[go: up one dir, main page]

JP2004095251A - El device and its manufacturing method - Google Patents

El device and its manufacturing method Download PDF

Info

Publication number
JP2004095251A
JP2004095251A JP2002252575A JP2002252575A JP2004095251A JP 2004095251 A JP2004095251 A JP 2004095251A JP 2002252575 A JP2002252575 A JP 2002252575A JP 2002252575 A JP2002252575 A JP 2002252575A JP 2004095251 A JP2004095251 A JP 2004095251A
Authority
JP
Japan
Prior art keywords
electrode
substrate
organic
film circuit
thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002252575A
Other languages
Japanese (ja)
Inventor
Shigeru Senbonmatsu
千本松 茂
Masahiko Tomikawa
富川 昌彦
Teruo Ebihara
海老原 照夫
Mitsuru Suginoya
杉野谷 充
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2002252575A priority Critical patent/JP2004095251A/en
Publication of JP2004095251A publication Critical patent/JP2004095251A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/127Active-matrix OLED [AMOLED] displays comprising two substrates, e.g. display comprising OLED array and TFT driving circuitry on different substrates
    • H10K59/1275Electrical connections of the two substrates

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technique for forming an active matrix driving organic EL device having low power consumption and long life service with high productivity and a high ratio of no-defectives. <P>SOLUTION: An organic EL element and a thin film circuit element are electrically joined by facing an organic EL element substrate forming the organic EL element constituted by successively laminating a substrate side electrode, an organic EL layer and a counter electrode on one surface of a substrate to a thin film circuit element substrate forming a thin film circuit element on the other surface of the substrate. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、電圧を印加することにより発光するエレクトロルミネッセント(EL)素子及び同製造方法にする。
【0002】
【従来の技術】
有機EL素子は比較的低電圧で発光し、また製造が簡単なことから、将来性が期待されている発光素子である。実用上問題があるとされてきた素子寿命に関しても実用レベルに達してきている。
【0003】
従来の有機EL素子の構成を図5に示す。図示するように、ガラス等の基板40上に、順次透明電極であるインジウム錫オキサイド(ITO)等からなる電極41、正孔注入層42、正孔輸送層43、発光層44、アルミニウム等からなる電極45が積層されている。ここで、正孔注入層42、正孔輸送層43及び発光層44が有機EL層50を構成している。このような有機EL素子では、電極41を陽極、電極45を陰極として用い、陽極と陰極からそれぞれ注入した正孔と電子とが発光層44内で再結合し、有機分子を励起し、EL光11を放射する。そのEL光11が基板40を透過して有機EL素子の外に放射するようになっている。このように有機EL素子を形成した基板側からEL光を取り出す方式をボトムエミッション構造と称する。
【0004】
有機EL素子には、このような構成以外にも、例えば(1)陽極/発光層/陰極、(2)陽極/正孔輸送層/発光層/電子輸送層/陰極、(3)陽極/発光層/電子輸送層/陰極、(4)陽極/正孔輸送層/発光層/陰極、等の構造が知られている。
【0005】
また、その他の構成の有機EL素子を図6に示す。この有機EL素子は、基板40上に反射層46、ITO等からなる電極51、正孔注入層52、正孔輸送層53、発光層54、アルミニウム等からなる電極55を積層してなる。このような有機EL素子においては、電極51を陽極、電極55を陰極として用い、陽極と陰極からそれぞれ注入した正孔と電子とが発光層54内で再結合し、有機分子を励起し、EL光11を放射する。この際電極55の膜厚を充分薄くすることにより(例えば20nm以下)、EL光11が電極55を透過して有機EL素子外部に放射するようになっている。また、基板40に向かって放射されるEL光は反射層46で反射され、効率良く電極55を透過して有機EL素子外部に放射するようになっている。このように、有機EL素子を形成した基板と反対側からEL光を取り出す方式をトップエミッション構造と称する。
【0006】
【発明が解決しようとする課題】
