JP2004099418A - Method for producing integrated porous material - Google Patents
Method for producing integrated porous material Download PDFInfo
- Publication number
- JP2004099418A JP2004099418A JP2002267666A JP2002267666A JP2004099418A JP 2004099418 A JP2004099418 A JP 2004099418A JP 2002267666 A JP2002267666 A JP 2002267666A JP 2002267666 A JP2002267666 A JP 2002267666A JP 2004099418 A JP2004099418 A JP 2004099418A
- Authority
- JP
- Japan
- Prior art keywords
- gel
- oxide
- porous
- porous material
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011148 porous material Substances 0.000 title claims abstract description 34
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 238000000926 separation method Methods 0.000 claims abstract description 22
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 14
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 14
- 230000007062 hydrolysis Effects 0.000 claims abstract description 12
- 238000006460 hydrolysis reaction Methods 0.000 claims abstract description 12
- 239000000126 substance Substances 0.000 claims abstract description 12
- 238000006068 polycondensation reaction Methods 0.000 claims abstract description 9
- 239000002243 precursor Substances 0.000 claims abstract description 9
- 238000005191 phase separation Methods 0.000 claims abstract description 8
- 239000000463 material Substances 0.000 claims abstract description 7
- KPUWHANPEXNPJT-UHFFFAOYSA-N disiloxane Chemical class [SiH3]O[SiH3] KPUWHANPEXNPJT-UHFFFAOYSA-N 0.000 claims abstract description 6
- 125000005372 silanol group Chemical group 0.000 claims abstract description 5
- 230000007704 transition Effects 0.000 claims abstract description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 29
- 229910052751 metal Inorganic materials 0.000 claims description 18
- 239000002184 metal Substances 0.000 claims description 18
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 claims description 16
- 150000004703 alkoxides Chemical class 0.000 claims description 10
- -1 organic acid salt Chemical class 0.000 claims description 9
- 239000007864 aqueous solution Substances 0.000 claims description 7
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 claims description 5
- 229910001928 zirconium oxide Inorganic materials 0.000 claims description 5
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 4
- 230000002378 acidificating effect Effects 0.000 claims description 4
- 125000000524 functional group Chemical group 0.000 claims description 4
- 150000002736 metal compounds Chemical class 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 claims description 4
- 229920003169 water-soluble polymer Polymers 0.000 claims description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 2
- 229910002651 NO3 Inorganic materials 0.000 claims description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 claims description 2
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 claims description 2
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 claims description 2
- 230000003834 intracellular effect Effects 0.000 claims description 2
- 238000000034 method Methods 0.000 claims description 2
- 150000007522 mineralic acids Chemical class 0.000 claims description 2
- 229910000480 nickel oxide Inorganic materials 0.000 claims description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 2
- GNRSAWUEBMWBQH-UHFFFAOYSA-N oxonickel Chemical compound [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 claims description 2
- 238000004458 analytical method Methods 0.000 claims 1
- 150000001875 compounds Chemical class 0.000 abstract description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 28
- 239000000499 gel Substances 0.000 description 24
- 239000000243 solution Substances 0.000 description 13
- 239000000377 silicon dioxide Substances 0.000 description 12
- 239000010410 layer Substances 0.000 description 11
- 239000012071 phase Substances 0.000 description 10
- 238000006243 chemical reaction Methods 0.000 description 9
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 8
