[go: up one dir, main page]

JP2004103819A - Monolithic microwave integrated circuit - Google Patents

Monolithic microwave integrated circuit Download PDF

Info

Publication number
JP2004103819A
JP2004103819A JP2002263542A JP2002263542A JP2004103819A JP 2004103819 A JP2004103819 A JP 2004103819A JP 2002263542 A JP2002263542 A JP 2002263542A JP 2002263542 A JP2002263542 A JP 2002263542A JP 2004103819 A JP2004103819 A JP 2004103819A
Authority
JP
Japan
Prior art keywords
electrode
semi
wiring
integrated circuit
insulating substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2002263542A
Other languages
Japanese (ja)
Inventor
Hideki Takasu
高須 英樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002263542A priority Critical patent/JP2004103819A/en
Publication of JP2004103819A publication Critical patent/JP2004103819A/en
Abandoned legal-status Critical Current

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a monolithic microwave integrated circuit in which disconnection is hardly caused in a wiring through an air bridge formed between electrodes having a level difference. <P>SOLUTION: Upon connecting between the anode electrode 6a of a PIN diode 3 formed on a semi-insulating substrate 2 so as to be projected and a signaling electrode 8a for a strip transmission line passage by forming the wiring 7 through the air bridge, the level difference between the electrodes is reduced, the rise-up angle of the wiring 7 through the air bridge is reduced, and a connecting distance is shortened by forming the signaling electrode 8a for the strip transmission line passage on an insulating film 9 laminated on the semi-insulating substrate 2 to restrain the generation of disconnection of the wiring 7 due to the air bridge. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、マイクロ帯及びミリ波帯において使用されるモノリシックマイクロ波集積回路に関する。
【0002】
【従来の技術】
マイクロ波帯及びミリ波帯の活用に伴い、これら帯域を利用する通信機器等には、マイクロ波及びミリ波帯用のPINダイオード等の受動素子及び能動素子等が半絶縁性基板上に集積化された、モノリシックマイクロ波集積回路が広く使用されている。
【0003】
PINダイオードは、P型半導体層とN型半導体層との間に真性半導体で形成される高比抵抗領域であるI(Intrinsic)層が配置された3層からなるダイオードである。このダイオードは順バイアス時の直列抵抗が極めて小さく、また逆バイアス時の直列抵抗が極めて大きい。更に、入出力間容量を非常に小さくできることから、マイクロ波・ミリ波帯域において良好なオンオフ特性を持つスイッチング素子として、他のマイクロ波素子と共通の半絶縁性基板上に形成され、モノリシックマイクロ波集積回路として活用されている。
【0004】
図2にPINダイオードを含む従来のモノリシックマイクロ波集積回路の構造の一例を示す。
【0005】
図2において、半絶縁性基板10は例えば砒化ガリウム(GaAs)からなる基板である。半絶縁性基板10上にはN層12、I層13、及びP層14からなるPINダイオード11が形成されており、半絶縁性基板10上で高さ約2μm程度の突起状をなしている。
【0006】
このPINダイオード11のアノード電極14aに信号を供給するために、半絶縁性基板10の上面及び下面には、それぞれストリップ伝送線路の信号用電極16a及び接地用電極16bが形成されており、信号用電極16aの端部は、PINダイオード11に近接して形成されている。そして、PINダイオード11のアノード電極14aとストリップ伝送線路の信号用電極16aの端部とを、エアブリッジによる配線15により接続し、モノリシック集積回路としている。
【0007】
エアブリッジ(空中配線)は、マイクロ波集積回路内の素子や電極間等の配線を形成するにあたって、高周波動作の障害となる寄生容量を低減することができる。
【0008】
【発明が解決しようとする課題】
しかし、上述した従来の構造においてはPINダイオード11の高さが約2μmあるため、PINダイオード11のアノード電極14aとストリップ伝送線路の信号用電極16aとの段差が大きい。このため、形成したエアブリッジによる配線15の立ち上がり角度が急峻な形状となり、エアブリッジによる配線15に断線が発生しやすい。その結果、集積回路製造時の歩留まりに影響を及ぼしていた。
【0009】
本発明は上記の問題点を解決するためになされたものであり、半絶縁性基板上に突出して形成されるPINダイオード等の半導体素子の上部電極と、同じ半絶縁性基板上に設置されるストリップ伝送線路の信号用電極との間のエアブリッジによる配線に断線が起こりにくいモノリシックマイクロ波集積回路を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明のモノリシックマイクロ波集積回路は、半絶縁性基板と、この半絶縁性基板上に突出して形成された半導体素子と、この半導体素子の上端に設けられた第1の電極と、前記半絶縁性基板上に形成された絶縁膜と、この絶縁膜上に形成された第2の電極と、前記第1の電極と前記第2の電極とを接続するエアブリッジによる配線とを具備したことを特徴とする。
【0011】
本発明によれば、第2の電極下に絶縁膜を設けることにより段差が緩和され、エアブリッジによる配線に断線が起こりにくい。
【0012】
【発明の実施の形態】
以下に、本発明に係るモノリシックマイクロ波集積回路の実施の形態について、図1を参照して説明する。
【0013】
図1は本発明に係るモノリシックマイクロ波集積回路の構造を示す断面図である。図1のモノリシックマイクロ波集積回路1において、半絶縁性基板2は例えば砒化ガリウム(GaAs)からなる基板である。
【0014】
半絶縁性基板2上に、マイクロ波半導体素子としてPINダイオード3が形成されている。このPINダイオード3は、半絶縁性基板2上にエピタキシャル成長法によって形成されたN層4、I層5、及びP層6が順次積層された構造になっており、半絶縁性基板2上での高さが2μm程度の突起状をなしている。P層6の上端面には、金などを蒸着することによって、このPINダイオード3のアノード電極6aが形成されている。
【0015】
また、PINダイオード3が形成されている半絶縁性基板2の表面上には、PINダイオード3に近接して絶縁膜9が形成されている。この絶縁膜9は、厚さ0.3μm程度の窒化シリコン(Si)膜である。
【0016】
更に、絶縁膜9上には、端部がPINダイオード3に近接したストリップ伝送線路の信号用電極8aが形成されており、半絶縁性基板2の、裏面に形成されたストリップ伝送線路の接地用電極8bと共にストリップ伝送線路8を構成している。
【0017】
そして、PINダイオード3のアノード電極6aと、PINダイオード3に近接したストリップ伝送線路の信号用電極8aの端部との間にエアブリッジによる配線7が形成され、PINダイオード3のアノード電極6aがストリップ伝送線路の信号用電極8aに接続されている。
【0018】
エアブリッジによる配線7の形成には、先ず接続する2点、即ちアノード電極6aとストリップ伝送線路の信号用電極8aの端部との間に枕状の支持体を例えばフォトレジストで形成しておき、この支持体上に金属を蒸着して金属配線を形成する。その後、支持体を除去すると、アノード電極6aとストリップ伝送線路の信号用電極8aの端部との間が金属配線により架橋接続され、エアブリッジによる配線7が形成される。
【0019】
上述の構造において、ストリップ伝送線路の信号用電極8aが絶縁膜9上に形成されていることにより、エアブリッジによる配線7で接続される2点、即ちPINダイオード3のアノード電極6aとストリップ伝送線路の信号用電極8aとの段差を減らすことができる。このため、エアブリッジによる配線7の立ち上がり角度が小さくなると共に接続距離も短くなって、エアブリッジによる配線7の形成時及び形成後における断線の発生を抑えることができる。
【0020】
また、接続距離を短くできることにより、エアブリッジによる配線7の持つインダクタンスによる信号への影響を減らすことができる。
【0021】
更に、絶縁膜9は、半絶縁性基板2上にPINダイオード3を形成する途中工程において一時的に形成された酸化膜や窒化膜等を選択的に残すことにより得ることができるため、従来の製造工程にほとんど影響を及ぼすことなく、前述の効果を得ることができる。
【0022】
