特定され、この気筒に対し点火時期が進角または遅角される。また、最も吸気圧変化が大きいと特定された気筒に対し燃料噴射量が増量または減量される。この点火時期や燃料噴射量の補正により、気筒間のトルク変動を好適に解消することができる。
【選択図】 図1
Description
【0001】
【発明の属する技術分野】
本発明は、内燃機関の点火時期や燃料噴射量を補正することで気筒間のトルク変動をなくす内燃機関用制御装置に関するものである。
【0002】
【従来の技術】
従来、内燃機関用制御装置に関連する先行技術文献としては、特公平8−33117号公報にて開示されたものが知られている。このものでは、吸気圧データの平均値の変化量に基づく加速状態等の過渡状態に対応する過渡補正燃料増量と、クランク角信号及び吸気圧データの平均値に基づく基本燃料量とから燃料噴射量を算出する技術が示されている。
【0003】
【発明が解決しようとする課題】
ところで、前述のものでは、吸気圧データの平均値の変化量に対し、不感帯を設け過渡時における補正燃料増量の基本燃料量への不適切な加算を禁止している。ここにおいて、全気筒同時(720〔°CA(Crank Angle:クランク角)〕毎)に燃料噴射するシステムについて説明されているが、現在では気筒毎(3気筒の場合240〔°CA〕毎)に独立して燃料噴射するシステムが一般的になっている。例えば、ドライバ(運転者)がアクセルペダルを踏込むことにより吸気圧データの変化量が不感帯を越えると、加速増量が行われる。その後、ドライバがアクセルペダルを踏込んだときのアクセル開度に保ち、加速を続け徐々に回転が上昇した場合、特定の回転速度域で吸気慣性効果により吸気脈動が拡大することとなる。
【0004】
各気筒毎(3気筒の場合240〔°CA〕毎)に燃料噴射量を演算し、独立して燃料噴射するシステムにおいては前述の吸気脈動の拡大により、吸気圧データの変化量が不感帯を越えてしまい、吸気脈動の大きな気筒に対して、燃焼毎の圧力変化を捉えて増減量を行うため、特定の気筒に増量または減量がなされることとなり、増量される気筒と減量される気筒とでトルク差が拡大し、ドライバビリティを悪化させるという不具合があった。
【0005】
そこで、この発明はかかる不具合を解決するためになされたもので、内燃機関の各気筒の吸気圧変化量に基づき点火時期や燃料噴射量を適切に補正することで気筒間のトルク変動を解消可能な内燃機関用制御装置の提供を課題としている。
【0006】
【課題を解決するための手段】
請求項1の内燃機関用制御装置によれば、気筒特定手段によって吸気圧検出手段で検出された複数気筒からなる内燃機関の吸気通路内のスロットルバルブ下流側の吸気圧を、回転角検出手段で検出されたクランクシャフトまたはカムシャフトの回転角に基づく燃焼間隔毎に平均化した各気筒の平均吸気圧の吸気圧変化量と、この吸気圧変化量の全気筒分の総和である吸気圧変化量とから最も変化の大きな気筒が特定され、この気筒に対し変動補正手段によって点火時期が進角または遅角される。この点火時期の補正により、気筒間のトルク変動が好適に解消されるという効果が得られる。
【0007】
請求項2の内燃機関用制御装置によれば、気筒特定手段によって吸気圧検出手段で検出された複数気筒からなる内燃機関の吸気通路内のスロットルバルブ下流側の吸気圧を、回転角検出手段で検出されたクランクシャフトまたはカムシャフトの回転角に基づく燃焼間隔毎に平均化した各気筒の平均吸気圧の吸気圧変化量と、この吸気圧変化量の全気筒分の総和である吸気圧変化量とから最も変化の大きな気筒が特定され、この気筒に対し変動補正手段によって燃料噴射量が増量または減量される。この燃料噴射量の補正により、気筒間のトルク変動が好適に解消されるという効果が得られる。
【0008】
請求項3の内燃機関用制御装置によれば、気筒特定手段によって吸気圧検出手段で検出された複数気筒からなる内燃機関の吸気通路内のスロットルバルブ下流側の吸気圧を、回転角検出手段で検出されたクランクシャフトまたはカムシャフトの回転角に基づく燃焼間隔毎に平均化した各気筒の平均吸気圧の吸気圧変化量と、この吸気圧変化量の全気筒分の総和である吸気圧変化量とから最も変化の大きな気筒が特定され、更に、振動検出手段による振動波形信号に基づくノック判定手段によるノック発生の有無の判定結果に基づき、特定された気筒に対し点火時期が進角または遅角される。この点火時期の補正により、気筒間のトルク変動が好適に解消されるという効果が得られる。
【0009】
請求項4の内燃機関用制御装置によれば、気筒特定手段によって吸気圧検出手段で検出された複数気筒からなる内燃機関の吸気通路内のスロットルバルブ下流側の吸気圧を、回転角検出手段で検出されたクランクシャフトまたはカムシャフトの回転角に基づく燃焼間隔毎に平均化した各気筒の平均吸気圧の吸気圧変化量と、この吸気圧変化量の全気筒分の総和である吸気圧変化量とから最も変化の大きな気筒が特定され、更に、空燃比検出手段による内燃機関の排気通路内における排出ガスの空燃比の検出結果に基づき、特定された気筒に対し燃料噴射量が増量または減量される。この燃料噴射量の補正により、気筒間のトルク変動が好適に解消されるという効果が得られる。
【0010】
請求項5の内燃機関用制御装置では、内燃機関が排気タービン過給機を備え、排気圧を利用してタービンを回転させ、このタービンが回転することによって燃焼室に吸入空気を大量に送込むシステムに適用される。ドライバがアクセルペダルを踏込み、その後アクセルペダルの踏込量を保持したときに、吸気脈動が拡大するという現象は特に、排気タービン過給機を備えたシステムにおいて顕著に現われる。排気タービン過給機を備えたシステムでは、排気圧を利用してタービンを回転させ、このタービンが回転することによって燃焼室に吸入空気を大量に送り込むシステムになっている。つまり、ドライバがアクセルペダルを踏込み、その後アクセルペダルの踏込量を保持したとき、機関回転速度の上昇が少なくても、タービンの回転が上昇し過給効果で吸気量が増大する。これにより、機関回転速度とタービン回転が干渉し、気筒毎の変動周波数と同調することで吸気脈動として大きな変動を発生する現象がある。そこで、内燃機関に排気タービン過給機を備えたシステムに適用すると大きな効果が期待できる。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を実施例に基づいて説明する。
【0012】
〈実施例1〉
図1は本発明の実施の形態の第1実施例にかかる内燃機関用制御装置が適用された内燃機関及びその周辺機器を示す概略構成図である。
【0013】
図1において、1は複数気筒の例えば、4サイクル3気筒からなる内燃機関であり、内燃機関1の吸気通路2にはエアクリーナ3からの空気が導入される。この吸気通路2途中には、ドライバ(運転者)の要求として図示しないアクセルペダル等の操作に連動して開閉されるスロットルバルブ11が配設されている。このスロットルバルブ11が開閉されることにより、吸気通路2への吸気量が調節される。また、この吸気量と同時に、図示しない燃料タンクから燃料ポンプにて圧送されプレッシャレギュレータを介して調圧された燃料が、内燃機関1の吸気ポート4の近傍で吸気通路2に配設されたインジェクタ(燃料噴射弁)5から噴射供給される。そして、所定の燃料量及び吸気量からなる混合気が吸気バルブ6を介して燃焼室7内に吸入される。
【0014】
吸気通路2途中のスロットルバルブ11にはアクセルペダル踏込量等に応じたスロットル開度THRを検出するスロットル開度センサ21が配設されている。また、スロットルバルブ11の下流側には、吸気通路2内の吸気圧PMを検出する吸気圧センサ22が配設されている。そして、内燃機関1のクランクシャフト13にはその回転に伴うクランク角〔°CA(Crank Angle)〕を検出するクランク角センサ23が配設されている。このクランク角センサ23で検出されるクランク角に基づき内燃機関1の機関回転数NEが算出される。
【0015】
また、内燃機関1の燃焼室7内に向けて点火プラグ14が配設されている。この点火プラグ14にはクランク角センサ23で検出されるクランク角に同期して後述のECU(Electronic Control Unit:電子制御ユニット)30から出力される点火指令信号に基づき点火コイル/イグナイタ15からの高電圧が印加され、燃焼室7内の混合気に対する点火燃焼が行われる。このように、燃焼室7内の混合気が燃焼(膨張)され駆動力が得られ、この燃焼後の排出ガスは、排気バルブ8を介して排気マニホールドから排気通路9に導出され外部に排出される。