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 238000002441 X-ray diffraction Methods 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 4
- 239000004202 carbamide Substances 0.000 description 4
- 238000004811 liquid chromatography Methods 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 238000005979 thermal decomposition reaction Methods 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 241000264877 Hippospongia communis Species 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- 108091005461 Nucleic proteins Proteins 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- 150000007523 nucleic acids Chemical class 0.000 description 3
- 102000039446 nucleic acids Human genes 0.000 description 3
- 108020004707 nucleic acids Proteins 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- XTWYTFMLZFPYCI-KQYNXXCUSA-N 5'-adenylphosphoric acid Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(=O)OP(O)(O)=O)[C@@H](O)[C@H]1O XTWYTFMLZFPYCI-KQYNXXCUSA-N 0.000 description 2
- ZKHQWZAMYRWXGA-KQYNXXCUSA-J ATP(4-) Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP([O-])(=O)OP([O-])(=O)OP([O-])([O-])=O)[C@@H](O)[C@H]1O ZKHQWZAMYRWXGA-KQYNXXCUSA-J 0.000 description 2
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 2
- XTWYTFMLZFPYCI-UHFFFAOYSA-N Adenosine diphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(O)=O)C(O)C1O XTWYTFMLZFPYCI-UHFFFAOYSA-N 0.000 description 2
- ZKHQWZAMYRWXGA-UHFFFAOYSA-N Adenosine triphosphate Natural products C1=NC=2C(N)=NC=NC=2N1C1OC(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)C(O)C1O ZKHQWZAMYRWXGA-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- ATHHXGZTWNVVOU-UHFFFAOYSA-N N-methylformamide Chemical compound CNC=O ATHHXGZTWNVVOU-UHFFFAOYSA-N 0.000 description 2
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical group [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- OIRDTQYFTABQOQ-KQYNXXCUSA-N adenosine Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](CO)[C@@H](O)[C@H]1O OIRDTQYFTABQOQ-KQYNXXCUSA-N 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000001493 electron microscopy Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 238000012856 packing Methods 0.000 description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- 150000005846 sugar alcohols Polymers 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- VXUYXOFXAQZZMF-UHFFFAOYSA-N titanium(IV) isopropoxide Chemical compound CC(C)O[Ti](OC(C)C)(OC(C)C)OC(C)C VXUYXOFXAQZZMF-UHFFFAOYSA-N 0.000 description 2
- 230000004584 weight gain Effects 0.000 description 2
- 235000019786 weight gain Nutrition 0.000 description 2
- 229910052726 zirconium Inorganic materials 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 239000002126 C01EB10 - Adenosine Substances 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- OHLUUHNLEMFGTQ-UHFFFAOYSA-N N-methylacetamide Chemical compound CNC(C)=O OHLUUHNLEMFGTQ-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 229920002873 Polyethylenimine Polymers 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical group [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229960005305 adenosine Drugs 0.000 description 1
- UDMBCSSLTHHNCD-KQYNXXCUSA-N adenosine 5'-monophosphate Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@@H]1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H]1O UDMBCSSLTHHNCD-KQYNXXCUSA-N 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 150000005215 alkyl ethers Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical group [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 150000003857 carboxamides Chemical class 0.000 description 1
- 239000003093 cationic surfactant Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000010981 drying operation Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 239000004312 hexamethylene tetramine Substances 0.000 description 1
- 235000010299 hexamethylene tetramine Nutrition 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000011236 particulate material Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 229920000083 poly(allylamine) Polymers 0.000 description 1