なお、本実施の形態においては、絶縁膜9上に形成された電極をストリップ伝送線路の信号用電極8aとしたが、ボンディングパッド等により構成しても良い。また、半絶縁性基板2上に形成された半導体素子をPINダイオード3とし、その上端の電極をアノード電極6aとしたが、半絶縁性基板上に突出して形成された半導体素子及びその上端の電極があれば、本実施の形態の構成に限定されるものではない。
【0023】
【発明の効果】
本発明によれば、段差のある電極間に形成したエアブリッジによる配線に、断線が起こりにくいモノリシックマイクロ波集積回路を得ることができる。
【図面の簡単な説明】
【図1】本発明の実施の形態によるモノリシックマイクロ波集積回路の構造を示す断面図。
【図2】従来のモノリシックマイクロ波集積回路の構造の一例を示す断面図。
【符号の説明】
1…モノリシックマイクロ波集積回路
2…半絶縁性基板
3…PINダイオード
4…N層
5…I層
6…P層、6a…アノード電極
7…エアブリッジによる配線
8…ストリップ伝送線路
8a…ストリップ伝送線路の信号用電極
8b…ストリップ伝送線路の接地用電極
9…絶縁膜
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a monolithic microwave integrated circuit used in a microwave band and a millimeter wave band.
[0002]
[Prior art]
With the use of microwave and millimeter-wave bands, passive devices and active devices such as PIN diodes for microwave and millimeter-wave bands will be integrated on semi-insulating substrates in communication devices that use these bands. Monolithic microwave integrated circuits are widely used.
[0003]
The PIN diode is a three-layer diode in which an I (Intrinsic) layer that is a high resistivity region formed of an intrinsic semiconductor is disposed between a P-type semiconductor layer and an N-type semiconductor layer. This diode has a very small series resistance when forward biased and a very large series resistance when reverse biased. Furthermore, since the capacitance between the input and output can be made extremely small, it is formed on a common semi-insulating substrate with other microwave elements as a switching element with good on / off characteristics in the microwave / millimeter wave band. It is used as an integrated circuit.
[0004]
FIG. 2 shows an example of the structure of a conventional monolithic microwave integrated circuit including a PIN diode.
[0005]
In FIG. 2, a semi-insulating substrate 10 is a substrate made of, for example, gallium arsenide (GaAs). A PIN diode 11 composed of an N layer 12, an I layer 13, and a P layer 14 is formed on the semi-insulating substrate 10, and has a protruding shape with a height of about 2 μm on the semi-insulating substrate 10. .
[0006]
In order to supply a signal to the anode electrode 14a of the PIN diode 11, a signal electrode 16a and a ground electrode 16b of a strip transmission line are formed on the upper and lower surfaces of the semi-insulating substrate 10, respectively. The end of the electrode 16a is formed close to the PIN diode 11. Then, the anode electrode 14a of the PIN diode 11 and the end of the signal electrode 16a of the strip transmission line are connected by a wire 15 using an air bridge to form a monolithic integrated circuit.
[0007]
An air bridge (aerial wiring) can reduce a parasitic capacitance that hinders high-frequency operation when forming wiring between elements and electrodes in a microwave integrated circuit.
[0008]
[Problems to be solved by the invention]
However, in the above-described conventional structure, since the height of the PIN diode 11 is about 2 μm, the step between the anode electrode 14a of the PIN diode 11 and the signal electrode 16a of the strip transmission line is large. For this reason, the rising angle of the wiring 15 formed by the formed air bridge becomes steep, and the wiring 15 formed by the air bridge is apt to be disconnected. As a result, the yield at the time of manufacturing the integrated circuit has been affected.
[0009]
The present invention has been made to solve the above problems, and is provided on the same semi-insulating substrate as an upper electrode of a semiconductor element such as a PIN diode formed to protrude on the semi-insulating substrate. An object of the present invention is to provide a monolithic microwave integrated circuit in which a wire by an air bridge between a strip transmission line and a signal electrode is less likely to be disconnected.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a monolithic microwave integrated circuit according to the present invention includes a semi-insulating substrate, a semiconductor device protruding from the semi-insulating substrate, and a semiconductor device provided at an upper end of the semiconductor device. One electrode, an insulating film formed on the semi-insulating substrate, a second electrode formed on the insulating film, and an air bridge connecting the first electrode and the second electrode And a wiring according to (1).
[0011]
According to the present invention, the step is reduced by providing the insulating film below the second electrode, and the wiring by the air bridge hardly breaks.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of a monolithic microwave integrated circuit according to the present invention will be described below with reference to FIG.
[0013]