【0016】
ECU30は、周知の各種演算処理を実行する中央処理装置としてのCPU31、制御プログラムを格納したROM32、各種データを格納するRAM33、B/U(バックアップ)RAM34、入出力回路35及びそれらを接続するバスライン36等からなる論理演算回路として構成されている。このECU30には、スロットル開度センサ21からのスロットル開度THR、吸気圧センサ22からの吸気圧PM、クランク角センサ23からのクランクシャフト13の回転角や機関回転速度NE等が入力されている。これら各種センサ情報に基づくECU30からの出力信号に基づき、燃料噴射時期及び燃料噴射量に関連するインジェクタ5、点火時期に関連する点火プラグ14、点火コイル/イグナイタ15等が適宜、制御される。
【0017】
次に、本発明の実施の形態の第1実施例にかかる内燃機関用制御装置で使用されているECU30内のCPU31における気筒特定の処理手順を示す図2のフローチャートに基づいて説明する。なお、この気筒特定ルーチンは4サイクル3気筒からなる内燃機関1の各気筒の燃焼(点火)間隔である240〔°CA〕毎にCPU31にて繰返し実行される。
【0018】
図2において、ステップS101では、吸気圧センサ22からの吸気圧PMを燃焼間隔毎に平均化した240〔°CA〕間の平均吸気圧PM2が算出される。次にステップS102に移行して、ステップS101で算出された平均吸気圧PM2の前回値と今回値との差分である240〔°CA〕間の吸気圧変化量DPM2が算出される。次にステップS103に移行して、内燃機関1の1燃焼サイクルである3気筒分の吸気圧変化量DPM2の総和、即ち、720〔°CA〕間の吸気圧変化量D2PM2が算出される。次にステップS104に移行して、ステップS102で算出された240〔°CA〕間の吸気圧変化量DPM2とステップS103で算出された720〔°CA〕間の吸気圧変化量D2PM2とが比較され、最も吸気圧変化の大きい気筒が特定され、本ルーチンを終了する。
【0019】
次に、本発明の実施の形態の第1実施例にかかる内燃機関用制御装置で使用されているECU30内のCPU31における気筒間トルク変動補正・学習の処理手順を示す図3のフローチャートに基づいて説明する。なお、この気筒間トルク変動補正・学習ルーチンは4サイクル3気筒からなる内燃機関1の各気筒の燃焼間隔である240〔°CA〕毎にCPU31にて繰返し実行される。
【0020】
図3において、ステップS201では、3気筒分の吸気圧変化量DPM2の総和である吸気圧変化量D2PM2が予め設定された所定吸気圧変化量kD2PM2未満であるかが判定される。ステップS201の判定条件が成立、即ち、吸気圧変化量D2PM2が所定吸気圧変化量kD2PM2未満と小さく、内燃機関1の1燃焼サイクルである720〔°CA〕間の吸気圧変動が小さいときにはステップS202に移行し、各気筒毎の吸気圧変化量DPM2が予め設定された所定吸気圧変化量kDPM2を越えているかが判定される。
【0021】
ステップS202の判定条件が成立、即ち、吸気圧変化量DPM2が所定吸気圧変化量kDPM2を越え大きく、240〔°CA〕の燃焼間隔における吸気圧変動が大きいときにはステップS203に移行し、所定時間が経過しているかが判定される。ステップS203の判定条件が成立、即ち、ステップS201による吸気圧変化量D2PM2の状態及びステップS202による吸気圧変化量DPM2の状態が所定時間を越え継続しているときにはステップS204に移行し、上述の図2で特定された最も吸気圧変化の大きい気筒が読込まれる。ここで、補正対象気筒としては、最も吸気圧変化で上昇している気筒または最も吸気圧変化で低下している気筒が確認される。
【0022】
次にステップS205に移行して、最も吸気圧変化が大きな気筒に対する補正方法として点火時期の進角・遅角または燃料噴射量の増量・減量が決定される。このときの補正方法として進角または遅角が採用されるときには、最も吸気圧変化が上昇している気筒に対しては点火時期が遅角され、最も吸気圧変化が低下している気筒に対しては点火時期が進角される。ここで、進角・遅角を同時に行う必要はなく各々独立して行われる。また、このときの補正方法として増量または減量が採用されるときには、最も吸気圧変化が上昇している気筒に対しては燃料噴射量が減量され、最も吸気圧変化が低下している気筒に対しては燃料噴射量が増量される。ここで、増量・減量を同時に行う必要はなく各々独立して行われる。なお、この際、吸気圧変化量D2PM2がフィードバック(F/B)されることで補正量が変化される。
【0023】
次にステップS206に移行して、このときの機関回転速度・負荷条件における補正気筒に対する補正量がB/URAM34の所定領域に格納され、この更新によって補正量が随時学習され、本ルーチンを終了する。一方、ステップS201の判定条件が成立せず、即ち、吸気圧変化量D2PM2が所定吸気圧変化量kD2PM2以上と大きく、内燃機関1の1燃焼サイクルである720〔°CA〕間の吸気圧変動が大きいとき、またはステップS202の判定条件が成立せず、即ち、吸気圧変化量DPM2が所定吸気圧変化量kDPM2以下と小さく、240〔°CA〕の燃焼間隔における吸気圧変動が小さいとき、またはステップS203の判定条件が成立せず、即ち、ステップS201による吸気圧変化量D2PM2の状態及びステップS202による吸気圧変化量DPM2の状態が所定時間未満と短いときには、何もすることなく本ルーチンを終了する。なお、本実施例によって学習された補正量は、内燃機関1の再始動後等で、同じ運転条件を満足した際に反映させることにより速やかに気筒間のトルク変動を解消することができる。
【0024】
このように、本実施例の内燃機関用制御装置は、3気筒からなる内燃機関1の吸気通路2内のスロットルバルブ11下流側の吸気圧PMを検出する吸気圧検出手段としての吸気圧センサ22と、内燃機関1のクランクシャフト13の回転角を検出する回転角検出手段としてのクランク角センサ23と、吸気圧センサ22による吸気圧PMを燃焼間隔である240〔°CA〕毎に平均化した各気筒の平均吸気圧PM2の吸気圧変化量DPM2と、この吸気圧変化量DPM2の全気筒分の総和である720〔°CA〕分の吸気圧変化量D2PM2とから最も変化の大きい気筒を特定するECU30内のCPU31にて達成される気筒特定手段と、前記気筒特定手段で特定された気筒に対し、点火時期を進角または遅角することで気筒間のトルク変動を補正するECU30内のCPU31にて達成される変動補正手段とを具備するものである。
【0025】
つまり、吸気圧PMをクランクシャフト13の回転角に基づく燃焼間隔毎に平均化した各気筒の平均吸気圧PM2の吸気圧変化量DPM2と、この吸気圧変化量DPM2の全気筒分の総和である吸気圧変化量D2PM2とから最も変化の大きな気筒が特定され、この気筒に対し点火時期が進角または遅角される。この点火時期の補正により、気筒間のトルク変動を好適に解消することができる。
【0026】
また、本実施例の内燃機関用制御装置は、3気筒からなる内燃機関1の吸気通路2内のスロットルバルブ11下流側の吸気圧PMを検出する吸気圧検出手段としての吸気圧センサ22と、内燃機関1のクランクシャフト13の回転角を検出する回転角検出手段としてのクランク角センサ23と、吸気圧センサ22による吸気圧PMを燃焼間隔である240〔°CA〕毎に平均化した各気筒の平均吸気圧PM2の吸気圧変化量DPM2と、この吸気圧変化量DPM2の全気筒分の総和である720〔°CA〕分の吸気圧変化量D2PM2とから最も変化の大きい気筒を特定するECU30内のCPU31にて達成される気筒特定手段と、前記気筒特定手段で特定された気筒に対し、燃料噴射量を増量または減量することで気筒間のトルク変動を補正するECU30内のCPU31にて達成される変動補正手段とを具備するものである。
【0027】
つまり、吸気圧PMをクランクシャフト13の回転角に基づく燃焼間隔毎に平均化した各気筒の平均吸気圧PM2の吸気圧変化量DPM2と、この吸気圧変化量DPM2の全気筒分の総和である吸気圧変化量D2PM2とから最も変化の大きな気筒が特定され、この気筒に対し燃料噴射量が増量または減量される。この燃料噴射量の補正により、気筒間のトルク変動を好適に解消することができる。
【0028】
〈実施例2〉