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920000447 polyanionic polymer Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229940005642 polystyrene sulfonic acid Drugs 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 description 1
- 235000019353 potassium silicate Nutrition 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 150000003242 quaternary ammonium salts Chemical class 0.000 description 1
- 238000001226 reprecipitation Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000011240 wet gel Substances 0.000 description 1
Images
Landscapes
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
Abstract
Description
【0001】
【発明の属する技術分野】
本発明は、シリカあるいはアルキル修飾ポリシロキサンもしくはそれらの共重合した組成において得られる、鋭い細孔径分布を有する多孔質材料の細孔表面に、金属アルコキシドの加水分解などを利用して金属酸化物層を被覆した、一体型多孔質材料の作製方法とそれによって得られる一体型分離媒体に関する。本発明の分離媒体は、核酸、タンパク質等の細胞内の化学物質の分析に好適に利用される。
【0002】
【従来の技術】
酸化チタン(チタニア)および酸化ジルコニウム(ジルコニア)は、リン酸基を含む化合物を強く吸着するため、これらの酸化物被覆を施した多孔質材料は、液体クロマトグラフィーなどの液相分離媒体として利用することができる。特にリン酸基を含む細胞内の化学物質(核酸あるいはタンパク質)を分析する分離媒体として好適である。
チタニアあるいはジルコニアなどからなる従来の分離媒体は粒子状材料をカラムに充填したものである。このカラムは、一般的に微粒子状の無機系充填剤を物理的な方法で毛細管中に充填し、微粒子が移動して充填状態が変わることを防ぐために、比較的気孔率の低いフリットとよばれる部品によって、毛細管の両端を封じるという方法によって作製される。
【0003】
他方、相分離を利用したゾル−ゲル法によって、二酸化ケイ素(シリカ)あるいはゲル網目を形成する金属酸化物およびシロキサン結合と炭化水素鎖を含む有機無機ハイブリッド組成を始めとする、一体型多孔質体が再現性良く製造されることが知られている(例えば、特許文献1参照)。相分離を利用したゾル−ゲル法によって得られる適切に調製された多孔体は、送液に要する圧力(カラム圧)が極めて低く、液体クロマトグラフィーの分離媒体として極めて高い分離効率が期待できる。
【0004】
【特許文献1】
特開平10−182260号公報
【0005】
【発明が解決しようとする課題】
しかし、粒子充填によるカラムは、充填手法が複雑で長時間を要する上、分離性能に優れた充填状態を再現することが難しい。さらにカラム長が増加するに従って、微粒子の均一な充填が飛躍的に困難になるので、カラム長を増すことによる分離性能の向上を図り難い。また粒子充填によるカラムでは、フリットと充填層の間の空間においてしばしば試料溶液中に気泡を生じ、分離性能を低下させるという問題がある。
一方、一体型多孔質体を利用したカラムは、主に担体カラム構造の制御と高性能化が困難であったために、従来十分に開拓されていない。
そこで本件発明者が研究したところ、シロキサン網目からなるゲルを、マイクロメートル領域に連続貫通孔をもつように作製し、その表面を酸化チタン(チタニア)、酸化ジルコニウム(ジルコニア)のような酸化物層で被覆した材料は、充填カラムよりも低い圧力で通液することができ、しかも分離効率に大きな影響をおよぼすゲル骨格のサイズを任意に制御することが可能であることを見出した。
【0006】
また、粒子充填によって径の小さいキャピラリー中に分離媒体を作製することは困難であるが、連続貫通孔をもつゲルの場合には反応溶液をキャピラリー内に導入して固化させるだけでよいので、例えば直径50ミクロン以下の非常に細いキャピラリー中や基板上に形成した微細な溝(いわゆる微小空間)へも、分離媒体を作製することができる。
本発明はこの分離媒体のマクロ孔を形成するゲル骨格の上に、分離したい化合物に合致した酸化物層を被覆した材料を提供する。
【0007】
【課題を解決するための手段】
すなわち、本発明は、相分離を伴うゾル−ゲル転移を起こさせることによって、連続貫通孔を有し、シロキサン網目からなる多孔質ゲルを作製し、その多孔質ゲルの細孔内に目的とする金属酸化物の前駆体となる物質を導入して細孔表面のシラノール基との間で加水分解・重縮合反応を起こして一体型多孔質材料を製造することを特徴とする一体型多孔質材料の製造方法である。
また、多孔質ゲルは、水溶性高分子を酸性水溶液に溶かし、それに加水分解性の官能基を有する金属化合物を添加して加水分解・重縮合反応を起こして製造する。この多孔質ゲルは、孔径100nm以上、好ましくは200〜10000nmで、3次元網目状に連続した貫通孔と、この貫通孔の内壁面に形成された孔径50nm以下の細孔とを有し、全気孔中の細孔の占める容積率は10%以上、好ましくは、20%好ましくは40%以上である。
本発明による多孔体は堅固な容器壁に囲まれた制限された形状・大きさの空間に形成することが可能であり、そのような制限空間内では実質的な気孔率を100%に極めて近く調製することも可能である。直径100nm以上のマクロ孔は、相分離の際に生じる溶媒相の占めていた領域として形成されるので、通常の乾燥操作により燃焼や熱分解を伴うことなく形成し、溶媒相とゲル相が各々絡み合って連続したいわゆる共連続構造を形成する場合には、極めて鋭いサイズ分布を得ることができる。またより高い気孔率とより大きい平均サイズに調製することにより、一体型反応性多孔質カラムの圧力損失を軽減することができ、多数のカラムの連結や分岐したカラム系を組み上げて、汎用的なポンプによる駆動で通液することを可能とする。
【0008】
相分離は、材料の製造プロセスにおいて、沈殿や析出によって出発成分と異なる成分を持つ領域が生成する広汎な現象であり、一般にゾル−ゲル反応系においては、ゲル形成を起こす網目形成成分に富む相(ゲル相)と、ゲル形成を起こさない溶媒成分に富む相(溶媒相)とに、分離が起こる。各相領域の形成にあたっては、化学ポテンシャルの差を駆動力として濃度勾配に逆らった成分の拡散が起こり、各相領域が与えられた温度・圧力下での平衡組成に達するまで、物質移動が継続する。
【0009】
ゾル−ゲル反応に用いられるゲル形成を起こす網目成分の前駆体としては、金属アルコキシド、錯体、金属塩、有機修飾金属アルコキシド、有機架橋金属アルコキシド、およびこれらの部分加水分解生成物、部分重合生成物である多量体を用いることができる。水ガラスほかケイ酸塩水溶液のpHを変化させることによるゾル−ゲル転移も、同様に利用することができる。
【0010】
水溶性高分子は、理論的には適当な濃度の水溶液と成し得る水溶性有機高分子であって、加水分解性の官能基を有する金属化合物によって生成するアルコールを含む反応系中に均一に溶解し得るものであれば良いが、具体的には高分子金属塩であるポリスチレンスルホン酸のナトリウム塩またはカリウム塩、高分子酸であって解離してポリアニオンとなるポリアクリル酸、高分子塩基であって水溶液中でポリカチオンを生ずるポリアリルアミンおよびポリエチレンイミン、あるいは中性高分子であって主鎖にエーテル結合を持つポリエチレンオキシド、ポリビニルピロリドン、ポリアクリルアミド、あるいはポリオキシエチレン−ポリオキシプロピレン−ポリオキシエチレンブロック共重合体等が好適である。また、有機高分子に代えて比較的高い極性を有する有機溶媒、具体的には多価アルコール、酸アミド類、界面活性剤を用いてもよく、その場合多価アルコールとしてはエチレングリコールおよびグリセリンが、酸アミド類としてはホルムアミドが、界面活性剤としては四級アンモニウム塩などのカチオン性界面活性剤やポリオキシエチレンアルキルエーテル類などのノニオン性界面活性剤が最適である。
【0011】
加水分解性の官能基を有する金属化合物としては、金属アルコキシド又はそのオリゴマーを用いることができ、これらのものは例えば、メトキシ基、エトキシ基、プロポキシ基等の炭素数の少ないものが好ましい。また、その金属としては、最終的に形成される酸化物の金属、例えばSi、Ti、Zr、Alが使用される。この金属としては1種又は2種以上であっても良い。一方オリゴマーとしてはアルコールに均一に溶解分散できるものであればよく、具体的には10量体程度まで使用できる。また、これらのケイ素アルコキシドのアルコキシ基のいくつかがアルキル基に置換された、アルキルアルコキシシラン類、2つ以上の金属を炭化水素を主とする架橋構造によって結びつけた架橋アルコキシド類、およびそれらの10量体程度までのオリゴマーが好適に用いられる。またケイ素に変えて中心金属元素を、チタン、ジルコニウム、アルミニウム等に置換したアルキル置換金属アルコキシドも同様に用いることができる。