FIG. 1 is a sectional view showing the structure of a monolithic microwave integrated circuit according to the present invention. In the monolithic microwave integrated circuit 1 of FIG. 1, the semi-insulating substrate 2 is a substrate made of, for example, gallium arsenide (GaAs).
[0014]
A PIN diode 3 is formed on a semi-insulating substrate 2 as a microwave semiconductor device. This PIN diode 3 has a structure in which an N layer 4, an I layer 5, and a P layer 6 formed by epitaxial growth on a semi-insulating substrate 2 are sequentially laminated. The projections have a height of about 2 μm. An anode electrode 6a of the PIN diode 3 is formed on the upper end surface of the P layer 6 by depositing gold or the like.
[0015]
On the surface of the semi-insulating substrate 2 on which the PIN diode 3 is formed, an insulating film 9 is formed in proximity to the PIN diode 3. This insulating film 9 is a silicon nitride (Si 3 N 4 ) film having a thickness of about 0.3 μm.
[0016]
Further, a signal electrode 8a of a strip transmission line whose end is close to the PIN diode 3 is formed on the insulating film 9, and a grounding of the strip transmission line formed on the back surface of the semi-insulating substrate 2. The strip transmission line 8 is constituted together with the electrode 8b.
[0017]
A wire 7 is formed by an air bridge between the anode electrode 6a of the PIN diode 3 and the end of the signal electrode 8a of the strip transmission line adjacent to the PIN diode 3, and the anode electrode 6a of the PIN diode 3 is stripped. It is connected to the signal electrode 8a of the transmission line.
[0018]
In forming the wiring 7 by the air bridge, first, a pillow-shaped support is formed of, for example, a photoresist between two connecting points, that is, between the anode electrode 6a and the end of the signal electrode 8a of the strip transmission line. Then, a metal is deposited on the support to form a metal wiring. Thereafter, when the support is removed, the anode electrode 6a and the end of the signal electrode 8a of the strip transmission line are bridge-connected by a metal wiring, and the wiring 7 by the air bridge is formed.
[0019]
In the above-described structure, since the signal electrode 8a of the strip transmission line is formed on the insulating film 9, two points connected by the wiring 7 by the air bridge, that is, the anode electrode 6a of the PIN diode 3 and the strip transmission line Of the signal electrode 8a can be reduced. For this reason, the rising angle of the wiring 7 by the air bridge is reduced and the connection distance is also shortened, so that the occurrence of disconnection during and after the formation of the wiring 7 by the air bridge can be suppressed.
[0020]
Further, since the connection distance can be reduced, the influence of the air bridge on the signal due to the inductance of the wiring 7 can be reduced.
[0021]
Further, since the insulating film 9 can be obtained by selectively leaving an oxide film, a nitride film, and the like formed temporarily in the process of forming the PIN diode 3 on the semi-insulating substrate 2, the conventional method can be used. The above-described effects can be obtained without substantially affecting the manufacturing process.
[0022]
In the present embodiment, the electrode formed on the insulating film 9 is the signal electrode 8a of the strip transmission line, but may be constituted by a bonding pad or the like. Although the semiconductor element formed on the semi-insulating substrate 2 is the PIN diode 3 and the upper electrode is the anode electrode 6a, the semiconductor element protruding on the semi-insulating substrate and the upper electrode Is not limited to the configuration of the present embodiment.
[0023]
【The invention's effect】
According to the present invention, it is possible to obtain a monolithic microwave integrated circuit in which disconnection is unlikely to occur in wiring formed by an air bridge formed between electrodes having steps.
[Brief description of the drawings]
FIG. 1 is a sectional view showing a structure of a monolithic microwave integrated circuit according to an embodiment of the present invention.
FIG. 2 is a sectional view showing an example of the structure of a conventional monolithic microwave integrated circuit.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Monolithic microwave integrated circuit 2 ... Semi-insulating substrate 3 ... PIN diode 4 ... N layer 5 ... I layer 6 ... P layer, 6a ... Anode electrode 7 ... Wiring by air bridge 8 ... Strip transmission line 8a ... Strip transmission line Signal electrode 8b of the strip transmission line grounding electrode 9 insulating film