図4は本発明の実施の形態の第2実施例にかかる内燃機関用制御装置が適用された内燃機関及びその周辺機器を示す概略構成図である。なお、図中、上述の実施例と同様の構成または相当部分からなるものについては同一符号及び同一記号を付し、その詳細な説明を省略する。
【0029】
図4に示すように、図1の概略構成図との相違点として、内燃機関1のノック発生現象に対応したシリンダブロックの振動波形信号SKNOCK を圧電素子(ピエゾ素子)式、電磁(マグネット、コイル)式等によって検出するノックセンサ24が配設され、また、内燃機関1の排気通路9内の排出ガスの酸素(O2 )濃度に基づく電圧にてリニアな空燃比(A/F)に対応する空燃比信号VOX1を検出するA/Fセンサ25が配設されている。そして、ノックセンサ24からの振動波形信号SKNOCK 、A/Fセンサ25からの空燃比信号VOX1はECU30に入力されている。
【0030】
次に、本発明の実施の形態の第2実施例にかかる内燃機関用制御装置で使用されているECU30内のCPU31における気筒間トルク変動補正の処理手順を示す図5のフローチャートに基づき、図6を参照して説明する。ここで、図6は図5の処理に対応する各種センサ信号や各種制御量等の遷移状態を示すタイムチャートである。この図6では、本実施例による内燃機関制御を実線にて示し、比較のために従来例による内燃機関制御を破線にて示す。なお、この気筒間トルク変動補正ルーチンは4サイクル3気筒からなる内燃機関1の各気筒の燃焼間隔である240〔°CA〕毎にCPU31にて繰返し実行される。
【0031】
図5において、ステップS301では、3気筒分の吸気圧変化量DPM2の総和である吸気圧変化量D2PM2の絶対値(|D2PM2|)が予め設定された所定吸気圧変化量kD2PM2未満であるかが判定される。ステップS301の判定条件が成立、即ち、吸気圧変化量D2PM2の絶対値が所定吸気圧変化量kD2PM2未満と小さく、内燃機関1の1燃焼サイクルである720〔°CA〕間の吸気圧変動が小さいときにはステップS302に移行し、最も吸気圧が低下または上昇している気筒の特定が、図6に判定期間として示す時刻t04〜時刻t07の間に実行される。
【0032】
次にステップS303に移行して、3気筒分の吸気圧変化量DPM2の総和である吸気圧変化量D2PM2のMAX(最大)値からMIN(最小)値が減算され、図6に示す吸気圧変化量振幅D2PM2Aが算出される。
【0033】
次にステップS304に移行して、吸気圧変化量振幅D2PM2Aが予め設定された所定吸気圧変化量振幅kD2PM2Aを越えているかが判定される。ステップS304の判定条件が成立、即ち、吸気圧変化量振幅D2PM2Aが所定吸気圧変化量振幅kD2PM2Aを越え大きく、720〔°CA〕間の吸気圧変化量振幅変動が大きいとき(図6に示す時刻t04以降)にはステップS305に移行し、所定時間(図6の時刻t04〜時刻t07に示す判定期間)が経過しているかが判定される。ステップS305の判定条件が成立、即ち、吸気圧変化量振幅D2PM2A変動が大きく所定時間を越え継続しているときにはステップS306に移行し、ノックが有るかが判定される。
【0034】
ステップS306の判定条件が成立、即ち、ノックセンサ24からの振動波形信号SKNOCK に基づき周知のようにノック有りと判定されたときにはステップS307に移行し、内燃機関1の3気筒のうち最も吸気圧が上昇している気筒に対する点火時期の遅角が実行され、本ルーチンを終了する。一方、ステップS306の判定条件が成立せず、即ち、ノックセンサ24からの振動波形信号SKNOCK に基づき周知のようにノックなしと判定されたときにはステップS308に移行し、内燃機関1の3気筒のうち最も吸気圧が低下している#3気筒に対する点火時期の進角が実行され(図6に示す時刻t08、時刻t10、時刻t12、時刻t14)、本ルーチンを終了する。
【0035】
これにより、図6に破線にて示す従来例の制御では、吸気圧PM及び吸気圧変化量DPM2の大きな変動、また、吸気圧変化量振幅D2PM2Aの発散が起こるが、図6に実線にて示す本実施例の制御によれば、気筒間の吸気圧変動が大きくなる以前に、内燃機関1の3気筒(#1気筒〜#3気筒)のうちの#3気筒に対して点火時期の進角処理が実行されることで吸気圧PM及び吸気圧変化量DPM2の変動、かつ吸気圧変化量振幅D2PM2Aの発散を未然に防止することができ、気筒間のトルク変動が好適に補正される。
【0036】
一方、ステップS301の判定条件が成立せず、即ち、吸気圧変化量D2PM2の絶対値が所定吸気圧変化量kD2PM2以上と大きいとき、またはステップS304の判定条件が成立せず、即ち、吸気圧変化量振幅D2PM2Aが所定吸気圧変化量振幅kD2PM2A以下と小さく、720〔°CA〕間の吸気圧変化量振幅変動が小さいとき、またはステップS305の判定条件が成立せず、即ち、ステップS303による吸気圧変化量振幅D2PM2Aが所定吸気圧変化量振幅kD2PM2Aを越え大きな状態が所定時間未満と短いときには、何もすることなく本ルーチンを終了する。なお、学習制御として、このときの運転条件に対応する点火時期の補正量をB/URAM34に格納し、内燃機関1の再始動後等で、同じ運転条件を満足した際に反映させることにより速やかに気筒間のトルク変動を解消することができる。
【0037】
このように、本実施例の内燃機関用制御装置は、3気筒からなる内燃機関1の吸気通路2内のスロットルバルブ11下流側の吸気圧PMを検出する吸気圧検出手段としての吸気圧センサ22と、内燃機関1のクランクシャフト13の回転角を検出する回転角検出手段としてのクランク角センサ23と、内燃機関1で発生する振動波形信号SKNOCK を検出する振動検出手段としてのノックセンサ24と、ノックセンサ24による振動波形信号SKNOCK に基づきノック発生の有無を判定するECU30内のCPU31にて達成されるノック判定手段と、吸気圧センサ22による吸気圧PMを燃焼間隔である240〔°CA〕毎に平均化した各気筒の平均吸気圧PM2の吸気圧変化量DPM2と、この吸気圧変化量DPM2の全気筒分の総和である720〔°CA〕分の吸気圧変化量D2PM2とから最も変化の大きい気筒を特定するECU30内のCPU31にて達成される気筒特定手段と、前記ノック判定手段による判定結果に基づき、前記気筒特定手段で特定された気筒に対し、点火時期を進角または遅角することで気筒間のトルク変動を補正するECU30内のCPU31にて達成される変動補正手段とを具備するものである。
【0038】
つまり、吸気圧PMをクランクシャフト13の回転角に基づく燃焼間隔毎に平均化した各気筒の平均吸気圧PM2の吸気圧変化量DPM2と、この吸気圧変化量DPM2の全気筒分の総和である吸気圧変化量D2PM2とから最も変化の大きな気筒が特定され、更に、ノックセンサ24からの振動波形信号SKNOCK による判定結果に基づき、特定された気筒に対し点火時期が進角または遅角される。この点火時期の補正により、気筒間のトルク変動を好適に解消することができる。
【0039】
なお、上記実施例では、内燃機関1のノックを検出するノックセンサ24を用いたノック検出結果に基づき点火時期を進角または遅角することで気筒間のトルク変動をなくしているが本発明を実施する場合には、これに限定されるものではなく、内燃機関1の排気通路9内における排出ガスの空燃比を検出可能なA/Fセンサ25からの空燃比信号VOX1を用いた空燃比検出結果に基づき燃料噴射量を増量または減量することで気筒間のトルク変動をなくすこともできる。また、このA/Fセンサ25に替えて空燃比のリッチまたはリーンを検出可能な酸素センサを用いることもできる。
【0040】
このような内燃機関用制御装置は、3気筒からなる内燃機関1の吸気通路2内のスロットルバルブ11下流側の吸気圧PMを検出する吸気圧検出手段としての吸気圧センサ22と、内燃機関1のクランクシャフト13の回転角を検出する回転角検出手段としてのクランク角センサ23と、内燃機関1の排気通路9内における排出ガスの空燃比(A/F)に対応する空燃比信号VOX1を検出する空燃比検出手段としてのA/Fセンサ25と、吸気圧センサ22による吸気圧PMを燃焼間隔である240〔°CA〕毎に平均化した各気筒の平均吸気圧PM2の吸気圧変化量DPM2と、この吸気圧変化量DPM2の全気筒分の総和である720〔°CA〕分の吸気圧変化量D2PM2とから最も変化の大きい気筒を特定するECU30内のCPU31にて達成される気筒特定手段と、吸気圧センサ22による検出結果に基づき、前記気筒特定手段で特定された気筒に対し、燃料噴射量を増量または減量することで気筒間のトルク変動を補正するECU30内のCPU31にて達成される変動補正手段とを具備するものであり、上述の実施例と同様の作用・効果が期待できる。