【0012】
また、本発明では、多孔質ゲルの製造に際し、反応溶液に熱分解性化合物をあらかじめ溶解させてもよい。反応溶液にあらかじめ熱分解性化合物を溶解させておくことにより、湿潤状態のゲルを加熱することにより、熱分解性化合物が熱分解し、骨格相の内壁面に接触している溶媒のpHが上昇する。そして、溶媒がその内壁面を浸食し、内壁面の凹凸状態を変えることによって細孔径を徐々に拡大する。シリカを主成分とするゲルの場合には、酸性あるいは中性領域においては変化の度合は非常に小さいが、熱分解が盛んになり水溶液の塩基性が増すにつれて、細孔を構成する部分が溶解し、より平坦な部分に再析出することによって、平均細孔径が大きくなる反応が顕著に起こるようになる。
熱分解性の化合物の具体的な例としては、尿素あるいはヘキサメチレンテトラミン、ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド等の有機アミド類を利用できるが、加熱後の溶媒のpH値が重要な条件であるので、熱分解後に溶媒を塩基性にする化合物であれば特に制限はない。
共存させる熱分解性化合物は、化合物の種類にもよるが、例えば尿素の場合には、反応溶液10gに対し、0.05〜0.8g、好ましくは0.1〜0.7gである。また、加熱温度は、例えば尿素の場合には40〜200℃で、加熱後の溶媒のpH値は、6.0〜12.0が好ましい。
また、熱分解によってフッ化水素酸のようにシリカを溶解する性質のある化合物を生じるものも、同様に利用できる。
【0013】
また、酸性水溶液としては、通常塩酸、硝酸等の鉱酸0.001規定以上のもの、あるいはギ酸、酢酸等の有機酸0.1規定以上のものが好ましい。
加水分解にあたっては、溶液を室温〜80℃で0.5〜3時間保存することによって達成できる。ゲル化したものは、40〜80℃で数時間〜数十時間放置して乾燥した後、600〜1000℃程度で加熱する。
【0014】
本発明では、作製した多孔質ゲルの細孔内に目的とする金属酸化物の前駆体となる物質を導入して細孔表面のシラノール基との間で加水分解・重縮合反応を起こさせる。
ここで、目的とする金属酸化物は、リン酸化合物に高い親和性を示す酸化チタンおよび酸化ジルコニウムのほか、酸化アルミニウム、酸化鉄、酸化ニッケルなど、基材であるシロキサンゲルに多く存在するシラノール基と異なる表面化学特性を示す金属酸化物であればよく、これらに限定されない。
また、上記金属酸化物の前駆体としては、対応する中心金属をもつ金属アルコキシド、β−ジケトン錯体、およびシュウ酸塩、酢酸塩などの有機酸塩、および硝酸塩、硫酸塩、塩化物などの無機酸塩が挙げられる。
加水分解・重縮合反応は、多孔質ゲルを前記金属酸化物の溶液に浸漬することにより行うことができ、金属酸化物の溶液の濃度は、酸化物換算で2〜20重量%が好ましい。また、加水分解・重縮合反応は、溶液を20〜80℃で2〜20時間保存することによって達成できる。
【0015】
本発明の製造方法によれば、核酸、タンパク質等の細胞内の化学物質の分析に好適に利用される一体型分離媒体を製造することができる。
また、本発明の材料は、間隙1ミリメートル以下の部材のなかで製造することができる。間隙1ミリメートル以下の部材とは、例えば毛細管、2枚の平板、ハニカムなどによって構成され、毛細管の場合は、間隙は内径に相当し、2枚の平板の場合は向かい合わせた平板の間隔に相当する。これら毛細管、平板などは、例えば、シリカガラスからなり、間隙は、好ましくは30〜200μmである。また、平板を用いる場合は、平板自体のサイズは、厚さ0.3〜10mm、横3〜500mm、縦3〜500mmが好ましい。また、平板は、2枚に限定されず、複数枚順次向かい合せ、複数の間隙を作成してもよい。さらに、ハニカムにおける間隙の数も限定されない。これら複数枚の平板、ハニカムを使用することによりマルチキャピラリーを作製できる。また、毛細管を複数本束ねてもよい。
【0016】
【実施例】
実験手順は図1に示す通りである。
(実施例1)
まず、0.01モル濃度酢酸水溶液10mlに、ポリエチレングリコール0.7g、尿素0.5gを溶解し、これにテトラメトキシシラン5mlを撹拌下で加えて加水分解・重縮合反応を行った。得られた均一溶液を密閉容器中40℃で静置してゲル化させた。こののち密閉状態のまま120℃で2時間熟成し、続いて60℃で乾燥、最終的に600℃で2時間熱処理することにより、マイクロメートル領域に狭い細孔径分布を示すマクロ多孔性シリカ試料を得た。
次に円柱状に加工したマクロ多孔性シリカを、金属アルコキシドであるチタンテトライソプロポキシドの2−プロパノール溶液(25体積%)に40℃で1時間浸した。この操作によってマクロ孔を形成するシリカ骨格表面に酸化チタン層が被覆される。さらに試料を500℃において3時間熱処理し、酸化チタン層をアナタース結晶層へと転化した。
このようにして得られた酸化チタン被覆マクロ多孔性シリカの円柱状試料を、側面を樹脂で覆い、両端に液体クロマトグラフィー装置への接続部品をつけることによって、液体クロマトグラフィー用分離カラムとした。このカラムによって、アデノシン、アデノシン1リン酸(AMP)、アデノシン2リン酸(ADP)、アデノシン3リン酸(ATP)の保持挙動を調べたところ、図2に示すとおりそれぞれ異なる保持時間が得られ、これらの混合物が良好に分離されることが分かった。
【0017】
(実施例2)
実施例1と同様にしてシリカ骨格表面に酸化チタン層を被覆し、熱処理を行った後、繰り返して酸化チタン前駆体溶液を通液し、乾燥熱処理を行った。この操作によって、酸化チタン層の厚さを増すことができ、このことは図3に示す通り、電子顕微鏡観察(SEM)、X線回折測定(XRD)および重量測定(精密電子天秤による秤量)によって確認された。なお、図3(a)は未処理シリカ、(b)は1回コーティング、(c)は5回コーティングを示す。また、図3は、上から順に電子顕微鏡観察(SEM)図、X線回折測定(XRD)図、カラム重量を示す。
1回コーティングでは重量増分は126%、5回コーティングでは重量増分は245%となった。このとき酸化チタン層の厚さは、1回コーティングでは約22ナノメートル、5回コーティングでは約120ナノメートルと計算され、ほぼコーティング回数に比例して被覆層の厚さが増加した。X線回折パターンは、コーティング回数が増えるに従って明瞭なアナタース相酸化チタン(IV)に特有の回折線を与えたので、本実施例によってアナタース型酸化チタンを被覆できることが確認された。
【0018】
(実施例3)
実施例1と同組成の反応溶液を調製し、ゲル化させる容器を内径100ミクロンの溶融シリカキャピラリーとして他の条件は同様にして、マクロ多孔性シリカキャピラリーを得た。
実施例1と同様にして、マクロ多孔性シリカ内部に酸化チタン前駆体溶液を通液し、乾燥熱処理を経て、酸化チタン被覆マクロ多孔性シリカキャピラリーを得た。
実施例1と同様にしてリン酸化合物の分離を試みたところ、良好な分離が確認された。
【0019】
【発明の効果】
本発明により、シロキサン網目からなるゲルを、マイクロメートル領域に連続貫通孔をもつように作製し、その表面を酸化チタン(チタニア)、酸化ジルコニウム(ジルコニア)のような酸化物層で被覆した材料は、充填カラムよりも低い圧力で通液することができ、しかも分離効率に大きな影響をおよぼすゲル骨格のサイズを任意に制御することができる。
【図面の簡単な説明】
【図1】本発明の実験手順を示した図
【図2】本発明の分離媒体により、アデノシン、アデノシン1リン酸(AMP)、アデノシン2リン酸(ADP)、アデノシン3リン酸(ATP)の保持挙動を調べた図
【図3】チタン層の厚さを電子顕微鏡観察(SEM)および重量測定によって測定し、アナタース結晶相であることをX線回折測定(XRD)によって確認した図[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides a metal oxide layer on the surface of a porous material having a sharp pore size distribution obtained by using silica or an alkyl-modified polysiloxane or a copolymerized composition thereof by utilizing hydrolysis of a metal alkoxide or the like. The present invention relates to a method for producing an integral porous material coated with, and an integral separation medium obtained thereby. The separation medium of the present invention is suitably used for analyzing chemical substances in cells such as nucleic acids and proteins.