Claims (2)

半絶縁性基板と、
この半絶縁性基板上に突出して形成された半導体素子と、
この半導体素子の上端に設けられた第1の電極と、
前記半絶縁性基板上に形成された絶縁膜と、
この絶縁膜上に形成された第2の電極と、
前記第1の電極と前記第2の電極とを接続するエアブリッジによる配線と
を具備したことを特徴とするモノリシックマイクロ波集積回路。
A semi-insulating substrate,
A semiconductor element protruding from the semi-insulating substrate;
A first electrode provided at an upper end of the semiconductor element;
An insulating film formed on the semi-insulating substrate,
A second electrode formed on the insulating film;
A monolithic microwave integrated circuit, comprising: a wiring by an air bridge connecting the first electrode and the second electrode.
前記半導体素子をPINダイオードとし、前記第1の電極をこのPINダイオードのアノード電極とし、前記第2の電極をストリップ伝送線路としたことを特徴とする請求項1に記載のモノリシックマイクロ波集積回路。2. The monolithic microwave integrated circuit according to claim 1, wherein the semiconductor element is a PIN diode, the first electrode is an anode electrode of the PIN diode, and the second electrode is a strip transmission line.
JP2002263542A 2002-09-10 2002-09-10 Monolithic microwave integrated circuit Abandoned JP2004103819A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002263542A JP2004103819A (en) 2002-09-10 2002-09-10 Monolithic microwave integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002263542A JP2004103819A (en) 2002-09-10 2002-09-10 Monolithic microwave integrated circuit