【0041】
ところで、上記実施例では、4サイクル3気筒からなる内燃機関について述べたが、本発明を実施する場合には、これに限定されるものではなく、その他、複数気筒からなる内燃機関に適用することで、同様の効果を得ることができる。
【0042】
また、上記実施例では、内燃機関1のクランクシャフト13の回転角を検出する回転角検出手段としてクランク角センサ23を用いているが、本発明を実施する場合には、これに限定されるものではなく、吸気バルブ6または排気バルブ8を開閉駆動させるための図示しないカムシャフトの回転角を検出するカム角センサからの信号を用いることもできる。
【0043】
なお、上記実施例では、吸気通路内の吸気圧を検出して燃料噴射量を設定する、所謂D−Jシステムへの適用について述べたが、本発明を実施する場合には、これに限定されるものではなく、更に、D−Jシステムで、特に、排気タービン過給機(Turbocharger;以下、単に『T/C』と記す)を備えた内燃機関への適用が有効である。即ち、D−Jシステムで、T/Cを備えた内燃機関にあっては、特に、運転条件の変化が少ない状態であっても気筒間のトルク差が広がり、T/C過給領域で吸気脈動が拡大する傾向にある。このような現象があるものにおいては、運転条件の変化が少ない状態であっても吸気脈動によって誤って加速判定される可能性がある。この加速判定によって燃料増減量が設定されると、結果として、機関回転速度の変動が発生することとなるが、本発明にかかる内燃機関用制御装置が適用された内燃機関においては、各気筒の吸気圧変化量に基づき点火時期や燃料噴射量が適切に補正されることで気筒間のトルク変動が解消されるという効果が期待できる。
【図面の簡単な説明】
【図1】図1は本発明の実施の形態の第1実施例にかかる内燃機関用制御装置が適用された内燃機関及びその周辺機器を示す概略構成図である。
【図2】図2は本発明の実施の形態の第1実施例にかかる内燃機関用制御装置で使用されているECU内のCPUにおける気筒特定の処理手順を示すフローチャートである。
【図3】図3は本発明の実施の形態の第1実施例にかかる内燃機関用制御装置で使用されているECU内のCPUにおける気筒間トルク変動補正・学習の処理手順を示すフローチャートである。
【図4】図4は本発明の実施の形態の第2実施例にかかる内燃機関用制御装置が適用された内燃機関及びその周辺機器を示す概略構成図である。
【図5】図5は本発明の実施の形態の第2実施例にかかる内燃機関用制御装置で使用されているECU内のCPUにおける気筒間トルク変動補正の処理手順を示すフローチャートである。
【図6】図6は図5の処理に対応する各種センサ信号や各種制御量等の遷移状態を示すタイムチャートである。
【符号の説明】
1 内燃機関
2 吸気通路
5 インジェクタ(燃料噴射弁)
11 スロットルバルブ
21 スロットル開度センサ
22 吸気圧センサ
23 クランク角センサ
24 ノックセンサ
25 A/Fセンサ
30 ECU(電子制御ユニット)
【発明の属する技術分野】
本発明は、内燃機関の点火時期や燃料噴射量を補正することで気筒間のトルク変動をなくす内燃機関用制御装置に関するものである。
【0002】
【従来の技術】
従来、内燃機関用制御装置に関連する先行技術文献としては、特公平8−33117号公報にて開示されたものが知られている。このものでは、吸気圧データの平均値の変化量に基づく加速状態等の過渡状態に対応する過渡補正燃料増量と、クランク角信号及び吸気圧データの平均値に基づく基本燃料量とから燃料噴射量を算出する技術が示されている。
【0003】
【発明が解決しようとする課題】
ところで、前述のものでは、吸気圧データの平均値の変化量に対し、不感帯を設け過渡時における補正燃料増量の基本燃料量への不適切な加算を禁止している。ここにおいて、全気筒同時(720〔°CA(Crank Angle:クランク角)〕毎)に燃料噴射するシステムについて説明されているが、現在では気筒毎(3気筒の場合240〔°CA〕毎)に独立して燃料噴射するシステムが一般的になっている。例えば、ドライバ(運転者)がアクセルペダルを踏込むことにより吸気圧データの変化量が不感帯を越えると、加速増量が行われる。その後、ドライバがアクセルペダルを踏込んだときのアクセル開度に保ち、加速を続け徐々に回転が上昇した場合、特定の回転速度域で吸気慣性効果により吸気脈動が拡大することとなる。
【0004】
各気筒毎(3気筒の場合240〔°CA〕毎)に燃料噴射量を演算し、独立して燃料噴射するシステムにおいては前述の吸気脈動の拡大により、吸気圧データの変化量が不感帯を越えてしまい、吸気脈動の大きな気筒に対して、燃焼毎の圧力変化を捉えて増減量を行うため、特定の気筒に増量または減量がなされることとなり、増量される気筒と減量される気筒とでトルク差が拡大し、ドライバビリティを悪化させるという不具合があった。
【0005】
そこで、この発明はかかる不具合を解決するためになされたもので、内燃機関の各気筒の吸気圧変化量に基づき点火時期や燃料噴射量を適切に補正することで気筒間のトルク変動を解消可能な内燃機関用制御装置の提供を課題としている。
【0006】
【課題を解決するための手段】
請求項1の内燃機関用制御装置によれば、気筒特定手段によって吸気圧検出手段で検出された複数気筒からなる内燃機関の吸気通路内のスロットルバルブ下流側の吸気圧を、回転角検出手段で検出されたクランクシャフトまたはカムシャフトの回転角に基づく燃焼間隔毎に平均化した各気筒の平均吸気圧の吸気圧変化量と、この吸気圧変化量の全気筒分の総和である吸気圧変化量とから最も変化の大きな気筒が特定され、この気筒に対し変動補正手段によって点火時期が進角または遅角される。この点火時期の補正により、気筒間のトルク変動が好適に解消されるという効果が得られる。
【0007】
請求項2の内燃機関用制御装置によれば、気筒特定手段によって吸気圧検出手段で検出された複数気筒からなる内燃機関の吸気通路内のスロットルバルブ下流側の吸気圧を、回転角検出手段で検出されたクランクシャフトまたはカムシャフトの回転角に基づく燃焼間隔毎に平均化した各気筒の平均吸気圧の吸気圧変化量と、この吸気圧変化量の全気筒分の総和である吸気圧変化量とから最も変化の大きな気筒が特定され、この気筒に対し変動補正手段によって燃料噴射量が増量または減量される。この燃料噴射量の補正により、気筒間のトルク変動が好適に解消されるという効果が得られる。
【0008】
請求項3の内燃機関用制御装置によれば、気筒特定手段によって吸気圧検出手段で検出された複数気筒からなる内燃機関の吸気通路内のスロットルバルブ下流側の吸気圧を、回転角検出手段で検出されたクランクシャフトまたはカムシャフトの回転角に基づく燃焼間隔毎に平均化した各気筒の平均吸気圧の吸気圧変化量と、この吸気圧変化量の全気筒分の総和である吸気圧変化量とから最も変化の大きな気筒が特定され、更に、振動検出手段による振動波形信号に基づくノック判定手段によるノック発生の有無の判定結果に基づき、特定された気筒に対し点火時期が進角または遅角される。この点火時期の補正により、気筒間のトルク変動が好適に解消されるという効果が得られる。
【0009】
請求項4の内燃機関用制御装置によれば、気筒特定手段によって吸気圧検出手段で検出された複数気筒からなる内燃機関の吸気通路内のスロットルバルブ下流側の吸気圧を、回転角検出手段で検出されたクランクシャフトまたはカムシャフトの回転角に基づく燃焼間隔毎に平均化した各気筒の平均吸気圧の吸気圧変化量と、この吸気圧変化量の全気筒分の総和である吸気圧変化量とから最も変化の大きな気筒が特定され、更に、空燃比検出手段による内燃機関の排気通路内における排出ガスの空燃比の検出結果に基づき、特定された気筒に対し燃料噴射量が増量または減量される。この燃料噴射量の補正により、気筒間のトルク変動が好適に解消されるという効果が得られる。
【0010】