[0002]
[Prior art]
Since titanium oxide (titania) and zirconium oxide (zirconia) strongly adsorb compounds containing a phosphate group, porous materials coated with these oxides are used as a liquid phase separation medium such as liquid chromatography. be able to. Particularly, it is suitable as a separation medium for analyzing a chemical substance (nucleic acid or protein) in a cell containing a phosphate group.
A conventional separation medium made of titania or zirconia is a material in which a particulate material is packed in a column. This column is generally called a frit with a relatively low porosity, in which a particulate inorganic filler is packed into a capillary tube by a physical method and the particles are prevented from moving and changing the packed state. The part is made by sealing the ends of the capillary.
[0003]
On the other hand, by a sol-gel method utilizing phase separation, an integrated porous material including an organic-inorganic hybrid composition containing a metal oxide and a siloxane bond and a hydrocarbon chain forming a silicon dioxide (silica) or gel network. Is known to be manufactured with good reproducibility (for example, see Patent Document 1). An appropriately prepared porous material obtained by a sol-gel method utilizing phase separation requires extremely low pressure (column pressure) required for liquid sending, and can be expected to have extremely high separation efficiency as a separation medium for liquid chromatography.
[0004]
[Patent Document 1]
JP-A-10-182260 [0005]
[Problems to be solved by the invention]
However, a column packed with particles requires a complicated packing method and requires a long time, and it is difficult to reproduce a packed state having excellent separation performance. Further, as the column length increases, uniform packing of fine particles becomes extremely difficult, so that it is difficult to improve the separation performance by increasing the column length. In addition, in a column packed with particles, there is a problem that air bubbles are often generated in the sample solution in the space between the frit and the packed bed, thereby deteriorating the separation performance.
On the other hand, a column using an integrated porous body has not been sufficiently developed conventionally, mainly because it is difficult to control the structure of the carrier column and to improve the performance thereof.
Therefore, the present inventor studied that a gel composed of a siloxane network was formed so as to have continuous through holes in a micrometer region, and the surface thereof was formed of an oxide layer such as titanium oxide (titania) and zirconium oxide (zirconia). It has been found that the material coated with is able to flow at a lower pressure than the packed column, and it is possible to arbitrarily control the size of the gel skeleton, which greatly affects the separation efficiency.
[0006]
Further, it is difficult to prepare a separation medium in a capillary having a small diameter by filling particles, but in the case of a gel having continuous through-holes, it is only necessary to introduce a reaction solution into the capillary and solidify it. The separation medium can be produced even in a very thin capillary having a diameter of 50 μm or less or in a fine groove (a so-called minute space) formed on a substrate.
The present invention provides a material in which the gel skeleton forming the macropores of the separation medium is coated with an oxide layer corresponding to the compound to be separated.
[0007]
[Means for Solving the Problems]
That is, the present invention produces a porous gel composed of a siloxane network having continuous through-holes by causing a sol-gel transition accompanied by phase separation, and aims within the pores of the porous gel. A monolithic porous material characterized by producing a monolithic porous material by introducing a substance serving as a precursor of a metal oxide and causing a hydrolysis / polycondensation reaction with silanol groups on the surface of the pores Is a manufacturing method.
Further, the porous gel is produced by dissolving a water-soluble polymer in an acidic aqueous solution, adding a metal compound having a hydrolyzable functional group thereto, and causing a hydrolysis / polycondensation reaction. The porous gel has a through-hole having a pore diameter of 100 nm or more, preferably 200 to 10000 nm, and a continuous three-dimensional mesh-like pore, and pores having a pore diameter of 50 nm or less formed on the inner wall surface of the through-hole. The volume ratio of the pores in the pores is 10% or more, preferably 20%, and more preferably 40% or more.
The porous body according to the present invention can be formed in a space of a limited shape and size surrounded by a rigid container wall, and the substantial porosity is extremely close to 100% in such a limited space. It is also possible to prepare. Since the macropores having a diameter of 100 nm or more are formed as regions occupied by the solvent phase generated during phase separation, they are formed without burning or thermal decomposition by a normal drying operation. When forming a so-called co-continuous structure that is entangled and continuous, an extremely sharp size distribution can be obtained. By adjusting to a higher porosity and a larger average size, it is possible to reduce the pressure loss of the integrated reactive porous column. The liquid can be passed by driving with a pump.