Publications (1)

Publication Number Publication Date
JP2004103819A true JP2004103819A (en) 2004-04-02

Family

ID=32263235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002263542A Abandoned JP2004103819A (en) 2002-09-10 2002-09-10 Monolithic microwave integrated circuit

Country Status (1)

Country Link
JP (1) JP2004103819A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054632A (en) * 2007-08-23 2009-03-12 Fujitsu Ltd Field effect transistor
JP2013187516A (en) * 2012-03-12 2013-09-19 Ricoh Co Ltd Manufacturing method, surface light-emitting laser element, surface light-emitting laser eye, optical scanner, and image forming apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009054632A (en) * 2007-08-23 2009-03-12 Fujitsu Ltd Field effect transistor
US7952117B2 (en) 2007-08-23 2011-05-31 Fujitsu Limited Field-effect transistor
JP2013187516A (en) * 2012-03-12 2013-09-19 Ricoh Co Ltd Manufacturing method, surface light-emitting laser element, surface light-emitting laser eye, optical scanner, and image forming apparatus

Similar Documents

Publication Publication Date Title
US6028348A (en) Low thermal impedance integrated circuit
JP3267409B2 (en) Semiconductor integrated circuit device
CA2769940C (en) Island matrixed gallium nitride microwave and power switching transistors
US8314472B2 (en) Semiconductor structure comprising pillar
US9105681B2 (en) Method for forming deep silicon via for grounding of circuits and devices, emitter ballasting and isolation
US20030005582A1 (en) Circuit board, method for manufacturing same, and high-output module
US20090001527A1 (en) Series-shunt switch with thermal terminal
KR20030032819A (en) Circuit board, method for manufacturing same, and high-output module
JP3674780B2 (en) High frequency semiconductor device
JP5280611B2 (en) Semiconductor device manufacturing method and device obtained
JPH0640591B2 (en) Monolithic semiconductor structure and its manufacturing method.
JP3913402B2 (en) High frequency circuit equipment
TWI751687B (en) Semiconductor structures having reduced thermally induced bow
US5683919A (en) Transistor and circuit incorporating same
US20030006500A1 (en) Circuit board, method for manufacturing same, and high-output module
JP2004103819A (en) Monolithic microwave integrated circuit
US4238763A (en) Solid state microwave devices with small active contact and large passive contact
EP0924757A2 (en) Fabrication of high power semiconductor device with a heat sink and integration with planar microstrip circuitry
WO2023124249A1 (en) Hybrid monolithic microwave integrated circuit and manufacturing method therefor
CN114883191A (en) GaN terahertz film circuit preparation method
JP3441974B2 (en) Structure and manufacturing method of semiconductor device
JPS62211962A (en) Manufacture of high-frequency semiconductor device
KR0137578B1 (en) Ultra-fast laser diode package structure and manufacturing method using flip chip bonding.
JP3631428B2 (en) Semiconductor device having flip-chip mounting structure
JP4125858B2 (en) Light emitting diode and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20040722

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Effective date: 20050415

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Effective date: 20050606

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061124

A762 Written abandonment of application

Effective date: 20070123

Free format text: JAPANESE INTERMEDIATE CODE: A762