このような構成の有機EL素子をアクティブマトリクス駆動する場合には、従来から図3と図4に示すような構成のアクティブマトリクス駆動型有機EL素子が知られている。ここでは、図面の簡略化のため薄膜回路素子(アクティブマトリクス駆動用TFT素子回路)の詳細な説明は省略する。図3に、ボトムエミッション型のアクティブマトリクス駆動有機EL素子の概略側面断面を示す。この有機EL素子は、有機EL−TFT回路素子基板30上にTFT素子回路8を形成し、ITOからなる電極2、有機EL層3、電極5を順次積層し、封止基板31と対向させ、封止剤9を介して窒素ガス等の不活性ガスを封入したセル構造により、ボトムエミッション型のアクティブマトリクス駆動有機EL素子を形成している。尚、有機EL層の発光エリアを決定するための絶縁層や陰極をセルフパターニングするための隔壁を形成しても良い。このような構成の有機EL素子の場合、基板の同一平面上にTFT回路素子8と有機EL素子32を形成するために、開口率が低下する問題を有している。そのため、有機EL素子の駆動電流を多く供給しなければ、表示部全体の輝度が低下する。一方、駆動電流を増加すると、発光効率の低下、消費電力の増加、有機EL素子の寿命の低下を引き起こすことになる。
【0007】
図4に、トップエミッション型のアクティブマトリクス駆動有機EL素子の概略側面断面を示す。この有機EL素子は、有機EL−TFT回路素子基板20上にTFT素子回路8と図6で説明したトップエミッション型の有機EL素子を層間絶縁膜23のスルーホールを介して接続形成している。また、絶縁層21は有機EL素子の発光面積を決定するために所定のパターンに形成されている。この方式は、TFT素子回路8による開口率低下を防止できるが、アクティブマトリクス駆動用TFT素子回路基板8と有機EL素子32全てを1枚の基板に形成するため、生産性の低下及び歩留りの低下を生じる。
【0008】
上述のように、従来のアクティブマトリクス駆動のEL素子の構成では、低消費電力、長寿命のアクティブマトリクス駆動のEL装置を生産性良く、高歩留りで生産することができなかった。
【0009】
【課題を解決するための手段】
上述した課題を解決するために、本発明は、EL素子とTFT回路素子をそれぞれ別々の基板に形成した後、素子間を電気的に接合することとした。これにより、低消費電力、長寿命のアクティブマトリクス駆動型のEL装置を高生産性及び高良品率で形成できる。
【0010】
【発明の実施の形態】
本発明のEL装置は、EL素子が形成された基板と、薄膜回路素子が形成された薄膜回路素子基板とを備えるとともに、EL素子の電極と薄膜回路素子の電極が電気的に接合されている。この電気的な接続は、基板と薄膜回路素子基板を対向させてなる間隙に設けられた接合材料により実現されている。接合材料としては、導電ペーストや導電粒子を用いることができる。ここで、導電粒子は樹脂中に分散されている。樹脂にはUV硬化型樹脂を用いることができる。
【0011】
また、EL素子の電極と薄膜回路素子の電極が直接接続された構成でもかまわない。あるいは、EL素子の電極と薄膜回路素子の電極との間に接続パッドを設けて接合することが可能である。ここで、接続パッドは、例えば、金属薄膜により形成することができる。
【0012】
本発明によるEL装置の製造方法は、基板側電極、EL層、対向電極を含むEL素子を素子基板上に形成する工程と、基板上に薄膜回路素子が設けられた薄膜回路素子基板を形成する工程と、素子基板と薄膜回路素子基板を対向させて、EL素子の電極と薄膜回路素子の電極とを電気的に接合する接続工程と、を備えている。
【0013】
さらに、この接続工程が、EL素子の電極と薄膜回路素子の電極との少なくとも一方に接続パッドを形成する工程と、素子基板と薄膜回路素子基板とを対向させて、各電極を位置合わせして電気的に接合する工程と、を含んでいる。
【0014】
また、EL素子の電極と薄膜回路素子の電極と接合する際に、超音波接合を用いて接合することとした。
【0015】
【実施例】
以下、本発明のEL装置を実施例により具体的に説明する。
【0016】
(実施例1)
本実施例の有機EL装置の概略断面を図1に示す。図示するように、有機EL基板10の表面には電極2が形成されている。ここで、有機EL基板10には、耐熱性、耐薬品性、透明性等から、ガラス製平板が好ましい。本実施例では厚さ0.7mmの無アルカリ研磨ガラスを用いた。次ぎに、絶縁層4を積層する。この絶縁層4は、例えば酸化シリコンや酸化シリコンにリンを含有してなるPSG(Phos−Silicate Glass)等の酸化シリコン系の材料を用いて形成される。次いで絶縁層4をパターニングし、有機EL層3の発光面積を決定する孔を形成する。次ぎに、有機EL層をマスク蒸着により絶縁層4の孔を覆うように形成する。さらに、電極5をマスク蒸着により所定のパターンに形成する。
【0017】
一方、TFT素子回路基板12上には有機EL素子を駆動するためのTFT素子回路8を形成した。尚、TFT素子の詳細構造や有機EL素子の輝度を制御するための定電流回路構成、及び周辺回路の説明は本発明と直接関係無いので省略した。
【0018】
次いで、TFT素子回路8の接続電極部13に導電材料6を形成し、TFT素子回路基板12と有機EL基板10を対向させて、接続電極部13と電極5の接続電極部14を位置合わせした後、両基板の外周部に封止剤9を介してセル外部の雰囲気を遮断するように接合した。尚、通常基板間にはNやAr等の不活性ガス及び水分吸着剤を封入するが、図面上は省略した。また、電極接続部13は電極5の一部または別材料の電極を用い、電極接続部14も電極2の一部または別材料の電極を用いることができる。さらに、導電材料の種類により、接続電極部14の下部の電極2を予めパターニングにより除去すると電極2と電極5間の短絡防止策として有効である。ここで、導電材料6としては、導電ペーストや導電粒子あるいは導電粒子等を樹脂に分散した接続材料をスクリーン印刷等の手法を用いて容易に所定のパターンに形成することができる。また、樹脂としてはUV硬化性樹脂が好ましい。導電粒子としては、半田ボールの他、アクリル樹脂にNiまたはNi−Au等をコーティングした直径3μm〜10μm程度の粒子を用いることができる。
【0019】
有機EL層3としては、低分子系有機EL層や高分子系有機EL層等が使用できる。これらの中で、製造の容易さ、動作電圧の低さ等の点で、低分子系有機EL層がより好ましい。
【0020】