[0008]
Phase separation is a widespread phenomenon in which a region having a component different from the starting component is generated by precipitation or precipitation in a material manufacturing process. Generally, in a sol-gel reaction system, a phase rich in a network-forming component causing gel formation is formed. Separation occurs between a (gel phase) and a phase rich in a solvent component that does not cause gel formation (solvent phase). In forming each phase region, diffusion of components against the concentration gradient occurs using the difference in chemical potential as a driving force, and mass transfer continues until each phase region reaches the equilibrium composition at the given temperature and pressure. I do.
[0009]
The precursor of the network component causing gel formation used in the sol-gel reaction includes metal alkoxides, complexes, metal salts, organically modified metal alkoxides, organic cross-linked metal alkoxides, and partial hydrolysis products and partial polymerization products thereof. Can be used. Sol-gel transition by changing the pH of water glass or other aqueous silicate solutions can be used as well.
[0010]
The water-soluble polymer is a water-soluble organic polymer that can theoretically be formed into an aqueous solution having an appropriate concentration, and is uniformly dispersed in a reaction system containing an alcohol generated by a metal compound having a hydrolyzable functional group. Any substance that can be dissolved may be used, but specifically, a sodium or potassium salt of polystyrene sulfonic acid, which is a polymer metal salt, polyacrylic acid, which is a polymer acid and dissociates into a polyanion, or a polymer base Polyallylamine and polyethyleneimine which produce polycations in aqueous solution, or polyethylene oxide, polyvinylpyrrolidone, polyacrylamide, or polyoxyethylene-polyoxypropylene-polyoxy, which is a neutral polymer and has an ether bond in the main chain Ethylene block copolymers and the like are preferred. Further, an organic solvent having a relatively high polarity, specifically, a polyhydric alcohol, an acid amide, or a surfactant may be used in place of the organic polymer, in which case, as the polyhydric alcohol, ethylene glycol and glycerin are used. Formamide is most suitable as acid amide, and cationic surfactant such as quaternary ammonium salt and nonionic surfactant such as polyoxyethylene alkyl ether are most suitable as surfactant.
[0011]
As the metal compound having a hydrolyzable functional group, a metal alkoxide or an oligomer thereof can be used. For example, those having a small number of carbon atoms, such as a methoxy group, an ethoxy group, and a propoxy group, are preferable. As the metal, a metal of an oxide finally formed, for example, Si, Ti, Zr, or Al is used. One or more of these metals may be used. On the other hand, any oligomer may be used as long as it can be uniformly dissolved and dispersed in alcohol, and specifically, up to about 10-mers can be used. Alkoxyalkoxysilanes in which some of the alkoxy groups of these silicon alkoxides are substituted with alkyl groups, crosslinked alkoxides in which two or more metals are linked by a crosslinked structure mainly composed of hydrocarbons, and 10 Oligomer up to about a monomer is preferably used. Alkyl-substituted metal alkoxides in which the central metal element is replaced with titanium, zirconium, aluminum or the like instead of silicon can also be used.
[0012]
Further, in the present invention, when producing the porous gel, the thermally decomposable compound may be dissolved in the reaction solution in advance. By dissolving the pyrolyzable compound in the reaction solution in advance, heating the wet gel causes the pyrolyzable compound to thermally decompose and raises the pH of the solvent in contact with the inner wall surface of the skeletal phase. I do. Then, the solvent erodes the inner wall surface and changes the unevenness of the inner wall surface, thereby gradually expanding the pore diameter. In the case of a gel containing silica as the main component, the degree of change is very small in the acidic or neutral region, but as the thermal decomposition becomes active and the basicity of the aqueous solution increases, the parts constituting the pores dissolve. However, by re-precipitation on a flatter portion, a reaction of increasing the average pore diameter becomes remarkable.
Specific examples of the thermally decomposable compound include urea and organic amides such as hexamethylenetetramine, formamide, N-methylformamide, N, N-dimethylformamide, acetamide, N-methylacetamide, N, N-dimethylacetamide. Although the pH value of the solvent after heating is an important condition, there is no particular limitation as long as the compound makes the solvent basic after thermal decomposition.
The coexistence of the thermally decomposable compound depends on the type of the compound. For example, in the case of urea, the amount is 0.05 to 0.8 g, preferably 0.1 to 0.7 g, per 10 g of the reaction solution. The heating temperature is, for example, 40 to 200 ° C. in the case of urea, and the pH value of the solvent after heating is preferably 6.0 to 12.0.
Further, a compound which produces a compound having a property of dissolving silica, such as hydrofluoric acid, by thermal decomposition can be similarly used.
[0013]
The acidic aqueous solution is preferably one having a mineral acid such as hydrochloric acid or nitric acid of 0.001 N or more, or one having an organic acid such as formic acid or acetic acid of 0.1 N or more.
Hydrolysis can be achieved by storing the solution at room temperature to 80 ° C. for 0.5 to 3 hours. The gelled product is left at 40 to 80 ° C for several hours to several tens of hours, dried, and then heated at about 600 to 1000 ° C.
[0014]
In the present invention, a substance serving as a precursor of a target metal oxide is introduced into the pores of the produced porous gel to cause a hydrolysis / polycondensation reaction with silanol groups on the surface of the pores.
The target metal oxides include titanium oxide and zirconium oxide, which have a high affinity for phosphate compounds, as well as aluminum oxide, iron oxide, and nickel oxide. Any metal oxide exhibiting surface chemical characteristics different from those described above may be used, and is not limited thereto.
Examples of the precursor of the metal oxide include a metal alkoxide having a corresponding central metal, a β-diketone complex, an organic acid salt such as oxalate and acetate, and an inorganic acid such as nitrate, sulfate and chloride. Acid salts.