請求項5の内燃機関用制御装置では、内燃機関が排気タービン過給機を備え、排気圧を利用してタービンを回転させ、このタービンが回転することによって燃焼室に吸入空気を大量に送込むシステムに適用される。ドライバがアクセルペダルを踏込み、その後アクセルペダルの踏込量を保持したときに、吸気脈動が拡大するという現象は特に、排気タービン過給機を備えたシステムにおいて顕著に現われる。排気タービン過給機を備えたシステムでは、排気圧を利用してタービンを回転させ、このタービンが回転することによって燃焼室に吸入空気を大量に送り込むシステムになっている。つまり、ドライバがアクセルペダルを踏込み、その後アクセルペダルの踏込量を保持したとき、機関回転速度の上昇が少なくても、タービンの回転が上昇し過給効果で吸気量が増大する。これにより、機関回転速度とタービン回転が干渉し、気筒毎の変動周波数と同調することで吸気脈動として大きな変動を発生する現象がある。そこで、内燃機関に排気タービン過給機を備えたシステムに適用すると大きな効果が期待できる。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を実施例に基づいて説明する。
【0012】
〈実施例1〉
図1は本発明の実施の形態の第1実施例にかかる内燃機関用制御装置が適用された内燃機関及びその周辺機器を示す概略構成図である。
【0013】
図1において、1は複数気筒の例えば、4サイクル3気筒からなる内燃機関であり、内燃機関1の吸気通路2にはエアクリーナ3からの空気が導入される。この吸気通路2途中には、ドライバ(運転者)の要求として図示しないアクセルペダル等の操作に連動して開閉されるスロットルバルブ11が配設されている。このスロットルバルブ11が開閉されることにより、吸気通路2への吸気量が調節される。また、この吸気量と同時に、図示しない燃料タンクから燃料ポンプにて圧送されプレッシャレギュレータを介して調圧された燃料が、内燃機関1の吸気ポート4の近傍で吸気通路2に配設されたインジェクタ(燃料噴射弁)5から噴射供給される。そして、所定の燃料量及び吸気量からなる混合気が吸気バルブ6を介して燃焼室7内に吸入される。
【0014】
吸気通路2途中のスロットルバルブ11にはアクセルペダル踏込量等に応じたスロットル開度THRを検出するスロットル開度センサ21が配設されている。また、スロットルバルブ11の下流側には、吸気通路2内の吸気圧PMを検出する吸気圧センサ22が配設されている。そして、内燃機関1のクランクシャフト13にはその回転に伴うクランク角〔°CA(Crank Angle)〕を検出するクランク角センサ23が配設されている。このクランク角センサ23で検出されるクランク角に基づき内燃機関1の機関回転数NEが算出される。
【0015】
また、内燃機関1の燃焼室7内に向けて点火プラグ14が配設されている。この点火プラグ14にはクランク角センサ23で検出されるクランク角に同期して後述のECU(Electronic Control Unit:電子制御ユニット)30から出力される点火指令信号に基づき点火コイル/イグナイタ15からの高電圧が印加され、燃焼室7内の混合気に対する点火燃焼が行われる。このように、燃焼室7内の混合気が燃焼(膨張)され駆動力が得られ、この燃焼後の排出ガスは、排気バルブ8を介して排気マニホールドから排気通路9に導出され外部に排出される。
【0016】
ECU30は、周知の各種演算処理を実行する中央処理装置としてのCPU31、制御プログラムを格納したROM32、各種データを格納するRAM33、B/U(バックアップ)RAM34、入出力回路35及びそれらを接続するバスライン36等からなる論理演算回路として構成されている。このECU30には、スロットル開度センサ21からのスロットル開度THR、吸気圧センサ22からの吸気圧PM、クランク角センサ23からのクランクシャフト13の回転角や機関回転速度NE等が入力されている。これら各種センサ情報に基づくECU30からの出力信号に基づき、燃料噴射時期及び燃料噴射量に関連するインジェクタ5、点火時期に関連する点火プラグ14、点火コイル/イグナイタ15等が適宜、制御される。
【0017】
次に、本発明の実施の形態の第1実施例にかかる内燃機関用制御装置で使用されているECU30内のCPU31における気筒特定の処理手順を示す図2のフローチャートに基づいて説明する。なお、この気筒特定ルーチンは4サイクル3気筒からなる内燃機関1の各気筒の燃焼(点火)間隔である240〔°CA〕毎にCPU31にて繰返し実行される。
【0018】
図2において、ステップS101では、吸気圧センサ22からの吸気圧PMを燃焼間隔毎に平均化した240〔°CA〕間の平均吸気圧PM2が算出される。次にステップS102に移行して、ステップS101で算出された平均吸気圧PM2の前回値と今回値との差分である240〔°CA〕間の吸気圧変化量DPM2が算出される。次にステップS103に移行して、内燃機関1の1燃焼サイクルである3気筒分の吸気圧変化量DPM2の総和、即ち、720〔°CA〕間の吸気圧変化量D2PM2が算出される。次にステップS104に移行して、ステップS102で算出された240〔°CA〕間の吸気圧変化量DPM2とステップS103で算出された720〔°CA〕間の吸気圧変化量D2PM2とが比較され、最も吸気圧変化の大きい気筒が特定され、本ルーチンを終了する。
【0019】
次に、本発明の実施の形態の第1実施例にかかる内燃機関用制御装置で使用されているECU30内のCPU31における気筒間トルク変動補正・学習の処理手順を示す図3のフローチャートに基づいて説明する。なお、この気筒間トルク変動補正・学習ルーチンは4サイクル3気筒からなる内燃機関1の各気筒の燃焼間隔である240〔°CA〕毎にCPU31にて繰返し実行される。
【0020】
図3において、ステップS201では、3気筒分の吸気圧変化量DPM2の総和である吸気圧変化量D2PM2が予め設定された所定吸気圧変化量kD2PM2未満であるかが判定される。ステップS201の判定条件が成立、即ち、吸気圧変化量D2PM2が所定吸気圧変化量kD2PM2未満と小さく、内燃機関1の1燃焼サイクルである720〔°CA〕間の吸気圧変動が小さいときにはステップS202に移行し、各気筒毎の吸気圧変化量DPM2が予め設定された所定吸気圧変化量kDPM2を越えているかが判定される。
【0021】
ステップS202の判定条件が成立、即ち、吸気圧変化量DPM2が所定吸気圧変化量kDPM2を越え大きく、240〔°CA〕の燃焼間隔における吸気圧変動が大きいときにはステップS203に移行し、所定時間が経過しているかが判定される。ステップS203の判定条件が成立、即ち、ステップS201による吸気圧変化量D2PM2の状態及びステップS202による吸気圧変化量DPM2の状態が所定時間を越え継続しているときにはステップS204に移行し、上述の図2で特定された最も吸気圧変化の大きい気筒が読込まれる。ここで、補正対象気筒としては、最も吸気圧変化で上昇している気筒または最も吸気圧変化で低下している気筒が確認される。
【0022】
次にステップS205に移行して、最も吸気圧変化が大きな気筒に対する補正方法として点火時期の進角・遅角または燃料噴射量の増量・減量が決定される。このときの補正方法として進角または遅角が採用されるときには、最も吸気圧変化が上昇している気筒に対しては点火時期が遅角され、最も吸気圧変化が低下している気筒に対しては点火時期が進角される。ここで、進角・遅角を同時に行う必要はなく各々独立して行われる。また、このときの補正方法として増量または減量が採用されるときには、最も吸気圧変化が上昇している気筒に対しては燃料噴射量が減量され、最も吸気圧変化が低下している気筒に対しては燃料噴射量が増量される。ここで、増量・減量を同時に行う必要はなく各々独立して行われる。なお、この際、吸気圧変化量D2PM2がフィードバック(F/B)されることで補正量が変化される。
【0023】
次にステップS206に移行して、このときの機関回転速度・負荷条件における補正気筒に対する補正量がB/URAM34の所定領域に格納され、この更新によって補正量が随時学習され、本ルーチンを終了する。一方、ステップS201の判定条件が成立せず、即ち、吸気圧変化量D2PM2が所定吸気圧変化量kD2PM2以上と大きく、内燃機関1の1燃焼サイクルである720〔°CA〕間の吸気圧変動が大きいとき、またはステップS202の判定条件が成立せず、即ち、吸気圧変化量DPM2が所定吸気圧変化量kDPM2以下と小さく、240〔°CA〕の燃焼間隔における吸気圧変動が小さいとき、またはステップS203の判定条件が成立せず、即ち、ステップS201による吸気圧変化量D2PM2の状態及びステップS202による吸気圧変化量DPM2の状態が所定時間未満と短いときには、何もすることなく本ルーチンを終了する。なお、本実施例によって学習された補正量は、内燃機関1の再始動後等で、同じ運転条件を満足した際に反映させることにより速やかに気筒間のトルク変動を解消することができる。