本実施例では、有機EL素子18の構成として、陽極(電極2)/正孔注入層/正孔輸送層/発光層/陰極(電極5)の構造を用いた。陽極(電極2)は、インジウム錫オキサイド(ITO)等の導電性透明材料で構成できる。電極2の厚みは50〜600nmが好ましい。本実施例では、電極2の透明電極材料としてインジウム錫オキサイド(ITO)を用い、厚みを150nmで形成した。正孔注入層の構成材料には、ポルフィリン化合物(特開昭63−2956965号公報などに開示の化合物)、芳香族第三級アミン化合物を用いることができる。正孔注入層の厚みは20nm以上にする必要がある。正孔注入層の厚みの上限は特に制限がないが、製造上の観点から、20〜1000nmが好ましく、特に30〜100nmが望ましい。本実施例では銅フタロシアニンを50nm厚で形成した。正孔輸送層は、α−NPD(α−ナフチルフェニルジアミン)等で構成することができる。正孔輸送層の厚みは5〜45nmが好ましく、10〜40nmがより好ましい。本実施例では正孔輸送材料として、α−NPDを40nm厚で形成した。発光層は、トリス(8−キノリノラト)アルミニウム錯体(Alq3)等で構成することができる。発光層の厚みは5〜45nmが好ましく、10〜40nmがより好ましい。本実施例では発光層として、40nm厚のトリス(8−キノリノラト)アルミニウム錯体(Alq3)を用いた。
【0021】
陰極(電極5)を第一陰極層と第二陰極層との二層構造で構成することができる。第一陰極層にはフッ化リチウム(LiF)が、第二陰極層にはアルミニウムを用いることが好ましい。第一陰極層の厚みは0.1〜2nmが、第二陰極層の厚みは15〜200nmが好ましい。本実施例では、第一陰極層を0.5nm厚のフッ化リチウム(LiF)で構成し、第二陰極層を150nmのアルミニウムで構成した。
【0022】
上述した各層自体は当業者に公知のもので、マスクスパッタ、マスク真空蒸着法等の当業者に周知の方法により形成できる。
【0023】
この有機EL素子18の電極2と電極5間にTFT素子回路8を用いて電圧を印加することにより、有機EL素子18は発光し、有機EL基板10を通して外部に緑色のEL光11を取り出すことができた。また、発光層としては、本実施例ではAlq3を用いたが、カラー表示を行う場合には、例えば発光層に適当な色素をドーピングして用いられる。
【0024】
(実施例2)
図2は、本実施例の有機EL素子を示す概略側面断面図である。尚、有機EL基板10及び、TFT素子回路基板12の説明については、実施例1と重複する部分は省略した。
【0025】
有機EL基板10上に、実施例1と同様の有機EL素子を形成した。次いで電極5の一部に接続パッド16としてAlを10μm形成した。本実施例では、マスク蒸着法を用いて形成した。ここで、面積は450μm(15μm×30μm)とした。尚、Alの膜厚は0.5μm〜50μm程度の範囲で任意に設定できる。
【0026】
一方、TFT素子回路基板12上のTFT素子回路に、接続パッド15としてNi−Auをメッキ法により0.3μm形成した。ここで、面積は450μm(15μm×30μm)とした。尚、Auメッキの膜厚は0.05μm〜1.0μm程度の範囲で任意に設定できる。
【0027】
次いで、有機EL基板10とTFT素子回路基板12とを対向させて、接続パッド15と接続バッド16を位置合わせした後、図8で示すように有機EL基板10を下側にして上定盤101と下定盤102間で加圧しながら、超音波供給部103から超音波振動をTFT基板12のエッジに加えて超音波接合した。尚、超音波圧着時の圧力と時間は、それぞれ1200g/cm、2秒であった。また、有機EL層のガラス転移点を超えない温度範囲で、上下定盤を加熱しても良い。
【0028】
次いで、基板の外周部に設けられた封止剤9を硬化させて、アクティブマトリクス型有機EL素子を形成する。封止剤を基板に設ける方法には、印刷法またはインクジェット法を用いる。本実施例では、封止剤にUV硬化型樹脂を用い、印刷法で基板外周部に樹脂を設け、UV照射により硬化させた。通常、基板間にはNやAr等の不活性ガス及び水分吸着剤を封入するが、図面上は省略した。
【0029】
本実施例ではAuとAlの金属接合の組み合わせを用いたが、公知のAu−Cu接合、Au−Ni接合、Cu−Ni接合等の組み合わせを用いても構わない。
【0030】
(実施例3)
本実施例の有機EL装置の概略断面を図7に示す。実施例2ではTFT素子回路基板12と有機EL基板10の両方の電極に接続バットを形成したが、本実施例のように片側のみに接続バット19を形成しても良い。詳細な製造方法は、多くの部分が実施例2と重複するので説明は省略した。
【0031】
上述した各実施例では、有機EL素子18の構成として、陽極(電極2)/正孔注入層/正孔輸送層/発光層/陰極(電極5)の構造を用いたが、有機EL素子の構成として知られている、例えば(1)陽極/発光層/陰極、(2)陽極/正孔輸送層/発光層/電子輸送層/陰極、(3)陽極/発光層/電子輸送層/陰極、(4)陽極/正孔輸送層/発光層/陰極、等の各種構成をそのまま採用することもできる。
【0032】
【発明の効果】
本発明の有機EL装置は、有機EL素子とTFT回路素子をそれぞれ別々の基板に形成した後、電気的に接合することにより、工業的に高生産性、高良品率を達成できる。また、低電流駆動が可能なため、低消費電力、長寿命化を達成できる。
【図面の簡単な説明】
【図1】本発明による有機EL装置の一例を示す概略断面図である。
【図2】本発明による有機EL装置の他例を示す概略断面図である。
【図3】従来のボトムエミッション型のアクティブマトリクス駆動有機EL装置の概略断面図である。
【図4】従来のトップエミッション型のアクティブマトリクス駆動有機EL装置の概略断面図である。
【図5】従来の有機EL素子の構成の一例を示す説明図である。
【図6】従来の有機EL素子の構成のその他の例を示す説明図である。
【図7】本発明の有機EL素子の他の例を示す概略側面断面図である。
【図8】本発明の接合装置の概略側面断面図である。
【符号の説明】
2  電極
3  有機EL層
4  絶縁層
5  電極
6  導電材料
8  TFT素子回路
9  封止剤
10 有機EL基板
11 EL光
12 TFT素子回路基板
13 電極接続部
14 電極接続部
15 接続パッド
16 接続パッド
18 有機EL素子
100 シリンダー
101 上定盤
102 下定盤
103 超音波供給部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides an electroluminescent (EL) element that emits light when a voltage is applied, and a method for manufacturing the same.