The hydrolysis / polycondensation reaction can be performed by immersing the porous gel in the metal oxide solution, and the concentration of the metal oxide solution is preferably 2 to 20% by weight in terms of oxide. The hydrolysis / polycondensation reaction can be achieved by storing the solution at 20 to 80 ° C for 2 to 20 hours.
[0015]
According to the production method of the present invention, it is possible to produce an integrated separation medium suitably used for analyzing intracellular chemical substances such as nucleic acids and proteins.
Further, the material of the present invention can be manufactured in a member having a gap of 1 mm or less. The member having a gap of 1 mm or less is composed of, for example, a capillary tube, two flat plates, a honeycomb, or the like. In the case of a capillary tube, the gap corresponds to the inner diameter, and in the case of two flat plates, the gap corresponds to the interval between opposed flat plates. I do. These capillaries, flat plates and the like are made of, for example, silica glass, and the gap is preferably 30 to 200 μm. When a flat plate is used, the size of the flat plate itself is preferably 0.3 to 10 mm in thickness, 3 to 500 mm in width, and 3 to 500 mm in length. The number of flat plates is not limited to two, and a plurality of flat plates may be sequentially faced to form a plurality of gaps. Further, the number of gaps in the honeycomb is not limited. A multi-capillary can be manufactured by using these plural flat plates and honeycombs. Further, a plurality of capillaries may be bundled.
[0016]
【Example】
The experimental procedure is as shown in FIG.
(Example 1)
First, 0.7 g of polyethylene glycol and 0.5 g of urea were dissolved in 10 ml of a 0.01 molar acetic acid aqueous solution, and 5 ml of tetramethoxysilane was added thereto with stirring to carry out a hydrolysis / polycondensation reaction. The obtained homogeneous solution was allowed to stand at 40 ° C. in a closed container to gel. Thereafter, the sample is aged at 120 ° C. for 2 hours in a sealed state, subsequently dried at 60 ° C., and finally heat-treated at 600 ° C. for 2 hours to obtain a macroporous silica sample having a narrow pore size distribution in a micrometer region. Obtained.
Next, the columnar macroporous silica was immersed in a 2-propanol solution (25% by volume) of titanium tetraisopropoxide as a metal alkoxide at 40 ° C. for 1 hour. By this operation, the surface of the silica skeleton forming the macropores is coated with the titanium oxide layer. Further, the sample was heat-treated at 500 ° C. for 3 hours to convert the titanium oxide layer into an anatase crystal layer.
The thus obtained columnar sample of titanium oxide-coated macroporous silica was covered with a resin on the side, and connection parts to a liquid chromatography device were attached at both ends to form a separation column for liquid chromatography. When the retention behavior of adenosine, adenosine monophosphate (AMP), adenosine diphosphate (ADP), and adenosine triphosphate (ATP) was examined using this column, different retention times were obtained as shown in FIG. It was found that these mixtures were well separated.
[0017]
(Example 2)
In the same manner as in Example 1, the surface of the silica skeleton was coated with a titanium oxide layer, and heat treatment was performed. Thereafter, a titanium oxide precursor solution was repeatedly passed through, followed by dry heat treatment. By this operation, the thickness of the titanium oxide layer can be increased, as shown in FIG. 3, by electron microscopy (SEM), X-ray diffraction measurement (XRD) and weight measurement (weighing with a precision electronic balance). confirmed. 3A shows untreated silica, FIG. 3B shows one coating, and FIG. 3C shows five coatings. FIG. 3 shows an electron microscope observation (SEM) diagram, an X-ray diffraction measurement (XRD) diagram, and a column weight in order from the top.
The single coating resulted in a weight gain of 126% and the five coatings resulted in a weight gain of 245%. At this time, the thickness of the titanium oxide layer was calculated to be about 22 nanometers for one coating and about 120 nanometers for five coatings, and the thickness of the coating layer increased almost in proportion to the number of coatings. The X-ray diffraction pattern gave clear diffraction lines specific to the anatase phase titanium oxide (IV) as the number of coatings increased, and thus it was confirmed that the present example can cover the anatase type titanium oxide.
[0018]
(Example 3)
A reaction solution having the same composition as that of Example 1 was prepared, and a macroporous silica capillary was obtained in the same manner as in Example 1 except that the container to be gelled was a fused silica capillary having an inner diameter of 100 μm.
In the same manner as in Example 1, a titanium oxide precursor solution was passed through the inside of the macroporous silica, and dried and heat-treated to obtain a titanium oxide-coated macroporous silica capillary.
When separation of the phosphate compound was attempted in the same manner as in Example 1, good separation was confirmed.
[0019]
【The invention's effect】
According to the present invention, a gel formed of a siloxane network having continuous through-holes in a micrometer region, and the surface of which is coated with an oxide layer such as titanium oxide (titania) and zirconium oxide (zirconia) is The liquid can be passed at a pressure lower than that of the packed column, and the size of the gel skeleton, which greatly affects the separation efficiency, can be arbitrarily controlled.
[Brief description of the drawings]
FIG. 1 is a diagram showing the experimental procedure of the present invention. FIG. 3 is a diagram illustrating the retention behavior. FIG. 3 is a diagram in which the thickness of a titanium layer is measured by electron microscopy (SEM) and weight measurement, and the anatase crystal phase is confirmed by X-ray diffraction measurement (XRD).