【0024】
このように、本実施例の内燃機関用制御装置は、3気筒からなる内燃機関1の吸気通路2内のスロットルバルブ11下流側の吸気圧PMを検出する吸気圧検出手段としての吸気圧センサ22と、内燃機関1のクランクシャフト13の回転角を検出する回転角検出手段としてのクランク角センサ23と、吸気圧センサ22による吸気圧PMを燃焼間隔である240〔°CA〕毎に平均化した各気筒の平均吸気圧PM2の吸気圧変化量DPM2と、この吸気圧変化量DPM2の全気筒分の総和である720〔°CA〕分の吸気圧変化量D2PM2とから最も変化の大きい気筒を特定するECU30内のCPU31にて達成される気筒特定手段と、前記気筒特定手段で特定された気筒に対し、点火時期を進角または遅角することで気筒間のトルク変動を補正するECU30内のCPU31にて達成される変動補正手段とを具備するものである。
【0025】
つまり、吸気圧PMをクランクシャフト13の回転角に基づく燃焼間隔毎に平均化した各気筒の平均吸気圧PM2の吸気圧変化量DPM2と、この吸気圧変化量DPM2の全気筒分の総和である吸気圧変化量D2PM2とから最も変化の大きな気筒が特定され、この気筒に対し点火時期が進角または遅角される。この点火時期の補正により、気筒間のトルク変動を好適に解消することができる。
【0026】
また、本実施例の内燃機関用制御装置は、3気筒からなる内燃機関1の吸気通路2内のスロットルバルブ11下流側の吸気圧PMを検出する吸気圧検出手段としての吸気圧センサ22と、内燃機関1のクランクシャフト13の回転角を検出する回転角検出手段としてのクランク角センサ23と、吸気圧センサ22による吸気圧PMを燃焼間隔である240〔°CA〕毎に平均化した各気筒の平均吸気圧PM2の吸気圧変化量DPM2と、この吸気圧変化量DPM2の全気筒分の総和である720〔°CA〕分の吸気圧変化量D2PM2とから最も変化の大きい気筒を特定するECU30内のCPU31にて達成される気筒特定手段と、前記気筒特定手段で特定された気筒に対し、燃料噴射量を増量または減量することで気筒間のトルク変動を補正するECU30内のCPU31にて達成される変動補正手段とを具備するものである。
【0027】
つまり、吸気圧PMをクランクシャフト13の回転角に基づく燃焼間隔毎に平均化した各気筒の平均吸気圧PM2の吸気圧変化量DPM2と、この吸気圧変化量DPM2の全気筒分の総和である吸気圧変化量D2PM2とから最も変化の大きな気筒が特定され、この気筒に対し燃料噴射量が増量または減量される。この燃料噴射量の補正により、気筒間のトルク変動を好適に解消することができる。
【0028】
〈実施例2〉
図4は本発明の実施の形態の第2実施例にかかる内燃機関用制御装置が適用された内燃機関及びその周辺機器を示す概略構成図である。なお、図中、上述の実施例と同様の構成または相当部分からなるものについては同一符号及び同一記号を付し、その詳細な説明を省略する。
【0029】
図4に示すように、図1の概略構成図との相違点として、内燃機関1のノック発生現象に対応したシリンダブロックの振動波形信号SKNOCK を圧電素子(ピエゾ素子)式、電磁(マグネット、コイル)式等によって検出するノックセンサ24が配設され、また、内燃機関1の排気通路9内の排出ガスの酸素(O2 )濃度に基づく電圧にてリニアな空燃比(A/F)に対応する空燃比信号VOX1を検出するA/Fセンサ25が配設されている。そして、ノックセンサ24からの振動波形信号SKNOCK 、A/Fセンサ25からの空燃比信号VOX1はECU30に入力されている。
【0030】
次に、本発明の実施の形態の第2実施例にかかる内燃機関用制御装置で使用されているECU30内のCPU31における気筒間トルク変動補正の処理手順を示す図5のフローチャートに基づき、図6を参照して説明する。ここで、図6は図5の処理に対応する各種センサ信号や各種制御量等の遷移状態を示すタイムチャートである。この図6では、本実施例による内燃機関制御を実線にて示し、比較のために従来例による内燃機関制御を破線にて示す。なお、この気筒間トルク変動補正ルーチンは4サイクル3気筒からなる内燃機関1の各気筒の燃焼間隔である240〔°CA〕毎にCPU31にて繰返し実行される。
【0031】
図5において、ステップS301では、3気筒分の吸気圧変化量DPM2の総和である吸気圧変化量D2PM2の絶対値(|D2PM2|)が予め設定された所定吸気圧変化量kD2PM2未満であるかが判定される。ステップS301の判定条件が成立、即ち、吸気圧変化量D2PM2の絶対値が所定吸気圧変化量kD2PM2未満と小さく、内燃機関1の1燃焼サイクルである720〔°CA〕間の吸気圧変動が小さいときにはステップS302に移行し、最も吸気圧が低下または上昇している気筒の特定が、図6に判定期間として示す時刻t04〜時刻t07の間に実行される。
【0032】
次にステップS303に移行して、3気筒分の吸気圧変化量DPM2の総和である吸気圧変化量D2PM2のMAX(最大)値からMIN(最小)値が減算され、図6に示す吸気圧変化量振幅D2PM2Aが算出される。
【0033】
次にステップS304に移行して、吸気圧変化量振幅D2PM2Aが予め設定された所定吸気圧変化量振幅kD2PM2Aを越えているかが判定される。ステップS304の判定条件が成立、即ち、吸気圧変化量振幅D2PM2Aが所定吸気圧変化量振幅kD2PM2Aを越え大きく、720〔°CA〕間の吸気圧変化量振幅変動が大きいとき(図6に示す時刻t04以降)にはステップS305に移行し、所定時間(図6の時刻t04〜時刻t07に示す判定期間)が経過しているかが判定される。ステップS305の判定条件が成立、即ち、吸気圧変化量振幅D2PM2A変動が大きく所定時間を越え継続しているときにはステップS306に移行し、ノックが有るかが判定される。
【0034】
ステップS306の判定条件が成立、即ち、ノックセンサ24からの振動波形信号SKNOCK に基づき周知のようにノック有りと判定されたときにはステップS307に移行し、内燃機関1の3気筒のうち最も吸気圧が上昇している気筒に対する点火時期の遅角が実行され、本ルーチンを終了する。一方、ステップS306の判定条件が成立せず、即ち、ノックセンサ24からの振動波形信号SKNOCK に基づき周知のようにノックなしと判定されたときにはステップS308に移行し、内燃機関1の3気筒のうち最も吸気圧が低下している#3気筒に対する点火時期の進角が実行され(図6に示す時刻t08、時刻t10、時刻t12、時刻t14)、本ルーチンを終了する。
【0035】
これにより、図6に破線にて示す従来例の制御では、吸気圧PM及び吸気圧変化量DPM2の大きな変動、また、吸気圧変化量振幅D2PM2Aの発散が起こるが、図6に実線にて示す本実施例の制御によれば、気筒間の吸気圧変動が大きくなる以前に、内燃機関1の3気筒(#1気筒〜#3気筒)のうちの#3気筒に対して点火時期の進角処理が実行されることで吸気圧PM及び吸気圧変化量DPM2の変動、かつ吸気圧変化量振幅D2PM2Aの発散を未然に防止することができ、気筒間のトルク変動が好適に補正される。
【0036】
一方、ステップS301の判定条件が成立せず、即ち、吸気圧変化量D2PM2の絶対値が所定吸気圧変化量kD2PM2以上と大きいとき、またはステップS304の判定条件が成立せず、即ち、吸気圧変化量振幅D2PM2Aが所定吸気圧変化量振幅kD2PM2A以下と小さく、720〔°CA〕間の吸気圧変化量振幅変動が小さいとき、またはステップS305の判定条件が成立せず、即ち、ステップS303による吸気圧変化量振幅D2PM2Aが所定吸気圧変化量振幅kD2PM2Aを越え大きな状態が所定時間未満と短いときには、何もすることなく本ルーチンを終了する。なお、学習制御として、このときの運転条件に対応する点火時期の補正量をB/URAM34に格納し、内燃機関1の再始動後等で、同じ運転条件を満足した際に反映させることにより速やかに気筒間のトルク変動を解消することができる。
【0037】
このように、本実施例の内燃機関用制御装置は、3気筒からなる内燃機関1の吸気通路2内のスロットルバルブ11下流側の吸気圧PMを検出する吸気圧検出手段としての吸気圧センサ22と、内燃機関1のクランクシャフト13の回転角を検出する回転角検出手段としてのクランク角センサ23と、内燃機関1で発生する振動波形信号SKNOCK を検出する振動検出手段としてのノックセンサ24と、ノックセンサ24による振動波形信号SKNOCK に基づきノック発生の有無を判定するECU30内のCPU31にて達成されるノック判定手段と、吸気圧センサ22による吸気圧PMを燃焼間隔である240〔°CA〕毎に平均化した各気筒の平均吸気圧PM2の吸気圧変化量DPM2と、この吸気圧変化量DPM2の全気筒分の総和である720〔°CA〕分の吸気圧変化量D2PM2とから最も変化の大きい気筒を特定するECU30内のCPU31にて達成される気筒特定手段と、前記ノック判定手段による判定結果に基づき、前記気筒特定手段で特定された気筒に対し、点火時期を進角または遅角することで気筒間のトルク変動を補正するECU30内のCPU31にて達成される変動補正手段とを具備するものである。
【0038】
つまり、吸気圧PMをクランクシャフト13の回転角に基づく燃焼間隔毎に平均化した各気筒の平均吸気圧PM2の吸気圧変化量DPM2と、この吸気圧変化量DPM2の全気筒分の総和である吸気圧変化量D2PM2とから最も変化の大きな気筒が特定され、更に、ノックセンサ24からの振動波形信号SKNOCK による判定結果に基づき、特定された気筒に対し点火時期が進角または遅角される。この点火時期の補正により、気筒間のトルク変動を好適に解消することができる。
【0039】
なお、上記実施例では、内燃機関1のノックを検出するノックセンサ24を用いたノック検出結果に基づき点火時期を進角または遅角することで気筒間のトルク変動をなくしているが本発明を実施する場合には、これに限定されるものではなく、内燃機関1の排気通路9内における排出ガスの空燃比を検出可能なA/Fセンサ25からの空燃比信号VOX1を用いた空燃比検出結果に基づき燃料噴射量を増量または減量することで気筒間のトルク変動をなくすこともできる。また、このA/Fセンサ25に替えて空燃比のリッチまたはリーンを検出可能な酸素センサを用いることもできる。
【0040】
このような内燃機関用制御装置は、3気筒からなる内燃機関1の吸気通路2内のスロットルバルブ11下流側の吸気圧PMを検出する吸気圧検出手段としての吸気圧センサ22と、内燃機関1のクランクシャフト13の回転角を検出する回転角検出手段としてのクランク角センサ23と、内燃機関1の排気通路9内における排出ガスの空燃比(A/F)に対応する空燃比信号VOX1を検出する空燃比検出手段としてのA/Fセンサ25と、吸気圧センサ22による吸気圧PMを燃焼間隔である240〔°CA〕毎に平均化した各気筒の平均吸気圧PM2の吸気圧変化量DPM2と、この吸気圧変化量DPM2の全気筒分の総和である720〔°CA〕分の吸気圧変化量D2PM2とから最も変化の大きい気筒を特定するECU30内のCPU31にて達成される気筒特定手段と、吸気圧センサ22による検出結果に基づき、前記気筒特定手段で特定された気筒に対し、燃料噴射量を増量または減量することで気筒間のトルク変動を補正するECU30内のCPU31にて達成される変動補正手段とを具備するものであり、上述の実施例と同様の作用・効果が期待できる。
【0041】
ところで、上記実施例では、4サイクル3気筒からなる内燃機関について述べたが、本発明を実施する場合には、これに限定されるものではなく、その他、複数気筒からなる内燃機関に適用することで、同様の効果を得ることができる。
【0042】
また、上記実施例では、内燃機関1のクランクシャフト13の回転角を検出する回転角検出手段としてクランク角センサ23を用いているが、本発明を実施する場合には、これに限定されるものではなく、吸気バルブ6または排気バルブ8を開閉駆動させるための図示しないカムシャフトの回転角を検出するカム角センサからの信号を用いることもできる。
【0043】
なお、上記実施例では、吸気通路内の吸気圧を検出して燃料噴射量を設定する、所謂D−Jシステムへの適用について述べたが、本発明を実施する場合には、これに限定されるものではなく、更に、D−Jシステムで、特に、排気タービン過給機(Turbocharger;以下、単に『T/C』と記す)を備えた内燃機関への適用が有効である。即ち、D−Jシステムで、T/Cを備えた内燃機関にあっては、特に、運転条件の変化が少ない状態であっても気筒間のトルク差が広がり、T/C過給領域で吸気脈動が拡大する傾向にある。このような現象があるものにおいては、運転条件の変化が少ない状態であっても吸気脈動によって誤って加速判定される可能性がある。この加速判定によって燃料増減量が設定されると、結果として、機関回転速度の変動が発生することとなるが、本発明にかかる内燃機関用制御装置が適用された内燃機関においては、各気筒の吸気圧変化量に基づき点火時期や燃料噴射量が適切に補正されることで気筒間のトルク変動が解消されるという効果が期待できる。
【図面の簡単な説明】
【図1】図1は本発明の実施の形態の第1実施例にかかる内燃機関用制御装置が適用された内燃機関及びその周辺機器を示す概略構成図である。
【図2】図2は本発明の実施の形態の第1実施例にかかる内燃機関用制御装置で使用されているECU内のCPUにおける気筒特定の処理手順を示すフローチャートである。
【図3】図3は本発明の実施の形態の第1実施例にかかる内燃機関用制御装置で使用されているECU内のCPUにおける気筒間トルク変動補正・学習の処理手順を示すフローチャートである。
【図4】図4は本発明の実施の形態の第2実施例にかかる内燃機関用制御装置が適用された内燃機関及びその周辺機器を示す概略構成図である。
【図5】図5は本発明の実施の形態の第2実施例にかかる内燃機関用制御装置で使用されているECU内のCPUにおける気筒間トルク変動補正の処理手順を示すフローチャートである。
【図6】図6は図5の処理に対応する各種センサ信号や各種制御量等の遷移状態を示すタイムチャートである。
【符号の説明】
1 内燃機関
2 吸気通路
5 インジェクタ(燃料噴射弁)
11 スロットルバルブ
21 スロットル開度センサ
22 吸気圧センサ
23 クランク角センサ
24 ノックセンサ
25 A/Fセンサ
30 ECU(電子制御ユニット)
Claims (5)
- 複数気筒からなる内燃機関の吸気通路内のスロットルバルブ下流側の吸気圧を検出する吸気圧検出手段と、
前記内燃機関のクランクシャフトまたはカムシャフトの回転角を検出する回転角検出手段と、
前記吸気圧検出手段による前記吸気圧を燃焼間隔毎に平均化した各気筒の平均吸気圧の吸気圧変化量と、この吸気圧変化量の全気筒分の総和である吸気圧変化量とから最も変化の大きい気筒を特定する気筒特定手段と、
前記気筒特定手段で特定された気筒に対し、点火時期を進角または遅角することで気筒間のトルク変動を補正する変動補正手段と
を具備することを特徴とする内燃機関用制御装置。 - 複数気筒からなる内燃機関の吸気通路内のスロットルバルブ下流側の吸気圧を検出する吸気圧検出手段と、
前記内燃機関のクランクシャフトまたはカムシャフトの回転角を検出する回転角検出手段と、
前記吸気圧検出手段による前記吸気圧を燃焼間隔毎に平均化した各気筒の平均吸気圧の吸気圧変化量と、この吸気圧変化量の全気筒分の総和である吸気圧変化量とから最も変化の大きい気筒を特定する気筒特定手段と、
前記気筒特定手段で特定された気筒に対し、燃料噴射量を増量または減量することで気筒間のトルク変動を補正する変動補正手段と
を具備することを特徴とする内燃機関用制御装置。 - 複数気筒からなる内燃機関の吸気通路内のスロットルバルブ下流側の吸気圧を検出する吸気圧検出手段と、
前記内燃機関のクランクシャフトまたはカムシャフトの回転角を検出する回転角検出手段と、
前記内燃機関で発生する振動波形信号を検出する振動検出手段と、
前記振動検出手段による前記振動波形信号に基づきノック発生の有無を判定するノック判定手段と、
前記吸気圧検出手段による前記吸気圧を燃焼間隔毎に平均化した各気筒の平均吸気圧の吸気圧変化量と、この吸気圧変化量の全気筒分の総和である吸気圧変化量とから最も変化の大きい気筒を特定する気筒特定手段と、
前記ノック判定手段による判定結果に基づき、前記気筒特定手段で特定された気筒に対し、点火時期を進角または遅角することで気筒間のトルク変動を補正する変動補正手段と
を具備することを特徴とする内燃機関用制御装置。 - 複数気筒からなる内燃機関の吸気通路内のスロットルバルブ下流側の吸気圧を検出する吸気圧検出手段と、
前記内燃機関のクランクシャフトまたはカムシャフトの回転角を検出する回転角検出手段と、
前記内燃機関の排気通路内における排出ガスの空燃比を検出する空燃比検出手段と、
前記吸気圧検出手段による前記吸気圧を燃焼間隔毎に平均化した各気筒の平均吸気圧の吸気圧変化量と、この吸気圧変化量の全気筒分の総和である吸気圧変化量とから最も変化の大きい気筒を特定する気筒特定手段と、
前記空燃比検出手段による検出結果に基づき、前記気筒特定手段で特定された気筒に対し、燃料噴射量を増量または減量することで気筒間のトルク変動を補正する変動補正手段と
を具備することを特徴とする内燃機関用制御装置。 - 前記内燃機関は、排気タービン過給機を備えることを特徴とする請求項1乃至請求項4の何れか1つに記載の内燃機関用制御装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002270008A JP2004108204A (ja) | 2002-09-17 | 2002-09-17 | 内燃機関用制御装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002270008A JP2004108204A (ja) | 2002-09-17 | 2002-09-17 | 内燃機関用制御装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2004108204A true JP2004108204A (ja) | 2004-04-08 |
Family
ID=32267769
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002270008A Pending JP2004108204A (ja) | 2002-09-17 | 2002-09-17 | 内燃機関用制御装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2004108204A (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008008155A (ja) * | 2006-06-27 | 2008-01-17 | Toyota Motor Corp | 内燃機関の空気量算出装置 |
GB2525604A (en) * | 2014-04-28 | 2015-11-04 | Gm Global Tech Operations Inc | Method of operating a fuel injector of a three-cylinder internal combustion engine |
CN105673234A (zh) * | 2014-12-08 | 2016-06-15 | 罗伯特·博世有限公司 | 内燃机控制仪中提供滤波空气系统状态参量的方法和装置 |
CN109209722A (zh) * | 2017-06-29 | 2019-01-15 | 福特全球技术公司 | 用于火花正时控制的方法和系统 |
US10920696B2 (en) | 2018-04-11 | 2021-02-16 | Toyota Jidosha Kabushiki Kaisha | Engine controller and engine controlling method |
US20210339760A1 (en) * | 2020-04-30 | 2021-11-04 | Honda Motor Co., Ltd. | Abnormality detection device |
-
2002
- 2002-09-17 JP JP2002270008A patent/JP2004108204A/ja active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008008155A (ja) * | 2006-06-27 | 2008-01-17 | Toyota Motor Corp | 内燃機関の空気量算出装置 |
GB2525604A (en) * | 2014-04-28 | 2015-11-04 | Gm Global Tech Operations Inc | Method of operating a fuel injector of a three-cylinder internal combustion engine |
CN105673234A (zh) * | 2014-12-08 | 2016-06-15 | 罗伯特·博世有限公司 | 内燃机控制仪中提供滤波空气系统状态参量的方法和装置 |
CN105673234B (zh) * | 2014-12-08 | 2021-02-09 | 罗伯特·博世有限公司 | 内燃机控制仪中提供滤波空气系统状态参量的方法和装置 |
CN109209722A (zh) * | 2017-06-29 | 2019-01-15 | 福特全球技术公司 | 用于火花正时控制的方法和系统 |
US10920696B2 (en) | 2018-04-11 | 2021-02-16 | Toyota Jidosha Kabushiki Kaisha | Engine controller and engine controlling method |
US20210339760A1 (en) * | 2020-04-30 | 2021-11-04 | Honda Motor Co., Ltd. | Abnormality detection device |
US11479261B2 (en) * | 2020-04-30 | 2022-10-25 | Honda Motor Co., Ltd. | Abnormality detection device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2002322934A (ja) | 内燃機関の吸気制御装置 | |
JP4605512B2 (ja) | 内燃機関の制御装置 | |
JP2007278223A (ja) | 筒内噴射型火花点火式内燃機関の制御装置 | |
JP4366855B2 (ja) | 筒内噴射式内燃機関の制御装置 | |
WO2019230406A1 (ja) | 内燃機関の制御装置および内燃機関の制御方法 | |
JP2019138206A (ja) | エンジン制御装置 | |
JP2004108204A (ja) | 内燃機関用制御装置 | |
JP3740897B2 (ja) | 内燃機関の制御装置 | |
JPH11173185A (ja) | 内燃機関の燃料噴射制御装置 | |
JP2004340065A (ja) | 水素エンジン用制御装置 | |
US20160369729A1 (en) | Control apparatus and control method for internal combustion engine | |
JPH07217463A (ja) | 多気筒内燃機関の減筒制御装置 | |
JP2910380B2 (ja) | エンジンの制御装置 | |
JP4236556B2 (ja) | 内燃機関の燃料噴射制御装置 | |
JP4501760B2 (ja) | 内燃機関の点火制御装置 | |
JP2012184661A (ja) | 内燃機関の制御装置 | |
JP2001152842A (ja) | 内燃機関の排気浄化装置 | |
JP2009275694A (ja) | 内燃機関の制御装置 | |
JP4449326B2 (ja) | 気体燃料エンジン始動時燃料噴射装置 | |
JP2004092452A (ja) | 内燃機関 | |
JP2004084609A (ja) | 内燃機関の燃料噴射量制御装置 | |
JP2002161783A (ja) | 多気筒エンジンの燃料噴射制御装置 | |
JP3900002B2 (ja) | 内燃機関の燃料噴射制御装置 | |
JP2611473B2 (ja) | 内燃機関の燃料噴射量制御装置 | |
JP6046370B2 (ja) | エンジンの制御装置 |