[0002]
[Prior art]
The organic EL element emits light at a relatively low voltage and is easy to manufacture, so that it is a light-emitting element expected to have a future. The element lifetime, which has been regarded as having a problem in practical use, has also reached a practical level.
[0003]
FIG. 5 shows a configuration of a conventional organic EL element. As shown in the drawing, an electrode 41 made of indium tin oxide (ITO) or the like, which is a transparent electrode, a hole injection layer 42, a hole transport layer 43, a light emitting layer 44, aluminum, etc. are sequentially formed on a substrate 40 made of glass or the like. Electrodes 45 are stacked. Here, the hole injection layer 42, the hole transport layer 43, and the light emitting layer 44 constitute the organic EL layer 50. In such an organic EL device, the electrode 41 is used as an anode and the electrode 45 is used as a cathode. Holes and electrons injected from the anode and the cathode are recombined in the light-emitting layer 44 to excite organic molecules and to emit EL light. Emit 11 The EL light 11 is transmitted through the substrate 40 and emitted outside the organic EL element. The method of extracting EL light from the substrate side on which the organic EL element is formed in this manner is called a bottom emission structure.
[0004]
In addition to such a structure, the organic EL device may have, for example, (1) anode / light-emitting layer / cathode, (2) anode / hole transport layer / light-emitting layer / electron transport layer / cathode, and (3) anode / light emission Structures such as layer / electron transport layer / cathode and (4) anode / hole transport layer / light-emitting layer / cathode are known.
[0005]
FIG. 6 shows an organic EL element having another configuration. This organic EL element is formed by laminating a reflective layer 46, an electrode 51 made of ITO or the like, a hole injection layer 52, a hole transport layer 53, a light emitting layer 54, and an electrode 55 made of aluminum or the like on a substrate 40. In such an organic EL device, the electrode 51 is used as an anode and the electrode 55 is used as a cathode. Holes and electrons injected from the anode and the cathode are recombined in the light emitting layer 54 to excite organic molecules, thereby Emit light 11. At this time, by making the thickness of the electrode 55 sufficiently small (for example, 20 nm or less), the EL light 11 is transmitted through the electrode 55 and emitted to the outside of the organic EL element. In addition, the EL light emitted toward the substrate 40 is reflected by the reflection layer 46, efficiently passes through the electrode 55, and is emitted to the outside of the organic EL element. Such a method of extracting EL light from the side opposite to the substrate on which the organic EL element is formed is called a top emission structure.
[0006]
[Problems to be solved by the invention]
When an organic EL element having such a configuration is driven by an active matrix, an active matrix drive type organic EL element having a configuration as shown in FIGS. 3 and 4 has been conventionally known. Here, a detailed description of the thin film circuit element (TFT element circuit for driving an active matrix) is omitted for simplification of the drawing. FIG. 3 shows a schematic side sectional view of a bottom emission type active matrix driven organic EL element. In this organic EL element, a TFT element circuit 8 is formed on an organic EL-TFT circuit element substrate 30, an electrode 2 made of ITO, an organic EL layer 3, and an electrode 5 are sequentially laminated, and opposed to a sealing substrate 31. A bottom emission type active matrix driving organic EL element is formed by a cell structure in which an inert gas such as nitrogen gas is sealed through a sealing agent 9. Note that an insulating layer for determining the light emitting area of the organic EL layer and a partition for self-patterning the cathode may be formed. In the case of the organic EL element having such a configuration, since the TFT circuit element 8 and the organic EL element 32 are formed on the same plane of the substrate, there is a problem that the aperture ratio is reduced. Therefore, unless a large amount of drive current for the organic EL element is supplied, the brightness of the entire display section decreases. On the other hand, when the drive current is increased, the luminous efficiency is reduced, the power consumption is increased, and the life of the organic EL element is shortened.
[0007]
FIG. 4 shows a schematic side sectional view of a top emission type active matrix driven organic EL element. In this organic EL element, the TFT element circuit 8 and the top emission type organic EL element described with reference to FIG. 6 are connected and formed on the organic EL-TFT circuit element substrate 20 via through holes in the interlayer insulating film 23. Further, the insulating layer 21 is formed in a predetermined pattern to determine a light emitting area of the organic EL element. This method can prevent a decrease in aperture ratio due to the TFT element circuit 8, but since the active matrix driving TFT element circuit substrate 8 and the organic EL element 32 are all formed on one substrate, a reduction in productivity and a reduction in yield are achieved. Is generated.
[0008]
As described above, with the configuration of the conventional active-matrix-driven EL element, an active-matrix-driven EL device with low power consumption and long life could not be produced with high productivity and high yield.
[0009]
[Means for Solving the Problems]
In order to solve the above-described problem, according to the present invention, after the EL element and the TFT circuit element are formed on different substrates, the elements are electrically connected to each other. As a result, an active matrix drive type EL device with low power consumption and long life can be formed with high productivity and high yield.
[0010]
BEST MODE FOR CARRYING OUT THE INVENTION
The EL device of the present invention includes a substrate on which an EL element is formed and a thin-film circuit element substrate on which a thin-film circuit element is formed, and an electrode of the EL element and an electrode of the thin-film circuit element are electrically connected. . This electrical connection is realized by a bonding material provided in a gap between the substrate and the thin-film circuit element substrate. As the bonding material, a conductive paste or conductive particles can be used. Here, the conductive particles are dispersed in the resin. UV curable resin can be used as the resin.
[0011]
Further, a configuration in which the electrode of the EL element and the electrode of the thin film circuit element are directly connected may be used. Alternatively, it is possible to provide a connection pad between the electrode of the EL element and the electrode of the thin film circuit element and join them. Here, the connection pad can be formed of, for example, a metal thin film.
[0012]
In the method for manufacturing an EL device according to the present invention, a step of forming an EL element including a substrate side electrode, an EL layer, and a counter electrode on an element substrate and a step of forming a thin film circuit element substrate having a thin film circuit element provided on the substrate are provided. And a connection step of electrically connecting the electrode of the EL element and the electrode of the thin film circuit element with the element substrate and the thin film circuit element substrate facing each other.
[0013]
Further, the connecting step includes forming a connection pad on at least one of the electrode of the EL element and the electrode of the thin-film circuit element, and positioning the electrodes with the element substrate and the thin-film circuit element substrate facing each other. Electrically bonding.
[0014]
Further, when joining the electrode of the EL element and the electrode of the thin film circuit element, the joining is performed by using ultrasonic joining.
[0015]
【Example】
Hereinafter, the EL device of the present invention will be specifically described with reference to examples.
[0016]
(Example 1)
FIG. 1 shows a schematic cross section of the organic EL device of this embodiment. As illustrated, an electrode 2 is formed on the surface of the organic EL substrate 10. Here, a glass flat plate is preferable for the organic EL substrate 10 in terms of heat resistance, chemical resistance, transparency, and the like. In this embodiment, non-alkali polished glass having a thickness of 0.7 mm was used. Next, the insulating layer 4 is laminated. The insulating layer 4 is formed using a silicon oxide-based material such as silicon oxide or PSG (Phos-Silicate Glass) containing silicon oxide containing phosphorus. Next, the insulating layer 4 is patterned to form holes for determining the light emitting area of the organic EL layer 3. Next, an organic EL layer is formed by mask evaporation so as to cover the holes of the insulating layer 4. Further, the electrodes 5 are formed in a predetermined pattern by mask evaporation.
[0017]
On the other hand, a TFT element circuit 8 for driving an organic EL element was formed on the TFT element circuit board 12. The detailed structure of the TFT element, the configuration of the constant current circuit for controlling the luminance of the organic EL element, and the description of the peripheral circuits are omitted because they are not directly related to the present invention.
[0018]
Next, the conductive material 6 was formed on the connection electrode portion 13 of the TFT element circuit 8, and the connection electrode portion 13 and the connection electrode portion 14 of the electrode 5 were aligned with the TFT element circuit substrate 12 facing the organic EL substrate 10. Thereafter, the substrates were joined to the outer peripheral portions thereof via a sealant 9 so as to shut off the atmosphere outside the cells. Note that an inert gas such as N 2 or Ar and a moisture adsorbent are usually enclosed between the substrates, but are not shown in the drawings. The electrode connecting portion 13 may use a part of the electrode 5 or an electrode of another material, and the electrode connecting portion 14 may use a part of the electrode 2 or an electrode of another material. Furthermore, if the electrode 2 under the connection electrode portion 14 is removed in advance by patterning depending on the type of the conductive material, it is effective as a measure for preventing a short circuit between the electrode 2 and the electrode 5. Here, as the conductive material 6, a conductive paste, conductive particles, or a connection material in which conductive particles or the like are dispersed in a resin can be easily formed into a predetermined pattern using a technique such as screen printing. Further, as the resin, a UV curable resin is preferable. As the conductive particles, besides solder balls, particles having a diameter of about 3 μm to 10 μm obtained by coating an acrylic resin with Ni or Ni—Au can be used.
[0019]
As the organic EL layer 3, a low molecular organic EL layer, a high molecular organic EL layer, or the like can be used. Among these, a low-molecular-weight organic EL layer is more preferable in terms of ease of production, low operating voltage, and the like.
[0020]
In this example, the structure of the anode (electrode 2) / hole injection layer / hole transport layer / light emitting layer / cathode (electrode 5) was used as the configuration of the organic EL element 18. The anode (electrode 2) can be made of a conductive transparent material such as indium tin oxide (ITO). The thickness of the electrode 2 is preferably 50 to 600 nm. In the present embodiment, indium tin oxide (ITO) was used as the transparent electrode material of the electrode 2 and was formed to have a thickness of 150 nm. Porphyrin compounds (compounds disclosed in JP-A-63-2956965) and aromatic tertiary amine compounds can be used as constituent materials of the hole injection layer. The thickness of the hole injection layer needs to be 20 nm or more. The upper limit of the thickness of the hole injection layer is not particularly limited, but is preferably 20 to 1000 nm, and particularly preferably 30 to 100 nm, from the viewpoint of manufacturing. In this example, copper phthalocyanine was formed to a thickness of 50 nm. The hole transport layer can be composed of α-NPD (α-naphthylphenyldiamine) or the like. The thickness of the hole transport layer is preferably from 5 to 45 nm, more preferably from 10 to 40 nm. In this embodiment, α-NPD was formed as a hole transporting material with a thickness of 40 nm. The light emitting layer can be composed of a tris (8-quinolinolato) aluminum complex (Alq3) or the like. The thickness of the light emitting layer is preferably from 5 to 45 nm, more preferably from 10 to 40 nm. In this embodiment, a 40 nm-thick tris (8-quinolinolato) aluminum complex (Alq3) was used as the light emitting layer.
[0021]
The cathode (electrode 5) can have a two-layer structure of a first cathode layer and a second cathode layer. Preferably, lithium fluoride (LiF) is used for the first cathode layer and aluminum is used for the second cathode layer. The thickness of the first cathode layer is preferably 0.1 to 2 nm, and the thickness of the second cathode layer is preferably 15 to 200 nm. In this example, the first cathode layer was composed of 0.5 nm thick lithium fluoride (LiF), and the second cathode layer was composed of 150 nm aluminum.
[0022]
Each layer described above is known to those skilled in the art, and can be formed by a method known to those skilled in the art, such as mask sputtering and mask vacuum evaporation.
[0023]
By applying a voltage between the electrode 2 and the electrode 5 of the organic EL element 18 using the TFT element circuit 8, the organic EL element 18 emits light, and the green EL light 11 is extracted to the outside through the organic EL substrate 10. Was completed. In this embodiment, Alq3 is used as the light emitting layer. However, when color display is performed, for example, the light emitting layer is doped with an appropriate dye.
[0024]
(Example 2)
FIG. 2 is a schematic side sectional view showing the organic EL device of this example. Note that, for the description of the organic EL substrate 10 and the TFT element circuit substrate 12, portions overlapping with those in Example 1 are omitted.
[0025]
On the organic EL substrate 10, the same organic EL element as in Example 1 was formed. Next, 10 μm of Al was formed as a connection pad 16 on a part of the electrode 5. In this embodiment, the film is formed by using a mask evaporation method. Here, the area was 450 μm 2 (15 μm × 30 μm). The thickness of the Al film can be arbitrarily set in the range of about 0.5 μm to 50 μm.
[0026]
On the other hand, on the TFT element circuit on the TFT element circuit board 12, Ni-Au was formed as the connection pad 15 to a thickness of 0.3 μm by plating. Here, the area was 450 μm 2 (15 μm × 30 μm). The thickness of the Au plating can be arbitrarily set in the range of about 0.05 μm to 1.0 μm.
[0027]
Next, the organic EL substrate 10 and the TFT element circuit substrate 12 are opposed to each other, and the connection pads 15 and the connection pads 16 are aligned. Then, as shown in FIG. The ultrasonic vibration was applied from the ultrasonic supply unit 103 to the edge of the TFT substrate 12 while applying pressure between the lower platen 102 and the lower platen 102 to perform ultrasonic bonding. The pressure and time during the ultrasonic pressure bonding were 1200 g / cm 2 and 2 seconds, respectively. Further, the upper and lower platens may be heated in a temperature range not exceeding the glass transition point of the organic EL layer.
[0028]
Next, the sealant 9 provided on the outer peripheral portion of the substrate is cured to form an active matrix type organic EL element. A printing method or an inkjet method is used as a method for providing the sealant on the substrate. In this example, a UV curable resin was used as a sealant, a resin was provided on the outer peripheral portion of the substrate by a printing method, and the resin was cured by UV irradiation. Usually, an inert gas such as N 2 or Ar and a moisture adsorbent are sealed between the substrates, but are omitted in the drawing.
[0029]
In the present embodiment, a combination of Au and Al metal bonding is used, but a known combination of Au-Cu bonding, Au-Ni bonding, Cu-Ni bonding or the like may be used.
[0030]
(Example 3)
FIG. 7 shows a schematic cross section of the organic EL device of this embodiment. In the second embodiment, the connection bats are formed on both the electrodes of the TFT element circuit board 12 and the organic EL substrate 10, but the connection bats 19 may be formed only on one side as in the present embodiment. The detailed manufacturing method is not described because a large part of the method overlaps with that of the second embodiment.
[0031]
In each of the above-described embodiments, the structure of the anode (electrode 2) / hole injection layer / hole transport layer / light emitting layer / cathode (electrode 5) is used as the configuration of the organic EL element 18. Known as constitutions, for example, (1) anode / light-emitting layer / cathode, (2) anode / hole transport layer / light-emitting layer / electron transport layer / cathode, (3) anode / light-emitting layer / electron transport layer / cathode And (4) various configurations such as anode / hole transport layer / light-emitting layer / cathode can be employed as they are.
[0032]
【The invention's effect】
The organic EL device of the present invention can achieve industrially high productivity and a high yield rate by forming the organic EL element and the TFT circuit element on separate substrates and then electrically connecting them. Further, since low current driving is possible, low power consumption and long life can be achieved.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing an example of an organic EL device according to the present invention.
FIG. 2 is a schematic sectional view showing another example of the organic EL device according to the present invention.
FIG. 3 is a schematic sectional view of a conventional bottom emission type active matrix driving organic EL device.
FIG. 4 is a schematic sectional view of a conventional top emission type active matrix driving organic EL device.
FIG. 5 is an explanatory diagram showing an example of a configuration of a conventional organic EL element.
FIG. 6 is an explanatory diagram showing another example of the configuration of the conventional organic EL element.
FIG. 7 is a schematic side sectional view showing another example of the organic EL device of the present invention.
FIG. 8 is a schematic side sectional view of the bonding apparatus of the present invention.
[Explanation of symbols]
2 electrode 3 organic EL layer 4 insulating layer 5 electrode 6 conductive material 8 TFT element circuit 9 sealant 10 organic EL substrate 11 EL light 12 TFT element circuit board 13 electrode connection part 14 electrode connection part 15 connection pad 16 connection pad 18 organic EL element 100 Cylinder 101 Upper surface plate 102 Lower surface plate 103 Ultrasonic supply unit

Claims (11)

基板側電極、EL層、対向電極を含むEL素子が形成された基板と、片面に薄膜回路素子が形成された薄膜回路素子基板と、を備えるとともに、前記EL素子の電極と前記薄膜回路素子の電極が電気的に接合されたことを特徴とするEL装置。A substrate-side electrode, an EL layer, a substrate on which an EL element including a counter electrode is formed, and a thin-film circuit element substrate on which a thin-film circuit element is formed on one surface; and an electrode of the EL element and a thin-film circuit element. An EL device wherein electrodes are electrically connected. 前記EL素子の電極と前記薄膜回路素子の電極が、前記基板と前記薄膜回路素子基板を対向させてなる間隙に設けられた接合材料により電気的に接合されたことを特徴とするEL装置。An EL device, wherein an electrode of the EL element and an electrode of the thin film circuit element are electrically joined by a joining material provided in a gap between the substrate and the thin film circuit element substrate. 前記接合材料に導電ペーストを用いることを特徴とする請求項2に記載のEL装置。The EL device according to claim 2, wherein a conductive paste is used as the bonding material. 前記接合材料に導電粒子を用いることを特徴とする請求項2に記載のEL装置。The EL device according to claim 2, wherein conductive particles are used as the bonding material. 前記導電粒子が樹脂に分散されていることを特徴とする請求項4に記載のEL装置。The EL device according to claim 4, wherein the conductive particles are dispersed in a resin. 前記樹脂がUV硬化型樹脂であることを特徴とする請求項5に記載のEL装置。The EL device according to claim 5, wherein the resin is a UV-curable resin. 前記EL素子の電極と前記薄膜回路素子の電極が直接接続されたことを特徴とする請求項1に記載のEL装置。The EL device according to claim 1, wherein an electrode of the EL element and an electrode of the thin-film circuit element are directly connected. 前記EL素子の電極と前記薄膜回路素子の電極との間に金属薄膜からなる接続パッドが設けられたことを特徴とする請求項1に記載のEL装置。The EL device according to claim 1, wherein a connection pad made of a metal thin film is provided between the electrode of the EL element and the electrode of the thin film circuit element. 基板側電極、EL層、対向電極を含むEL素子を素子基板上に形成する工程と、基板上に薄膜回路素子が設けられた薄膜回路素子基板を形成する工程と、前記素子基板と前記薄膜回路素子基板を対向させて、前記EL素子の電極と前記薄膜回路素子の電極とを電気的に接合する接続工程と、を備えることを特徴とするEL装置の製造方法。A step of forming an EL element including a substrate-side electrode, an EL layer, and a counter electrode on an element substrate; a step of forming a thin-film circuit element substrate provided with a thin-film circuit element on the substrate; A method of manufacturing an EL device, comprising: a connecting step of electrically connecting an electrode of the EL element and an electrode of the thin-film circuit element with an element substrate opposed to the element substrate. 前記接続工程が、前記EL素子の電極と前記薄膜回路素子の電極との少なくとも一方に接続パッドを形成する工程と、前記素子基板と前記薄膜回路素子基板とを対向させて、前記各電極を位置合わせして電気的に接合する工程と、を含むことを特徴とする請求項9に記載のEL装置の製造方法。The connecting step includes forming a connection pad on at least one of the electrode of the EL element and the electrode of the thin-film circuit element; and positioning the electrodes by opposing the element substrate and the thin-film circuit element substrate. The method for manufacturing an EL device according to claim 9, further comprising a step of joining and electrically connecting the EL device. 前記EL素子の電極と前記薄膜回路素子の電極とを超音波接合を用いて接合することを特徴とする請求項9または10に記載のEL装置の製造方法。The method according to claim 9, wherein the electrode of the EL element and the electrode of the thin-film circuit element are joined by using ultrasonic joining.
JP2002252575A 2002-08-30 2002-08-30 El device and its manufacturing method Pending JP2004095251A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002252575A JP2004095251A (en) 2002-08-30 2002-08-30 El device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002252575A JP2004095251A (en) 2002-08-30 2002-08-30 El device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004095251A true JP2004095251A (en) 2004-03-25

Family

ID=32058813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002252575A Pending JP2004095251A (en) 2002-08-30 2002-08-30 El device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004095251A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006043987A (en) * 2004-08-03 2006-02-16 Seiko Epson Corp Exposure head
JP2006107755A (en) * 2004-09-30 2006-04-20 Seiko Epson Corp ELECTRO-OPTICAL DEVICE, IMAGE FORMING DEVICE, AND IMAGE READING DEVICE
JP2006196488A (en) * 2005-01-11 2006-07-27 Seiko Epson Corp ELECTRO-OPTICAL DEVICE, IMAGE FORMING DEVICE, AND IMAGE READING DEVICE
JP2006253538A (en) * 2005-03-14 2006-09-21 Seiko Epson Corp LIGHT EMITTING DEVICE, IMAGE FORMING DEVICE, AND ELECTRONIC DEVICE
US7782351B2 (en) 2004-08-03 2010-08-24 Seiko Epson Corporation Exposure head
WO2010140383A1 (en) * 2009-06-05 2010-12-09 パナソニック株式会社 Organic el display device
JP2011119239A (en) * 2009-10-27 2011-06-16 Panasonic Electric Works Co Ltd Light emitting module
US8054324B2 (en) 2006-02-03 2011-11-08 Seiko Epson Corporation Optical head and image forming apparatus
JP2015162428A (en) * 2014-02-28 2015-09-07 株式会社リコー Organic electroluminescent light-emitting device and method of manufacturing organic electroluminescent light-emitting device, and image forming apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006043987A (en) * 2004-08-03 2006-02-16 Seiko Epson Corp Exposure head
US7782351B2 (en) 2004-08-03 2010-08-24 Seiko Epson Corporation Exposure head
JP2006107755A (en) * 2004-09-30 2006-04-20 Seiko Epson Corp ELECTRO-OPTICAL DEVICE, IMAGE FORMING DEVICE, AND IMAGE READING DEVICE
JP2006196488A (en) * 2005-01-11 2006-07-27 Seiko Epson Corp ELECTRO-OPTICAL DEVICE, IMAGE FORMING DEVICE, AND IMAGE READING DEVICE
JP2006253538A (en) * 2005-03-14 2006-09-21 Seiko Epson Corp LIGHT EMITTING DEVICE, IMAGE FORMING DEVICE, AND ELECTRONIC DEVICE
US8054324B2 (en) 2006-02-03 2011-11-08 Seiko Epson Corporation Optical head and image forming apparatus
WO2010140383A1 (en) * 2009-06-05 2010-12-09 パナソニック株式会社 Organic el display device
JP2011119239A (en) * 2009-10-27 2011-06-16 Panasonic Electric Works Co Ltd Light emitting module
JP2015162428A (en) * 2014-02-28 2015-09-07 株式会社リコー Organic electroluminescent light-emitting device and method of manufacturing organic electroluminescent light-emitting device, and image forming apparatus

Similar Documents

Publication Publication Date Title
KR100476572B1 (en) Organic electroluminescent device and manufacturing method therefor
JP6570707B2 (en) Organic electroluminescence lighting panel, manufacturing method thereof, and organic electroluminescence lighting device
JP6052825B2 (en) ORGANIC LIGHT EMITTING ELEMENT AND MANUFACTURING METHOD THEREOF
JP2011066017A (en) Organic electroluminescent display element and method of manufacturing the same
JP2000231992A (en) Surface light source device
JP2003123990A (en) Organic electroluminescence device
US7923924B2 (en) Organic electroluminescent display/source with anode and cathode leads
JP2007273400A (en) Method of manufacturing optical device, and optical device
JP2004095251A (en) El device and its manufacturing method
JPH1140370A (en) Organic EL display
JP2004031262A (en) Organic electroluminescence panel
JP2006278241A (en) Spontaneous light emitting panel and manufacturing method of the same
JP2007234332A (en) Method for manufacturing self-luminous panel and self-luminous panel
JP3775048B2 (en) Organic light emitting device
JP2004014447A (en) Display device and manufacturing method therefor
JP4405638B2 (en) Display and manufacturing method thereof
JP2001244069A (en) Organic electroluminescence device
JP4652451B2 (en) Optical device and method for manufacturing optical device
JP3591387B2 (en) Organic EL device
JPH10189238A (en) Optical element and method of manufacturing the same
JP2001284048A (en) Organic el element full color display panel and its manufacturing method
KR100551027B1 (en) Organic electroluminescent display
JP2007258005A (en) Method of manufacturing sealing member for optical device, method of manufacturing optical device, optical device, and sealing member for optical device
JP2003257638A (en) Method of manufacturing organic electro-luminescence display panel, and organic electro-luminescence display panel provided by the manufacturing method
JP2002170688A (en) Organic electroluminescent element

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040304