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002267666A JP4362752B2 (en) | 2002-09-13 | 2002-09-13 | Manufacturing method of integrated porous material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002267666A JP4362752B2 (en) | 2002-09-13 | 2002-09-13 | Manufacturing method of integrated porous material |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004099418A true JP2004099418A (en) | 2004-04-02 |
JP4362752B2 JP4362752B2 (en) | 2009-11-11 |
Family
ID=32266098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002267666A Expired - Fee Related JP4362752B2 (en) | 2002-09-13 | 2002-09-13 | Manufacturing method of integrated porous material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4362752B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006225211A (en) * | 2005-02-18 | 2006-08-31 | Dainippon Printing Co Ltd | Porous body |
JP2006240982A (en) * | 2005-02-02 | 2006-09-14 | Chiba Univ | Cylindrical porous silica and method for producing the same |
WO2007021037A1 (en) * | 2005-08-19 | 2007-02-22 | Kyoto University | Inorganic porous object and process for producing the same |
JP2008525535A (en) * | 2004-12-20 | 2008-07-17 | バリアン・インコーポレイテッド | Superporous sol-gel monolith |
WO2009034949A1 (en) * | 2007-09-12 | 2009-03-19 | Rei Medical Co., Ltd. | Adsorption column for purifying body fluid |
JP2017036369A (en) * | 2015-08-07 | 2017-02-16 | 株式会社イノアック技術研究所 | Method for producing soluble phosphorylated chitin or soluble phosphorylated collagen, method for producing phosphorylated chitin or a complex of phosphorylated collagen and titanium, method for producing polyurethane foam, complex, producing phosphorylated collagen And method for producing a composite of phosphorylated collagen and titanium |
CN110305483A (en) * | 2019-07-02 | 2019-10-08 | 陕西师范大学 | A flexible low-density porous polymer material, its preparation method and its application as a human body protection material |
CN115028447A (en) * | 2022-05-27 | 2022-09-09 | 北京科技大学 | A kind of submicron zirconia ceramic microsphere based on phase separation and its preparation method and application |
-
2002
- 2002-09-13 JP JP2002267666A patent/JP4362752B2/en not_active Expired - Fee Related
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008525535A (en) * | 2004-12-20 | 2008-07-17 | バリアン・インコーポレイテッド | Superporous sol-gel monolith |
JP2006240982A (en) * | 2005-02-02 | 2006-09-14 | Chiba Univ | Cylindrical porous silica and method for producing the same |
JP2006225211A (en) * | 2005-02-18 | 2006-08-31 | Dainippon Printing Co Ltd | Porous body |
WO2007021037A1 (en) * | 2005-08-19 | 2007-02-22 | Kyoto University | Inorganic porous object and process for producing the same |
JPWO2007021037A1 (en) * | 2005-08-19 | 2009-02-26 | 国立大学法人京都大学 | INORGANIC POROUS BODY AND PROCESS FOR PRODUCING THE SAME |
WO2009034949A1 (en) * | 2007-09-12 | 2009-03-19 | Rei Medical Co., Ltd. | Adsorption column for purifying body fluid |
JP2009066117A (en) * | 2007-09-12 | 2009-04-02 | Rei Medical Co Ltd | Adsorption column for body fluid purifying treatment |
JP2017036369A (en) * | 2015-08-07 | 2017-02-16 | 株式会社イノアック技術研究所 | Method for producing soluble phosphorylated chitin or soluble phosphorylated collagen, method for producing phosphorylated chitin or a complex of phosphorylated collagen and titanium, method for producing polyurethane foam, complex, producing phosphorylated collagen And method for producing a composite of phosphorylated collagen and titanium |
CN110305483A (en) * | 2019-07-02 | 2019-10-08 | 陕西师范大学 | A flexible low-density porous polymer material, its preparation method and its application as a human body protection material |
CN115028447A (en) * | 2022-05-27 | 2022-09-09 | 北京科技大学 | A kind of submicron zirconia ceramic microsphere based on phase separation and its preparation method and application |
Also Published As
Publication number | Publication date |
---|---|
JP4362752B2 (en) | 2009-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0952965B1 (en) | Method for producing porous inorganic materials | |
US5624875A (en) | Inorganic porous material and process for making same | |
Haas-Santo et al. | Preparation of microstructure compatible porous supports by sol–gel synthesis for catalyst coatings | |
US6562744B1 (en) | Process for producing inorganic porous material in a capillary | |
Gibaud et al. | Evaporation-controlled self-assembly of silica surfactant mesophases | |
Nakamura et al. | Formation mechanism for monodispersed mesoporous silica spheres and its application to the synthesis of core/shell particles | |
JP5288804B2 (en) | Superporous sol-gel monolith | |
JP3317749B2 (en) | Inorganic porous column | |
JPH11287791A (en) | Capillary column | |
JP3397255B2 (en) | Method for producing inorganic porous body | |
Morishige et al. | Effect of pore shape on freezing and melting temperatures of water | |
JP4362752B2 (en) | Manufacturing method of integrated porous material | |
JPH11292528A (en) | Production of inorganic porous material | |
CN1213799C (en) | Sequential porous silica gel whole column and its preparation and use | |
US20070065356A1 (en) | Process for the production of monolithic mouldings | |
Antropova | Morphology of porous glasses. Colloid-chemical aspect. | |
JP3985171B2 (en) | Method for producing inorganic porous body | |
JP2007145636A (en) | Porous continuum, column using the same, and method for producing porous continuum | |
Alié et al. | Preparation of low-density xerogels by incorporation of additives during synthesis | |
WO2004018099A1 (en) | Process for producing integrated reactive porous carrier | |
JPH10182260A (en) | Production of inorganic porous body | |
Klein et al. | Porous silica by the sol-gel process | |
JP2002362918A (en) | Method for producing inorganic porous body | |
Nadgir et al. | Modified sol–gel processed silica matrix for gel electrophoresis applications | |
Kukovecz et al. | Surface fractal properties of morphologically different sol− gel derived silicates |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050901 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20050901 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20080122 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20080520 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080716 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20080805 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090113 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090313 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20090714 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20090805 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120828 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20150828 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |